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Abstract—This paper describes a novel design method for
direct digital frequency synthesizers with very high accuracy. To
this end, we leverage the well-known piecewise, multiplier-less
function approximation method by two separate enhancements:
A parallel function estimation scheme is applied which increases
the approximation accuracy and reduces the segmentation effort.
To achieve further performance improvement, gradient encoding
is also taken into account. For evaluation, several direct digital
frequency synthesizer architectures with varying accuracies are
generated and analyzed in terms of complexity and timing. Logic
and physical synthesis is performed with selected candidates. The
results indicate the proposed function approximation technique
as a powerful approach for the design of direct digital frequency
synthesizers with spurious free dynamic ranges of 90 dBc and
more.

Index Terms—Direct Digital Frequency Synthesis, Advanced
Linear Function Approximation, Elementary Functions

I. INTRODUCTION AND RELATED WORK

In recent years, the design of high-performance Frequency
Synthesizers (FS) has become more and more important, as it
is used in a vast range of different applications, e.g., medical
devices [1] or mobile communications [2]. Its main task is
the generation of sine functions with varying frequencies. By
now, a large number of different approaches for the efficient
hardware-based implementation is available, e.g., Phase-Lock-
Loops (PLL), Voltage- (VCO) or Numerically-Controlled-
Oscillators (NCO) [3]. A common approach to realize NCOs
are Direct Digital Frequency Synthesizers (DDFS), as they
have proven to achieve very high performance, especially
in terms of power consumption, stability and accuracy [4].
As depicted in Fig 1, a DDFS-related hardware architecture
possesses a phase accumulator and a sine mapper. For the
realization of the (non-linear) sine function, several design
techniques have been explored, targeting an optimal trade-
off between hardware performance − in this paper this term
comprises timing, complexity and power consumption − and
accuracy, assessed by the Spurious Free Dynamic Range
(SFDR) [5].

In the last years, high-performance DDFS processing has
been realized by the utilization of linear function approx-
imations, mostly extended by well-established improvement
techniques like multiplier-less gradients or non-uniform seg-
mentation. For example, in [6] a hand-optimized approach with
three fixed segmentation schemes and linear sub-functions is
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Fig. 1. Schematic overview over a DDFS architecture based on a) the accu-
mulator and b) the sine mapper. The latter is realized by the approximation of
the non-linear quarter sine wave, an operand flipping unit and a result saturate
unit catching possible overflows.

proposed. In [7] the estimation of the (quantized) linear co-
efficients is enhanced by non-linear mixed-integer linear pro-
gramming (MILP) optimization methods. Compared to more
complex polynomial approaches, e.g., Chebyshev-polynomials
[8], very high performance can be achieved, especially in terms
of complexity. However, for DDFS architectures with very
high accuracy (with an SFDR of 110 dBc and more), e.g., re-
quired for GSM-based digital-down-conversion [9], the MILP-
based function approximation approach is not practicable, as
the computational effort for the parameter estimation is too
excessive [7].

To overcome this limitation, an automated function ap-
proximation technique has been proposed in [10]. There, a
straightforward segmentation is utilized to reach a maximum
SFDR of 110 dBc. However, the resulting hardware effort,
especially the huge multiplexer, significantly decreases the
overall performance which is a major drawback of this ap-
proach.

In this paper we will advance this function approximation
design technique in order to realize high-accuracy DDFS
architectures with reasonable hardware requirements. To this
end, we propose the following enhancements:

• Instead of a direct approximation, the original function
is split up into a global gradient estimation and a residue
that can be processed in parallel (see Sec. II-C).

• To reduce the size of the multiplexer, the gradient se-
lection data is encoded. The decoding, that covers the
selection of the true gradients, is processed after the
expensive multiplexer tree traversal (see Sec. II-D).
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Fig. 2. Example of the proposed function parallelization scheme with a) the quarter sine function, b) the global approximation f̃g(x) for gradient effort
reduction and c) the residue f̃r(x). Note, that b) and c) can be calculated in parallel and superposed afterwards enabling concurrent signal processing.

II. ADVANCED LINEAR FUNCTION APPROXIMATION

Main idea of the proposed DDFS architecture is the re-
alization of the sine function by means of linear function
approximation. In general, it is given by the mathematic
formula

f̃(x) = c1x+ c0 , (1)

where x denotes the input data, f̃(x) the approximation of an
original function f(x) and c0, c1 the linear coefficients. For
advanced linear function approximation, four separate design
techniques are proposed which are presented in the following.

A. Multiplier-less Gradients

To decrease the arithmetic signal processing effort,
multiplier-less gradients c̃1 are taken into account. Thus, c̃1
will contain only small set of accumulated partial products. Its
calculation can be realized by trivial shift-and-add means [11].
The total number of partial products is specified by the so-
called quantization factor (QF) which refers to the (maximum)
number of nonzero digits in the gradient. Out of this, quantized
linear gradients can be calculated by

c̃1,q =

q−1∑
j=0

±
(
2λ1,j

)
, (2)

with q as the QF and λj as the exponent of the j-th partial
product.

B. Non-Uniform Segmentation

For the realization of a non-uniform segmentation scheme,
the original function is split up into several sub-functions
with variable input ranges. To enable fast access to each
sub-function, additional restrictions have to be considered. In
detail, a segment must fulfill the constraint

seg(i) = seg(i− 1) +
C2 − C1

2hi
, (3)

with C1, C2 as start and end point of the function, i as the
segment index (seg(0) = C1) and hi ∈ N+ as the interval

exponent of the ith segment. This formula allows the selection
of each segment simply by taking the most significant bits
(MSBs) of x into account. Note, that hi may differ for each
segment which may cause a varying number of MSBs that
has to be considered for each segment. The input range of the
original function is set to

C2 − C1 = 2hmax , (4)

with hmax as the interval exponent of the entire function range.
Along with the multiplier-less gradients from Sec. II-A,

the entire function approximation is defined by the following
system of equations

f̃(x) =

q−1∑j=0

±


2λ0,j

2λ1,j

...
2λk−1,j

x+ c̃0


>

· κ(x) ; λi,j ∈ Z , (5)

with c̃0 containing the offsets of each segment, i and j as
segment and partial product indexes, respectively. κ(x) is a
fade-out function realizing the the segmentation by

κ(x) =


(1, 0, ..., 0)>; C1 ≤ x < seg(1)

(0, 1, ..., 0)>; seg(1) ≤ x < seg(2)
...

...
(0, 0, ..., 1)>; seg(k− 1) ≤ x < C2

, (6)

with k as the total amount of segments.

C. Parallelization

One of the main drawbacks of piecewise function ap-
proximation is the extreme growth of complexity for high-
accuracy approximations caused by the huge multiplexer tree
for segmentation. To circumvent this limitation, we propose
to divide the original function into two different parts: a
global approximation f̃g(x) and a residue function f̃r(x).
Roughly speaking, the former minimizes the calculation effort
for the resulting function as it realizes a trivial gradient pre-
estimation (see Fig. 2b). This task can be interpreted as the
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flattening of the original function (see Fig. 2c) that simplifies
the approximation effort of f̃r(x) and, consequently, leads to a
significant reduction of segments. Note, that this technique is
only effective for multiplier-less gradients as it only minimizes
the number of partial products for gradient calculation in the
flattened function.

Though the number of segments for f̃g(x) will decrease,
the calculation of two separate function approximations also
increases the signal processing effort in total. Generally
speaking, the complexity of f̃r(x) is reduced at the cost of
an additional piecewise and multiplier-less (global) function
approximation. To keep this overhead reasonable, only an
uniform segmentation scheme with a small number of seg-
ments will be considered for f̃g(x). This divide-and-conquer
approach constitutes an advantage for designs with a high
number of segments. Hence, a significant increase of the
resulting hardware performance can be achieved. A graphical
example of this parallelization technique is given in Fig. 2.

D. Encoded Gradient Selection

Besides a reduction of the multiplexer tree size by paral-
lelization, the use of encoded signals for gradient selection
will be exploited to achieve a further decrease of complexity
and energy consumption. Thus, instead of partial products with
the full data path width d, only a reduced selection signal has
to traverse through the segmentation multiplexer trees with a
maximum data path width of denc = dlog2(d)e. For decoding,
an extra multiplexer is required that is connected to the reals
partial products. An overview of this measure is depicted in
Fig 3.

III. HARDWARE GENERATION

In order to minimize the design time of the advanced func-
tion approximation method, an automated, accuracy-driven
hardware design method is proposed. In general, it consists
of two different tasks, the parameter extraction and hardware
mapping.

A. Parameter Extraction

Basically, the parameter extraction is used to calculate the
number of segments, its size and location as well as the
realization of the linear coefficients. In addition, the advanced
approximation techniques proposed in Sec. II are considered.
The parameter extraction starts with the parallelization by esti-
mating the global approximation function f̃g(x). As multiplier-
less and piecewise design techniques must be taken into
account at this, a QF (qg) and a number of uniform segments
(kg) are mandatory parameters that have to be specified in
advance. Within each segment a Best-Case function approxi-
mation is performed by the Remez-Algorithm [12] and used
as reference. Next, a multiplier-less gradient is calculated by
the accumulation of qg partial products that possess a minimal
deviation from the reference gradient.

For the calculation of the residue f̃r(x), a reference function
is set up by calculating the difference between the original
function and the global approximation (g̃(x) = f(x)− f̃g(x)).
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Fig. 3. Hardware architecture of the proposed advanced linear function ap-
proximation with a) the partial products for multiplier-less gradient calculation
(see Sec. II-A), b) the multiplexer tree for the non-uniform segmentation of
f̃r(x) (see Sec. II-B), c) the multiplexer tree for the uniform segmentation of
f̃g(x) (see Sec. II-C) and d) the multiplexer for gradient decoding (see Sec.
II-D). Solid and dotted lines mark the data and control path, respectively.

As this approximation is allowed to possess non-uniform
segments (to enable the demanded accuracy-driven design),
a recursive segmentation algorithm is utilized for the approx-
imation refinement. In detail, the segmentation starts with the
generation of an approximation considering the whole function
range; the gradient estimation of the residue approximation is
equal to the one of the global approximation. The offset c̃r0,i is
determined by calculating the smallest sum of absolute errors

c̃r0,i = argmin
ĉr0,i

= ||g̃i(xi)− (c̃r1,ixi + ĉr0,i)|| , (7)

with g̃i(xi) and xi as the sub-function reference and range of
the ith segment, respectively. If the resulting error

ε = max
(
||g̃i(xi)− f̃r,i(xi)||

)
(8)

exceeds the specified error εmax the function is divided into
two sub-functions by bisection and the segmentation starts
over with the leftmost segment. Otherwise, if the condition
ε ≤ εmax is fulfilled, the parameter extraction continues with
the next segment. This straightforward segmentation technique
enables a piecewise approximation with varying (non-uniform)
segment sizes and finishes, when the entire function range has
been processed this way.

As soon as both approximations have been generated, the
resulting partial gradients are encoded by assigning each

2016 24th European Signal Processing Conference (EUSIPCO)

674



120 110 100 90 80

105

106

66, 6

167, 6

349, 2

786, 7

3823, 3

SFDR (dBc)

A
T

-p
ro

du
ct

d = 16

d = 18

d = 20

Fig. 4. Design space exploration of the proposed linear function approxi-
mation technique by evaluation of the AT-product over the corresponding
SFDR for different data path widths. The bold numbers mark the best (Pareto-
optimal) candidates.

partial product shift (and the sign) to a related key value. For
the decoding, additional multiplexers are necessary, mapping
the encoded values back to the partial gradients (see Fig. 3).

B. Hardware Mapping

Besides the parameter extraction, a hardware description of
the resulting function approximation has to be set up. For
this purpose, VHDL-based template files providing a generic
structure of the demanded architecture are used that base on
the StringTemplate engine [13]. The input and output ports as
well as the constants, encoding values and offset accumulator
can be realized by corresponding basic VHDL-expressions.
For the quantized gradients, the input operands are shifted
accordingly, which is also done by common VHDL means.
The segmentation is realized using multiplexers that refer
to encapsulated if-statements in VHDL. In order to enable
a straightforward StringTemplate processing, the MSB data
is transferred to a binary tree data type that is traversed in
a depth-first manner during the code generation phase. An
architectural example is given in Fig. 3.

IV. RESULTS

To qualify the proposed design technique in the scope of
DDFS-based signal processing, an algorithmic and hardware-
based evaluation is performed. For this purpose, a quarter
sine function is approximated using the proposed advanced

TABLE I
AREA AND TIME (DELAY) ESTIMATION SCHEME BASED ON THE UNIT

GATE MODEL SPECIFIED IN [14] WITH d AND k AS THE DATA PATH WIDTH
AND NUMBER OF SEGMENTS (MEMORY CELLS FOR MEM OR NUMBER OF

ADDERS FOR ADD), RESPECTIVELY.

Multiplexer CSA-Tree Memory
MUX ADD MEM

T (Delay) 2 · dlog2(k)e 4 · dlog2(k)e† −
A (Area) 3 · (d · (k − 1)) 7 · d d · k
† Only parallel CSA-Tree elements are considered.

TABLE II
BEST-CANDIDATE RESULTS OF THE DESIGN SPACE EXPLORATION, GIVEN

IN FIG. 4, FOR SFDRS OF 90 dBc, 100 dBc AND 110 dBc.

SFDR Width Residue approximation Global approximation
(dBc) d qr kr qg kg

90 18 1 58 2 8
100 18 1 105 2 16
110 20 1 230 2 16

function approximation method. By exploiting trivial and well-
known design techniques for function mirroring and saturation,
the entire sine wave can be processed. Additionally, the range
of the sine function is scaled to 1, as this enables a hardware-
convenient realization of the function extension, e.g., by bit
flipping or signal negation. More details about this measure
are given in [10].

As mentioned in Sec. I, the analysis of a sine function
considering its SFDR is a well-established method to value the
approximation quality [3]. Unfortunately, estimating the SFDR
without the resulting approximation is a very tedious task
[7]. Hence, the automated function approximation described
in Sec. III is exploited for fast hardware generation enabling
exhaustive experimental evaluation of the SFDR.

A. Algorithmic performance

In order to select suitable candidates for further (hardware-
based) investigations, a simple but meaningful algorithmic
evaluation is performed that base on the well-known Unit-
Gate-Model (UGM) [14]. At this, each hardware element of
the resulting function approximation architecture is weighted
in terms of complexity and timing, according to its internal
signal processing effort.

For the timing estimation, the critical path must be taken
into account which is determined considering both the global
and residue approximation. Hence, it is calculated considering
the formulas in Tab. I applied to the architecture given in Fig.
3. Note, that only parallel Carry-Save-Adder (CSA) units are
considered for the adder-tree. In order to determine the UGM-
based area, again the architectural description from Fig. 3 in
conjunction with the values from Tab. I is taken into account.

For exhaustive evaluation, several different specified values
for QF: qr = {1, . . . , 4} (residue approximation), qg =
{1, . . . , 4}, number of segments (sg = {1, 4, 8, 16}) (both
for the global approximation) and the data path width d =
{16, 18, 20} are taken into account for varying errors εmax.
Note, that εmax is refined (starting from εmax = 1) until the
data path resolution is reached (εmax = 2−d). The SFDR is
calculated for each function approximation and evaluated con-
sidering the product of timing and complexity (AT-product).
The best candidates in the design space are depicted in Fig.
4.

B. IC implementation

For the IC implementation, the best candidates obtained
from the algorithmic performance evaluation are taken into
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TABLE III
COMPARISON OF IC SYNTHESIS RESULTS TO ACTUAL REFERENCES.

Domain Reference SFDR Technology QF Segments Max. Frequency Norm. Area Energy
[dBc] [nm] [MHz] [105] [µW/MHz]

90 SFDR

This work 90.5 130 1+ 2† 58+ 8† 257 9.56 5.55
[10] 91.7 130 2 141 278 4.38 5.53
[6] 90.3 130 3 32 216 4.21 5.98
[7] 88.9 130 3 32 220 3.85 7.42

100 SFDR This work 101.4 130 1+ 2† 105+ 16† 213 12.31 8.32
[15] 101 250 - - 201 5.7 61.7

110 SFDR
This work 112.6 130 1+ 2† 230+ 16† 175 16.42 9.23

[10] 110.7 130 3 626 133 17.1 24.89
[16] ∼110 250 - - 250 19.2 400

†The number of both global and residue segmentation is considered by superposition.

account. To keep the effort reasonable, only three different
accuracies are discussed in this paper: 90 dBc, 100 dBc and
110 dBc. Logical and physical synthesis as well as correspond-
ing verification and timing back-annotation design steps are
performed. As target technology a general purpose 130 nm
CMOS process provided by UMC is chosen. In order to enable
a fair comparison, the normalized area is used for complexity
evaluation that is calculated by dividing the resulting area by
the squared technology size [6]. An overview of the synthesis
results are given in Tab. III.

The results highlight our approach to be very suitable in
terms of operating frequency and energy consumption. Due
to the additional signal processing effort, e.g., caused by the
additional trial function approximation, only low performance
is achieved for an SFDR of 90 dBc in terms of complexity.
However, in higher SFDR domains (100 dBc and more), this
effect is (nearly) equalized as the multiplexer saving start to
dominate the additional hardware effort. Thus, the proposed
design techniques result in a very balanced DDFS-architecture,
improving the hardware performance in total.

V. CONCLUSION

In this paper, novel architectures for direct digital frequency
synthesizers that base on advanced linear function approxima-
tion are introduced. Besides multiplier-less linear equations
and non-uniform piecewise segmentation − that have already
proven to achieve high computational performance for CMOS-
based hardware implementations −, also parallelization and
encoding techniques are taken into account leading to high-
performance and high-accuracy results. The architecture is
generated automatically realizing an evident decrease of the
design time.

For evaluation, varying accuracies are considered. First,
several function approximations are generated and compared
in terms of accuracy, timing and area on the algorithmic
level of the hardware design flow. In a next step, the IC
implementation is performed for selected candidates. As a
result, our work achieves very good results for high-accuracy
hardware architectures. In conclusion, the design of direct
digital frequency synthesizers that base on advanced function
approximation have turned out to be a powerful and promising

approach. Hence, its application in different application areas
has to be considered for future work.
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