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ABSTRACT
We address in this paper the deconvolution issue for radio-
interferometric multispectral images. Whereas this problem
has been widely explored in the recent literature for single
images, a few algorithms are able to reconstruct multispec-
tral images (three-dimensional images) [1], [2]. We propose
in this paper two new distributed algorithms based on the op-
timization methods ADMM and projected gradient (PG) for
the reconstruction of radio-interferometric multispectral im-
ages. We present an original distributed architecture and a
comparison of their performance on a quasi-real data cube.

Index Terms— ADMM, deconvolution, distributed opti-
mization, projected gradient, radio-interferometry, multispec-
tral images.

1. INTRODUCTION

With the advent of new generations of radio interferometers
such as the Low Frequency Array (LOFAR) and the Square
Kilometer Array (SKA), a large amount of multispectral im-
ages will be produced in the next few years. These new inter-
ferometers have a very large field of view (millions of pixels)
with a high spectral resolution (hundreds of frequency bands
in the radio wave domain). These massive observed data are
corrupted by the noise and by the instrument response. A
challenging point is the design of deconvolution algorithms
that are able to deal with the large size of the observations. A
good deal of the recent research is focused on distributed op-
timization algorithms aiming to solve the deconvolution issue
in two cases:
• Large two-dimensional monochromatic (i.e., with only

one spectral band) image deconvolution with different ap-
proaches: let us cite the so-called PURIFY algorithm [3]
based on the Simultaneous Direction Method of Multipli-
ers (SDMM), [4] where the authors propose in particular
two new scalable splitting algorithms for image recon-
struction, or [5] where a compressive sensing approach is
proposed.

• The extension to the multispectral (3D) images bearing
two spatial dimensions and a spectral one. The third
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dimension obviously increases the size of the deconvo-
lution problem. The authors of [2] propose a method
based on the Alternating Direction Method of Multipli-
ers (ADMM) that is known amongst other things for its
ability to be distributed [6].
This work starts with the regularized optimization prob-

lem described in [2] and recalled in Section 2. In Section 3, a
simpler version of ADMM than in [2] is proposed by remov-
ing one Lagrange multiplier vector. Concurrently, we also
propose to solve the optimization problem by resorting to the
projected gradient method (PG) in the dual space (Section 4).
Distributed implementations for both these algorithms are
proposed in Section 5. This distributed architecture differs
from the classical master/slave one by the fact that none of
the nodes stores the entire multispectral image (in classical
architecture, the global image is stored on the master node).
Thanks to a minimal amount of data exchange between the
nodes, the required memory and the computational cost sup-
ported by a single node are decreased. The performances of
the two algorithms are finally compared in Section 6.

2. PROBLEM FORMULATION

Assuming that the observations are made on L frequency
bands, the 3D data cube can be seen as a collection of L
monochromatic images of N pixels each. Similar to [2], the
image observed at the frequency νl ∈ {ν1, · · · , νL}, also
called the “dirty image” at νl, is given by the equation

yl = Hlxl + nl ∈ RN (1)

where xl ∈ RN is the “true” image vector, nl is the noise vec-
tor and Hl is a convolution matrix representing the so-called
Point Spread Function (PSF) of the radio-interferometer.
Stacking theL dirty images in the vector y = [yT1 , · · · ,yTL ]T ∈
RM where M = N × L, and denoting respectively as ‖ · ‖2
and ‖ · ‖1 the Euclidean and the `1 norms, the optimization
problem is written

min
x

1

2
‖y −Hx‖22 +

µε
2
‖x‖22 + ıR+(x) + ‖Wx‖1, (2)

where the first term is the objective function, the second is
a Tikhonov regularization term controlled by the parameter
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µε > 0, the third is a positivity constraint (since we are re-
covering sky brightnesses) where ıR+(x) = ∞ if one of the
elements of x at least is negative, and 0 otherwise, and the
last term is a sparsity term. Here, the sparsity is induced
in the multiresolution (wavelet) domain for each monochro-
matic image, and in the Discrete Cosine Transform (DCT)
domain at each multifrequency pixel. Specifically,

W =

µsW̃s

−−−
µνW̃ν


where µs, µν > 0 are regularization parameters, and

W̃s =

Ws 0
. . .

0 Ws

 ∈ RmsM×M

is a block-diagonal matrix where each block Ws ∈ RmsN×N ,
acting on a monochromatic image, is the concatenation ofms

orthogonal wavelet bases. Similar to [2] and [3], we identify
Ws with a dictionary consisting in the concatenation of the
first eight Daubechies wavelet bases (ms = 8). Finally,

W̃ν =

Wν 0
. . .

0 Wν

P ∈ RM×M

where P is the permutation matrix that rearranges the ele-
ments of the vector x pixel by pixel, each of these pixels
being represented by a vector of L frequencies, and where
each block Wν is a L×L matrix representing the DCT. Note
that W̃T

s W̃s = msIM and W̃T
ν W̃ν = IM . It is moreover

obvious that ‖Wx‖1 = µs‖W̃sx‖1 + µν‖W̃νx‖1.

3. ADMM DESCRIPTION

In order to solve Problem (2), we reformulate it as follows:

min
x
f(x) + g(z) subject to: Ax + Bz = 0

where

f(x) = (1/2)‖y −Hx‖22 + (µε/2)‖x‖22,
g(z) = ıR+(p) + µs‖t‖1 + µν‖v‖1 where

zT = (pT , tT ,vT ) ∈ RM × RmsM × RM ,

A =

 IM
W̃s

W̃ν

 , and B =

−IM 0 0
0 −ImsM 0
0 0 −IM

 .

The associated augmented Lagrangian for ρ > 0 is

Lρ(x, z,γ) = f(x) + g(z)

+ γTp (x− p) + γTt (W̃sx− t) + γTv (W̃νx− v)

+
ρ

2
‖x− p‖22 +

ρ

2
‖W̃sx− t‖22 +

ρ

2
‖W̃νx− v‖22 (3)

where γ = [γTp ,γ
T
t ,γ

T
v ]
T ∈ R(2+ms)M is the vector of La-

grange multipliers, decomposed in accordance with the right
hand side of (3). Note that the dimension of this vector is
smaller than in [2], where four sets of Lagrange mutlipliers
were used instead of three here.

As it is well known, ADMM consists of the following it-
erations:

xk+1 = argmin
x

Lρ(x, zk,γk) (4)

zk+1 = [pk+1T , tk+1T ,vk+1T ]T

= argmin
z
Lρ(xk+1, z,γk) (5)

γk+1 = [γk+1
p

T
,γk+1

t

T
,γk+1

v

T
]T

= γk + ρ(Axk+1 + Bzk+1). (6)

We now write xk = [xk1
T
, . . . ,xkL

T
]T where each block is of

size N and thus corresponds to a monochromatic image. We
do the same decomposition for pk and γkp. Similar decompo-
sitions are also done for tk and γkt where the dimensions of
the blocks are this time equal to msN .

Let us consider the minimization (4). Solving the equa-
tion shows that the minimization w.r.t. x is separable with re-
spect to the frequencies thanks to the block diagonal structure
of W̃s and to the orthogonality of W̃ν . After a straightfor-
ward computation, we obtain that xk+1

l = Q−1l bkl for each
l ∈ {1, . . . , L} where

Ql = HT
l Hl + (µε + (2 +ms)ρ)IN and

bkl = HT
l yl − γkp,l −WT

s

(
γkt,l − ρtkl

)
+ ρ

(
pkl +

(
PT (vk)

)
l

)
−
(
PT (W̃T

ν γ
k
v)
)
l

. (7)

Here (·)l denotes the lth size-N block of a vector. The com-
putations leading to the expression of Ql make use of the iso-
metric nature of W̃s. Observe that the Ql can be computed
once at the beginning of the algorithm while the vectors bkl
need to be computed at every iteration. Finally, since Hl is a
convolution operator, the equation Q−1l bkl can be practically
approximated by using the Fast Fourier Transform operator.

Minimizations w.r.t. the vectors p and t in (5) are struc-
turally separable with respect to the frequencies. Writing
p̃k+1
l = ρ−1γkp,l + xk+1

l , we get

pk+1
l = arg min

u∈RM
ıR+(u) + γkp,l

T
(xk+1
l − u)

+
ρ

2
‖xk+1

l − u‖22
= max(0, p̃k+1

l )

where max is taken elementwise.
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Writing t̃k+1
l = Wsx

k+1
l + ρ−1γkt,l, we also have

tk+1
l = arg min

u∈RmsM
µs‖u‖1 +

ρ

2
‖u− t̃k+1

l ‖22

= t̃k+1
l •max

(
0, 1− ρ−1µs∣∣t̃k+1

l

∣∣)
where • is the elementwise product. We recognize here the
usual soft thresholding operator.

The update of the vector vk is done at each multifre-
quency pixel. Write this time vk = [vk1

T
, . . . ,vkN

T
]T and

γkv = [γkv,1
T
, . . . ,γkv,1

T
]T where the blocks within these

vectors have the size L. Let ṽk+1
i = (W̃νx

k+1)i + ρ−1γkv,i
where (·)i is a size-L block, we get

vk+1
i = arg min

u∈RL
µν‖u‖1 +

ρ

2
‖u− ṽk+1

i ‖22

= ṽk+1
i •max

(
0, 1− ρ−1µν

|ṽk+1
i |

)
.

Finally, the inspection of Equation (6) shows that γkp and γkt
are updated at the level of the monochormatic images while
γkv is updated at the multifrequency pixel level.

4. PROJECTED GRADIENT ON THE DUAL
PROBLEM

4.1. Primal and dual problems

In this section, we replace Problem (2) with the problem

min
x∈RM

f(x) + h(Wx), (8)

where we recall that f(x) = (1/2)‖y−Hx‖22+(µε/2)‖x‖22,
and where we set h : R(ms+1)M → R+, u 7→ ‖u‖1. Note
that the positivity assumption is now absent. In order to solve
this problem, we start by writing its dual problem

min
λ∈R(ms+1)M

f∗(−WTλ) + h∗(λ) (9)

where f∗ is the Legendre-Fenchel transform of f , defined as
f∗(φ) = supx〈φ,x〉 − f(x). After a standard calculation,
we get

f∗(φ) =
1

2
φT∆−1φ+φT∆−1HTy+

1

2
yT (H∆−1HT−I)y

where ∆ = (HTH + µεI) is a block diagonal matrix of size
M ×M with Toeplitz blocks, and

h∗(λ) = ıB∞(λ)

where B∞ = {λ ∈ R(ms+1)M : ‖λ‖∞ 6 1} is the unit ball
for the ‖ · ‖∞ norm.

The inspection of f and h shows that the qualification
conditions for the duality gap to be zero hold. Moreover, the
saddle point (x?,λ?) satisfies x? = ∇f∗(−WTλ?) where
∇f∗ is the gradient of f∗, given by

∇f∗(φ) = ∆−1 (φ+ Hy) . (10)

4.2. Solving the dual problem using PG

The dual problem (9) can be reformulated as:

min
λ:‖λ‖∞61

f∗(−WTλ).

Since f∗ is smooth, this problem can be solved with the help
of PG (see e.g. [7]). In our context, this algorithm reads:

λk+1 = P∞
(
λk + ρW∇f∗(−WTλk)

)
= P∞

(
λk − ρW∆−1(WTλk −Hy)

)
where ρ > 0 and where P∞ is the projection operator on B∞,
being the proximity operator of h∗. At the last iteration kmax,
the 3D cube xkmax is recovered according to the equation
xkmax = ∇f∗(−WTλkmax) = ∆−1(HTy −WTλkmax).

In order to provide a distributed implementation of this
algorithm, we write λk = [λks

T
,λkν

T
]T where λks ∈ RmsM

is processed at the level of the monochromatic images and
λkν ∈ RM is processed at the level of the multifrequency pix-
els. Details are provided in the next section.

5. DISTRIBUTED ARCHITECTURE

Implementation of deconvolution algorithms on a distributed
architecture is needed for memory charge reasons; SKA mul-
tispectral data cubes are expected to be 80 tera bytes.

5.1. Structure of the cluster

From the 2D + 1D structure of the multispectral data and the
spatial and spectral sparsity constraints of the minimization
problems (2) and (8), the variables x,p, t,γp,γt,λs (resp.
v,γv,λν) can be evaluated only on monochromatic images
(resp. on pixels). All of these calculations can be done with
parallel programming w.r.t. the frequencies (resp. the pixels).
We use a cluster of machines that we divide into two groups:
one for the calculations w.r.t. the frequencies (group A), the
other for the calculations w.r.t. the pixels (group B). Figure 1
illustrates the two groups of nodes architecture and exchanges
between nodes. For the sake of simplicity, in figure 1, we
assume there are as many nodes in group A (resp. in group B)
as frequency bands (resp. pixels) in the multispectral image.
Note that in real implementation, each node is in charge of
several frequencies or pixels, depending on the capacity of
the cluster and the image size.

5.2. Distributed implementation of ADMM and PG

Algorithm 1 summarizes the distribution of the alternated up-
dating steps of the primal and dual variables described in sec-
tion 3 for the ADMM algorithm. All the calculations are dis-
tributed on the two groups of nodes architecture introduced
in the previous paragraph w.r.t. the frequencies (resp. w.r.t.
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Fig. 1: Illustration of the distributed architecture. Nodes of
group A (orange blocks) do parallel calculation w.r.t. the fre-
quencies, while nodes of group B (blue blocks) do parallel
calculation w.r.t. the pixels.

the pixels). Algorithm 2 summarizes the PG approach where
the calculation of the gradient defined in equation (10) is dis-
tributed on the two groups of nodes architecture. The par-
allel programming of both the algorithms on the distributed
architecture (figure 1) is done using message passing inter-
face (MPI) that allows the nodes of the cluster to exchange
data.

6. RESULTS AND CONCLUSION

The two algorithms are tested on a quasi-real multispectral
image of size 256× 256× 100 pixels. We use the radio emis-
sion image from an HII region of the M31 galaxy (figure 2
on the left) as the reference image. We build a multispec-
tral image by applying a sine wave spectrum to each pixel
of the image. The dirty image (figure 2 on the right) is ob-
tained by convolution with a 2D Gaussian PSF and corrupted
by a white Gaussian noise whose signal-to-noise ratio (SNR)
is from 15dB to 25dB according to the frequencies.
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Fig. 2: Left: reference image of the M31 galaxy. Right: Dirty
image at a given frequency (SNR = 25dB).

We present in figure 3 the deconvolution results produced
by ADMM and PG approaches. The regularization parame-
ters for ADMM and PG on the dual are set to the following
values: µε = 1, µs = 0.1 and µν = 0.5 that provide the
best reconstruction on synthetic multispectral images. The

Algorithm 1 Distributed ADMM algorithm

Initialize x, p, t, v, γp, γt, γv

while δkx > 10−5 do
for nodes in group A do

Evaluate bk+1
l

Solve Qlx
k+1
l = bk+1

l

Send xk+1 to nodes of group B
end for
MPI synchronization barrier
for nodes in group A do

pk+1
l ← max(0, p̃k+1

l )

tk+1
l ← t̃k+1

l •max

(
0, 1− ρ−1µs

|t̃k+1
l |

)
γk+1
p,l ← γkp,l + ρ(xk+1

l − pk+1
l )

γk+1
t,l = γkt,l + ρ(Wsx

k+1
l − tk+1

l )
end for
for nodes in group B do

vk+1
i ← ṽk+1

i •max
(
0, 1− ρ−1µν

|ṽk+1
i |

)
γk+1
v,i ← γkv,i + ρ((W̃νx

k+1)i − vk+1
i )

Send vk+1
i and γk+1

v to nodes of group A
end for
MPI synchronization barrier
k = k+1

end while
return xk−1

ADMM parameter ρ is set to 1, while ρ = 1/K for PG
where K =

µ2
sms+µ

2
ν

µε
is the Lipschitz constant of the gra-

dient ∇[f∗ ◦ −WT ]. The cluster contains 40 nodes (20 for
group A and 20 for group B). Since the two problems (2) and
(8) are not strictly equivalent, we propose to use the relative
variation δx for the reconstructed image for the convergence
criterion and the mean square error

δx =
‖xk+1 − xk‖2
‖xk+1‖2

and MSE = E
[
(xk − x)2

]
, (11)

where x is the theoretical deconvolved image. As expected,
using PG on the dual requires less iterations to converge to
a solution than using ADMM algorithm: the variation of the
reconstructed image is lower than for ADMM case. Evalu-
ation of the reconstruction quality is not the purpose of this
paper, but MSE curves are coherent according to images re-
constructed with ADMM and PG. In both case, the solution
is slightly biased (it can be seen on reconstructed spectrum)
due to the Tikhonov regularization.

In this work we have proposed a preliminary study of two
distributed optimization algorithm to solve the regularized op-
timization problem described in [2]. Details of both the algo-
rithms will be reported in an extended paper where the dis-
tributed architecture will be more precisely developed. In this
paper we applied the algorithms on a 256× 256× 100 image.
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Algorithm 2 Distributed PG for dual problem

Initialization
for nodes in group A do

Eval. ∆−1HTy
Send ∆−1HTy to B
Evaluate and save µsWs∆

−1HTyl
end for
for nodes in group B do

Receive ∆−1HTy from A
Evaluate and save µνW̃ν∆

−1HTy
end for
while δkλ > 10−5 do

for nodes in group A do
Eval. µsW̃T

s λ
k
s

end for
for nodes in group B do

Eval. µνW̃T
ν λ

k
ν

Send µνW̃T
ν (λ

k
ν) to A

end for
MPI synchronization barrier
for nodes in group A do

Receive µνW̃T
ν λ

k
ν from B

Eval. ∆−1
(
µsW̃

T
s λ

k
s + µνW̃

T
ν λ

k
ν

)
Send ∆−1

(
µsW̃

T
s λ

k
s + µνW̃

T
ν λ

k
ν

)
to B

Eval. θs=µsW̃s∆
−1
(
µsW̃

T
s λ

k
s + µνW̃

T
ν λ

k
ν

)
λk+1
s ← P∞

(
λks − ρ

(
θs − µsWs∆

−1HTy
))

end for
for nodes in group B do

Receive ∆−1
(
µsW̃

T
s λ

k
s + µνW̃

T
ν λ

k
ν

)
from A

Eval. θν=µνWν∆
−1
(
µsW̃

T
s λ

k
s + µνW̃

T
ν λ

k
ν

)
λk+1
ν ← P∞

(
λkν − ρ

(
θν − µνWν∆

−1HTy
))

end for
k = k+1

end while
return λk−1

This helped to test the algorithms before applying them to real
data of size (2048 × 2048 × 256) that should be soon avail-
able. We also would like to modify the minimization problem
formulation to try smoother way for imposing the positivity
on the reconstructed image.
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