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Abstract—Acquisition and perfect reconstruction of finite rate
of innovation (FRI) signals was proposed first by Vetterli,
Marziliano, and Blu [1]. To the best of our knowledge, the
stability of their reconstruction procedure in the presence of
scalar quantizers has not been addressed in the literature. For
periodic stream of Dirac FRI signal, which is an important
subclass of FRI signals, the stability of reconstruction when
quantization is introduced on acquired samples is analyzed in
this work. It is shown that the parameters of stream of Diracs
can be obtained with error O(ε), where ε is the per sample
quantization error. This result holds in the high-rate quantization
regime when ε is sufficiently small.

Index Terms—quantization (signal), signal sampling, signal
reconstruction, signal analysis

I. INTRODUCTION

The Shannon sampling theorem states that bandlimited
signals can be sampled at the Nyquist rate, which is twice
the bandwidth of the signal being sampled [2]. Signals such
as stream of Dirac signals, which are useful in neuroscience,
are not bandlimited and their acquisition and reconstruction
method is desirable. Acquisition and perfect reconstruction of
a periodic stream of Dirac signals was addressed in a seminal
paper on sampling of finite rate of innovation (FRI) signals [1].
In their work, Vetterli, Marziliano, and Blu proposed a method
to acquire and reconstruct a stream of Dirac signals using
(2K + 1) samples, where K is the number of Diracs (with
different magnitude) present in each period. Their work ex-
tended the signal sampling results to other FRI signals such
as periodic splines and piecewise polynomials.

Noise and quantization are two impairments that are ubiq-
uitous in signal acquisition and digitization [3]. To the best
of our knowledge, the effect of scalar quantization on the
acquired samples in the case of FRI signals is not quantified.
In this work, the effect of scalar quantization is examined for
the reconstruction algorithm used by Vetterli Marziliano and
Blu [1]. Due to space constraints and for brevity, only the
periodic stream of Dirac signals is considered in this work.

A periodic stream of Dirac signals is of the form x(t) =∑K
k=1 ckδ(t − tk), with x(t) = x(t + τ) and 0 < t1 <

t2 < . . . < tK < τ . It is assumed that τ is known. The
acquisition scheme of this signal requires lowpass filtering
of x(t) followed by taking (2K + 1) samples [1] of the
resultant signal. With L bit uniform scalar quantizers used

after sampling, the per sample error will be proportional to
2−L for bounded signals [3]. When quantized samples are
subjected to the reconstruction algorithm in [1], an approxi-
mate reconstruction of Dirac locations ~t := {t1, . . . , tK} and
amplitudes ~c := {c1, . . . , cK} will be obtained. Let ~̂t and ~̂c
be the respective approximations for these signal parameters.
The main result of this work states that for large L (high-rate)

max
k
|tk − t̂k|= O(2−L) and max

k
|ck − ĉk|= O(2−L). (1)

To the best of our knowledge, the stability of FRI signal
acquisition and reconstruction with quantization is not known.

Related work: The FRI sampling and perfect reconstruction
of a Dirac-stream from its lowpass filtered version was first
presented by Vetterli, Marziliano, and Blu [1].

The effect of statistical additive noise on samples and signal
reconstruction has been explored extensively. The effect of
noise in power-sum series based reconstruction methods has
been analyzed for two Diracs by Kusuma and Goyal [4]. FRI
signal reconstruction for ensuring robustness to noise have
been suggested [5]. Maravić and Vetterli [6] have studied
subspace based algorithms that are more robust for combating
the effect of additive noise compared to the annihilating filter
method. Cramer-Rao bound in the case of single Dirac filtered
with B and E-spline kernels have been derived in [7]. With
Gaussian noise, [8] uses Gibbs sampling to find the position
of the Diracs.

The reconstruction error for stream of Diracs with respect
to quantization has been less studied. Barbotin [9] studied
the effect of Monte-Carlo and Multiple threshold quantization.
The effect of oversampling in frequency and time on the mean
squared reconstruction error has been analyzed by Jovanović
and Beferull [10]. Tenneti, Kumar and Karandikar [11] study
the maximum error in ck, tk with a uniform scalar quantizer
while using oversampling and resistor-capacitor filters.

In this work, we analyze the maximum possible reconstruc-
tion error due to quantization. To the best of our knowledge,
the effect of quantization error on the reconstruction scheme
in the seminal paper of Vetterli, Marziliano, and Blu has not
been presented in the literature.

Notation: We use the notation ‖A‖ for the spectral norm
of a matrix A, and ‖x‖ is the Euclidean norm of a vector
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x. The notation ‖A‖F will be used for the Frobenius norm
of a matrix A. For a matrix A, its column sum norm will
be denoted by ‖A‖1 and its row sum norm will be denoted
by ‖A‖∞. For a vector x, its l1 norm will be denoted by
‖x‖1 and its l∞ norm will be denoted by ‖x‖∞. The largest
absolute eigenvalue (that is, the spectral radius) of a matrix
A will be denoted by ρ(A). The singular values of a matrix
A of dimension n × n will be denoted by σ1(A), . . . , σn(A)
such that σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A). All these norms are
well understood from the literature [12]. The inner-product of
two complex-valued vectors v1 and v2 will be represented by
〈v1, v2〉 := v̄T1 v2. The symbol j will be used for

√
−1.

II. SIGNAL AND SYSTEM MODEL

This section presents the modeling assumptions on stream
of Dirac FRI signals, their sampling, and quantization.

A. Signal model

It will be assumed that the signal of interest is given by

x(t) =
K∑
k=1

ckδ(t− tk) (2)

where the parameters t1, . . . , tK ∈ [0, 1] and c1, . . . , cK ∈ R.
It is further assumed that 0 < t1 < t2 < . . . < tK < 1 and
0 < cmin ≤ ck ≤ cmax < ∞ for every 1 ≤ k ≤ K. This
model represents periodic stream of delta signals with period
τ = 1 [1]. The condition 0 < cmin ≤ ck is needed since
very small ck will be not resolved due to quantization. For
resolvability after quantization, it will also be assumed that

ti+1 − ti ≥ ∆1 > 0 (3)

where 1 ≤ i ≤ K and tK+1 = 1+ t1. Loosely speaking, these
assumptions mean that the Diracs are not too close (modulo
the period), not too far, not too tall, and not too short! All
these assumptions are required to ensure that there is stability
in error after quantization. Note that t1, . . . , tK and c1, . . . , cK
are 2K unknown real numbers, and these have to be estimated
so as to reconstruct the original signal x(t).

B. The sampling model

The signal y(t) := x(t) ? h(t) will be sampled near its rate
of innovation [1] with the sampling period T given by

1

T
= (2K + 1) (4)

with sampling locations

si =
i

2K + 1
, i = 0, 1, . . . , (2K) (5)

where, K is the number of Diracs present in the signal x(t).
The filter h(t) is ideal-lowpass (see [1]) with bandwidth B =
2Kπ.

C. The quantization model

The filtered signal y(t) = x(t) ? h(t) is sampled to
obtain y(s0), y(s1), . . . , y(s2K). These samples are quantized
through an L-bit uniform scalar quantizer to obtain the quan-
tized bits ŷ(s0), ŷ(s1), . . . , ŷ(s2K) [3]. It is assumed that for
a given ∆1,K, the parameter cmax is such that |y(t)|≤ 1
in the sampling interval [0, 1]. A trivial bound on cmax is
1/(K(2K + 1)) which follows by the triangle inequality on
Fourier series coefficients of x(t). If |y(t)|≤ 1, then

|ŷ(sk)− y(sk)|≤ 2−L, k = 0, 1, . . . , 2K. (6)

The main point is that each sample is available with ex-
ponential accuracy in the quantizer precision. Finally, the
reconstruction is decided to be satisfactory based on the error
in the positions of the Diracs if

|tk − t̂k|≤
∆1

2
. (7)

If this condition is not satisfied then the positions of Diracs
lose their meaning as they could get confused with each other.

III. QUANTIZATION ERROR ANALYSIS

The steps in the reconstruction of stream of Diracs are
illustrated in Fig. 1 while using the algorithm of Vetterli,
Marziliano, and Blu [1]. Accordingly, block A of Fig. 1
is analyzed first. Later subsections (of this section) analyze
blocks B, C, and D of Fig. 1.

A. Estimation of Fourier series coefficients of x(t)

The signal x(t) with a period τ = 1 has a Fourier series

x(t) =

∞∑
m=−∞

X[m] exp(j2πmt). (8)

The lowpass filtered signal y(t) will retain 2K + 1 Fourier
series coefficients and the samples y(sn) are given by

y(sn) =

K∑
m=−K

X[m] exp

(
j2πmn

2K + 1

)
. (9)

Let p = exp
(

j2π
2K+1

)
, where p has magnitude one. Then,


y(0)
y(s1)

...
y(s2K)

 =


1 1 · · · 1

p−K p−(K−1) · · · pK

...
...

. . .
...

p−2K2

p−2K(K−1) · · · p2K
2




X[−K]
X[−K + 1]

...
X[K]

 ,

or simply ~y = P ~X where the notation is obvious. This
equation is invertible since the matrix P has a Vandermonde
structure. Let ~̂y := [ŷ(0), . . . , ŷ(s2K)]T be the quantized
observations. Then the quantization error vector is,

~εy := ~̂y − ~y with ‖~εy‖∞≤ 2−L. (10)

The invertible relation between ~X and ~y is used to find ~̂X as
~̂X = P−1~̂y. The l2 error of ~εX := ~̂X − ~X is bounded as

‖~εX‖= ‖P−1~εY ‖≤ ‖P−1‖‖~εY ‖ (11)
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D

quantizer
solve

A B C

h(t) ~X = P−1~y
~̂y

~a = −X−1 ~X+ A(z) = 0

~̂c~̂t~̂a~̂X
~c = U−1 ~X0

T

x(t)

Fig. 1. The reconstruction algorithm for periodic stream of Dirac signals from acquired samples [1] will be subjected to quantization in this
work. From (2), the location vector ~t and their amplitudes ~c determine the signal. Due to addition of the quantizer, their estimates ~̂t and ~̂c will
be obtained.

where the last inequality follows from [13]. The term ‖P−1‖
is bounded in terms of its smallest singular value

‖P−1‖= σ1(P−1) =
1

σ2K+1(P )
. (12)

From [14], the smallest singular value of P is bounded as

σ2K+1(P ) ≥
(

2K

‖P‖2F

)K
|det(P )|. (13)

Since all the entries of P have a magnitude 1, so its
Frobenius norm squared is ‖P‖2F= (2K + 1)2. A lower
bound on |det(P )| will be evaluated next. The matrix
P is a Vandermonde matrix with second-row entries as
p−K , p−(K−1), · · · , pK , which are equidistant on the unit
circle. After the computation of |det(P )|, the algebraic details
of which are omitted,

‖~εX‖≤
(

2K + 1

2K

)K
1√

2K + 1
‖~εY ‖ (14)

In summary, the error-norm of the Fourier series coefficients
is at most linear in the norm of the quantization errors.

B. Estimation of the annihilating filter
With (2K + 1) samples, the solution for the annihilating

filter is found by solving the equations
X[0] X[−1] · · · X[−K + 1]
X[1] X[0] · · · X[−K + 2]

...
...

. . .
...

X[K − 1] X[K − 2] · · · X[0]



a[1]
a[2]

...
a[K]

 = −


X[1]
X[2]

...
X[K]


or simply X~a = − ~X+ where the notation is obvious. The

+ mark in ~X+ signifies that only the positive index Fourier
series coefficients are present. From Section III-A, X̂ and ~̂X
are available. This results in an estimate for ~a as follows:

X̂ ~̂a = − ~̂X+. (15)

Subsequently, ~̂a can be obtained if X̂ is invertible. Let ~εa :=
~̂a− ~a. By (52), Appendix A we get,

‖~εa‖< 2
(
‖X−1‖‖~εX+

‖+‖X−1‖‖X − X̂‖‖~a‖
)

(16)

It is also noted that

‖X̂ − X‖≤
√
K‖~εX‖ (17)

by solving the optimization problem

max
‖~εX‖=ε

K|εX [1]|2+
K∑
i=2

(K − i+ 1)[|εX [−i]|2+|εX [i]|2]

where ε is an arbitrary constant. The above-mentioned cost
function is essentially the Frobenius norm of X̂ − X . Using
‖~εX+‖≤ ‖~εX‖ and (17) in (16) results in

‖~εa‖ ≤ 2
(

1 +
√
K‖~a‖

)
‖X−1‖‖~εX‖ (18)

The term ‖~a‖ is bounded since each |ak|≤
(
K
k

)
. In deriving

this bound, |uk|= 1 is utilized and the fact that ak is the
coefficient of zK−k in (z−u1)(z−u2) . . . (z−uK) (see (26)).

C. Invertibility of X̂
In this section, a bound on the quantization precision L will

be established such that X̂ is invertible. From (2) and (8), the
(p, q)-element of X is given by

Xp,q =
K∑
k=1

ck exp(−j2π(p− q)tk) (19)

for 1 ≤ p, q ≤ K. This matrix can be factorized as

X = V DV̄ T (20)

where V̄ T is Hermitian of V , D = diag(c1, c2, . . . , cK) and

V =


1 1 · · · 1

e−j2πt1 e−j2πt2 · · · e−j2πtK

...
...

...
...

e−j2π(K−1)t1 e−j2π(K−1)t2 · · · e−j2π(K−1)tK

 .
Since |ci|6= 0 and t1, . . . , tK are distinct by assumption, V and
D, and X are invertible. From the properties of matrices [13],

σK(X ) ≥ [σK(V )]2 min
1≤k≤K

|ck| (21)

since the singular values of V and V̄ T are identical. From [15]
and its results on the inverses of Vandermonde matrices,

‖V −1‖∞< max
k

∏
v 6=k

(
1 + |e−j2πtv |

)
|e−j2πtv − e−j2πtk |

(22)

Note that
∏
v 6=k|e−j2πtv−e−j2πtk | is minimum when for each

i, ti − ti−1 = ∆1 and k = bK/2c. As a result,

min
k

∏
v 6=k

|e−j2πtv − e−j2πtk | ≥
bK2 c∏
v=1

4 sin2(πv∆1). (23)

Since ‖V −1‖= [σK(V )]−1 ≤
√
K‖V −1‖∞, therefore,

σK(V ) ≥

bK2 c∏
v=1

4 sin2(πv∆1)

 1

2K−1
√
K

(24)
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Upon substitution of (24) in (21), we get

σK(X ) ≥

bK2 c∏
v=1

4 sin2(πv∆1)

 1

2K−1
√
K

2

cmin. (25)

The invertibility of X̂ will be argued formally next. Let A and
B be n×n matrices, and A be invertible. If σ1(B) < σn(A),
then A+B will be invertible. By using the result for X and
X̂ − X , the matrix X̂ is invertible if ‖X̂ − X‖≤ σK(X ). For
deriving (16), it was assumed that ‖X̂ −X‖≤ σK(X )/2. This
conditions results in a lower bound on L, which we omit for
brevity. This is the reason for ‘high-rate’ in this paper’s title.

D. Error in Dirac locations and amplitudes

In this section, the error analysis for the positions and the
amplitudes of the Diracs in x(t) will be presented. From ~̂a
obtained in (15) using the quantized samples, the approximate
locations ~̂t will be obtained. Note that a[0] = â[0] = 1. Let

zK + â[1]zK−1 + . . .+ â[K] =
K∏
k=1

(z − ûk) (26)

be the annihilation filter’s factors. The technique of Galántai
and Hegedűs will be used to establish a bound on ‖~u−~̂u‖ [16].
The companion matrix used in [16] for the annihilator poly-
nomial is

C =


−â[1] · · · −â[K − 1] −â[K]

1 . . . 0 0

0
. . . 0 0

0 . . . 1 0

 (27)

and can be factorized as Ĉ = ΠV̂ Û V̂ −1ΠT , where Π =
[eK |eK−1|· · · |e1], Û = diag(û1, û2, . . . , ûK), and V is as
in (20) with û1, . . . , ûK generating the Vandermonde matrix.
Similar factorization is there for exact roots ~u and the com-
panion matrix made from ~a. From [16, Theorem 4],

|uk − ûk|≤ ‖V −1eK‖‖V ‖‖~εa‖ (28)

where 1 ≤ k ≤ K. From [16], V −1eK is given by

V −1eK =

 1
(u1−u2)(u1−u3)···(u1−uK)

. . .
1

(uK−u1)(uK−u2)···(uK−uK−1)

 . (29)

By similar calculations as in (23), it follows that

‖V −1eK‖≤
√
K∏bK2 c

v=1 4 sin2(πv∆1)
(30)

The norm ‖V ‖ is bounded using row and column norms [17]:

‖V ‖≤
√
‖V ‖1‖V ‖∞ =

√
K ·K = K (31)

since each element of V has magnitude 1. From (28),

max
k
|uk − ûk|≤

√
KK∏bK2 c

v=1 4 sin2(πv∆1)
‖~εa‖ (32)

1) Bound on location error: From ~̂a, the Dirac locations ~̂t
will be obtained. The roots of the polynomial in (26) may not
lie on the unit circle. Each approximate root will be mapped
on the unit circle along a ray originating at the center of the
unit circle and passing through the approximate root. Let the
mapped approximate root be ŵk := e−j2πt̂k . Since |ŵk−uk|≤
|ûk − uk| and |ŵk − uk|= |e−j2πt̂k − e−j2πtk |= 2|sin(π(t̂k −
tk))|, therefore,

|t̂k − tk|≤
1

π
sin−1(max

k
|uk − ûk|/2) (33)

Maximizing the left hand side over k, and with sin−1(x) ≤ 2x
for 0 ≤ x < 1

2 ,

max
k
|t̂k − tk|≤

1

π
max
k
|ûk − uk|. (34)

2) Error in amplitudes: Approximate values in t̂ result in
approximate amplitudes ĉ (of Diracs in x(t)) by a Vander-
monde matrix [1]

X[0]
X[1]

...
X[K − 1]

 =


1 · · · 1
u1 · · · uK−1
...

. . .
...

uK−11 · · · uK−1K−1



c1
c2
...
cK

 (35)

or simply ~X0 = V ~c, where the notation is obvious. The matrix
V is same as in (20) and recall that uk = e−j2πtk . The
approximate version of this relation is

~̂X0 = V̂ ~̂c (36)

with

V̂ =


1 · · · 1

e−j2πt̂1 · · · e−j2πt̂K

...
. . .

...
e−j2π(K−1)t̂1 · · · e−j2π(K−1)t̂K

 (37)

Using (52) in (36), we get

‖~̂c− ~c‖≤ 2‖V −1‖‖ ~̂X0 − ~X0‖+2‖V −1‖‖V̂ − V ‖‖V −1 ~X0‖
(38)

Using the row and column norms [17],

σ1(V̂ − V ) = ‖V̂ − V ‖≤
√
‖V̂ − V ‖1‖V̂ − V ‖∞ (39)

Note that |ulk − ûlk|= 2|sin(lπ(tk − t̂k)| for l = 1, 2, . . . ,K.
Since |sin(θ)|≤ |θ|, therefore,

‖V̂ − V ‖1 ≤ 2 max
k

K−1∑
l=1

|sin(lπ(t̂k − tk)| (40)

≤ K(K − 1)πmax
k
|t̂k − tk|. (41)

For ‖V̂ − V ‖∞, it is observed that sum of any row l in the
matrix is bounded by

K∑
k=1

|sin(lπ(tk − t̂k))| ≤
K∑
k=1

πl|tk − t̂k| (42)

≤ πK(K − 1) max
k
|tk − t̂k|. (43)
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Therefore, we get an upper bound as follows:

‖V̂ − V ‖≤ πK(K − 1) max
k
|tk − t̂k|. (44)

Finally, the derivation of maxk|tk − t̂k|= O(2−L) and
maxk|ck − ĉk|= O(2−L) will be argued. From (10), ‖~εy‖≤
(
√

2K + 1)2−L. From this observation, (14), (18), and (32),
it follows that

max
k
|ûk − uk|= O(2−L). (45)

The first main result follows from the above and (34). Since
~X0 is a subset of ~X , therefore ‖~εX0‖≤ ‖~εX‖. From Sec-
tion III-C, ‖V −1‖ is also bounded. From these observations,
(44) and (38)

‖~̂c− ~c‖= O(2−L) (46)

which yields the second part of the main result as ‖~c‖∞≤ ‖c‖.

IV. CONCLUSIONS

For periodic stream of Dirac FRI signals, the stability of
reconstruction when quantization is introduced on acquired
samples was analyzed in this work. It was shown that the
parameters of stream of Diracs can be obtained with error
O(2−L), where L was the number of bits used in quan-
tizing each sample. Analysis in Section III reveals that this
result holds when L is sufficiently large, that is, in high-rate
quantizer regime. Bounds on L and extension of this result
to periodic splines and piecewise polynomials are interesting
topics for future work.

APPENDIX A
MATRIX PERTURBATION ERROR BOUND

Consider the system ~y = A~x, where ~y and ~x are n×1, and
A is n× n. Let Â and ~̂y be the approximate versions. Then,
~̂x = (Â)−1~̂y. The approximation error in ~x is given by

~εx = (Â)−1~̂y −A−1~y (47)

=
(
I +A−1(Â−A)

)−1
A−1~̂y −A−1~y (48)

Let ~εy := ~̂y−~y and εA = Â−A. If σ1(εA) < σn(A)/2, then Â

has an inverse and
(
I+A−1(Â−A)

)−1
= I−A−1(A−Â)+R

where

‖R‖≤ ‖A−1‖‖Â−A‖ (49)

Therefore,

~εx =
(
I −A−1(A− Â) +R

)
A−1~̂y −A−1~y (50)

= A−1~εy −A−1εAA−1~y −A−1εAA−1~εy+

RA−1~y +RA−1~εy (51)

Now we use triangle inequality and sub-multiplicativity prop-
erties for matrix norms [12], on ‖~εx‖ and use (49) to get

‖~εx‖< 2‖A−1‖‖~εy‖+2‖A−1‖‖εA‖‖A−1~y‖. (52)

APPENDIX B
MATRIX POWER SERIES

If a matrix B has spectral radius ρ(B) < 1, then the power
series of (I +B)

−1 converges absolutely [18]. As a result,

(I +B)−1 − (I −B) = B2 −B3 + . . . . (53)

Therefore,

‖(I +B)−1 − (I −B)‖≤ ‖B‖2+‖B‖3+ . . . . (54)

If ‖B‖< 1, then ‖B‖2+‖B‖3+ . . . converges, while if ‖B‖<
1/2 then ‖B‖2+‖B‖3+ . . . < ‖B‖. As a result, if ‖B‖< 1/2
(which also implies that ρ(B) ≤ ‖B‖< 1/2) then

‖(I +B)−1 − (I −B)‖≤ ‖B‖. (55)

REFERENCES

[1] M. Vetterli, P. Marziliano, and T. Blu, “Sampling Signals with Finite
Rate of Innovation,” IEEE Trans. Signal Proc., vol. 50, no. 6, pp. 1417–
1428, June 2002.

[2] R. J. Marks, II, Introduction to Shannon Sampling and Interpolation
Theory. New York, USA: Springer-Verlag, 1990.

[3] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.
Boston: Kluwer Academic, 1992.

[4] J. Kusuma and V. Goyal, “On the accuracy and resolution of powersum-
based sampling methods,” IEEE Transactions on Signal Processing,
vol. 57, no. 1, pp. 182 –193, Jan. 2009.

[5] A. Ridolfi, I. Maravic, J. Kusuma, and M. Vetterli, “Sampling signals
with finite rate of innovation: the noisy case,” Infoscience, EPFL, Tech.
Rep., 2002.
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