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Abstract—In this paper, a group sparse model using
Eigenvectors of the Graph Laplacian (EGL) is proposed for
image denoising. Unlike the heuristic setting for each image
and for each noise deviation in the traditional denoising
method via the EGL, in our group-sparse-based method,
the used eigenvectors are adaptively selected with the
error control. Sequentially, a modified group orthogonal
matching pursuit algorithm is developed to efficiently solve
the optimal problem in this group sparse model. The
experiments show that our method can achieve a better
performance than some well-developed denoising methods,
especially in the noise of large deviations and in the SSIM
measure.

I. INTRODUCTION

In the past decades, a number of methods have been well
developed to deal with the image denoising problem [1].
However, with the advances of sparse signal representation,
more methods are presented to solve this problem based
on the sparse assumption, and achieve the better denoising
performances compared with the traditional methods. Sparse
representation is devoted to represent the signal as a linear
combination of a small number of atoms from an over-
complete dictionary. Early denoising methods via sparse rep-
resentation, such as K-means Singular Value Decomposition
(K-SVD) method [2], usually treat the denoising problem
as a pure mathematical problem. In these methods, patches
are separately taken into account with the neglect of the
relationship with others. Later, numerous improved methods
are developed to exploit such relationship, and often model
the connection among sparse coefficients. For example, a
nonlocally centralized sparse representation method [3] is
presented to centralize the sparse coefficients into various
categories, and achieves a comparable result with the well-
known Block-Matching and 3D filtering (BM3D) method [4].

As for group sparse representation, it assumes that the signal
can be approximated by some sub-dictionaries with grouped
atoms. More specifically, the corresponding components of the
signal projected on each atom group are likely to be either all
zeros or all non-zeros. Contributing to this attribute, group
sparse representation is widely used in various applications,
such as image recognition, segment and annotation [5-7],
where image features can be efficiently categorized by the
sparse coefficients on these grouped atoms. Unfortunately,

there are seldom reports for image denoising via group sparse
representation. Since the group constraint is a somewhat strong
constraint for the accurate signal representation, clean images
cannot be sufficiently restored from the noisy ones, especially
in noise of small deviations.

On the other hand, graph theory has been well employed
in a variety of image applications in recent decades. As for
image denoising, the reports also show that the denoising
performance can be improved combined with the graph theory.
For example, a graph regularized sparse approximation method
[8] is proposed to perform a manifold embedding on sparse
coefficients, in which the graph Laplacian matrix is viewed as
a useful tool to exploit the geometrical structures for image
patches. Very recently, a robust graph-Laplacian-based image
denoising is presented with the optimal edge weights of the
graph to cope with the noise [9]. Unlike the direct utilization
of the graph Laplacian, a denoising method with Eigenvectors
of the Graph Laplacian (EGL) is currently developed [10].
In this literature, the eigenvectors of the graph Laplacian of
patches do not only represent the global features of images,
but also are used as a set of basis functions to reconstruct
images. Moreover, to achieve a better denoising performance,
only a part of the eigenvectors is incorporated in the EGL,
where the number of the used eigenvectors is fluctuated for
various images and for noise of various deviations. In other
words, the appropriate eigenvector number should be trivially
tested for each image and noise of each deviation. In practice,
it is somewhat less effective, since no clean images are given
as a metric for the quality assessment of denoised images.

Motivated by the recent progress, we propose a denoising
method, called as Group-Sparse-based EGL (GS-EGL), to
incorporate the group sparse representation to image denoising
with eigenvectors of the graph Laplacian. The major contri-
bution of our work is threefold. 1) A group sparse model
is introduced into the traditional EGL method, where the
denoised image is restored with the grouped sparse coefficients
in the subspace spanned by the eigenvectors. 2) An error
control strategy is also employed to constrain the denoised
images in an acceptable scale with the noisy ones. Here, the
eigenvectors are adaptively selected from the proposed group
sparse model with this error control. 3) A modified group
orthogonal matching pursuit algorithm is presented to effi-
ciently solve the optimal problem in our group sparse model
with the consideration of the reliability of the eigenvectors.
The experiments show that the proposed method can achieve
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a better performance than some well-developed denoising
methods, especially in noise of large deviations.

II. RELATED WORK

A. Group sparse model

In general, sparse representation can be classified in two
tasks, i.e., dictionary learning and sparse approximation. The
target of dictionary learning is to search an optimal signal
space to support the attribution of a sparse vector under a
certain measure. Meanwhile, sparse approximation is dedicat-
ed to find a sparse solution on the given dictionary. Here,
we pay more attention on the sparse approximation problem.
Thus, given a measurement data matrix Y = [y1 y2 ... yN ],
the basic sparse representation problem with the residual error
constraint is expressed as

x̃i = argmin
xi

∥xi∥0 s.t. ∥yi −Dxi∥2

2 ≤ ε, (1)

where ∥.∥0 is the l0-norm, D = [d1 d2 ... dK ] is the dictionary
with the atoms {dk} , X = [x1 x2 ... xN ] is the coefficient
matrix with the sparse coefficients {xi} , ε is a threshold
for the residual error control. In image denoising, each yi

represents a noisy image patch, Y is the corresponding noisy
patch matrix, and N is the number of the total patches.

For the group sparse representation, we just introduce the
model in a matrix form [5] as

X̃ = argmin
X

∥X∥2,0 s.t. ∥Y −DX∥2

F ≤ ε, (2)

where ∥.∥F is the Frobenius norm, ∥X∥2,0 =
∑K

i=1
I(∥li∥2),

lTi is the ith row vector of X , I(.) is an indicator function
defined as

I(∥li∥2) =

{
1, if ∥li∥2 > 0

0, otherwise.
(3)

To tackle this group sparse problem, though a number of
effective algorithms are developed in different forms, in this
paper, Group Orthogonal Matching Pursuit (GOMP) method
[11] is preferred for its high computation efficiency. In the
GOMP, the optimal matrix X̃ is achieved by the greedy
strategy, where in each iteration DX̃ is approximated to the
target data Y with the minimal residual error.

B. Image denoising via EGL

As for the EGL method, the basic idea is to estimate clean
patches from the noisy ones on a set of the eigenvectors of
the graph Laplacian. More specifically, a normalized Laplacian
matrix L is firstly obtained as

L = I −B−1/2WB−1/2, (4)

where I is an identity matrix, W is a weight matrix for the
k-nearest neighbor graph of noisy patches, B is a diagonal
matrix and its diagonal entries are the row sums of W . Due
to the Laplacian matrix L is symmetric and positive semi-
definite, its eigenvalues can be expressed as {λi}N

i=1 , which
is lined in an ascending order with the first eigenvalue λ1 = 0 .
And the corresponding eigenvectors are described as {ui}N

i=1.

To deal with image denoising, the denoised patch matrix Ỹ
is represented as

Ỹ = Y UMUT

M , (5)

where UM = [u1 u2 ... uM ] is a basis matrix with the first
M low-order eigenvectors.

In practice, the EGL employs an iterative procedure to deal
with the noisy image, which is divided into two major stages.
In the first stage, a rough image as a lowpass version of the
clean image is estimated by using a very small number of
the eigenvectors of the graph Laplacian from the noisy image.
Note that, these selected eigenvectors are insensitive to images
and noise deviations, whose target is only to enhance the
image intrinsic structures. Sequentially, an intermediate image
is constructed with a weighted average of the noisy and rough
images, and used as a guided image in the following denoising.
In the second stage, the denoised image is restored from this
guided image by the corresponding eigenvectors. Unlike in
the first stage, the appropriate number of the eigenvectors
here is carefully set in order to achieve a better denoising
performance, which is fluctuated for various images and for
noise of various deviations.

III. PROPOSED ALGORITHM

A. Group sparse model for EGL

To introduce group sparse model into the EGL, we first
show (5) in its group sparse form. More conveniently, we
transform (5) into the formula as

G̃ = UMUT

MG, (6)

where G and G̃ are the transpose matrices of Y and Ỹ ,
respectively. In (6), each column of G is projected into a
subspace spanned by the vectors of UM , and then the denoised
matrix G̃ is achieved on such subspace. We further rewrite (6)
in the full space of U = [u1 u2 ... uN ] as

G̃ = UX

X =

(
UT

MG

0

)
.

(7)

In (7), since only the first M row vectors of the coefficient
matrix X are non-zeros, it can be viewed as a special form
with the group sparse structure. As the extension of (7), we
propose a basic group sparse model to achieve the denoised
matrix G̃ as{

G̃ = UX̃

X̃ = argminX ∥X∥2,0 s.t. ∥G−UX∥2
F ≤ ε.

(8)

Compared with (7), there are two significant differences in
(8). First, the residual error control is given to constrain the
denoised matrix G̃ in the acceptable scale with the noisy one
G. Second, the eigenvectors can be more flexibly selected
with an appropriate number ∥X∥2,0 instead of the fixed first
M eigenvectors in the EGL. Note that, though the matrix U
should be an orthogonal matrix mathematically as the result
of the matrix singular value decomposition, in practice, the
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orthogonal attribute cannot be fully guaranteed, since some
fast computation algorithms [10] are used to achieve the
approximated eigenvectors. Therefore, it is more reasonable to
utilize our group sparse model to achieve the better denoised
matrix G̃.

In details, we only modify the EGL method in its second
stage. Thus, several parameters in the first stage of the EGL,
i.e., the intermediate image patch matrix Ŷ , and its corre-
sponding transpose Ĝ and eigenvector matrix Û , are already
given. Thus, we build a more exquisite group sparse model as

G̃ = ÛX̃

X̃ = argminX ∥X∥2,0 + α∥Ĝ− ÛX∥F

s.t. ∥G− ÛX∥2
F ≤ ε,

(9)

where α is a weight coefficient. As aforementioned in the
EGL, Ŷ is used as a guided matrix for the denoised patch ma-
trix Ỹ in order to further improve the denoising performance.
Here, in the regularization term of (9), the corresponding Ĝ
is also used for this purpose, which provides a guided target
for X to achieve a better G̃. Finally, Ỹ can be achieved with
the transpose of G̃ .

B. Solution for proposed group sparse model

To solve the group sparse problem in (9), a modified GOMP
algorithm is proposed as shown in Algorithm 1. Since we set
Ĝ as a guided matrix, the regularization term ∥Ĝ − ÛX∥F

should be greedily minimized in each iteration of our modified
GOMP, where it replaces the minimization strategy for the
residual error by the traditional GOMP in (8). More details of
the parameters in the modified GOMP are given as follows. S
is an index set, R is a residual error matrix with respect to Ĝ,
and w is a weight vector with its entries wi = i . Moreover,
US is a sampled version of Û , where the vectors of Ĝ indexed
by S are reserved and other vectors are set to zeros. U ′ is a
matrix, in which all other vectors are orthogonal to a selected
vector. X ′ is a coefficient matrix of R on U

′ .
In the modified GOMP, the procedure can be summarized

into two major stages. In the first stage, it focuses to detect the
group sparse location, where the index set S is incorporated
to record the used rows in X . Sequentially, the corresponding
sparse coefficients on these locations are calculated in the sec-
ond stage. It is worth mentioning that, since the noise tends to
disturb the high-order eigenvectors than those low-order ones
[10], in the first stage, we use the weight vector w to measure
the fidelity of each eigenvector. As a result, the low-order
eigenvectors have more opportunity to be selected compared
with the high-order ones in our algorithm. Consequentially,
the denoised matrix G̃ can be more reliably restored.

Here, the solution feasibility of (9) is also considered. Since
Ĝ can be fully represented in the space spanned by the vectors
of Û , a feasible solution of X can be always achieved with
Ĝ = ÛX , if ∥G− Ĝ∥2

F ≤ ε. In practice, this condition can
be almost met with the well setting in the generation of the
intermediate image for the EGL. Consequentially, the solution
of (9) can be guaranteed.

Algorithm 1: Modified GOMP
Input: transpose matrices G and Ĝ, eigenvector matrix Û , weight

vector w, index set S, residual error threshold ε.
Output: optimal sparse coefficient matrix X̃ and transpose matrix G̃.
1. Init: X = 0, R = Ĝ, U

′
= Û , US = 0, S = ∅

2. while ∥G− ÛX∥2
F > ε

Stage 1: group sparse location detection
3. X

′
= (U

′
)TR.

4. k = argmini wi∥R− u
′
il

T
i ∥2

F , u
′
i and lTi are the ith vector of

U
′

and row vector of X
′

respectively.
5. S = S ∪ {k}.
6. Update U

′
, and let all vectors u

′
i with ⟨u′

i̸=k,u
′
k⟩ = 0.

7. Set u
′
k = 0.

Stage 2: group sparse coefficient calculation
8. Update US with the vectors of Û indexed by S.
9. X = U−1

S Û .
10. R = Ĝ− ÛX .
11. end
12. X̃ = X , G̃ = ÛX̃ .

Fig. 1. Clean images. From left to right, images are named as Barbara, Lena,
Mandrill, Boat and Clown, respectively.

Fig. 2. Denoising performances with weight coefficient γ. The left and right
figures are in noise of the deviations σ = 40 and σ = 60, respectively.

IV. SIMULATIONS

In our test, a set of images are used with a size of
128×128 pixels shown in Fig. 1. Meanwhile, the proposed GS-
EGL method is compared with the other three well-developed
methods, i.e., the K-SVD, BM3D and Expected Patch Log
Likelihood (EPLL) [12] methods. Noisy images are obtained
by adding Gaussian noise with various levels. In our GS-
EGL, all parameters are used as the same as those in the
traditional EGL. Moreover, since the high-order eigenvectors
are less reliable than the low-order ones, a part of eigenvectors
are calculated for the GS-EGL. For example, the first 1500,
1000 and 600 eigenvectors of the intermediate image are
initially calculated for noises of the deviations σ = 20, 40, 60,
respectively.

To achieve the better residual error threshold in various
noise deviations, a set of threshold values are tested for
different images. The threshold is set as ε = γNbσ2, where γ
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Fig. 3. Denoising performance comparisons with the noise deviation σ = 40.
From left to right for each line, denoised images are obtained via the K-SVD,
BM3D, EPLL and GS-EGL, respectively.

Fig. 4. Denoising performance comparisons with the noise deviation σ = 60.
From left to right for each line, denoised images are obtained via the K-SVD,
BM3D, EPLL and GS-EGL, respectively.

is a weight coefficient, b is the patch size of 3 × 3. Thus,
the denoised performances with the parameter γ are given
in Fig. 2. It shows that, the better denoising performances
can be achieved with γ = 0.9 and 0.95 for noise of the
deviations σ = 40 and 60, respectively. When γ is small, the
performance is worse. It is because, with the error constraint
of the over tight threshold, the denoised images tend to be
close to the intermediate images. Meanwhile, with the larger
γ, the performance of restored images is also deteriorated. In
this situation, the threshold is too loose to efficiently provide
the valid information of noise for denoising. Moreover, in this
experiment, it is proven that the initial eigenvector numbers of
the intermediate image are enough for the proposed GS-EGL.

The denoised image comparison between the GS-EGL and
the other three methods in the noise deviation σ = 40 is
shown in Fig. 3. The performance of the K-SVD is the worst

with an amount of details and textures lost. It is because the
features contained in the atoms are obscured by noise, for
its dictionary is directly trained from the noisy images. The
BM3D outperforms the K-SVD. However, the BM3D shows
the limited ability to rebuild the noise-like details. As shown
in Mandrill, more details in the fur areas are lost, due to the
joint filtering approach used in the BM3D here can be viewed
as a lowpass filter to some extent. Therefore, these fur areas,
which contain more information in the high frequency domain,
inevitably tend to be over smoothed with the large distortion.
As for the EPLL, it can better deal with the details in Mandrill.
It benefits from the Gaussian Mixture Model (GMM) which
estimates the patch prior information for denoising. But it is
less efficient for the texture restoration in Barbara, since the
EPLL only focuses on the single patch reconstruction as a
local denoising method. In the GS-EGL, both the details and
textures are restored. These details and textures are all viewed
as the structures and can be well described via the eigenvectors
of the graph Laplacian of images as global features. More
importantly, to achieve these results, the GS-EGL adaptively
chooses these eigenvectors by the residual error threshold. It
means that, unlike the heuristic setting in the traditional EGL,
the eigenvector selection problem is well solved in our method.

The denoised images with the noise deviation σ = 60
are shown in Fig. 4. The K-SVD still performs the worst.
The BM3D achieves a more acceptable result. However, it
still tolerates the smoothing problem just as in Fig. 3. The
denoising performance of the EPLL becomes even worse than
the BM3D. Now, numerous classification errors exist in the
EPLL, that is, the wrong Gaussian model is used for the
corresponding patch with the serious noise perturbation. As
for the GS-EGL, compared with the BM3D, the details and
textures can still be restored, due to the structures are robustly
indicated in the eigenvectors. However, there exist some stain
artifacts in the flat areas, e.g., the cheek of Lena. In this
case, the noise is identified as structures of the image and
then introduced into the eigenvectors. As a result, the false
structures are emphasized in the denoised images. Note that,
these denoised results are also only achieved by the residual
error threshold without any prior on the eigenvector selection.

To estimate the GS-EGL in the noise of various levels, the
statistical results are given with both the PSNR and SSIM
measures in Table I. It shows that, the K-SVD performs the
worst. The BM3D can well deal with the noisy images in
various noise levels, for its joint filtering approach. As for the
EPLL, it achieves the better denoising performance than the
BM3D in noise of the small deviation, e.g., σ = 20, since
the GMM is used for the patch prior. However, it deteriorates
with the noise deviation increasing, due to the aforementioned
classification errors for Gaussian models. In the GS-EGL,
it achieves the best denoising performance in noise of the
large deviations, such as σ = 40 and 60, especially in the
SSIM measure. It benefits from two aspects, that is, the global
structure exploitation by the eigenvectors and the residual
error control guided with the intermediate image. However,
it also shows that, in the small noise deviation, σ = 20, the
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TABLE I
PSNR (DB) AND SSIM RESULTS BY DIFFERENT DENOISING METHODS.

σ 20 40 60

Barbara

K-SVD 30.97 / 0.9847 26.33 / 0.7668 24.42 / 0.6721
BM3D 31.42 / 0.9119 27.00 / 0.8037 25.41 / 0.7336
EPLL 30.46 / 0.8956 26.52 / 0.7839 24.71 / 0.6990

GS-EGL 30.62 / 0.8804 27.96 / 0.9083 25.57 / 0.7521

Boat

K-SVD 29.47 / 0.8771 25.25 / 0.7433 23.00 / 0.6316
BM3D 29.60 / 0.8894 25.88 / 0.7857 24.08 / 0.7064
EPLL 29.66 / 0.8873 26.05 / 0.7912 24.14 / 0.7110

GS-EGL 28.77 / 0.8656 26.08 / 0.7912 24.19 / 0.7208

Clown

K-SVD 28.52 / 0.8649 24.66 / 0.7117 22.45 / 0.6084
BM3D 28.94 / 0.8895 24.84 / 0.7721 22.80 / 0.6842
EPLL 29.07 / 0.8925 25.26 / 0.7575 23.30 / 0.6547

GS-EGL 28.18 / 0.8667 25.29 / 0.7836 23.19 / 0.6872

Mandrill

K-SVD 26.03 / 0.7929 22.93 / 0.5687 21.57 / 0.4357
BM3D 26.12 / 0.8070 22.89 / 0.5727 21.89 / 0.4627
EPLL 26.40 / 0.8269 23.00 / 0.5947 21.71 / 0.4571

GS-EGL 25.78 / 0.7973 23.22 / 0.6556 21.67 / 0.4970

Lena

K-SVD 28.69 / 0.8472 24.90 / 0.6926 22.99 / 0.5899
BM3D 29.04 / 0.8653 25.28 / 0.7221 23.69 / 0.6415
EPLL 29.05 / 0.8654 25.34 / 0.7372 23.51 / 0.6382

GS-EGL 28.05 / 0.8176 25.64 / 0.7373 23.51 / 0.6237

performance of the GS-EGL is somewhat terrible. Here, the
intermediate image not only is used as a guided image to
restore the final denoised image, but also can be viewed as a
structure-emphasized version of the noisy image. Therefore,
the distortion is inevitably introduced. Though this distortion
is benefit to restore the denoised images in the large noise
deviations, it is still harmful to separate clean images from
the noisy ones in the small noise deviation.

V. CONCLUSION

The GS-EGL method is presented to incorporate the group
sparse model to image denoising with eigenvectors of the
graph Laplacian. With the error control to reconstruct the
denoised images in the acceptable scale of the noisy ones,
the used eigenvectors can be adaptively selected from the
proposed group sparse model, where the heuristic setting in
the traditional EGL is avoided for various images and noise
deviations. The experiments show that, our method can achieve
the better performance than some well-developed denoising
methods, especially in noise of the large deviations. Note that,
the computation complexity of the GS-EGL is less discussed.
In actually, the computation of the proposed modified GOMP
algorithm is quite efficient. However, the GS-EGL spends an
enormous number of time to obtain the eigenvectors just as the
traditional EGL. Therefore, in the future work, we will focus
to reduce the computation complexity for these eigenvectors.
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