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Abstract—It is well known that the time-of-flight ranging
performance is heavy influenced by multipath propagation within
a radio environment. This holds in particular in dense multipath
channels as encountered in indoor scenarios. The signal band-
width has a tremendous influence on this effect, as it determines
whether the time resolution is sufficient to resolve the useful
line-of-sight (LOS) signal component from interfering multipath.

This paper employs a geometry-based stochastic channel model
to analyze and characterize the ranging error variance as a
function of the bandwidth, covering the narrowband up to the
UWB regimes. The Cramér-Rao lower bound (CRLB) is derived
for this purpose. It quantifies the impact of bandwidth, SNR, and
parameters of the multipath radio channel and can thus be used
as an effective and accurate channel model (e.g.) for the cross-
layer optimization of positioning systems. Experimental data are
analyzed to validate our theoretical results.

I. INTRODUCTION

Positioning indoors is a challenging task. Existing systems

like global navigation satellite systems (e.g GPS, Galileo)

fail at indoor positioning due to the limited visibility of the

satellites and the limited signal bandwidth. In indoor scenarios

a multitude of multipath components (MPC) cause severe

fading and pulse distortion of the received signals making the

localization challenging.

Performance bounds for the ranging and positioning capa-

bilities of a system allow for fundamental insight into system

design considerations or cross-layer optimization. In [1], [2]

the Cràmer Rao lower bound has been investigated for radio

and radar scenarios providing insight into the influence of

system parameters like the signal to noise ratio (SNR) or the

bandwidth.

Ultra-wideband (UWB) radio signals are considered to be

most promising for indoor positioning because their fine time

resolution allows to separate the arriving MPCs into individual

components. To investigate performance bounds and capture

the information included in the channel, a proper channel

model is paramount. In [3] the stochastic IEEE 802.15.4a

channel model has been used to derive the Cràmer Rao lower

bound and the Ziv-Zakai bound for positioning indoors. By

adding geometrically modeled components to the channel

model using a so called geometry-based stochastic channel

model, the additional information provided by specular mul-

tipath components can be quantified [4].

This work was supported by the Austrian Research Promotion Agency
(FFG) within the project REFlex (project number: 845630).

Since bandwidth is a scarce resource, minimal usage re-

duces the costs of a system drastically. By decreasing the

bandwidth and moving to non-UWB radio signals the specular

components (including the line of sight (LOS)) are no longer

separated from other multipath components which are denoted

as dense or diffuse multipath (DM). This DM leads to multi-

path effects such as amplitude fading and pulse distortion. For

narrowband signals only amplitude fading occurs since the

complete DM interferes with the LOS component, while for

the UWB case the LOS component is well-separated from the

DM. The bottom of Fig. 1 illustrates these cases and shows

the pulse distortion and amplitude fading at bandwidths in

between these ”extreme cases”.

In [5] we derived the Cràmer Rao lower bound (CRLB) on

ranging and positioning for a channel consisting of the LOS

component and dense multipath. Within this paper

• we analyze the CRLB for the ranging error for different

channel parameters,

• derive an approximation for the CRLB, and

• validate the model and CRLB using measurement data.

II. SIGNAL MODEL

We consider L measurements obtained from signal trans-

missions between an agent at an unknown position p and

anchors at known positions aℓ. A unit energy pulse s(t) is

transmitted leading to the received signal

r(t) = αℓs(t− τℓ) + (s ∗ νℓ)(t) + w(t), (1)

where αℓ = |αℓ|e
−j(2πfcτℓ+ϕ0) describes the complex ampli-

tude of the deterministic line-of-sight (LOS) component with

delay τℓ = 1
c‖p − aℓ‖, where c denotes the speed of light,

fc is the carrier frequency and ϕ0 is a random phase offset.

The second term denotes the dense multipath (DM) which is

modeled as a zero-mean complex Gaussian random process.

By assuming uncorrelated scattering in the delay domain, the

auto-correlation of the DM process is given as

K(ℓ)
ν (t, u) = Eν {νℓ(t)ν

∗
ℓ (u)} = S(ℓ)

ν (t− τℓ)δ(t− u), (2)

where S
(ℓ)
ν (t) is the power delay profile (PDP) of the DM

process at position p as a function of the excess delay time.

Quasi-stationarity in the spatial domain is assumed, meaning

that the PDP does not change in the vicinity of the position p.

Finally, the third term in (1) models additive white Gaussian

noise (AWGN).
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Fig. 1. Model and sample functions illustrating the problem under investigation over a wide range of BWs (neglecting AWGN).

The DM is modeled as double exponential function (cf. [6])

S(ℓ)
ν (τ) = Ω1

γdec + γrise

γdec(γdec + γrise(1− χ))
(1 − χe−τ/γrise)e−τ/γdec

(3)

where Ω1 is the total power of the DM, and γrise, γdec, and

χ are shape parameters. The Rician K-factor for the LOS

component is

KLOS =
|αℓ|

2

Ω1
. (4)

Fig. 1 illustrates the signal model and shows a few sample

realizations of the received signal neglecting the AWGN. For

high bandwidths (the UWB case) the DM process is clearly

separated from the LOS component and neither fading nor

distortion of the transmitted pulse occurs. By decreasing the

bandwidth (BW) the interference between the transmitted

pulse and the DM process increases and leads to fading

and distortion of the received pulse. For low bandwidths the

complete DM process interferes with the LOS component and

only fading occurs. In the following the measurement index ℓ
will be dropped.

III. RANGING ERROR BOUND (REB)

In [5] we derived the REB, which is the square root

of the inverse of the equivalent Fisher information (EFI)

R(τ) =
√

I−1
τ , the square root of the CRLB var{τ̂} ≥ I−1

τ

for the delay-estimation problem. This enables us to investigate

the influence of the signal and environment model parameters

onto the REB. Under the assumption that the AWGN and the

DM are both Gaussian, the EFI for a single channel can be

presented as

Iτ = 8π2β2γSINR sin2(φ) = 8π2β2S̃INR (5)

where β2 = ‖ṡτ‖
2 /(4π2‖sτ‖

2) =
∫

f
f2|S(f)|2df is the

effective (mean square) bandwidth of the (energy-normalized)

transmit pulse s(t)
F
←→ S(f), sτ is the sampled transmit

pulse shifted to τ , ṡτ is its derivative, SINR is the signal-to-

interference-plus-noise ratio (SINR) of the LOS component, γ
is the so-called whitening gain, and sin2(φ) incorporates the

estimation of the nuisance parameter α. The product of β2,

SINR, γ, and sin2(φ) thus provides the amount of information

transmitted in the LOS component when influenced by DM

and AWGN. For the derivation of (5), the inverse of the

covariance matrix of DM plus AWGN is needed as a whitening

operator. The SINR, the whitening gain γ, and sin2(φ) are also

combined in the effective SINR, S̃INR which can be expressed

as [5]

S̃INR =
|α|2

N0
‖sτ‖

2Ts
‖ṡτ‖

2
H

‖ṡτ‖2
sin2(φ), (6)

where Ts = 1/fs, fs is the sampling frequency, ‖ · ‖2H
denotes the weighted squared norm in a Hilbert space defined

by the covariance Cn/σ
2
n (see Appendix A), and φ is the

angle between sτ and its derivative ṡτ in this Hilbert space.

Appendix B introduces approximations for the previously

defined parameters without the need to compute the inverse

of the covariance matrix.

Fig. 2a illustrates the SINR, γ, sin2(φ), and S̃INR over

a wide range of bandwidths for three different KLOS factors

(−10 dB, 0 dB, and 10 dB). For low BWs the SINR tends

towards the Rician KLOS factor of the channel model and for

high bandwidth it reaches the signal to noise ratio (SNR). The

SINR reflects the amplitude fading of the LOS component.

The S̃INR follows the SINR at high bandwidth but reaches

the SNR again at low bandwidth. The S̃INR reflects the pulse

distortion of the deterministic LOS component. At high BW

neither fading nor distortion occurs and both the SINR and

S̃INR reach the SNR. By decreasing the BW, both amplitude

fading and pulse distortion occur leading to decreased SINR

and S̃INR. At very low BW only amplitude fading occurs

since the complete DM process interferes with the pulse (cf.

Fig. 1). The parameter sin2(φ) which can be attributed to

the cost of estimating the nuisance parameter α reduces the

achievable whitening gain. The lower the KLOS factor the

higher the cost for estimating the nuisance parameter.

In Fig. 2b the shape parameter γrise of the double exponential

PDP (3) is varied. If γrise, which describes the onset behaviour

of the PDP, is set to zero the double exponential PDP reduces

to an exponentially decaying PDP. Thus, for high BW some

amplitude fading and pulse distortion occur as well and

the S̃INR and SINR do not reach the SNR. The cost for
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(a) KLOS: dotted lines 10 dB, solid lines 0 dB, and chain dotted lines −10 dB)
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(b) γrise: solid lines 5 ns, and dotted lines 0 ns
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Fig. 2. SINR, S̃INR, whitening gain γ, and sin2(φ) as a function
of bandwidth and different channel parameters. If not stated otherwise:
ELOS/N0= 25 dB, KLOS = 0 dB, γdec= 20 ns, γrise= 5 ns.

estimating the nuisance parameter α is coupled with the pulse

distortion. At low BW less pulse distortion occurs since the

complete DM interferes with the LOS. In the region where

the BW is approximately the inverse of the rms delay spread

(τrms = {17.3, 16.1} ns) the most pulse distortion occurs and

the cost for estimating the nuisance parameter α is the highest.

By varying both the shape parameters γrise and γdec by the

same factor, it can be shown, that the root mean square (rms)

delay spread of the PDP is changed by the same factor. Thus,

in Fig. 2c the effect of different τrms is depicted. At low BW

the S̃INR is higher for smaller τrms since less pulse distortion

occurs. At high BW, the lower τrms of the PDP, the higher the
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Fig. 3. REB, approximated REB, and simulated range estimation error STDV
for ML and MF estimator for different KLOS factors (solid lines 10 dB,
dotted lines 0 dB, and chain dotted lines −10 dB). Other channel parameters:
ELOS/N0= 25 dB, γdec= 20 ns, γrise= 5 ns.

bandwidth needs to be for the same SINR and S̃INR.

In Fig. 3a the ranging error bound for three different KLOS-

factors (10 dB, 0 dB, −10 dB) is depicted. Two different gains

can be seen in Fig. 3a: An accuracy gain can be identified by

looking at the REB at the same bandwidth. The higher the

Rician K-factor, the lower the REB for the same bandwidth.

The second gain, a detection gain, is depicted by the standard

deviation (STDV) of the ranging error of a maximum likeli-

hood (ML) estimator which uses the inverse of the covariance

matrix of the DM plus AWGN random process as whitening.

For a small KLOS factor the estimator starts to deviate from the

REB at higher bandwidth. The detection of the LOS is coupled

with the SINR which reflects the SNR after the whitening

operation. Hence, for higher KLOS factors, the ML estimator

deviates from the REB at lower BW.

In Fig. 3b the STDV of the ranging error of a “naı̈ve” matched

filter (MF) estimator, which convolves the received signal

with the transmitted pulse and searches for its maximum, is

depicted along with the approximated values (Appendix B)

for the REB. As long as the SINR is high enough, the MF

estimator follows the approximation of the CRLB very well.

Since the MF estimator projects the received signal onto the

pulse, this estimator works in the signal space defined by the

approximation for the inverse of the covariance matrix.

IV. VALIDATION

To validate the theoretical results in the previous section

we performed measurements with an M-sequence correlative

channel sounder by Ilmsens, which provides measurements

over approx. the proposed UWB frequency range from 3.5 -

10.5 GHz. Out of this band we selected the desired bandwidth
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by filtering with a root raised cosine pulse with a pulse

duration ranging from 0.25 ns to 10µs with roll-off factor 0.5.

Fig. 4 shows the floorplan of the measurement scenario

[7]. Measurements have been performed between an “agent”

mounted on a 2D positioning table (70 cm times 65 cm spaced

by 1 cm) to eight “anchors” arranged as two linear arrays

spaced by 15 cm. Instantaneous Rician KLOS factors are

shown for each measurement from the agent to Anchor 8.

The KLOS factor is higher in regions closer to the anchor and

is on average 0.31 dB. Instantaneous τrms are plotted in the

lower right corner of Fig. 4 and is on average 17 ns.

The covariance matrix of the dense multipath, needed for the

whitening operation, has been estimated from a 2 cm spaced

5x5 grid around the current measurement by subtracting

the LOS component from the received signal. The complex

amplitudes α̂ℓ of the LOS component have been estimated at

the highest possible BW (4GHz) and are used at lower BWs

to subtract the LOS component. AWGN has been added to the

measurements to get a desired ELOS/N0 of 25 dB.

Fig. 5 shows the average values of the SINR, S̃INR, γ, and

sin2(φ) for 42measurements. The agent positions have been

placed on the grid in such a way that each measurement is used

only once to minimize correlation effects between different

realizations. The SINR shows the same behavior as the theory.

At low BW it tends towards the KLOS factor and at high

BW it is bound by the ELOS/N0. The whitening gain as well

as the effective SINR show similar behaviors as the theory.

The synthetic data in Fig. 2a and Fig. 3a with KLOS = 0 dB,

γrise = 5 ns, and γdec = 20 ns lead to a τrms = 17.3 ns and thus

compares best to the measured data.

In Fig. 6 the REB and the STDV of the estimation error

are shown for two estimators. The MF estimator works at

BWs higher than 500MHz. At lower BWs a positive bias and

outliers occur, which push the STDV of the MF estimator away

from the theoretical bound. The ML estimator for a single-
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input, single-output (SISO) scenario starts to deviate from the

REB at BWs below 100MHz. The accuracy gain due to proper

handling of the pulse distortion is clearly visible. The synthetic

data presented in Fig. 3a for comparable channel parameters

(KLOS, τrms) deviates at about 50MHz.

By using diversity at the anchor side, a single input, multiple

output (SIMO) system can be realized. As shown in [5]

additional uncorrelated measurements scale the effective SINR

and the EFI linearly, thus the REB is scaled by the inverse

of the square root of the number of receivers1. This factor

of 1/2 is seen in Fig. 6 for the 1x4-SIMO ML estimator.

By additionally combining agent measurements a multiple

input, multiple output (MIMO) system is obtained. Again, four

measurements, have been combined to evaluate the ranging

performance of the overall 4x4-MIMO system. The accuracy

gain is another factor of 1/2 for the STDV in comparison

to the 1x4-SIMO system. Furthermore, a detection gain is

achieved by combining measurements. The detection of the

LOS, which is coupled with the SINR is enhanced and the

STDV of the estimation error follows the REB down to lower

BW. With the 4x4 MIMO system a ranging STDV of 30 cm

can be obtained at a BW of 20MHz.

V. CONCLUSIONS AND OUTLOOK

The ranging error bound has been analyzed for LOS signals

in dense multipath (DM), evaluating the impact of signal pa-

rameters and environmental model parameters like the KLOS

and τrms factor. A higher KLOS and higher τrms factor of

the power delay profile are preferred. The theoretical findings

have been validated with real measurement data. Strong early

1To obtain this diversity gain, the likelihood functions of individual mea-
surements are added up, which corresponds to a non-coherent combining of
measurements that require no phase coherence.
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reflections still pose a challenge for the ranging algorithm,

specifically the estimation of the covariance matrix, but it

is seen that diversity gain can overcome the need for ultra-

wideband signals to obtain high-accuracy positions in dense

multipath channels.

APPENDIX A

FISHER INFORMATION FOR DELAY ESTIMATION

For a sampled received signal, the covariance matrix of

AWGN and the DM is written as

Cn = σ2
nIN +Cc = σ2

nIN + S̄HSν S̄ (A.1)

where S̄ = [s0, · · · , sN−1]
T ∈ RN×N is a signal matrix with

si = [s((−i)Ts), . . . , s((N − 1− i)Ts)]
T [4]. The elements of

the covariance matrix of DM are

[S̄HSνS̄]n,m =

N−1∑

i=0

TsSν(iTs)s((n− i))s((m− i)). (A.2)

The derivation of the EFI under non-stationary, non-white

Gaussian noise, involves a whitening operation that is de-

fined by the inverse of the covariance matrix. By utilizing

an eigenvector decomposition for the covariance matrix, and

introducing the Fourier-weighted inner product in a Hilbert

space defined by [5]

〈x,y〉H
σ2
n

= yHC−1
n x = yHU(Λ+ σ2

nIN )−1UHx

=
1

σ2
n

N−1∑

i=0

yHuiu
H
i x

λi/σ2
n + 1

(A.3)

we can write the EFI as (cf. [5], [8])

Iτ =2
|α|2

σ2
n

‖ṡτ‖
2
H sin2(φ) + tr

[

C−1
n

∂Cn

∂τ
C−1

n

∂Cn

∂τ

]

=2
|α|2

σ2
n

‖ṡτ‖
2
H

(

1−
|〈ṡτ , sτ 〉H|

2

‖ṡτ‖2H‖sτ‖
2
H

)

+ tr [•] (A.4)

where the “tr [•]-part” is for the impact of unknown parame-

ters of the DM process, e.g. the unknown arrival time of the

DM. We argue in [5] that this part can be neglected.

Writing the SINR as

SINR =
|α|2

N0
‖sτ‖

2
H Ts (A.5)

the first part of (A.4 can be decomposed as in (5).

APPENDIX B

APPROXIMATED INVERSE COVARIANCE

Inspite of the different definitions, numeric evaluations are

still needed to gain insight in the quantitative behavior of the

introduced parameters. To address this issue, we introduce a

decomposition of the covariance matrix into an orthonormal

basis that allows the approximate numeric evaluation of the

Hilbert norms. We decompose Cn as

Cn = [u1,u2,U0]





[
η ρ
ρ∗ η′

]

A

AH Λ0









uH
1

uH
2

UH
0



 (B.1)

choosing orthonormal basis vectors u1 = sτ/‖sτ‖ and u2 =
ṡτ/‖ṡτ‖ in directions of the LOS pulse and its derivative. The

coefficients η, η′, and ρ describe the statistics of these two

components of noise vector n. They are computed from Cn,

e.g. ρ = uH
1 Cnu2. Matrix A expresses the correlation of the

noise in these two directions and the other coordinate axes (in

U0).

Using the Schur complement and assuming that the corre-

lations A are negligible, the inverse of Cn is written as

C−1
n ≈ [u1,u2,U0] (B.2)

×





[
η′ −ρ
−ρ∗ η

]

1
ηη′−|ρ|2 X

XH Z









uH
1

uH
2

UH
0



 .

Using this approximation, it is straightforward to compute ap-

proximated values for the parameters defined in Appendix A.

From (A.4), we obtain

I(I)τ ≈ 2
‖ṡτ‖

2

‖sτ‖2
︸ ︷︷ ︸

4π2β2

η

η′
︸︷︷︸
≈γ

|α|2‖sτ‖
2η′

ηη′ − |ρ|2
︸ ︷︷ ︸

≈SINR

(

1−
|ρ|2

ηη′

)

︸ ︷︷ ︸

≈sin2(φ)

. (B.3)

From this, the SINR (A.5) times sin2(φ) can be written as

sin2(φ)SINR ≈|α|2‖sτ‖
2 1

η

=|α|2
1

N0 +
∑N−1

i=0 [̺
s
]2iSν(iTs)Ts

where ̺
s
= S̄sτTs is the autocorrelation sequence of wave-

form s(t), whose norm is independent of Ts. This results

shows that the interference power scales according to the inner

product of the squared pulse ACF ̺2(t) and the PDP Sν(t).
I.e., the greater the bandwidth, the better is the DM separated

from the LOS component and the SINR converges towards the

SNR. Using the results from (B.3), the effective SINR can be

approximated by

S̃INR ≈|α|2‖sτ‖
2 1

η′
(B.4)
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