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Abstract—We address the problem of designing a distributed

particle filter for tracking one or more targets using a sensor

network. We propose a novel approach for reducing the commu-

nication overhead involved in the data fusion step. The approach

uses graph-based signal processing to construct a transform of

the joint log likelihood values of the particles. This transform

is adaptive to particle locations and in many cases leads to

a parsimonious representation, so that the the joint likelihood

values of all particles can be accurately approximated using

only a few transform coefficients. The proposed particle filter

uses gossip to perform distributed, approximate computation of

the transform coefficients. Numerical experiments highlight the

potential of the proposed approach to provide accurate tracks

with reduced communication overhead.

I. INTRODUCTION

Particle filters have proven to be highly effective for tracking
scenarios with non-linear and/or non-Gaussian dynamic and/or
measurement models. In distributed tracking systems, where
multiple nodes obtain measurements and collaborate to achieve
improved tracking accuracy, developing efficient and accurate
distributed particle filters is an important challenge. An im-
portant design goal is to reduce the communication overhead
by transmitting fewer and/or smaller messages.

This paper focuses on distributed particle filtering algo-
rithms, wherein a network of nodes collaborate to track
one or more targets. Within the class of distributed particle
filtering algorithms, we concentrate on gossip-based methods,
where each node maintains its own local particle filter and
nodes communicate to share information obtained through
their local measurements. There is a trade-off between the
communication overhead and the tracking accuracy.

Related Work: Several distributed particle filters have been
proposed over the past decade; [1] provides a valuable survey
of the methods. The approaches involve distributed, approxi-
mate computation of the particle weights. This is achieved by
gossiping on the particles with the highest joint likelihood [2],
[3], or forming approximations of the joint likelihood function
or posterior and gossiping on sufficient statistics [4]–[7].
Although these filters can perform very effectively in some
settings, the former family of filters can often incur a high
communication overhead, and the latter can struggle if the
assumptions underpinning the approximations are not justified.

Contribution: We propose a novel approach for reducing
the communication overhead involved in the data fusion step
of a distributed particle filter. The reduction is obtained by
approximating the joint log likelihood values. The approach

uses graph-based signal processing to construct a transform
of the joint log likelihood values for each particle which is
adapted to the particle locations. In many cases, the transform
is such that the joint likelihood values at all particle can be
accurately approximated using only a few transform coeffi-
cients. Numerical experiments highlight the potential of the
proposed approach to provide accurate tracks with reduced
communication overhead. In comparison to other state-of-the-
art distributed particle filtering approaches, we find that the
proposed approach can significantly reduce the communication
overhead while suffering only a modest decrease in tracking
accuracy. Among the spectrum of distributed tracking algo-
rithms, this makes it possible to achieve performance in a
different regime than was previously possible.

II. PROBLEM FORMULATION AND BACKGROUND

A. Target Dynamics and Measurement Model

In this paper we focus on the problem of tracking the state
xt 2 Rn

x of a target over times t � 0. The state is assumed
to evolve according to the discrete-time dynamics

xt = f(xt�1) + ⇠t , (1)

where f(·) : Rn
x ! Rn

x is a possibly non-linear mapping,
and ⇠t 2 Rn

x is time-varying process noise.
Our aim is to track xt from noisy observations made

at a collection of nv sensor nodes. We denote the set of
nodes by V = {1, . . . , nv}. Let zt,v 2 Rn

z,v denote the
measurement taken at node v 2 V at time t. We assume that
the measurements follow the model

zt,v = ht,v(xt) + ⇣t,v , (2)

where ht,v(·) : Rn
x ! Rn

z,v is a node-dependent, possibly
non-linear mapping, and ⇣t,v is the measurement noise at
sensor v at time t. We allow the measurement function ht,v(·)
to vary with time.

Let zt
def
= {zt,v : v 2 V} denote the collection of all mea-

surements made at all nodes at time t, and z1:t
def
= {z1, . . . , zt}

denote the collection of all measurements from times 1 up to t.
We assume that the measurements taken at different nodes at
time t are conditionally independent given the state xt. Under
this assumption, the joint likelihood of the measurements zt

factorizes as

p(zt|xt) =

Y

v2V
p(zt,v|xt) . (3)
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We assume that the model f(·) for the target dynamics
and the distribution of the process noise ⇠t are known to all
nodes. In addition, we assume that node v knows the local
measurement functions {ht,v(·)}t�0, as well as the distribution
of the local measurement noise ⇣t,v .

Although each node could individually track xt using its
own observations, in general more accurate estimates of xt

are obtained by fusing measurements from multiple nodes.
To this end, nodes may share information with each other
by communicating over a network. We assume that if two
nodes can communicate in the network, then bidirectional
communication is achievable, and that these undirected links
form a connected topology.

We focus on algorithms where each node maintains its own
estimate of the state xt, and nodes communicate using gossip
protocols (simple message-passing methods) in order to keep
their state estimates synchronized. The use of gossip protocols
is desirable because they do not require central coordination
and they are robust to typical challenges arising in wireless
distributed systems, such as time-varying network topologies
and dropped packets [8], [9].

The particle filtering algorithms makes use of two types
of gossip. The first reaches consensus, asymptotically, on the
average of a set of scalar values at different nodes [10];
the second reaches consensus on the maximum of the scalar
values [11]. The fusion in the particle filtering algorithm
involves averaging, so we need to employ average gossip. The
convergence of average gossip is asymptotic, but we need all
nodes to have exactly the same estimates, so we subsequently
apply the maximum gossip procedure, which can be shown to
converge almost surely to the state where all nodes know the
maximum value after a finite number of iterations [11].

B. Particle Filters

Particle filters approximate the posterior density p(xt|z1:t)
using a set of N weighted particles,

Xt
def
= {bx(i)

t , w(i)
t }Ni=1 ,

where b
x

(i)
t 2 Rn

x and w(i)
t 2 R; specifically, the approxima-

tion is given by

bp(xt|z1:t) =
NX

i=1

w(i)
t �(xt � b

x

(i)
t ) , (4)

where �(·) is the Dirac delta function.
Given an initial target detection at location b

x

0 and time t =
0, the particle locations b

x

(i)
0 are initialized by sampling from a

density p0(·|bx0
) and the weights are initialized to w(i)

0 = 1/N
for all i.

Each particle is updated from one time step to the next by
first sampling a new location b

x

(i)
t|t�1 from a proposal density

q(x|bx(i)
t�1, z1:t). Then the weight associated with b

x

(i)
t|t�1 is

w(i)
t|t / w(i)

t�1

p(zt|bx(i)
t|t�1)p(bx

(i)
t|t�1|bx

(i)
t�1)

q(bx(i)
t|t�1|bx

(i)
t�1, z1:t)

, (5)

where the proportionality constant is such that
PN

i=1 w
(i)
t|t = 1.

Finally, a new set of particles {bx(i)
t , w(i)

t }Ni=1 is obtained
by sampling N particles with replacement from the set
{bx(i)

t|t�1}
N
i=1, where b

x

(i)
t|t�1 is sampled with probability w(i)

t|t ,
and setting the corresponding weights to w(i)

t = 1/N . This
last step is referred to as resampling in the literature. For more
background on particle filters see, e.g., [12].

In the bootstrap particle filter, q(·|bx(i)
t�1, z1:t) is taken to

be p(·|bx(i)
t�1), the density of xt given xt�1 defined by the

dynamic model (1) with xt�1 =

b
x

(i)
t�1. For this choice, the

propagation of b
x

(i)
t only depends on b

x

(i)
t�1; in particular, it

does not depend on the measurement zt.

C. Gossip-Based Distributed Particle Filtering

We focus on a distributed framework where each node
maintains and updates its own copy of particles Xt,v , and
gossip protocols are used to homogenize the particles across
nodes over time. We assume that nodes have a shared source
of randomness which can be used to sample from the distri-
butions p0(·|bx0

) and q(·|bx(i)
t�1, z1:t).1

Suppose that the weighted particle sets at all nodes are
exactly the same at time t � 1, and also suppose that the
network implements the bootstrap particle filter. Then the
proposal distribution q(·) only depends on the current particle
locations. Based on the assumption of shared randomness, the
newly sampled particle locations b

x

(i)
t|t�1 will be identical at all

nodes. For the bootstrap particle filter, the weight update (5)
thus simplifies to

w(i)
t|t�1 / w(i)

t�1p(zt|bx
(i)
t|t�1) ,

and so new weight values are a function of the measurements
taken at all nodes, zt = {zt,v : v 2 V}.

Under the conditional independence assumption (3), the
joint likelihood can be expressed as

p(zt|xt) = exp

(
X

v2V
log p(zt,v|xt)

)
.

Let �(i)
t,v

def
= log p(zt,v|bx(i)

t|t�1) denote the log-likelihood of the
measurement at node v and time t. Then the weight updates
can be expressed as

w(i)
t|t�1 =

w(i)
t�1 exp{�̄

(i)
t }

PN
j=1 w

(j)
t�1 exp{�̄

(j)
t }

,

where �̄(i)
t

def
=

P
v2V �(i)

t,v . Because �̄(i)
t is a linear function

of values �(i)
t,v at each node, an approximation of the values

{�̄(i)
t }Ni=1 can be computed at all nodes in a distributed manner

using gossip protocols.

1In practice, sampling is implemented using a pseudo-random number
generator, and shared randomness can be achieved by having the nodes
initially agree on the seed. If the nodes are initially not synchronized, each
node can draw a random number. Then they can use the max-gossip protocol
to determine the maximum value and use it as the common seed to the pseudo-
random number generator.
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III. GRAPH LAPLACIAN APPROXIMATION FOR
DISTRIBUTED PARTICLE FILTERING

This section proposes an approach to updating particle
weights in a distributed manner. The technique constructs
a transform that is adapted to the particle locations. Since
particles near each other generally have more similar joint
likelihood values than particles that are far apart, we build
a graph over the particles by placing edges between pairs of
particles that are close to each other. Then the Laplacian matrix
of this graph is used to construct a transform such that the
joint log-likelihood values at all particles can be succinctly
approximated using only a few coefficients in the transform
domain.

Particles with similar locations in the state space typically
have similar weights; i.e., kbx(i)

t � b
x

(j)
t k being small typically

implies that |w(i)
t �w(j)

t | is also small. This suggests that some
form of transform coding may be effective. We propose to use
a transform adapted to the propagated locations {bx(i)

t|t�1}
N
i=1 in

order to obtain a reduced-order approximation to the weights
{w(i)

t|t}
N
i=1. Specifically, we propose to use the eigenvectors of

a graph constructed from the propagated locations {bx(i)
t|t�1}

N
i=1

as a transform basis.
Let A denote the N ⇥ N adjacency matrix of a graph

with one vertex for each particle in the set {bx(i)
t|t�1}

N
i=1. Fix a

positive integer  ⌧ N . We place an edge between particles
i and j (equivalently, we set Ai,j = Aj,i = 1) if particle i
is one of the  nearest neighbours of j, or vice versa, where
the distance between two particles is kbx(i)

t � b
x

(j)
t k2; this is

sometimes referred to as the symmetrized -nearest neighbour
graph. Let D denote a diagonal N ⇥N matrix with diagonal
entries Di,i =

PN
j=1 Ai,j containing the number of neighbours

of node i. Note that A is symmetric and that not all particles
necessarily have the same number of neighbours since the -
nearest neighbour relationship is not necessarily symmetric.

Let ¯

�t 2 RN denote a vector obtained by stacking the
particle log-likelihoods {�̄(i)

t }Ni=1 using the same indexing
used when forming the graph corresponding to A. We view
¯

�t as a signal supported on the graph and seek a transform
that concentrates the energy of ¯

�t into a small number of
coefficients.

The Laplacian matrix L of the graph with adjacency matrix
A is L

def
= D � A. Because L is a symmetric real matrix it

has an eigendecomposition of the form L = F⇤F

T , where
F is an N ⇥N orthonormal matrix of eigenvectors and ⇤ is
a diagonal matrix of eigenvalues. Let

�1  �2  · · ·  �N

denote the eigenvalues (the diagonal elements of ⇤) sorted
in ascending order, and let fj denote the j-th column of
F . The eigenvalues and eigenvectors of the graph Laplacian
have a number of interesting properties for processing signals
supported on the graph [13]–[15]. In particular, the columns of
F can be interpreted as a Fourier basis for signals supported
on the graph. Eigenvectors corresponding to larger eigenval-
ues have the interpretation of being higher frequency basis

vectors. Typical log-likelihood functions log p(zt|bx(i)
t|t�1) vary

smoothly as a function of b
x

(i)
t|t�1, and so one may hope that

most of the energy of ¯

� concentrates in a few low frequency
components.

Given {bx(i)
t�1

, w(i)
t�1

}Ni=1

, execute at all nodes v 2 V in parallel:
1: for i = 1, . . . , N do

2: Sample b
x

(i)
t ⇠ q(·|bx(i)

t�1

, z
1:t)

3: end for

4: Form the  nearest neighbour graph for particles {bx(i)
t }Ni=1

.
5: Calculate the Laplacian L and perform the eigendecompo-

sition L = F⇤F

T .
6: Calculate Laplacian transform coefficients ↵t,v

def
= F

T
m�̄t

for Fm defined in (6).
7: {b↵(j)

t }mj=1

= GOSSIPv({nv↵
(j)
t,v}mj=1

).
8: Set b�t = Fm b

↵t.
9: for i = 1, . . . , N do

10: w(i)
t|t =

w
(i)
t�1 exp{b�(i)

t

}
P

N

j=1 w
(j)
t�1 exp{b�(j)

t

}
11: end for

12: for i = 1, . . . , N do

13: Sample b
x

(i)
t from {bx(j)

t|t�1

}Nj=1

with replacement, with
Pr(bx(i)

t = b
x

(j)
t|t�1

) = w(j)
t|t . Set w(i)

t = 1/N .
14: end for

Fig. 1. Pseudo-code for one step of the graph Laplacian approximation
distributed particle filter. Line 7 involves an application of average and max-
consensus.

Given a signal ¯

�t 2 RN on the graph, we refer to
↵t

def
= F

T
¯

�t as the vector of Laplacian transform coefficients.
Intuitively, smooth signals on the graph—those for which the
values at neighbouring nodes are similar—should have most of
their energy concentrated in the coefficients corresponding to
lower frequency basis vectors. For a positive integer m  N ,
an m-term approximation to ¯

�t can be obtained by first trans-
forming into the Laplacian eigenvalue domain, thresholding
the magnitudes corresponding to the largest eigenvalues to
zero, and taking the inverse transform. Equivalently, we take

b
�t =

mX

j=1

(f

T
j ¯

�)fj ,

where {fj}mj=1 are the graph Laplacian eigenvectors cor-
responding to the m smallest Laplacian eigenvalues. Since
F is an orthonormal matrix, when m = N there is no
approximation error and b

�t is identical to ¯

�t.
In the setting of distributed particle filtering, let us again

assume that the value m is fixed in advance and known to all
nodes. All nodes also know the particle locations {bx(i)

t }Ni=1,
and so each node can locally compute the adjacency matrix
A, the corresponding Laplacian matrix L, and a matrix

Fm
def
= [f1, . . . ,fm] (6)

composed of the m eigenvectors corresponding to the m
smallest eigenvalues of L. Node v then locally computes the
m-dimensional vector of coefficients

↵t,v = F

T
m�t,v ,
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Fig. 2. (a) An example particle cloud shown with a -nearest neighbour graph ( = 7). (b) Magnitude of the coefficients |↵(j)
t | of the joint log-likelihood

expressed in terms of the graph Laplacian eigenvectors. (c) Typical particle weight approximation error for this example using only the coefficients corresponding
to the m first Laplacian eigenvectors for different values of m.

where �t,v is the vector of particle log-likelihood values
computed using only the measurements at node v. The nodes
then perform K iterations of distributed averaging using the
gossip algorithm, followed by the application of maximum
gossip. Let b

↵t denote the resulting m-dimensional vector of
coefficients. To obtain the log-likelihood estimates, each node
sets b�t = Fm b

↵t and proceeds with the weight update. Figure 1
provides pseudocode that summarizes the proposed approach.

Figure 2 illustrates the graph Laplacian approach to reduc-
ing communications when computing the weights associated
with each particle. We take the particle cloud for the example
shown in Fig. 2(a) and construct a nearest neighbour graph
with  = 7. Fig. 2(b) depicts the magnitude of the elements
of the vector ↵t; i.e., |↵(j)

t | = |fT
j ¯

�t|, where fj is the
j’th column of F . Observe that the bulk of the energy is
concentrated in the first few coefficients. Finally, Fig. 2(c)
shows the absolute error in particle weights when only the
first m graph Laplacian coefficients are used to obtain an
approximation ˆ

�t.

IV. NUMERICAL EVALUATION

We evaluate the performance of the proposed approach and
compare it with state-of-the-art methods using a simulated data
set. The scenario is a bearings-only tracking problem with two
targets and nv = 25 sensor nodes arranged in a perturbed grid
over a 10km by 10km area. The two targets make a counter-
clockwise maneuver over a period of T = 50 time steps. At
each time step, the second target senses the first and moves in
its direction with a constant velocity. Because the dynamics of
the two targets are coupled, we take the state xt to be an 8-
dimensional vector, with the first four coordinates representing
the position and velocity of the first target, and the second
four coordinates representing the position and velocity of the
second target.

At each time step, a random subset of the nodes gather bear-
ings measurements. On average five measurements are made
across the network per target per time step. Each measurement
is of the bearings from the target to the sensor making the
measurement, and the measurements are corrupted by additive

zero-mean Gaussian noise with a standard deviation of 5
degrees. To make a fair comparison among the algorithms,
and to avoid issues related to data association, we assume
that each measurement is associated with the corresponding
target by an oracle and these same associations are used by
all of the algorithms. The sensors communicate over a grid
topology, with each node able to communicate with up to four
neighbours.

Below we evaluate the performance of the proposed algo-
rithms. To quantify accuracy, we report the time-averaged root

mean square position error (ARMSE),
q

1
T

PT
t=1 kxt � b

xtk2.
All results reported are drawn from 100 Monte Carlo trials. To
study the performance of the proposed algorithm, detailed in
the pseudocode of Figure 1, we fix the number of particles to
N = 2000 and examine the algorithm performance as we vary
m and the number of gossip iterations. At each step, a graph
is formed over the particle cloud using  = 20 neighbours.
Figure 3 shows the total ARMSE as a function of the average
number of scalars transmitted per node per step for different
values of m. Each curve corresponds to fixing a value of m and
varying the number of gossip iterations from 500 to 2000 in
increments of 500. The figure illustrates that a filter using only
100 or 500 coefficients can achieve accuracy approaching that
of a centralized filter if there are sufficient gossip iterations
(at least 1000 in this case).

Next, we compare the performance of top-m selective gos-
sip and the graph Laplacian approximation approach to other
distributed particle filtering algorithms from the literature.
Specifically, we compare with the distributed bootstrap filter
running gossip iterations directly on the particle weights, with
the Gaussian approximation distributed particle filter [5], with
the set-membership constrained (SMC) distributed particle
filter [2], and with the top-m selective gossip particle filter [3].
All filters use 2000 particles. The communication overhead of
the distributed bootstrap, Gaussian approximation, and SMC
particle filters can be adjusted by varying the number of gossip
iterations used by each filter.

The tradeoff between total mean ARMSE (for both targets)
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Fig. 3. The sum of the mean ARMSE for both targets as a function of
the average number of scalar values transmitted per node per time step of the
simulated scenario, running the distributed particle filter with graph Laplacian
approximation. The points on each curve are obtained by fixing the value of
m and varying the number of gossip iterations per tracking time step from
500 to 2500 in increments of 500.

and the communication overhead, as measured in terms of the
average number of scalars transmitted per sensor per step of
the distributed filter, is shown in Figure 4. The Gaussian ap-
proximation filter has much less communication overhead than
the other approaches, but the total ARMSE is much higher,
probably because the Gaussian approximation does not ade-
quately capture the shape of the posterior distribution for the
tracking scenario considered. The distributed bootstrap, set-
membership constrained, and top-m selective gossip filters all
exhibit a similar tradeoff. The graph Laplacian approximation
offers interesting performance for communication overheads
in the range 5 ⇥ 10

3 to 5 ⇥ 10

4 scalars transmitted per node
per filtering step. In this range, the communication overhead
is reduced by nearly one order of magnitude, as compared to
the set-membership constrained filter or top-m selective gossip
filters, and the total ARMSE only increases by a little over 0.1
km.

V. CONCLUSION

We have presented a novel distributed particle filter for
tracking one or more targets using a sensor network. A graph
signal processing approach is used to approximate the log-
likelihoood values of the particles. Numerical experiments
highlight the potential of the proposed approach to provide
accurate tracks with reduced communication overhead. In
future work, we will explore how to reduce the computational
overhead of constructing a nearest neighbour graph and ex-
tracting the eigenvectors from the Laplacian.
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