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Abstract—The problem of estimating receiver-sender node po-
sitions from measured receiver-sender distances is a key issue in
different applications such as microphone array calibration, radio
antenna array calibration, mapping and positioning using ultra-
wideband and mapping and positioning using round-trip-time
measurements between mobile phones and Wi-Fi-units. Thanks to
recent research in this area we have an increased understanding
of the geometry of this problem. In this paper, we study the
problem of missing information and the presence of outliers in
the data. We propose a novel hypothesis and test framework
that efficiently finds initial estimates of the unknown parameters
and combine such methods with optimization techniques to
obtain accurate and robust systems. The proposed systems are
evaluated against current state-of-the-art methods on a large set
of benchmark tests. This is evaluated further on Wi-Fi round-
trip time and ultra-wideband measurements to give a realistic
example of self calibration for indoor localization.

I. INTRODUCTION

In this paper we present new research on robust methods for
time-of-arrival (TOA) self-calibration problem with missing
data and outliers. This is then applied to Wi-Fi round-trip time
(RTT) and ultra-wideband indoor localization measurements to
provide realistic examples. The TOA self-calibration problem
is the problem of determining the positions of a number of
receivers and transmitters given receiver-transmitter distances.
In this problem, there is no assumption that there exists
a subset of sensors (anchors) whose locations are known.
Hence it is closely related to the anchor-free sensor network
localization problem [1] but differs, since the transmitters or
receivers are independent of each other. Our problem structure
corresponds to a bipartite graph, unlike [1] where the network
structure is a general graph. The TOA problem also has certain
similarities with the problem of determining a set of points
given all inter-point distances, which is usually solved using
multi-dimensional scaling [2]. Such problems are of general
interest in visualization and analysis of large datasets (e.g.
DNA data), in machine learning and for many geometric
problems. The TOA self-calibration problem is important for
node calibration problems for a variety of different media,
e.g. (i) microphone arrays (given recordings of sounds emitted
at unknown locations, to microphones at unknown positions,
determine both sound emission positions and microphone
locations), similarly (ii) ultra-sound, (iii) radio (Ultra Wide
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Band), (iv) Wi-Fi (Using signal strength) and (v) Wi-Fi round-
trip time measurements (RTT).

Anchor-free sensor network calibration with time-of-arrival
measurements has been investigated in a number of studies.
Graph rigidity was explored in [1] to find a fold-free graph
embedding. The solution was then refined using mass-spring
based optimization. In [3], a semi-definite programming for-
mulation and solution was proposed for TOA measurements,
with or without anchors. Both of these methods are general
for any solvable network structure. Another line of work
has focused on sensor networks with bipartite structure, that
appear in various applications mentioned in the previous
paragraph. For this special type of bipartite network structure,
one also aims to identify and solve the minimal problem,
i.e. minimal number of receivers and transmitters required
for the problem to be well-defined (or solvable). Note that
for this problem, the roles of receivers and transmitters are
equivalent. Therefore, when discussing minimal cases, the
number of sensors required for receivers and transmitters are
interchangeable. The minimal cases were studied in [5], where
solutions to the minimal case of 3 transmitters and 3 receivers
in the plane are given. The minimal problems for the 3D
case are given in [6]. The minimal number of receivers and
senders are (4, 6), (5, 5) and (6, 4) respectively. There are in
general 38, 42 and 38 solutions respectively for the three types
of problems. However, no practical methods for general 3D
positions are given. There are a few results on algorithms
for actually determining the positions from distances, most
notably [7], [8]. In [9], a non-minimal linear solution to the 3D
TOA self-calibration problem is derived for 10 (4) receivers
and 4 (10) transmitters. In [10], [11] a solution is given to
the TOA self-calibration problem, if one may additionally
assume that one of the receivers coincides with the position
of one of the transmitters. The minimal cases for far field
approximation were first studied in [12] and later refined in
[13]. In far field approximation, the distances between the
transmitters and receivers are assumed to be considerably
larger than those between receivers. The solutions based on
the far field approximation can be utilized to initialize the
original TOA problem.

Studying these minimal cases is of theoretical importance

when the graph is globally rigid cf. [4]
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and further more essential when developing fast and stable
algorithms based on robust estimation methods like RANSAC
[14], in the presence of outliers in the measurements. As will
be shown in the following sections, one important part of our
system exploits that the so-called compaction matrix should
have a certain rank. Low rank matrix factorization has a long
standing history. Truncating the singular value decomposition
of the measurement matrix has been shown to give the optimal
solution under the l2-norm for complete data, see [15]. The
work in [16] was the first to consider missing data. Robustness
to outliers has been considered in [17], [18], [19], [20]. Most
methods mentioned above are based on alternating optimiza-
tion and are prone to get trapped in local minima. Recently,
several works [21], [22], [23] re-formulate the problem to
minimize the convex surrogate of the rank function, that is,
the nuclear norm. For applications with a given fixed rank, the
nuclear norm based methods usually perform inferior to the
bilinear formulation-based methods [24]. A few recent works
[25], [26] also explore the idea to divide the whole matrix into
overlapping sub-blocks and combine the sub-block solutions.
Minimal cases for low rank matrix factorization, for missing
data, were investigated in [27].

Indoor localization is a currently a key issue, from needing
to know the location of objects using Ultra-Wide Band beacons
to finding the location of mobile phones with Wi-Fi when
a GPS signal cannot be acquired. This is prevalent indoors
and in build up areas such as New York, which is known as
the “urban canyon” problem. Methods, like the one proposed,
could be useful in solving these real world problems.

II. BASIC GEOMETRY

We will now describe the basic underlying geometry of
our problem. Let ri, i = 1, . . . ,m and sj , j = 1, . . . , n be
the spatial coordinates of m receivers (e.g. microphones) and
n transmitters (e.g. sound events), respectively. For measured
time of arrival tij from transmitter ri and receiver sj , we have
vtij = ‖ri − sj‖2 where v is the speed of measured signals
and ‖.‖2 is the l2-norm. The speed v is assumed to be known
and constant. We further assume that we, at each receiver can
distinguish which transmitter j each event is originating from.
This can be done e.g. if the signals are temporally separated or
using different frequencies. We will in the following work with
the distance measurements dij = vtij . It is quite common that
such data contains both missing data (not every sound event is
detected at every microphone) and outliers (e.g. due to errors
in the matching process). The TOA calibration problem can
then be defined as follows,

Problem 1: (Time-of-Arrival Self-Calibration) Given abso-
lute distance measurements

dij = ‖ri − sj‖2 + εi,j , (1)
for a subset W ⊂ I of all the receiver-transmittor index pairs
I = {(i, j)|i = 1, . . .m, j = 1, . . . , n} determine receiver
positions ri, i = 1, . . . ,m and transmitter positions sj , j =
1, . . . , n. Here the errors εi,j are assumed to be either inliers,
in which case the errors are small (εi,j ∈ N(0, σ)) or outliers,
in which case the measurements are way off.

Here we will use the set Wi for the indices (i, j) corresponding
to the inlier measurements and Wo for the indices correspond-
ing to the outlier set.

We will now show how the TOA calibration problem is
solved generally. From many types of media, a transmitter-
receiver distance will be acquired, dij . Since this can be
assumed to be real and positive, it can be squared as follows,

d2ij = (ri − sj)
T (ri − sj) = rTi ri + sTj sj − 2rTi sj . (2)

The problem is then reformed according to the following
invertible linear combinations of d2ij :

B =


d211 d212 − d211 . . . d21n − d211

d221 − d211
. . . B̂

d2m2 − d211

 , (3)

where the compaction matrix B̂ is an (m − 1) × (n − 1)

matrix with entries as B̂ij =
d2i,j − d2i1 − d21j + d211

−2
, with i =

2, . . .m and j = 2, . . . , n. The other elements in B are used
as constraints for the solution.

The factorization can then be interpreted as follows. Let
Ri =

[
(ri − r1)

]
and Sj =

[
(sj − s1)

]
. Here B̂ = RTS

with Ri as columns of R and Sj as columns of S . Since we
assume that R and S are in a 3D affine space, the matrix B̂
has rank 3 at most. This also implies that in order to solve the
problem, it is required that m ≥ 4 and n ≥ 4 . By factorizing
B̂, we can compute the vectors to all receivers and transmitters
from unknown initial/reference positions (r1 and s1).

By fixing r1 at the origin and s1 as a vector from the origin,
in terms of an affine transformation matrix L and vector b,
the problem is reformulated as follows,

r1 = 0, s1 = Lb, ri = L−T R̃i, i = 2 . . .m,

sj = L(S̃j + b), j = 2 . . . n,
(4)

where R̃ = LTR, S̃ = L−1S, and hence B̂ = R̃TL−1LS̃ =
RTS.

Using this parametrization, the equations from matrix B,
(3) become

d211 = (r1 − s1)
T (r1 − s1) = sT1 s1 = bTLTLb

= bTH−1b, (5)
d21j − d211 = sTj sj − sT1 s1 = S̃T

j L
TLS̃j + 2bTLTLS̃j

= S̃T
j H
−1S̃j + 2bTH−1S̃j , (6)

d2i1 − d211 = rTi ri − 2rTi s1 = R̃T
i (L

TL)−1R̃i − 2bT R̃i

= R̃T
i HR̃i − 2bT R̃i, (7)

where the symmetric matrix H = (LTL)−1. With this param-
eterization, there are in total 9 unknowns (6 and 3 unknowns
for H and b, respectively), and hence a solution can be
found. Since this solution has its own coordinate system, with
prior knowledge this can be transformed back to the original
coordinate system.
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III. NON-LINEAR OPTIMIZATION APPROACHES

In the development of the different systems for robust esti-
mation, we use several different local optimization techniques.
In particular we use methods for local optimization of the type

min
r,s

∑
(i,j)∈W̃

f(di,j − ||ri − sj ||2), (8)

where f(r) is chosen to be (i) f(r) = r2 (l2-norm), (ii)
f(r) = |r| (l1-norm) or (iii) f(r) = min(r2, T ) (truncated
l2-norm). If the subset W̃ of the measurements contains no
outliers and if the starting point is good, then the l2-norm
can give good estimates. Optimizing using the l1-norm is
less sensitive to the subset W̃ containing outliers, but still
requires a reasonably good starting point to converge to a good
solution. Local optimization of the truncated l2-norm is even
more sensitive to having a good starting point. Nevertheless,
these local optimization techniques are important components
for designing robust systems.

IV. OBTAINING INITIAL ESTIMATES

Finding the optimal solution to problem 1, in the presence of
outliers and missing data is a highly non-convex problem. We
are thus dependent on finding good initial starting solutions,
for the optimization methods from the previous section to
work. We will in this section describe the different initial-
ization methods that we have used in our experiment. In the
next section we will describe our main contribution to the
initialization problem.

Arguably, the most straight-forward way to initialize a
solution, is to simply randomly place all receivers and senders
within some space. This usually gives poor initial estimates,
and the local optimization will be prone to get stuck in local
minima. A slight improvement to this idea, is to use multiple
restarts and optimize from each initial position, and then in
the end choose the best solution.

Another way of initializing, that we have explored, is using
the rank constraint on the compaction matrix. Here one can
use many existing methods for doing the low rank matrix
factorization. One important draw-back of these methods, is
that we need to have at least one row and one column of
the data matrix completely known, and without outliers. The
last criteria is of course hard to check. If all data is known,
the optimal low rank factorization is given by singular value
decomposition (SVD) of the data matrix. A heuristic for
handling missing data, is simply to fill in the missing data
with some random values that follow the statistics of the other
known measurements. One can then use SVD to obtain an
initial estimate. This can be used directly to find the solution
to the original problem as described in section II. Alternatively,
the initial low rank matrix factorization can be refined using
the Wiberg algorithm, [16].

V. RANDOM SAMPLING PARADIGM

The RANSAC or hypothesize and test paradigm, has proven
to be useful in situations where there are outliers in the data,
[14]. In this paradigm, a subset of the data is used to estimate

Algorithm 1 Our RANSAC initialization scheme
1: Select 5 receivers randomly
2: Find all senders, for which there are no missing data to the 5

receivers
3: If there are at least five such senders, select 4 of these senders

randomly
4: Hypothesize: Use the 5×4 matrix F, with elements Fi,j = d2i,j .

Calculate the compaction matrix B̂ for F as shown in equation
(3), which is a 4×3 matrix. Calculate a unit vector v which lies
in the left null space of B̂.

5: Test: Assuming that a column f , whose elements are fi = d2i,jtest
contain no outliers, then the vector b̂ is the compaction matrix
of [F1, f ] where F1 is the first column of F. This then should
have v · b̂ = 0. Assuming low noise it is reasonable to declare
it an inlier if |v · b̂| < T , where T is a threshold that depends
on the noise level σ and the data d. Repeat this test for all the
other columns.

6: Repeat steps 1-5, K times and keep track of the hypothesis that
gave the largest number of inlier columns.

the unknown parameters. The remainder of the data is then
used to verify or falsify the parameters. This is typically
repeated a fixed number of iterations. The parameters that
give the largest number of inliers are then usually used as
an initial estimate for the subsequent non-linear optimization
of the parameters.

For Problem 1, there are several ways one could implement
the hypothesis and test paradigm. One idea would be to
use efficient algorithms for determining receiver and sender
positions from minimal data, [6]. Although this solver and
the test is relatively fast, we propose an alternative to this
approach. The main idea is to find a fast way to hypothesize
and test. We will use the rank constraints of the compaction
matrix to do this. Our method is described in Algorithm 1.

VI. EXPERIMENTAL EVALUATION

For the experimental evaluation, we generated a series of
scenarios with different missing data ratio, outlier data ratio
and different levels of inlier noise. For simplicity we have kept
the number of receivers (m) and senders (n) fixed at m = 30
and n = 30. We also fixed the room size to be 10 × 10 × 3
meters and placed the ground truth positions of the receivers
and senders randomly in this box using a uniform distribution.
Finally the errors εi,j for outliers were randomly drawn uni-
formly in the intervals [−1.2,−0.4] and [0.4, 1.2] meters. This
means that for low levels of noise there is a relatively clear
difference between inlier and outlier distributions. For higher
levels of noise the inlier and outlier distributions will start to
overlap considerably. Notice, however, that it is difficult to
determine which measurements are inliers by simply studying
the distance measurements.

For each setting we generate a number of synthetic scenarios
where the ground truth position of the receivers and senders
are placed randomly as described above. A random subset W
out of the mn measurements in I are chosen so that |W |/|I| ≈
1−σo. Then a random subset Wi ⊂W of inlier measurements
are chosen so that |Wi|/|W | ≈ 1−σi. The measurements di,j
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Fig. 1. Comparison of success ratios for a number of tested systems, as functions of (from left to right) missing data ratio, outlier ratio and inlier noise level
respectively.

are generated according to (1) with added noise according to
the inlier model for (i, j) ∈ Wi and according to the outlier
model for (i, j) ∈Wo =W \Wi.

Each synthetic dataset d is then tested against each method.
Here we tested the following systems

• Ransac + l2 opt: Our proposed framework with initial
estimate using RANSAC as described in Section 5,
followed by l2 optimization on detected inlier set.

• SVD Init + l1 opt: Initial estimate using SVD as
described in Section 4, followed by l1 optimization.

• Rand Init + l1 opt: Initial estimate using random
placement as described in Section 4, followed by l1

optimization
• l2 opt using Wiberg alg: Initial estimate using SVD as

described in Section 4, followed by rank 3 factorization
using Wiberg algorithm followed by l2 optimization.

• SVD Init + l2 opt: Initial estimate using SVD as
described in Section 4, followed by l2 optimization

As can be seen in Figure 1, the proposed method out-
performs the other methods in terms of robustness against
outliers and missing data. For increased levels of noise the
l1 optimization methods degrades more gracefully.

For further experimental evaluation, our method was tested
on real data measurements. In Figure 2, we conducted a round-
trip time Wi-Fi experiment in 2D using 4 Nexus 6 phones
as anchors and one phone as a transmitter. These phones
come with a IEEE 802.11.mc Wi-Fi standard, which produces
round-trip time measurements in metres. The experimental
environment that was chosen was a large open space in an
office block (Ideon Alfahuset, Lund, Sweden) with dimensions
∼ 12× 18 m.

For the experiment, a ground truth was measured for all the
anchor points and the path of the moving source every 0.5±
0.005m with a tape measure. The experiment was conducted
by walking the predefined path with the transmitter. In our
experiment, our proposed framework does not require prior
knowledge about the positions for any of the anchors or source
locations nor the number of anchors and source locations. The
only requirement is that the number of anchors and source
locations satisfy the requirement of the minimal solver, for
this 2D case (3,3).

Fig. 2. This figure illustrates the estimated anchor positions and the source
positions. This is overlaid on the ground truth anchor positions and predefined
path.

A fixed number of iterations was used; 20 iterations for
the initial selection of 3 receivers and senders, then a further
140 iterations to extend the number of columns and rows.
The tolerance was set to T = 3 for the initial selection and
extension of columns then reduced to T = 2 for the extensions
of the rows.

Once the initial values have been estimated, it undergoes
l2 optimization on the inlier set. We also added a smoothness
prior in the optimization. This prior is based on minimizing
acceleration, according to

resa =
1

σ2
a

n−1∑
j=2

‖sj−1 − 2sj + sj+1‖22, (9)

where σa is a parameter controlling the strength of the
smoothness prior.

The ground truth anchor positions were
((0, 0), (5.932, 0), (3.0163, 10.3079), (−0.6018, 11.3658)).
The estimated anchors were calculated to be
((0.4044, 0.0429), (5.6435,−0.3461), (3.0475, 10.5527),
(−0.7488, 11.4242)). This gives a total Euclidean distance
error of 0.5923 m.

One section of the predefined path was obscured by a
staircase. There the measurements had 6.52% missing data and
9.7826% of the data was considered to be outliers, according
to our algorithm. In comparison to the whole data set we had
1.23% missing data and 3.3451% of the data was considered
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to be outliers. To further test our method, we conducted an
experiment using ultra-wideband measurements in 3D with 6
anchors. Here we used the same number of iterations as before
but using a tolerance of T = 0.2 and the 5 receivers and 5
senders 3D minimal solver, the result is shown in Figure 3.

Fig. 3. This figure illustrates the estimated anchor and source positions.

VII. CONCLUSIONS

In this paper we have constructed several systems for esti-
mating receiver-sender node positions from measured receiver-
sender distances in the presence of outliers and missing data.
We propose several new methods for solving these problem. In
particular we propose a novel hypothesis and test framework
that efficiently finds initial estimates of the unknown param-
eters and combine such methods with efficient optimization
techniques to obtain efficient, precise and robust systems. The
proposed systems are evaluated against current state-of-the-
art methods on a large set of benchmark tests. Our proposed
hypothesis and test framework is then further tested on real
Wi-Fi and ultra-wideband measurements to solve time-of-
arrival self-calibration and localization.

Looking at Figure 2, we can see that a reasonable esti-
mation was calculated. The general predefined path shape
was preserved and the anchor positions are reasonable with
a total error of 0.5923 m. Despite the path being obscured by
stairs, the proposed method robustly and accurately estimated
source positions. The experimental results demonstrates the
robustness of the proposed method and how it can be effective
in other areas as the errors in the estimations depend predom-
inately on the accuracy of the distance measurements.
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unsynchronized time of arrival sensor networks,” in Proceedings of the
21st International Conference on Pattern Recognition, 2012.

[8] Simon Burgess, Yubin Kuang, and Kalle Åström, “Pose estimation
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