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Abstract—In this paper we predict spatial wireless channel
characteristics using a stochastic model that takes into account
both distance dependent pathloss and random spatial variation
due to fading. This information is valuable for resource allocation,
interference management, design in wireless communication
systems. The spatial field model is trained using a convex
covariance-based learning method which can be implemented
online. The resulting joint learning and prediction method is
suitable for large-scale or streaming data. The online method is
first demonstrated on a synthetic dataset which models pathloss
and medium-scale fading. We compare the method with a state-
of-the-art scalable batch method. It is subsequently tested in a
real dataset to capture small-scale variations.

I. INTRODUCTION

The spatially varying characteristics of radio-frequency (RF)
electromagnetic fields critically affect the performance of
wireless communication systems. The received signal power
from a set of transmitters may vary significantly over space
and exploiting such information can greatly improve wireless
resource allocation, interference management, system design,
etc. [1]–[3].

Methods for predicting spatial processes using a given set of
training data have been successfully developed in geostatistics,
building on the study of stochastic processes, cf. [4]–[6]. These
methods have been applied to predict maps of received signal
powers [7], [8]. They often assume an isotropic covariance
structure, which is fitted to observed data in some man-
ner. More sophisticated methods of learning the covariance
structure have been developed in the kernel and Gaussian
process literature, using cross-validation or maximum likeli-
hood frameworks [9]–[11]. Their computional requirements,
however, scale poorly with the number of datapoints and make
them unsuitable for large-scale or online data collection of RF
fields. Moreover, the learning methods often require solving
nonconvex problems which can be riddled with local minima
issues.

By contrast, a recently developed framework based on co-
variance fitting addresses both of these important limitations,
see [12] for a detailed derivation which is omitted here. We
apply this framework to a spatial model of received signal
strength, resulting in joint learning and prediction method for
spatial RF fields that can be implemented by solving a convex

problem online. It is tested on synthetic as well as real data
and exhibits a promising performance.

II. PROBLEM FORMULATION

Let x ∈ X denote spatial coordinates, where X ⊆ Rd is a
bounded region and d = 2 or 3. We consider T transmitters
at known locations {x̄k}Tk=1 and let y(x) ∈ R denote the
received signal power at x in decibel scale. We model y(x) as
a stochastic process, affected by distance-dependent pathloss
from the transmitters as well as fading and other random
factors [1]–[3], [13], [14]. Given a stream of observations at
different points,

(x1, y(x1)), (x2, y(x2)), . . . , (xN , y(xN )),

our goal is to predict y(x) at points x 6= xn. As x is varied,
the prediction ŷ(x) provides a map of the predicted channel
gain. An example of the general setup is illustrated in Fig. 1.
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Fig. 1: Example setup. Three transmitters (boxes) located at
known coordinates x̄1, x̄2 and x̄3. The observed signal power
y(x) at various points xn, denoted by ×. The goal is to predict
y(x) at points x 6= xn.

We use the following approximate model of the expected
value of y(x):

µ(x) = E[y(x)]

= η0 −
T∑

k=1

ηk10 log10(‖x− x̄k‖),
(1)

where η0 captures transmit powers, propagation gains, the
noise floor, etc. This constant as well as the pathloss coef-
ficients ηk from each transmitter are unknown.
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The random variation of y(x) over space captures for
instance spatially correlated shadow fading that arises from
obstacles in the propagation medium. Here we assume only
that the covariance function of y(x) is locally well described
as stationary and rotation-invariant. Using Mercer’s theorem,
the following model

r(x,x′) = Cov[y(x), y(x′)]

=

q∑
k=1

θkφk(x)φk(x′) + θ0δ(x,x
′),

(2)

can approximate any covariance function up to an arbitrary
accuracy determined by q, where θk > 0. For stationary co-
variance functions, Bochner’s theorem provides one choice for
φ(x), namely the Fourier basis for which the coefficients θk
have to be determined [11]. Another choice for φ(x), appro-
priate for bounded regions X = [−L1, L1]× · · · × [−Ld, Ld],
is the Laplace operator basis [15]. For this basis, the elements
of φ(x) are given by

φk1,...,kd
(x) =

d∏
i=1

1√
Li

sin

(
πki(xi + Li)

2Li

)
. (3)

where ki = 1, . . . ,m are the indices for dimension i. Then
φ(x) = [φ1,...,1(x) · · · φm,...,m(x)]> has dimension q = md.
We will use (3) in the examples, but the derivations below are
general and do not depend on the choice of φ(x).

III. LEARNING AND PREDICTION

We write the observed signal powers up to sample N in
vector form:

yN =
[
y(x1) · · · y(xN )

]>
and make use of the following statistical moments,

E[yN ], Cov[yN ] and Cov[yN , y(x)], (4)

to derive a learning and prediction method.
For the mean of yN , we can write

E[yN ] =

u>(x1)
...

u>(xN )


︸ ︷︷ ︸

,UN


η0
η1
...
ηT


︸ ︷︷ ︸

η

,
(5)

where we define the vector

u(x) =


1

−10 log10(‖x− x̄1‖)
...

−10 log10(‖x− x̄T ‖)

 .
Note that η is a vector of unknown coefficients.

For the covariance matrix of yN , we can write

Cov[yN ] = {r(xn,xm)}n,m = ΦNΘΦ>N + θ0IN︸ ︷︷ ︸
,RN

,
(6)

where

ΦN =

φ
>(x1)

...
φ>(xN )

 , Θ = diag(θ) and θ =


θ0
θ1
...
θq

 .
Finally, the covariance between yN and the unknown y(x)

at test point x 6= xn can be written as

Cov[yN , y(x)] = {r(xn,x)}n = ΦNΘφ(x)︸ ︷︷ ︸
,rN

.
(7)

For notational simplicity, we drop the subindex N in (5),
(6) and (7), and write U, R, Φ and r.

A. Prediction with given parameters

As we do not make any distributional assumptions about
y(x), but rely only on the first and second-order statistical
moments in (4), we constrain the predictor to be a linear
function of the data,

ŷ(x) = p>y. (8)

Assuming the covariance parameters θ are given, we seek
the unbiased linear predictor p which minimizes the mean
square error (MSE) of the prediction. That is, the solution to
the following problem:

min
p

E[(y(x)− ŷ(x))2]

subject to E[ŷ(x)] = µ(x),
(9)

where the constraint ensures unbiasedness given model (1).
The optimization problem (9) can be solved using Lagrange

multipliers, and the solution is

p = R−1U(U>R−1U)−u(x) + R−1Π⊥r, (10)

where (·)− denotes the generalized inverse and Π⊥ is the
orthogonal projector onto R(U)⊥ with respect to the inner
product weighted by R−1. See [12] and [6, ch. 3.4.2] for
derivations and expressions of the solution to (9).

The optimal predictor coefficients (10) are both a function
of the test point x and the unknown covariance parameters θ,
via (6) and (7).

B. Learning the parameters via covariance fitting

We now turn to the problem of learning θ from the data, to
be used in the linear predictor (10). As in the previous section,
we rely only on the statistical moments in (4).

Let the sample covariance matrix be denoted as

S = (y −Uη)(y −Uη)> (11)

and let ρ = ‖y − Uη‖ be a normalizing factor. Then we
seek to learn θ by fitting the covariance matrix R in (6) to
S/ρ, subject to the normalization constraint tr{R} = ρ. The
covariance-fitting problem can be formulated as

min
θ

∥∥∥∥1

ρ
S−R

∥∥∥∥2
R−1

subject to tr{R} = ρ,

(12)
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where ‖ ·‖2R−1 is a weighted norm. Problem (12) fits R to the
normalized sample covariance, while taking into account the
correlation of the residuals, cf. [16]–[18].

Remark: The covariance-fitting criterion (12) is convex in
θ. By contrast, if we use a Gaussian likelihood function for y
to learn θ, the problem is nonconvex. Furthermore, as we will
see next, the former learning approach can be readily solved
online, unlike the latter.

IV. ONLINE SOLUTION

By inspection, it can be verified that p in (10) is invariant
to any scaling of θ. In other words, θ and cθ, yield the same
p for all c > 0.

Now the covariance-fitting criterion in (12) can be expanded
as follows∥∥∥∥1

ρ
S−R

∥∥∥∥2
R−1

= tr
{(

1

ρ
S−R

)
R−1

(
1

ρ
S−R

)}
=

1

ρ2
tr
{
SR−1S

}
+ tr{R} − 1

ρ
2tr{S}

= tr
{
R−1S

}
+ tr{R} − 2ρ,

where the last equality follows from inserting (11). Thus we
can write an equivalent cost function to that in (12) as:

tr
{
R−1S

}
+ tr{R}. (13)

In [12] we prove that omitting the constraint in (12) only
rescales the optimal solution.

Let θ? and θ̂ denote the minimizers of (12) and (13),
respectively. Since they are equal up to scale, using either
in (10) yields the same linear predictor coefficients, which we
denote p?. Using this result, we also prove in [12] that the
linear predictor (8) using covariance-fitted parameters can be
written as

ŷ(x) = p>? y = ψ>(x)ẑ (14)

where ψ>(x) , [u>(x) φ>(x)]> is given with fixed dimen-
sion. The coefficient vector ẑ is obtained as the solution to a
convex problem

ẑ = arg min
z

‖y −Ψz‖2 + ‖w � z‖1︸ ︷︷ ︸
,V (z)

, (15)

where
Ψ = [U Φ]

w =
1√
N

[0, . . . , 0, ‖[Φ]1‖2 · · · ‖[Φ]q‖2]>.

Thus the learning problem is reduced to solving (15).
The convex cost function V (z1, . . . , zT+q+1) can be min-

imized cyclically. That is, one element zi at a time until
convergence to the global minimum. More importantly, the
cyclic minimization method can be performed using only
recursively computed quantities. The derivation is beyond the
scope of this short paper and we refer to [12] for details.
In sum, as a new data sample (x, y(xn)) is obtained, ẑ—and
therefore the predictor (14)—can be updated in an online man-
ner. The memory requirement for the method is constant and

the computational complexity grows linearly in the number
of data points N . Since it is based on (12), we refer to it as
‘sparse iterative covariance-based estimation’ (SPICE) [18].

Remark: In the interest of reproducible research,
we have made a MATLAB implementation available at
http://www.it.uu.se/katalog/davza513.

V. EXPERIMENTS

We evaluate the SPICE predictor for spatial RF fields using
both synthetic and real data. The former dataset models a
scenario with pathloss effects as well as medium-scale fading
characteristics for d = 2. The latter dataset focuses on small-
scale variations for d = 3.

A. Synthetic data

We consider a scenario with three transmitters located at

x̄1 =

[
−10
−10

]
, x̄2 =

[
15
5

]
and x̄3 =

[
15
15

]
.

Their respective pathloss coefficients are η1 = 2, η2 = 1.5
and η3 = 3. The constant coefficient η0 is set to 70 dBm.
The received power is modeled as a Gaussian process, i.e.
y(x) ∼ GP(µ(x), r(x,x′)), where µ(x) is given in (1). The
covariance function captures medium-scale fading here and we
use an isotropic model that belongs to the Matérn class [11]:

r(x,x′) = σ2

(
1 +

√
3‖x− x′‖

`

)
exp

(
−
√

3‖x− x′‖
`

)
,

where the length scale is ` = 10 m and σ = 5 dBm. We
consider predicting the process over a region X spanning 40×
40 m. An example realization of y(x) is given in Figure 2.

For the SPICE predictor we use order m = 16 in the
approximative model (2) and (3). An example prediction, using
a set of N = 250 randomly sampled observations, is also
given in Figure 2. As can be seen, the predictor is capable of
capturing the important spatial characteristics of the wireless
channel.

In order to evaluate the performance, we consider a uniform
grid over X consisting of Ntot = 104 points. We use a random
subset of N points to learn the process and predict y(x) at the
remaining P = Ntot−N points. The performance is evaluated
using the normalized mean square error

NMSE =
E[‖yP − ŷP ‖2]

E[‖yP ‖2]
,

where yP and ŷP are the vectors of the data and predicted
values, respectively. The NMSE is computed using 103 Monte
Carlo runs. For a comparison, we consider a (batch) oracle
predictor, which is given the true coefficients η as well as
the true Matern covariance model above. The oracle predictor
produces the MSE-optimal prediction of the random medium-
scale fading. The comparison is also contrasted with a linear
predictor which learns only the deterministic model (1) using
a recursive least-squares (RLS) fitting of η.

For the applications considered in this paper, N can become
very large, e.g. N > 103 when collecting data with mobile
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Fig. 2: Left: Example realization of y(x) [dBm] and spatial coordinates x in [m]. Training points are marked as white crosses.
Right: Prediction ŷ(x) from SPICE predictor after learning from the training points. The contour plots are generated using a
very fine spatial grid.

receivers, which renders the standard Gaussian process regres-
sion (GPR) techniques computationally intractable [11]. Here
we use a direct implementation of the sparse spectrum Gaus-
sian process regression (GPR-SS) method which is a state-
of-the-art scalable batch method whose memory requirements
and computational complexity scales linearly in N . We ran
GPR-SS using the same number of parameters to learn as in
SPICE.

The performances of the above methods are summarized
in Table I. It is clear that the fading component is non-
neglible here, since RLS does not improve its predictions as
N increases. The batch method GPR-SS improves its spectral
representation of the covariance structure with increasing N ,
which leads to reduced prediction errors. The SPICE predictor
uses both the deterministic pathloss model (1) as well as the
approximate covariance model (2) in an online manner and
provides a more accurate prediction.

TABLE I: Normalized MSE [dB] versus N

N Oracle RLS GPR-SS SPICE
250 −30.61 −13.17 −18.90 −21.43
500 −35.00 −13.41 −20.92 −26.22
1000 −39.86 −13.11 −24.18 −30.90

B. Real data

We now turn to an experiment with small-scale variations
using a single transmitter in a non-line-of-sight scenario. The
setup is illustrated in Figure 3, both transmit and receive
antennas are omni-directional in the horizontal plane. The
transmitter is located approximately 20 m apart from the
receiver, which is placed on a robot that moves within a
volume X of 1475 × 475 × 475 mm. The position accuracy
of the robot is 0.1 mm. In these small-scale displacements,
the pathloss effect is nearly constant across X and therefore

Fig. 3: Non-line-of-sight experiment setup in office envi-
ronment. The thin lines in between the receiver (RX) and
transmitter (TX) signify obstructing office dividers.

the distance dependence is neglected here. The measurements
were conducted in the 2 GHz band and the bandwidth was
50 MHz. For a given frequency, we have Ntot = 24 000 data
points sampled in a uniform grid in X . We use a random
subset of N = 10 000 points to train the SPICE predictor with
m = 16 as before.

In Figure 4, we illustrate the predicted spatial field along
two planes in R3 located at two different heights. The predic-
tions show a distinct periodic pattern along the x2-axis, which
faces the transmitter. For an evaluation of the prediction errors
on this dataset, we use the remaining P = Ntot−N = 14 000
points and compute

RMSE =

√
1

P
‖yP − ŷP ‖2 ≈ 2.06 dBm.

This figure can be compared with the dynamic range of
y(x) which is [−14.87, 8.86]. Figure 5 shows the empirical
distribution of the prediction errors that is centered near 0 but
slightly skewed. These results indicate that the SPICE predictor
method using the approximate covariance model (2) can also
capture small-scale fading.
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Fig. 4: Output from SPICE predictor ŷ(x) [dBm]. Training points are marked as white crosses with spatial coordinates given
in [mm]. Left: x3 = −87.5 mm. Right: x3 = 237.5 mm.
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Fig. 5: Histogram of prediction errors in [dBm]. The RMSE
is 2.06 [dBm]. The dynamic range of y(x) is [−14.87, 8.86].

VI. CONCLUSION

We have developed an online learning and prediction
method for spatially varying RF fields that models distance
dependent pathloss as well as random variations using an
approximately isotropic covariance function. The learning
method is based on a convex covariance-fitting approach.
Its online capability enables prediction and analysis of the
RF fields in large-scale datasets as well as streaming data
scenarios.
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