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Abstract—Diffusion-based distributed dictionary learning
methods are studied in this work. We consider the classical mixed
l2-l1 cost function, that employs an l2 representation error term
and an l1 sparsity promoting regularizer. First, we observe that
this cost function suffers from an inherent permutation ambigu-
ity. This ambiguity may deteriorate significantly the performance
of diffusion-based schemes, since the involved combination step
may combine different atoms even when the same atoms exist
at all dictionaries. Thus, we propose to align the dictionaries
prior to the combination step. Furthermore, we define a new
problem, that we call the node-specific distributed dictionary
learning problem. The proposed Adapt-Align-Combine algorithm
enjoys increased convergence rate as compared with a scheme
that does not align the dictionaries prior to the combination.
Simulation results support our findings.

I. INTRODUCTION

Dictionary learning refers to the task of inferring an overde-
termined linear model of a set of signal vectors [1]. More
specifically, the dictionary is a set of representative signals,
called atoms, and the signals of interest are represented as a
linear combination of a small subset of those atoms. In this
way, a sparse representation of the signals at hand is achieved,
e.g. [2], [3]. Such models find applications as, for example, in
medical imaging, audio and visual processing (e.g. denoising
and data compression) and classification [4].

Distributed processing [5], on the other hand, has been in
focus recently as it is able to increase the robustness and
the scalability of the involved operations. For example, in a
sensor network, robustness is increased by avoiding to use a
central node, acting as a fusion center (FC), which is a single
point of failure for the whole network. Additionally, distributed
processing is more scalable as energy and communication
resources are allocated only for local processing. On the
contrary, in a centralized environment, the larger the network,
the further the “edge” sensors are from the fusion center
and, hence, this leads to increased energy and communication
demands. Distributed processing has been initially developed
for estimation/regression problems (e.g., in power-grids [6])
while, in recent years, this approach has been extended to

The work was partially supported by the European HANDiCAMS project
(Grant No. 323944) under the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for Research of the
European Commission and in part by the University of Patras.

other problems, including dictionary learning, e.g., [7], which
is the problem that is considered in this paper, too.

In recent literature, there have already been proposed a few
notable approaches, that deal with the problem of distributed
dictionary learning. In particular, in [8], the authors propose
a diffusion-based adaptive dictionary learning approach em-
ployed by a network of sensors. Specifically, each sensor
acquires an individual set of observations that originate from
the same phenomenon (e.g., a scene recorded by a network of
cameras). It is assumed that these observations can be sparsely
represented using a common dictionary that sufficiently de-
scribes the phenomenon which is observed by the network.
Based on the locally received observations and the dictionaries,
that are exchanged among the neighbours, the sensors adapt
their local copy of the dictionary using the adapt-then-combine
strategy.

In [9] (and the more extended version [10]), the authors
tackle the problem of distributed dictionary learning assuming
that each sensor possesses only part of the whole dictionary
as opposed to the method in [8]. The proposed distributed
algorithm is also of the diffusion type; however, in this case,
the sensors are not required to exchange with their neighbours
their local copy of the dictionary. Instead, they exchange
only a quantity that is related to a representation error and
apply the diffusion operation on these quantities. Hence, the
approach in [9], [10] minimizes the communication overhead
of transmitting complete dictionaries and at the same time it
takes into account privacy issues, as the sensors do not release
their local copy.

The previous two approaches represent the two main di-
rections that have appeared in the corresponding literature
concerning distributed dictionary learning. Some other relevant
works are the following. In [11], a consensus-based distributed
algorithm, utilizing the alternate direction method of multipli-
ers, is proposed for adapting a common dictionary. In [12] (and
the more extended version [13]), the centralized K-SVD algo-
rithm for dictionary learning is transformed into a distributed
one using a consensus averaging. The authors also provide
a study on the convergence behavior of their algorithm [14].
In [7], an online distributed dictionary algorithm is proposed
by utilizing the recursive least squares (RLS) algorithm for
learning a common dictionary. In another direction, the authors
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in [15] propose an approach for executing large-scale sparse
coding and dictionary learning problems, following a parallel
mode of operation, in distributed computing environments (e.g.
either on multi-core or clusters of computers). This is ac-
complished by utilizing multi-threading and the Map-Reduce
programming model. Finally, the work, in [16] (also in a
different direction), proposes a dictionary learning framework
in which the complete set of the data is not required to be
used in each iteration. Instead, an online procedure is adopted
that takes into account only single pieces or small sets of data
for the desired dictionary learning. This framework is tailored
also for very large data sets.

In this paper, distributed dictionary learning is studied for
a network of sensors, such as cameras observing a common
scene from a different point of view. Two important scenarios
are considered. In the first one, the sensors aim at learning
a common dictionary using a modified diffusion-based rule,
with increased convergence speed. In the second scenario, we
identify a setting in which a common dictionary may not
be a good model for the data of all nodes. In this setting,
we propose a new problem that we call the node-specific
distributed dictionary learning problem. The proposed problem
allows the dictionary of each sensor to consist of two parts,
namely a common part among all sensors and a node-specific
local part.

II. DISTRIBUTED DICTIONARY LEARNING

A. Problem Formulation

Let us consider a network of N nodes, where each node n ∈
N = {1, 2, . . . , N} has obtained some data that we represent
by the matrix

Yn ∈ Rp×qn , n ∈ N , (1)

where p is the dimension of the data samples and qn is the
number of samples at node n. We assume that the nodes are
interconnected as described by a graph G(V, E), where V = N
and

E = {(vi, vj) : Node i ∈ N is connected with node j ∈ N} .

We also consider the matrix

Y =
[
Y1 Y2 · · · YN

]
∈ Rp×q , (2)

where q = q1+q2+· · ·+qN is the total number of data samples
in the network. We are interested in solving an optimization
problem of the form

{D,A} = arg min
{D,A}

(
1

2
‖Y −DA‖2F + λ ‖A‖1

)
, (3)

where D ∈ Rp×K is a redundant dictionary, A ∈ RK×q is
a matrix whose columns represent the sparse representations
of the respective data vectors and K is a properly selected
integer with K >> p. The parameter λ sets the relative weight
between representation accuracy and sparsity of the matrix A,
i.e. between the Frobenious norm ‖ · ‖F and the l1 norm ‖ · ‖1
terms, respectively. The focus here is on distributed algorithms
for solving the optimization problem in (3). It is important to

note that the cost function in the minimization problem (3),
can be written in the form of a sum of costs,

‖Y −DA‖2F
2

+ λ ‖A‖1 =

N∑
n=1

(
1

2
‖Yn −DAn‖2F + λ ‖An‖1

)
,

(4)
where the matrices An denote the sparse representations of
the respective data in Yn. As discussed in the previous
paragraph, an approach for solving this optimization problem
in a distributed fashion is to use a diffusion strategy [17]; that
is, to iterate the following two steps:

1) Each node n uses local data Yn and an updating rule
F(·) to update its local copy of the dictionary at time t -
denoted as D

(t)
n - and the sparse representations matrix

A
(t)
n , as represented by the following equation{

D(t+1/2)
n ,A(t+1)

n

}
= F

(
D(t)

n ,A(t)
n ,Yn

)
. (5)

The result of this update is a new matrix of sparse
representations A

(t+1)
n and an intermediate estimate of

the dictionary that we have denoted as D
(t+1/2)
n .

2) Neighbouring nodes exchange their local intermediate
estimates of the dictionary, and each node computes a
convex linear combination of the available dictionaries
(i.e., those of its neighbours and its local intermediate
estimate). Thus, the final estimate of the dictionary at
node n and time t+ 1 is given by the expression

D(t+1)
n =

∑
l∈Nn

al,nD
(t+1/2)
l , (6)

where Nn denotes the set of neighbours of node n,
including node n itself, and al,n denote properly selected
combination weights at node n, that should obey∑

l∈Nn

al,n = 1, ∀ n ∈ N . (7)

It is worth mentioning that in the above, the first step
comprises the update of the local estimates of the dictionary
and the respective sparse approximations and this step is trying
to fit the local data of each node. On the other hand, the second
step is trying to make all nodes agree on a common dictionary
i.e., consent on a dictionary valid for all the data. As we will
see in the following, these may be conflicting goals.

B. An Ambiguity of the Cost Function
We now observe that the cost function in (4) has the

property that it is invariant with respect to a permutation of
the atoms (columns) of matrix D, accompanied by the inverse
permutation of the rows of matrix A. In particular, for any
permutation matrix P with size K ×K, it is easy to see that

1

2
‖Y −DA‖2F + λ ‖A‖1 =

1

2

∥∥∥Y −DPTPA
∥∥∥2

F
+ λ ‖PA‖1 ,

(8)
since PTP = I and the permutation of the rows of matrix
A does not change the sum of the absolute values of its
elements. With this ambiguity in mind, we can see that
the dictionary update steps in (5), performed at different
neighbouring nodes, may result into similar dictionaries, but
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with different orderings of their respective atoms. In particular,
if the update rule F(·) is able to compute a good fit of the
local data of each node, and furthermore each node starts its
update procedure from a different dictionary estimate, then the
ordering of the atoms may be different. To overcome this, we
propose a procedure to align the dictionaries of neighbouring
nodes prior to the combination step of equation (6).

C. The Proposed Algorithm

Let us consider that node n receives the intermediate
dictionary estimate D

(t+1/2)
l from a neighbouring node l ∈

Nn \ {n}. Note that we use t + 1/4, t + 1/2 and t + 3/4
to describe time instants that correspond to the computations
of intermediate estimates between t and t + 1. To cope
with the ambiguity discussed in subsection II-B, prior to
the combination of equation (6), node n must compute a
permutation matrix P

(t)
n,l by solving the optimization problem

P
(t)
n,l = argmin

P

∥∥∥D(t+2/4)
n −D

(t+2/4)
l P

∥∥∥2
F
. (9)

Clearly, there are K! permutation matrices with dimensions
K ×K and the above problem seems of combinatorial com-
plexity. However, we show here that it can be solved as an
instance of the so-called linear assignment problem [18]. In
its classical setting, the linear assignment problem involves a
number of agents and an equal number of tasks. Any agent
can be assigned to perform any task, and a cost is involved for
any agent-task pair. Thus, the costs can be given in a square
matrix where rows stand for agents and columns for tasks. The
scope is to assign each agent with exactly one task, so that the
sum of costs is minimized. In our setting, we can represent
agents as the atoms of one of the two dictionaries (say of node
n) and tasks as the atoms of the other dictionary. Thus, we
can define a matrix of costs, whose element on the i-th row
and j-th column is given by the l2-norm term[

C
(t)
n,l

]
i,j

=
∥∥∥d(t+2/4)

n,i − d
(t+2/4)
l,j

∥∥∥2
2
, (10)

where d
(t+2/4)
n,i is the i-th atom (column) of the dictionary

estimate at node n and d
(t+2/4)
l,j the j-th atom of the dictionary

estimate at node l. Thus, the required permutation matrices in
(9) can be computed using any algorithm A(·) that solves the
equivalent linear assignment problem, as

P
(t)
n,l = A

(
C

(t)
n,l

)
. (11)

Several well-established algorithms can be found in literature
for solving the linear assignment problem, or extensions of it,
with a complexity of O(K3) [18]. In our simulation results
that appear in the following, we use the so-called Hungarian
algorithm [19].

As we briefly also mentioned in the previous, the more the
nodes act isolated from the others, the more likely it is that
they come up with different dictionaries. This can be true even
in the case where the data of all nodes can be represented
by a common dictionary, since the permutation ambiguity
is inherent in the cost function. Node cooperation helps the

INPUT: Yn ∈ Rp×qn , K, λ, I , cX , cD , M , al,n
OUTPUT: Dictionary matrix D

(t)
n

• Initialize D
(−1)
n with random numbers in [0 1]

• Normalize atoms d
(0)
n,k = 1∥∥∥d(−1)

n,k

∥∥∥
2

d
(−1)
n,k , k = 1, . . . ,K

• Initialize A
(0)
n with zeros K × qn

FOR t = 0 TO ∞
FOR i = 1 TO I

• A(t+(i−1)/I+1/2I)
n = A

(t+(i−1)/I)
n

+λ cX√
K

(
D

(t)
n

)T (
Yn −D

(t)
n A

(t+(i−1)/I)
n

)
• A(t+i/I)

n = SoftThresholdλ cX√
K

(
A

(t+(i−1)/I+1/2I)
n

)
END
• D(t+1/4)

n = D
(t)
n

+ cD∥∥∥A(t+1)
n

∥∥∥F

(
Yn −D

(t)
n A

(t+1)
n

)(
A

(t+1)
n

)T
• d(t+2/4)

n,k = 1∥∥∥d(t+1/4)
n,k

∥∥∥
2

d
(t+1/4)
n,k , k = 1, . . . ,K

IF (t MOD M) = 0

• Send D
(t+2/4)
n , listen for D(t+2/4)

l , l ∈ Nn \ {n}
• P(t)

n,l = argminP

∥∥∥D(t+2/4)
n −D

(t+2/4)
l P

∥∥∥2
F
,

l ∈ Nn \ {n}
• Combine D

(t+3/4)
n =

∑
l∈Nn

αl,nD
(t+2/4)
l P

(t)
n,l

• d(t+1)
n,k = 1∥∥∥d(t+3/4)

n,k

∥∥∥
2

d
(t+3/4)
n,k , k = 1, . . . ,K

ELSE
• D(t+1)

n = D
(t+2/4)
n

END
END

TABLE I
THE PROPOSED “ADAPT-ALIGN-COMBINE” DISTRIBUTED DICTIONARY

LEARNING ALGORITHM AT NODE n

nodes gradually consent on a common dictionary, however,
it comes at a communication cost. For saving energy due to
communication, we propose to exchange the dictionary ele-
ments only once in every M iterations, instead of exchanging
estimates at each iteration. Since in this case nodes work on
their own for all intermediate time instants, the probability of
computing dictionaries with different orderings is increased
and thus the aforementioned alignment procedure should be
performed prior to the combination step. The complete pro-
posed algorithm is summarized in Table I.

III. NODE-SPECIFIC DISTRIBUTED DICTIONARY
LEARNING

A typical application of distributed dictionary learning is in
data compression. In this application the measurements col-
lected by the nodes of the network need to be transmitted to a
fusion center, for further processing. The required information,
that the network must transmit, is the common dictionary and
the sparse representation matrices of the individual nodes.
Such a scheme has the benefit that the dictionary (i.e., the
model) needs to be transmitted to the fusion center only once
(or periodically, if it is time-varying), since it is common
to all the nodes. On the other extreme, if each individual
node computes a local dictionary, then all these dictionaries

2016 24th European Signal Processing Conference (EUSIPCO)

465



should be transmitted to the fusion center. The latter approach,
however, has the benefit of smaller representation error at the
cost of increased communication cost.

In order to trade-off between the above mentioned two
extremes (i.e., one common dictionary versus N individual
dictionaries) we claim that the dictionary of each node n, could
comprise Kg global atoms - common to all nodes - and Kl

local atoms, where K = Kg +Kl. Thus, since nodes now try
to estimate dictionaries that are only partially common, we
refer to this approach as node-specific distributed dictionary
learning. In particular, we model the dictionary of node n as

Dn =
[
D(g) D(l)

n ,
]

(12)

where D(g) ∈ Rp×Kg is a matrix that contains the global
atoms - common to all nodes - and D

(l)
n is a matrix that

contains the local atoms at node n. In such a setting, the
information required at the FC is: a) the global dictionary,
b) each one of the local dictionaries and, c) the sparse
approximation matrices of each node.

The proposed learning algorithm, for the node-specific dis-
tributed dictionary learning case, is an extension of the one in
Table I. In particular, setting Kg in place of K, this algorithm
can be used for the global part, i.e., the dictionary D(g), where
the ordering ambiguity is still relevant. Furthermore, regarding
the local part D(l)

n , we define the residual signal at node n and
time t as

R(t)
n = Yn −D(g)(t+1)

n A(g)(t+1)
n , (13)

where D
(g)(t+1)
n and A

(g)(t+1)
n denote the updated global

dictionary and the respective sparse approximation matrix
estimates at time t. Then, node n must run any dictionary
learning algorithm on this matrix of residuals.

IV. NUMERICAL RESULTS

A. A Distributed Image Denoising Example

In order to test the performance of the proposed approach,
some computer simulations were conducted. In particular, we
consider a simple network consisting of 5 nodes, where each
node measures different but overlapping portions of an image,
as depicted in Fig. 1. The original image has dimensions of
256×256 pixels, while each sensor measures a portion of the
image, that is, 192× 192 pixels. Each portion (sub-image) is
split into patches of 8×8 pixels, thus creating the data matrices
Y1 to Y5. Our scope is to compute a redundant dictionary D
suitable for the entire image, in a distributed fashion, where
nodes do not exchange their measurements; instead, they ex-
change their local estimates D(t)

n of the dictionaries, following
a diffusion strategy [17]. The topology of the network can be
seen in Fig. 1.

The intensities of the original image are first normalized to
lay in the interval [0 1], then each portion is extracted, and in
the sequel a zero mean additive white Gaussian noise is added
to the data of each sub-image. A different noise variance is
used for each sub-image, and in particular

σ2
1 = 0.05, σ2

2 = 0.04, σ2
3 = 0.04, σ2

4 = 0.05, σ2
5 = 0.02 .

Fig. 1. Each sensor measures a different portion of the original image

The algorithm implemented is summarized in Table I. To
trade-off sparsity versus representation accuracy, we select
λ = 0.1 in the cost function given in (4). Also, we select
the number of atoms to be K = 128 so that the redundant
dictionary will be 64 × 128. For the sparse approximation
step, each node performs I = 40 iterations, and the parameter
cX = 0.25. For the dictionary update step, we perform
gradient descent with a suitable value for cD so that the
algorithms compared converge to the same cost. To save
energy due to the exchange of the dictionaries, we choose
to perform this exchange and combination once every M time
iterations, and our scope in this experiment is to test the effect
of this option. Also, recognizing the inherent permutation
ambiguity in the cost function of equation (8), we propose to
first align the dictionaries coming from neighbouring nodes
and then proceed with the combination. We thus test the
effect of the dictionary alignment procedure by comparing two
schemes in which this alignment takes place (Adapt-Align-
Combine) or not (Adapt-Combine). We solve the problem
of optimally aligning two dictionaries using the so-called
Hungarian algorithm [19]. Finally, the combination weights
are computed by the equation

al,n =
dl(1/σ

2
l )∑

m∈Nn
dm(1/σ2

m)
, (14)

where dl is the degree (number of neighbours) of node l.
In Fig. 2, we show the average (over the 5 nodes) cost as

a function of the iteration index t. In particular, given the
current estimate of the dictionary D

(t)
n , we solve a sparse

representation problem for all the data Y, and we compute
the global error. We sample the global error immediately after
the combination process. In Fig. 2, we focus on four different
cases, namely M = 1, M = 10, M = 20 and M = 30. For
M = 1, i.e., when diffusion takes place 100% of the time, we
note a negligible performance improvement that explains the
relevant observation made in [8]. However, as M increases we
notice a significant performance improvement in terms of the
convergence rate.

B. Node-Specific Distributed Dictionary Learning

To demonstrate the effectiveness of the proposed node-
specific distributed dictionary learning approach, we use a
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Fig. 2. Convergence comparison
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Fig. 3. Average representation error for Node-Specific DDL

synthetic dataset. In particular, we consider a two-node sce-
nario, where the dictionary of the first node is generated from
Gaussian random numbers with zero mean and unit variance.
The dictionary of the second node is generated from uniform
random numbers in the interval (−0.5, 0.5). All atoms are
normalized to unit length. Both dictionaries consist of K = 40
atoms of dimension p = 20. Using these dictionaries, we
generate a random dataset for each of the two nodes, where
each data vector is the sum of four randomly selected atoms.

In Fig. 3, the average representation error term (e.g. ‖ · ‖F
in (3)) versus the iteration index for three schemes is shown,
namely one that considers only global atoms (Kg = K = 40),
one that considers only local atoms (Kl = K = 40) and the
node-specific case in which Kg = 25 and Kl = 15. The
parameters of the algorithm were carefully chosen to achieve
approximately the same number of non-zero elements in the
sparse approximation matrices. From Fig. 3 it is clear that,
the proposed node-specific approach does provide a trade-off
between the extreme cases of a global dictionary and that of
N local dictionaries.

V. CONCLUSIONS

In this work, diffusion-based distributed dictionary learning
methods were considered. It was demonstrated that the permu-

tation ambiguity of the cost function can be exploited so as
to increase the convergence rate of the involved algorithm.
Furthermore, a node-specific distributed dictionary learning
problem was introduced and it was experimentally shown to
provide some benefits in the case where the data of the nodes
cannot generally be described by a common dictionary.
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