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ABSTRACT
Low-rank matrix reconstruction (LRMR) considers estima-
tion (or reconstruction) of an underlying low-rank matrix
from linear measurements. A low-rank matrix can be rep-
resented using a factorized model. In this article, we derive
Bayesian Cramér-Rao bounds for LRMR where a factorized
model is used. We first show a general informative bound,
and then derive Bayesian Cramér-Rao bounds for different
scenarios. We consider a low-rank random matrix model with
hyper-parameters that are - deterministic known, determin-
istic unknown and random. Finally we compare the bounds
with existing estimation algorithms through numerical simu-
lations.

Index Terms— Low-rank matrix reconstruction, matrix
completion, Bayesian estimation, Cramér-Rao bounds.

1. INTRODUCTION

In the low-rank matrix reconstruction (LRMR) problem, a
low-rank matrix X ∈ Rp×q is measured as

y = A(X) + n = Avec(X) + n, (1)

where y ∈ Rm is measurements, n ∈ Rm is N (0, β−1Im)
measurement noise with precision β > 0, vec(·) is a stan-
dard vectorization operator and the linear sensing operator
A : Rp×q → Rm and the matrix A ∈ Rm×pq are two equiva-
lent representations of the sensing process. The problem is to
reconstruct X from the measurements y. LRMR has applica-
tions in e.g. system identification [1–3] and recommendation
systems [1, 4–10]. In several applications, the LRMR prob-
lem setup (1) is under-determined, i.e. m < pq. Here we
mention that low-rank matrix completion is an important spe-
cial case of LRMR where the sensing operator A has a special
structure.

There exists several reconstruction algorithms for LRMR
[3–9,11]. A natural question is how to benchmark the perfor-
mance of algorithms against theoretical bounds. In this paper,
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we address the question for Bayesian algorithms where the
low-rank matrix is modeled as the product

X = LR>, (2)

where L ∈ Rp×r, R ∈ Rq×r and r < min(p, q) is a user-
defined constant. Note that rank(X) ≤ r. We refer to the
model (2) as the factorized low-rank matrix model. The
model is the basis for several algorithms, e.g. [3, 5–9, 11].

Our contribution in this article is to derive Bayesian
Cramér-Rao bounds (BCRB) for the LRMR problem that
uses the factorized model (2). Through numerical simu-
lations, we compare the performance of Bayesian LRMR
algorithms against the BCRB bounds. At this point we men-
tion that there exists bounds for the deterministic scenario of
LRMR, such as Cramér-Rao bounds for unstructured [9, 11]
and structured [3] low-rank matrices. In the following sub-
sections, we explain notations used in the article and provide
preliminaries of BCRB.

1.1. Notations

We use Eq[·] to denote the expectation value of a random vari-
able with respect to variables q and use the symbol ⊗ for
the Kronecker product. The `2-norm and Frobenius norm
are denoted by ‖ · ‖ and the k × k identity matrix by Ik.
We denote the (i, j)’th component of a matrix X by [X]ij
and the i’th standard unit vector by ei, that is [ei]j = 1 if
j = i and zero otherwise. The commutation matrix Kp,q ∈
Rpq×pq is the matrix representation of the transpose opera-
tion, i.e. Kp,qvec(Z) = vec(Z>) for all Z ∈ Rp×q . We
also introduce the linear operators T1 and T2 which oper-
ate on Kronecker products as T1(C⊗D) = (C> ⊗D) and
T2(C⊗D) = (C⊗D>) where C ∈ Rq×q and D ∈ Rp×p.
For ease of notation, we often set x , vec(X). Henceforth
we use the variables x and X interchangeably and their ex-
plicit use will be clear from the context.

1.2. The factorized model

The factorized model promotes low rank by incurring column-
wise block-sparsity in L and R. For achieving column-wise
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Table 1. BCRB for different cases
BCRB-I BCRB-II BCRB-III

Variable x , X = vec(LR>) Random Random Random

hyper-parameters γ, β Deterministic known Deterministic unknown Random

Relevant performance measures Ey,w
[
‖x− x̂‖2

]
Ey,w

[
‖x− x̂‖2

]
Ey,w,γ,β

[
‖x− x̂‖2

]
- Ey,w

[
‖γ − γ̂‖2

]
Ey,w,γ,β

[
‖γ − γ̂‖2

]
- Ey,w[(β̂ − β)2] Ey,w,γ,β [(β̂ − β)2]

block-sparsity, one approach is to use the priors [6–8]

p(L|γ) =
|Γ|p/2

(2π)pr/2
exp

(
−1

2
tr(LΓL>)

)
,

p(R|γ) =
|Γ|q/2

(2π)qr/2
exp

(
−1

2
tr(RΓR>)

)
,

(3)

where γ = [γ1, γ2, . . . , γr]
> and Γ = diag(γ). Here γi > 0

is the precision of ith column vector of L and R. The preci-
sions γ and β are typically assigned Gamma distributions

p(γi) = Gamma(γi|a, b) =
baγa−1i e−bγi

Γ(a)
, (4)

p(β) = Gamma(β|c, d) =
dcβc−1e−dβ

Γ(c)
, (5)

where Γ(·) denotes the Gamma function, when they are
random. For ease of notation, we let li and ri denote
the i’th column vector of L and R, respectively, and set
w = [vec(L)> vec(R)>]>. The joint distribution of the
random variables is

p(y,w,γ, β) = p(y|w, β)p(w|γ)p(γ)p(β).

The individual factor matrices L and R are not identifiable
since (LQ>)(RQ−1)> = LR> for any invertible matrix
Q ∈ Rr×r. The precisions {γi} are also not identifiable since
they can be interchanged without changing the model. We can
therefore only estimate invariant quantities such as

η = g(z) =

 vec(LR>)
s(γ)
β

 , (6)

where z = [w, γ, β] and s(γ) is a symmetric function of γ.

1.3. The Bayesian Cramér-Rao bound

The Bayesian Cramér-Rao bound (BCRB), also known as the
van-Trees inequality [12, 13] and the Borovkov-Sakhanenko
inequality [13,14], provides a lower bound on the variance of
unbiased estimators. To derive the BCRB, we need to com-
pute the Fisher information matrix F of z, given by

F = Ey
[
∂ log p(y, z)

∂z

∂ log p(y, z)

∂z>

]
.

We denote the covariance matrix of the estimation error ε ,
η̂ − η as

Cε , Ey,z
[
εε>

]
= Ey,z

[
(η̂ − η)(η̂ − η)>

]
.

Proposition 1. For any unbiased estimator η̂, the covariance
Cε of estimation error ε is bounded as

Cε � Ez
[
∂g

∂z

]
(Ez[F])−1 Ez

[
∂g

∂z

]>
. (7)

It also holds that

Cε � Ez
[
∂g

∂z

∂g

∂z

>](
Ez
[
∂g

∂z
F
∂g

∂z

>])−1

Ez
[
∂g

∂z

∂g

∂z

>]
. (8)

�

The proof of Proposition 1 is given in [13].We obtain a lower
bound on MSE by taking the trace of the inequalities. At
this point, we mention that (7) can be non-informative, for
example when Ez

[
∂g
∂z

]
= 0. Therefore we derived (8) as a

relevant informative BCRB. Table 1 shows a nomenclature of
various BCRB of associated variables.

2. BCRB FOR THE FACTORIZED MODEL

The following proposition gives the Fisher information matrix
of the factorized model.

Proposition 2 (Fisher information matrix). For the factorized
model, the Fisher information matrix is given by

F =

 Fww Fwγ Fwβ

Fγw Fγγ Fγβ

Fβw Fβγ Fββ

 , (9)

where Fww is given in (10) on the next page, Fββ = m
2β2 +(

d− c−1
β

)2
and Fγγ = hh> for h = [h1, h2, . . . , hr]

>

with

hi =
p+ q + 2(a− 1)

2γi
− ||li||

2 + ||ri||2

2
− b.

The remaining terms are zero when γ and β are deterministic
(corresponding to a = c = 1 and b = d = 0) and zero mean
when γ and β are random. They are therefore omitted. �
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Fww =

[
β(R> ⊗ Ip)A

>A(R⊗ Ip) βKq,r(Iq ⊗ L>)A>A(R⊗ Ip)

β(R> ⊗ Ip)A
>A(Iq ⊗ L)Kr,q βKq,r(Iq ⊗ L>)A>A(Iq ⊗ L)Kr,q

]
+

[
vec(LΓ)
vec(RΓ)

] [
vec(LΓ)
vec(RΓ)

]>
, (10)

The proof of Proposition 2 will be shown later in an extended
manuscript. Next, we evaluate

∂g

∂z
=

 [(R⊗ Ip), (Iq ⊗ L)Kr,q] 0 0
0 ∇γs 0
0 0 1

 , (11)

where we used (6) and the algebraic relation

vec(LR>) = (R⊗ Ip)vec(L) = (Iq ⊗ L)Kr,qvec(R).

Noting that Ew [[(R⊗ Ip), (Iq ⊗ L)Kr,q]] = 0 as L and R
are zero-mean, we find that the BCRB (7) is non-informative.
We therefore compute the BCRB (8). We first evaluate

∂g

∂z

∂g

∂z

>
=

 (RR> ⊗ Ip) + (Iq ⊗ LL>) 0 0
0 ||∇γs||2 0
0 0 1

 ,
where we used (11) and the standard relation Kr,qK

>
r,q = Irq.

We find that

Ew

[
∂g

∂z

∂g

∂z

>
]
=

 2
∑r
i=1 γ

−1
i Ipq 0 0

0 Ez[||∇γs||2] 0
0 0 1

 , (12)

where we used that Ew[(RR> ⊗ Ip) + (Iq ⊗ LL>)] =
2
∑r
i=1 γ

−1
i Ipq . Using (9) and (11) we find that

∂g

∂z
F
∂g>

∂z
=

 Gww Gwγ Gwβ

Gγw Gγγ Gγβ

Gβw Gβγ Gββ

 , (13)

where

Gww = β(RR> ⊗ Ip)A
>A(RR> ⊗ Ip)

+β(Iq ⊗ LL>)A>A(Iq ⊗ LL>)
+β(RR> ⊗ Ip)A

>A(Iq ⊗ LL>)
+β(Iq ⊗ LL>)A>A(RR> ⊗ Ip),
+(RΓR> ⊗ Ip) + (Iq ⊗ LΓL>),

Gγγ = (∇γs)Fγγ(∇γs)
> = ((∇γs)

>h)2,
Gββ = Fββ .

(14)

The remaining terms are zero when γ and β are deterministic
(a = c = 1, b = d = 0) and zero mean when γ and β are
random. They are therefore omitted.

2.1. BCRB-I and II

We compute the BCRB (8) by taking expectation values with
respect to w. We state the bound in the following proposition.

Proposition 3. The BCRB-II of the factorized model is given
by

Cε �

 (2∑r
i=1 γ

−1
i

)2
(Ew[Gw])

−1
0 0

0 G−1γ 0

0 0 G−1β


where Gγ and Gβ are given in (14) and

Ew[Gw] = 2β

(
r∑

n=1

γ−1
n

)2

A>A + 2rIpq

+ β

(
r∑

n=1

γ−2
n

)(
T1(A>A) + T2(A>A)

)
+ β

(
r∑

n=1

γ−2
n

)(
Iq ⊗

(
q∑

m=1

(e>m ⊗ Ip)A
>A(em ⊗ Ip)

))

+ β

(
r∑

n=1

γ−2
n

)((
p∑

m=1

(Iq ⊗ e>m)A>A(Iq ⊗ em)

)
⊗ Ip

)
.

The linear operators T1 and T2 are defined in Section 1.1.
Since (12) and (13) are block diagonal, the BCRB-I of x is

Ey,w
[
(x̂− x) (x̂− x)

>
]
�

(
2

r∑
i=1

γ−1i

)2

(Ew[Gw])
−1
.

�

The proof of the above proposition will be given later in an
extended manuscript.

2.2. BCRB-III

Computation of BCRB-III requires computing the expecta-
tion with respect to y and z = [w>, γ>, β]>. We state the
bound in the following proposition.

Proposition 4. Assume that a > 2 in (4) and c > 2 in (5).
The BCRB-III of the factorized model is given by

Cε �


(

2rb
a−1

)2
(Ez[Gw])

−1
0 0

0 (Ez[Gγ ])
−1

0

0 0 (Ez[Gβ ])
−1
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where now

Ez [Gw] = 2
c

d

(
r2b2

(a− 1)2
+

rb2

(a− 1)2(a− 2)

)
A>A + 2rIpq

+
c

d

rb2

(a− 1)(a− 2)

(
T1(A>A) + T2(A>A)

)
+
c

d

rb2

(a− 1)(a− 2)

(
Iq ⊗

(
q∑

m=1

(e>m ⊗ Ip)A
>A(em ⊗ Ip)

))

+
c

d

rb2

(a− 1)(a− 2)

((
p∑

m=1

(Iq ⊗ e>m)A>A(Iq ⊗ em)

)
⊗ Ip

)
,

Ez[Gγ ] =
p+ q + 2(a− 1)

2
Eγ
[
(∇γs)Γ

−2(∇γs)
>
]
,

Ez[Gβ ] =
(m+ 2(c− 1))d2

2(c− 1)(c− 2)
.

�

3. NUMERICAL EVALUATION

Here we numerically evaluate the BCRB bounds and com-
pare them to the performance of two low-rank matrix estima-
tion methods - (1) variational Bayesian (VB) estimator of [8]
and - (2) nuclear norm (NN) minimization based estimator
(convex optimization based) [1]. The VB estimator uses the
factorized model with (3), (4) and (5) while NN is a convex
optimization based estimator that does not use the factorized
model. We provide the performance of NN estimator due to
its widespread use. For simulations we only considered ma-
trix completion where the sensing matrix A has one compo-
nent in each row set to one and all other components zero,
with the constraint that A has full row-rank. We measure the
performance in terms of normalized mean square error

NMSE =
Ez[||x̂− x||2]

Ez[||x||2]

which we evaluate empirically for different values of the
model parameters and averaged out for many realizations. In
the simulations we fixed the signal-to-noise-ratio

SNR =
Ez[||A(LR>)||2]

Ez[||n||2]
=

r(c− 1)b2

(a− 1)(a− 2)d
.

In the simulations we first fixed the parameter values of
{p, q, r,m, a, b, c,SNR} and then randomly generated the
measurement matrix A and the precisions γ , the noise pre-
cision β. The factor matrices were drawn from (3) and the
measurements from (1).

3.1. Numerical rank

The random matrix X = LR> has rank r with probability
one. However, the effective rank is smaller when some pre-
cisions are large. Here we introduce the numerical rank that
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Fig. 1. Realizations and mean of the numerical rank for dif-
ferent values of a for p = q = 100, r = 20 and b = 1.

serves as a lower bound on the actual rank as

nrank(X) ,
||X||2∗
||X||2

≤ rank(X),

where ||X||∗ =
∑k
i=1 σi(X) and k = min(p, q). Since

the parameter b in (4) affects the magnitude of X, only the
parameter a affects the numerical rank. To investigate how
the numerical rank varies with a, we empirically evaluate
the mean numerical rank Ew,γ [nrank(X)]. The results for
p = q = 100, r = 20 and b = 1 are given in Figure 1. We
find that the mean numerical rank is about 18 for a−1 > 100
and about 5.3 for a − 1 < 0.03. However, the variance is
large for smaller values of a − 1 and BCRB-III does not ex-
ists for a ≤ 2. Small values of a − 1 thus correspond to low
numerical rank.

3.2. Performance of practical algorithms and BCRB

In the second experiment we evaluated BCRB-II and BCRB-
III for X for matrix completion by setting a = c = 2 + 10−3,
b = d = 1, p = q = 10, r = 5 and SNR = 20 dB. We gener-
ated 25 measurement matrices, 25 values of γ and β and 10
matrices X and measurements y for each value of m. The re-
sults are given in Figure 2 where the NMSE is plotted against
the sub-sampling factor m

pq . Note that NN estimator provides
better performance than VB. The main reason is that NN es-
timator knows the noise parameter exclusively, whereas VB
infers all necessary parameters including noise parameter us-
ing a variational Bayes learning technique. For the choice of
parameters, it turns out that the BCRB-II is consistently lower
than the BCRB-III. However, the VB algorithm has a large
gap in performance from both bounds and hence the problem
of designing Bayesian algorithms for matrix completion and
deriving new bounds remains valuable. We also measured the
numerical rank of the realizations of X. The distribution of
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Fig. 2. NMSE vs. m for matrix completion with p = q = 10,
r = 5, SNR = 20 dB, b = d = 1 and a = c = 1 + 10−3.
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Fig. 3. Distribution of the numerical rank for p = q = 10,
r = 5, b = d = 1 and a = 1 + 10−3.

numerical rank is given in Figure 3. We see that the numerical
rank is consistently lower than the actual rank r = 5.

4. CONCLUSION

In this article we computed Bayesian Cramér-Rao bounds for
matrix reconstruction from linear measurements. For the fac-
torized model, we found that while the standard BCRB (7)
is non-informative, the BCRB (8) provides an informative
lower bound. By evaluating the numerical rank we found
that the model promotes low numerical rank when a < 1.
However, the bound BCRB-III only exists for a > 1. We
found that both the nuclear norm estimator and the variational
Bayes estimator showed a considerable gap from the BCRB
bounds. This shows that there still exists room for improve-
ment of Bayesian low-rank matrix reconstruction algorithms
and bounds.
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