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Abstract—Bessel functions have shown to be particularly

suitable for representing certain classes of signals, since using

these basis functions may results in fewer components than using

sinusoids. However, as there are no closed form expressions

available for such functions, approximations and numerical

methods have been adopted for their computation. In this paper

the functions called discrete Bessel functions that are expressed as

a finite expansion are defined. It is shown that in a finite interval

a finite number of such functions that perfectly match Bessel

functions of integer order exist. For finite duration sequences it

is proven that the subspace spanned by a set of these functions is

able to represent the class of finite duration decaying sequences.

I. INTRODUCTION

Bessel functions of integer orders play an important role in

numerous application fields, as they represent the mathemat-

ical solutions of radiation, scattering, magnetics problems, to

name just a few [1]–[3].

A well known property of Bessel functions is their orthog-

onality in a continuous-value finite interval, so that they are

able to represent a given signal as an infinite Fourier-Bessel

series [4]–[7] whose expansion coefficients are determined by

an integral relationship. This expansion has the same structure

of the Fourier representation for an infinite sequence given by

an integral-series couple of equations.

However, there are no closed form expressions available for

Bessel functions, hence approximations [8], [9] and numerical

methods [10], [11] have been adopted in the past for their

computation.

Additionally, for finite-duration sequences, as the DFT

represents a finite expansion of such sequences, it is of interest

to derive a similar expansion, if exist, in terms of Bessel

functions instead of sinusoidal functions. This is justified by

the fact that for certain classes of signals [5], [12] using these

basis functions may results in fewer components than using

sinusoids.

More specifically, since Bessel functions are non-stationary

decaying functions, they are particularly suitable to represent

the class of finite duration decaying sequences. The aim of

this paper is to derive a representation of signals belonging

to the class of finite duration decaying sequences, as a finite

expansion in terms of Bessel functions.

With reference to this problem, the functions expressed as a

finite summation and called discrete Bessel functions (DBFs)

are defined.

It is shown that in a finite interval a finite number of DBFs

perfectly match Bessel functions of integer order. Then for

finite duration sequences it is proven that a subspace spanned

by a set of these functions can be derived.

Numerical results show that such a subspace is able to

represent the class of finite duration decaying sequences.

II. MATHEMATICAL THEORY

A. Discrete Bessel Function

Let us refer to the function eiz sinϕ with z being a complex

variable and ϕ a real variable, since this function is a periodic

function of ϕ with period 2π it can be expanded as Fourier

series

eiz sinϕ =

+∞
∑

ν=−∞

Jν (z) e
iνϕ . (1)

It is well known [13] that the coefficients Jν (z) of the

summation defines the Bessel functions of the first kind and

are given by the usual relationship for the Fourier coefficients

Jν (z) =
1

2π

π

∫
−π

eiz sinϕe−iνϕdϕ , (2)

where the integer ν represents the order of the function. For

the purpose of this work it suffices to consider z to be real,

thus hereafter we will apply this restriction.

Figure 1 depicts several Bessel functions of different order

for z ≥ 0. As you can see for every index ν a finite interval

[0, a] exists such that, for 0 ≤ z ≤ a, Jν (z) is close to zero.

In particular the value of a increases as the index ν increases.

On the basis of this property we can assume that for a value

z = a and a given error ε, an index N exists such that for

ν > N it results

Jν (z) ∼= 0 , 0 ≤ z ≤ a , (3)

where b ∼= c means |b− c| < ε for any given ε.

As a consequence of this result, (1) can be rewritten as

eiz sinϕ ∼=
N
∑

ν=−N

Jν (z) e
iνϕ (4)

for 0 ≤ z ≤ a , −π ≤ ϕ ≤ π. Now evaluating the relationship

(4) at the 2N + 1 discrete values

ϕk = k
2π

2N + 1
, k = 0, 1, . . . , 2N , (5)
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Fig. 1: Two Bessel functions of different orders: a) ν = 50,

b) ν = 200.

yields

eiz sinϕk ∼=
N
∑

ν=−N

Jν (z) e
iνϕk . (6)

By multiplying e−iν′ϕk/ (2N + 1) by both sides of (6) and

summing the result for k = 0 to k = 2N , we have

1

2N + 1

2N
∑

k=0

eiz sinϕke−iν′ϕk ∼=

1

2N + 1

2N
∑

k=0

(

N
∑

ν=−N

Jν (z) e
iνϕk

)

e−iν′ϕk =

N
∑

ν=−N

Jν (z)

(

1

2N + 1

2N
∑

k=0

ei(ν−ν′) 2kπ
2N+1

)

= Jν′ (z) , (7)

where the last identity is obtained by virtue of the orthogo-

nality property of the complex exponentials

1

2N + 1

2N
∑

k=0

ei(ν−ν′) 2kπ
2N+1 =

{

1 if ν = ν′

0 if ν 6= ν′
, (8)

and ν, ν′ are integers ranging from −N to N .

Finally, we have

Jν (z) ∼=
1

2N + 1

2N
∑

k=0

eiz sinϕke−iνϕk , ϕk = k
2π

2N + 1
,

(9)

for 0 ≤ z ≤ a, −N ≤ ν ≤ N .

Thus for a finite interval 0 ≤ z ≤ a the couple of equations

eiz sin k 2π
2N+1 =

N
∑

ν=−N

Bν (z) e
iνk 2π

2N+1 ,

k = 0, 1, . . . , 2N , (10)

and

Bν (z) =
1

2N + 1

2N
∑

k=0

eiz sin k 2π
2N+1 e−iνk 2π

2N+1 ,

−N ≤ ν ≤ N , (11)

represents the finite-dimension version of (1) and (2), where

the notation Bν(z) has been used in place of Jν(z) to denote

that Bν(z) satisfies the properties

Bν (z)

{ ∼= Jν (z) , −N ≤ ν ≤ N
= 0 , otherwise

, 0 ≤ z ≤ a .

(12)

The function Bν(z) so defined will be called discrete Bessel

function (DBF) of order ν and the couple (10) and (11) is the

DFT representation of Bν(z) as it can easily be verified.

B. Properties of Bν(z)

Here we want to show that the function Bν(z) satisfies the

usual properties of Jν(z). In particular assuming z is a real

variable, then Bν(z) is also real. To prove this proposition let

us consider the conjugate complex of Bν(z)

B∗

ν (z) =
1

L

L−1
∑

k=0

e−iz sin 2kπ
L eiν

2kπ
L =

1

L

−(L−1)
∑

k′=0

eiz sin 2k′π
L e−iν 2k′π

L , (13)

where L = 2N + 1. By posing k′ = k − L we have

B∗

ν (z) =
1

L

L
∑

k=1

eiz sin 2kπ
L e−iν 2kπ

L (14)

for the periodicity of the complex exponentials. Additionally,

it results
[

eiz sin 2kπ
L e−iν 2kπ

L

]

k=L
=
[

eiz sin 2kπ
L e−iν 2kπ

L

]

k=0
, (15)

and finally

B∗

ν (z) =
1

L

L−1
∑

k=0

eiz sin 2kπ
L e−iν 2kπ

L = Bν (z) , (16)

which proves the assertion.

As a consequence of this property, with z real Bν(z) can

also be written as

Bν (z) =
1

2N + 1

2N
∑

k=0

cos

(

z sin
2kπ

2N + 1
− ν

2kπ

2N + 1

)

,

−N ≤ ν ≤ N . (17)

C. Matrix Representation of DBFs

Now let us assume z is a finite duration sequence instead

of a continuous-value variable belonging to a finite interval

of the real axis. In this case z(n) is a discrete function of n,

n = 0, 1, . . . , 2N , and (11) can be written as

Bν (z (n)) = B (n, ν) =
2N
∑

k=0

U (n, k)W (k, ν) , (18)

where

U (n, k) =
eiz(n) sin

2kπ
2N+1

√
2N + 1

(19)
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and

W (k, ν) =
wkν

2N+1√
2N + 1

, (20)

being

w2N+1 = e−i 2π
2N+1 . (21)

Once the matrices

[B]nν = B (n, ν) (22)

[U ]nk = U (n, k) (23)

[W ]kν = W (k, ν) (24)

are defined, (18) becomes

B = U W . (25)

This is the matrix representation of the discrete Bessel func-

tions for a finite-duration sequence

z = [z (0) , z (1) , . . . , z(2N)]
T
. (26)

By posing

γk = sin
2kπ

2N + 1
(27)

we can write

U = [u0, u1, . . . , u2N ] , (28)

where

uk =
eiγkz

√
2N + 1

, k = 0, 1, . . . , 2N , (29)

are column vectors.

Similarly, we can write

W = [w0, w1, . . . , w2N ] (30)

and

B = [b−N , b−N+1, . . . , bN−1, bN ] , (31)

where

wν =
1√

2N + 1

[

1, wν
2N+1, w

2ν
2N+1, . . . , w

2Nν
2N+1

]T
(32)

and

bν = Bν(z) , −N ≤ ν ≤ N . (33)

Discrete Bessel Transform

As it is well known that Bessel functions are orthogonal in

a continuous value domain, and thus are able to represent a

unitary transform, it is worth to investigate whether a unitary

matrix based on the DBF exists for finite duration sequences.

Assuming

z(n) = n , n = 0, 1, . . . , 2N , (34)

it is straightforward to show that in this case the columns of

U are not orthogonal. For this purpose, let us form the scalar

product

uT
k u

∗

j =
1

2N + 1

2N
∑

n=0

eiγkz(n)e−iγjz(n) =

1

2N + 1

2N
∑

n=0

ei(γk−γj)
2πn

2N+1 . (35)

For γk = γj it results uT
k u

∗

j = 1, while for γk 6= γj we have

uT
k u

∗

j =
1

2N + 1
·
1−

(

ei(γk−γj)
2π

2N+1

)2N+1

1− ei(γk−γj)
2π

2N+1

=

1

2N + 1
· 1− ei(γk−γj)2π

1− ei(γk−γj)
2π

2N+1

6= 0 (36)

as ei(γk−γj)
2π

2N+1 6= 1 and ei(γk−γj)2π 6= 1. Then U is not a

unitary matrix.

Similarly, we have

wT
ν w

∗

ν′ =
1

2N + 1

2N
∑

k=0

ei(ν−ν′) 2πk
2N+1 . (37)

and from (8) we conclude that W is a unitary matrix.

As a consequence, from (25) it results

bν = Uwν , ν = −N, . . . , N , (38)

and by forming the scalar products of two generic columns ν
and ν′ of B

bν
T b∗ν′ = wT

ν U
TU∗w∗

ν′ , (39)

we can conclude that as U is not a unitary matrix the columns

of B are not orthogonal and B is not unitary.

Nevertheless, due to the orthogonality of W , from (25) it

results

U = BWT . (40)

The couple of equations (25) and (40) is the corresponding

matrix representation of (10) and (11) for a finite-duration

sequence z(n), n = 0, 1, . . . , 2N .

D. Subspace Bessel Representation

The column bν of B are not all linearly independent since

it is well known that for the Bessel functions of the first kind,

the following condition

J−ν = (−1)νJν (41)

holds.

As a consequence only a number M < 2N +1 of columns

are linearly independent, so that they generate a subspace of

dimension M .

In order to investigate the capability of such subspace in rep-

resenting a signal y that belongs to the class of non-stationary

decaying signals, an approximation yM of y belonging to the

space spanned by the linear independent columns bν of B will

be derived.

To this end using the Q–R decomposition the matrix B can

be written as

B = QR , (42)

where

QTQ = QQT = I , (43)

being Q a unitary matrix, and R is an upper triangle matrix.

Thus given a generic vector y, the following representation
{

y = Qk
k = QT y

(44)
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holds.

In order to derive an approximation yM of y belonging to

the subspace spanned by the M linearly independent columns

of B, BM = [b0, b1, . . . , bM−1], we partition Q as

Q = [QM Qη] (45)

where the columns of QM correspond to the non zero diagonal

elements of R.

Accordingly, y is given by

y = Qk = [QMQη]

[

kM
kη

]

= QMkM +Qηkη , (46)

k =

[

kM
kη

]

= QTy =

[

QT
My

QT
η y

]

(47)

and also

B = [BMBη] = [QMQη]

[

RM RMη

0 Rηη

]

(48)

with

BM = QMRM , (49)

QM = BMRM
−1 . (50)

Assuming

yM = QMkM (51)

is the most significant part of y, we have

yM = QMkM = BM

(

RM
−1QT

My
)

(52)

or
{

yM = BMk′M
k′M = R−1

M QT
My

. (53)

This couple of equations gives the desired representation of

the vector yM , that belongs to the subspace spanned by the

columns of BM and approximates the vector y.

The residual Qηkη in (46) represents the error in represent-

ing y with yM .

III. RESULTS

As a first result Fig. 2 depicts a comparison between discrete

Bessel function Bν(z) as given by (11) and continuous-value

Bessel function Jν(z).
As you can see for both the two values of ν and in the

interval 0 ≤ z ≤ 300 the two functions match perfectly.

Nevertheless, by choosing different values for ν, N , and

the z interval, the results reported in Fig. 3 are obtained. Even

though in this case the two functions do not match for all

values of z, an interval exists such that they match perfectly for

the values of z inside the interval. This means that a behaviour

similar to that of Fig. 2 can be achieved by simply restricting

the results of Fig. 3 to the interval 0 ≤ z ≤ 60.

In order to evaluate the ability of discrete Bessel functions

for representing functions belonging to the class of finite

duration decaying sequences, we refer to the speech signals.

According to the source-filter model of speech production,

a speech signal fragment x(t) corresponding to a voiced sound
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Fig. 2: Comparison of the function Bν(z) with Jν(z) for

different values of ν, a) ν = 50, b) ν = 200, and N = 300.
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Fig. 3: Comparison of the discrete Bessel function Bν(z) with

the continuous-value Bessel function Jν(z) for different orders

a) ν = 10, b) ν = 30, and N = 50.

can be thought as the convolution of an excitation signal e(t)
and the vocal tract impulse response h(t), that is

x(t) = h(t) ∗ e(t) . (54)

Homomorphic deconvolution can be successfully applied in

separating the two components of a speech waveform [14].

It is well known that the vocal tract impulse response h(t)
belongs to the class of finite duration decaying sequences.

Figures 4, 5, and 6 show (solid line) the impulse response

of Italian vowels |a|, |o|, |u| respectively, achieved by ho-

momorphic deconvolution, and for comparison (asterisks) the

reconstructed signal accordingly to (53).

As you can see, the approximating signal yM is able to

perfectly follow the original signal y, thus confirming that the

subspace spanned by the discrete Bessel functions is able to

represent the class of finite duration decaying sequences.

IV. CONCLUSION

The aim of this paper is to derive a set of functions

expressed as a finite expansion that match Bessel functions of

integer order. To this end the functions called discrete Bessel
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Fig. 4: Impulse response of the Italian vowel |a| of length

2N + 1 = 956 reconstructed as a linear combination of M =
340 discrete Bessel functions. Solid line represents the original

signal y, the asterisks represent the approximating signal yM .
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Fig. 5: Impulse response of the Italian vowel |o| of length

2N + 1 = 956 reconstructed as a linear combination of M =
355 discrete Bessel functions. Solid line represents the original

signal y, the asterisks represent the approximating signal yM .

functions are defined. As they are expressed as a finite sum-

mation, for finite duration sequences a matrix representation

of such functions is given. The matrix so obtained defines a

subspace that is able to represent the class of finite duration

decaying sequences.

Numerical results show the capability of such subspace in

representing a signal that belongs to this class.
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