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Abstract—Joint detection and estimation is an important yet
little-studied problem that arises in many signal processing appli-
cations. In this paper, a sequential and robust solution approach
is presented. To design the test fulfilling constraints on the error
probabilities and the quality of the estimate, the problem is
converted into an unconstrained form and subsequently solved
using Linear Programming. To handle model uncertainties, a
band model for both hypotheses is used and a concept for
determining the pair of least favorable distributions is adopted
to devise a robust detection scheme. For the robust estimation,
an upper bound of the estimation cost, based on maximizing a
Kullback-Leibler divergence, is derived. The resulting test meets
the specifications on the error probabilities and the quality of
the estimate for every feasible pair of distributions. Numerical
results are provided for the pair of least favorable distributions
and for a pair of randomly selected distributions.

Index Terms—band model, distributional uncertainties, joint
detection and estimation, linear programming, optimization,
robustness, sequential analysis

I. INTRODUCTION

In many applications, the problem arises to decide between
two hypotheses and, depending on the decision, to estimate
some parameters of the underlying distribution. This problem
was initially treated by Middleton and Esposito [1] in the
late 1960s and revisited by Moustakides in 2011 [2]. Joint
detection and estimation is widely used in different areas of
signal processing, including speech [3], communication [4]
and radar [5].

Sequential analysis is a field of research introduced by Wald
in the late 1940s [6]. The idea behind sequential detection is
to observe a sequence of samples in order to decide as quickly
as possible in favor of one of two hypotheses while fulfilling
constraints on the error probabilities. Until the present day,
sequential methods have been a topic of continuous research
in many fields. Especially for time critical or low power appli-
cations, sequential approaches often outperform conventional
approaches.

Combining the idea of sequential analysis with the problem
of joint detection and estimation leads to a powerful frame-
work that enables one to quickly decide for one hypothesis
and, if necessary, accurately estimate unknown parameters of
the corresponding distribution. Joint detection and estimation
problems of this kind arise in many applications, for example,
in digital communication where a communication line is
observed and there is the need to establish whether or not
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a signal is present and, in the latter case, to estimate its mean
and/or variance.

Moreover, robust signal processing, i.e., the processing of
signals under deviations from the assumed model, is very
important for many applications. Often it is the case that
the assumptions, for example, Gaussian distributed noise, do
not hold in practice or that the distribution of the signal is
only known approximately. Therefore, methods have to be
developed that can deal with these deviations.

This paper combines these three areas and provides a first
approach to sequential joint detection and estimation that
handles distributional uncertainties. For this approach, it is
assumed that the possible distributions lie inside a known band
and the data is identically and independently distributed. A
sequential joint detection and estimation approach is developed
based on the least favorable instead of the nominal distribu-
tions. For the design of the test, a Linear Programming (LP)
approach, similar to the one presented in [7], is used.

The paper is structured as follows: In Section II, a detailed
description of the problem is given. The design of least
favorable distributions, i.e., the distributions which lead to the
worst results, is detailed in Section III. The formulation of the
problem as a linear program is given in Section I'V. Finally, the
results are illustrated with numerical examples in Section V.

Regarding the notation: Ep and Varp denote the expected
value and the variance of a random variable with respect to
the measure P. For all sequences, superscript n denotes the
time instant.

II. PROBLEM FORMULATION

Let (X',...,X™) be a sequence of independent and iden-
tically distributed random variables with common distribution
P, defined on the probability space (Q, F, P). It is assumed
that the distribution P admits a density p with respect to some
reference measure u. The goal in sequential joint detection
and estimation is to sequentially perform a binary hypothesis
test and to estimate a parameter of the distribution P; if one
decides in favor of H;. The simple hypotheses are given by

7‘[0 . P= P(),
7‘[1 . P= Pl.
When designing a joint detection and estimation scheme, the

goal is to minimize the expected run-length of the test while
satisfying constraints on the error probabilities as well as
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on the quality of the estimate. The upper bounds on the
error probabilities are denoted by <y and v;, whereas the
bound on the quality of the estimate is denoted by 7. The
minimization of the average run-length is performed under
a third distribution P. This problem is also known as the
modified Kiefer—Weiss problem.

Since in many practical applications the distribution of the
data is not known exactly or only a heuristic description
of the distribution is available, the presented approach also
takes into account deviations from the nominal distributions.
Therefore, the so-called band model, introduced by Kassam
[8], is used. This model allows the true, unknown probability
density to lie inside a band, i.e., p; < p; < p/, i € {0,1}.
Due to this uncertainty, the problem of deciding between two
simple hypotheses becomes a problem of deciding between
two composite ones. The use of this model also clarifies
the need for estimating a parameter, e.g. the mean, of the
distribution under the alternative hypothesis.

Mathematically, the design of the test can be formulated as
the optimization problem

min Ep [7] (D

Py(d™ =1) <
Jnax o ) < 70,

P (D" =0) <
Jmax 1 ( ) <,

max Var [é} <
P ePy = =72

where Py and P; denote the uncertainty sets of feasible distri-
butions, and ¢ and ¥ denote the decision and stopping rules
of the test, respectively. More precisely, ®"(x!,... 2") =i
denotes a decision for H;, ¢ € {0,1}, at time instant n
and U™ (z!, ... 2") = 1 or ¥"(z!,...,2™) = 0 denote the
decisions to stop or continue the test at time instant n. Both
functions are dependent on the observations z',...,z". The
stopping time 7 of the test is defined as 7 = min{n > 0 :
U™ = 1}. The estimator for the unknown parameter is denoted
by 6.

subject to

III. SELECTION OF THE LEAST FAVORABLE
DISTRIBUTIONS

The use of the word robust varies widely in the literature.
Hence, we first clarify our definition of robustness before
going into details about how to choose the least favorable
distributions.

As mentioned before, we allow the distributions under the
null hypothesis and the alternative to lie inside a band. In this
work, we want to construct a test that fulfills the constrains
on the error probabilities and the quality of the estimate for
every pair of distributions lying inside the specified bands.

In order to satisfy the constraints on the error probabilities, a
pair of distributions has to be found that are least separable or
least favorable. In other words, the distributions under the null
hypothesis and the alternative should be as similar as possible.
For the fixed sample size (FSS) test, it has been shown that
a pair of distributions is least favorable if it jointly minimizes
all f-divergences. See, for example, [8]-[10].

In the FSS scenario, the optimal minimax test is a likelihood
ratio test that uses the least favorable distributions instead
of the nominal ones [11]. The design of a minimax optimal
procedure for joint sequential detection and estimation is more
challenging and has not been studied yet. Although replacing
the nominal distributions by the least favorable ones does not
yield a strictly optimal procedure, this method is used here as
a first step towards a minimax scheme.

In this work, the implicit characterization of the pair of least
favorable distributions stated in [10, Eq. 13] is used. It is given
by

go = min {py, max {co (aqo + ¢1) , Py } }
q1 =min {p}, max {¢1 (g1 + qo) , P} }} .

where gy and ¢g; denote the least favorable distributions under
Ho and Hy, respectively, cro13 € [0, 2] and « is a positive
constant. For the numerical calculation of ¢y and ¢;, we use
the iterative construction algorithm [10, Tab. IJ.

Having robustified the detection of the joint problem, the
estimation subproblem is to be solved. When referring to
robust estimation, one usually means an estimator which
is robust itself, for example, the well-known M-Estimator
[12]. In this work, instead of making the estimator itself
robust, a distribution is sought that provides an upper bound
on the variance of the estimator Var[]. This is done in
two independent steps, which are illustrated below, using the
example of the sample mean. An extension to other estimators
is possible, but it is beyond the scope of this paper.

Using the sample mean as an estimator, it holds that

Varp, [é} = Varp, [i zT: x"
n=1

where o2 denotes the variance of P;. A distribution is least
favorable with respect to the estimator variance if it maximizes
the expected value on the right-hand side of Eq. (3). However,
determining this maximum is a formidable task since o and 7
are coupled and the latter additionally depends on the stopping
rule. In order to make the problem more tractable and still
guarantee that the accuracy constraints on the estimate are
met, we resort to an upper bound on Eq. (3). This bound
is derived by independently maximizing the numerator and
minimizing the denominator in Eq. (3), i.e., by determining
two least favorable distributions: one with maximum variance
o? and one which minimizes the expected run-length under
the alternative.

The maximum variance among all distributions that lie
within the density band corresponding to H; is in the follow-
ing denoted by x2. To calculate the distribution that achieves
this maximum, the following maximization problem has to be

solved
K> = max (/wzfdu(w) - (/wfdu(x))2> 4)

st f<pl. 2, /fdu=1,

2

0.2

=Ep, {T] G
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which is a convex problem and can thus be solved numerically
with off-the-shelve solvers.

In a second step, a distribution has to be found that
minimizes the expected run-length of the test. Intuitively
speaking, this distribution needs to be chosen such that it
is least similar to the distribution under the null hypothesis.
According to Wald [6, Eq. 3:68], the expected run-length under
the alternative hypothesis of a sequential test is approximately
proportional to the inverse of the Kullback-Leibler divergence
of P; and Py, i.e.,

1 1

Bp, [log2r|  Drelillpo)

(&)

Ep, [1] x

From this approximation, it can be seen that minimizing the
expected run-length is approximately equivalent to maximiz-
ing the Kullback-Leibler (KL) divergence Dkp(p1l||po). This
results in the following maximization problem

max Dxe(qllpo) (6)

st. q<pf, q>p, /qduzl,

where
q(x)
Dx(qllpo) / q(z)log (po(x)> dp(x). M
Since Problem (6) is nonconvex, it cannot be solved using
standard convex optimization techniques. Here, we suggest the
use of a projected gradient algorithm.
In order to apply a projected gradient algorithm to the prob-
lem at hand, the densities are first discretized. The gradient
with respect to ¢ is then calculated as

VaDxu(allpo) =1+ log - ®)
The projection step is performed by solving

PrPl (q) = min {pllla max {Cq7 pll }} ; (9)
for the constant ¢ such that the result is a valid density. This
procedure is repeated until the solution converges.

Given the two least favorable distributions, the constraint
for the quality of the estimate is replaced by

2
EQl:ﬁ:|<’723

where Eg [-] is the expected value with respect to the proba-
bility distribution @ that solves (6) and x2 is defined in Eq.
4).

By using the pair of least favorable distributions obtained
from Eq. (2) for the constraints on the error probabilities, and
the upper bound for the estimation constraint stated in Eq. (10),
the final optimization problem becomes

(10)

T

(1)

in E
min Eq 7]

subject to - Qo (P = 1) < o,

where the expected run-length of the test is now minimized
under distribution Q).

IV. SEQUENTIAL JOINT DETECTION AND ESTIMATION AS
A LINEAR PROGRAM

To obtain an optimal test for the joint detection and
estimation task, the constrained minimization Problem (11)
is converted to an unconstrained one using the method of
Lagrange multipliers. This resulting problem can then be
treated as an optimal stopping problem for which Novikov
provided optimal stopping and decision rules [13]. Using these
rules and following the line of arguments in [7], [13] yields an
optimal test, the cost function of which is defined recursively
by

) =min ot )1+ [ppta}. ao

where
2
g;\’(z) ‘= min {)\020, /\12’1} + )\2; . (13)
Here the superscript denotes the time instant, z = (zg, 21)
is a tuple of likelihood ratios, A = (Ao, A1, A2) a triplet
of Lagrange multipliers and the probability measure H, is
defined as

ww=r ({55250 ) < o)) a9

where B is an element of the Borel o-algebra on [0, 00)2. In
Eq. (12), the term g corresponds to the cost for stopping at
time instant n, and the term 1 + f pi\LHdHZ to the cost for
continuing. For the sake of a more compact notation, the latter
is denoted by dY in the sequel. The test stops if g} < d and
decides in favor of Hy if A\gzg < Ajzp, otherwise in favor
of H;. Opposed to [7], a truncated sequential procedure is
considered in this work, which means that the test is forced
to stop at time instant N so that p¥ = g¥. Minimizing the
expected run-length of the test is then equivalent to minimizing
p°(1,1) [7], where z = (1,1) is the initial state of the test
statistic.

The question how to choose the Lagrange multiplier such
that certain constraints on the error probabilities are fulfilled
is addressed in [7], where an approach based on linear pro-
gramming is suggested. Since the sequential joint detection
and estimation problem has a similar form, this method can
be applied to the joint problem as well. A rigorous proof of
this extension is omitted for brevity, but can be found in [14].

In order to obtain the Lagrange multipliers, the Lagrangian
dual of (11) is maximized, which results in the following
maximization problem

max PR(L,1) = Agyo — Ad1y1 — Aoy, (15)

subject to  p¥(2) = min {gf(z), 1+ /p’;“de} ,

P (2) = g3 (2) .
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Using arguments similar to those in [7], it can be shown that a
test with Lagrange multipliers chosen according to (15) meets
the constraints on the error probabilities and the estimation
quality exactly. Hence, the bounds on the error probabilities
and on the estimation quality are also called target error
probabilities and target estimation cost, respectively.

Adding the sequence of functions pY to the set of free
variables yields the maximization problem that is used for the
design of the test:

max

1
A>0,pm €L (16)

P2 (1,1) = Xovo — 171 — Aaye,

2
s.t. pY(2) < min {)\ozo + )\gi,
n

2
/\121+)\2’:L71+/P7>f+1de} )

V(2) < mind dozo 4 e A 4 A
Py (2) < min § Ap2p 257 171 2N (0

where £ denotes the set of all H, integrable functions. Since
the objective of the maximization problem is concave in A
and p”, this problem can be solved using convex optimization
techniques. It can be shown that the optimal value is the
expected run-length of the test. The proof is given in [14].

V. NUMERICAL RESULTS

In this section, a numerical example is given to illustrate
the proposed approach for robust sequential joint detection
and estimation. Monte Carlo results are provided for the case
when the observations are generated under the least favorable
distributions, as defined in Section III, and under a pair of
distributions that was chosen randomly from the respective
density bands. Before presenting the numerical results, the
necessary quantities, which were used for the test design and
the Monte Carlo simulation are introduced.

Since the values of the likelihood ratio usually cover a wide
numerical range, which often results in numerical inaccura-
cies, the log-likelihood ratio is used instead. To numerically
solve Problem (16), the log-likelihood ratios were sampled
uniformly on [—6,6] x [—6,6] with a step size of 0.2. To
enforce numerical stability, the following term was added to
the optimization problem

1 N
R nd
6N+1Z/m W,

n=0

a7)

where ¢ is a small positive constant, see [7, App. F] for details.
In the simulation presented in this work, this constant is set to
¢ = 10~*. Furthermore, the maximum number of samples
allowed for the truncated test is N = 30. For the Monte
Carlos simulations, 20,000 samples are generated under each
distribution.

Truncated Gaussian distributions were used as nominal
distributions for the test design. The means of the Gaussian
distributions were chosen as p; = —po = 0.5 and their
variance was set to be 02 = 1. The distributions were sampled
on the interval [—2.5,2.5] with a step size of 1072, The
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Figure 2. Densities of least favorable distributions

band 0.9p; < ¢; < 1.1p;, ¢ € {0,1}, was used to model
distributional uncertainties. The band model and the resulting
set of least favorable distributions are depicted in Fig. 1 and
Fig. 2, respectively.

For the design of the test, first, the least favorable distri-
butions for detection, go and g1, were determined according
to Eq. (2). Subsequently, the least favorable distributions for
estimation were determined according to the maximizations
in Eq. (4) and Eq. (6). In order to solve (6) for ¢, it was
further assumed that py = qo, i.e., the accuracy is bounded
under the least favorable distribution. The expected run-length
is accordingly minimized under p = q.

It can be seen that the distributions ¢y and g; are the ones
which are most difficult to separate since they are very close
together, whereas the distribution ¢ can be separated from ¢
much more easily.

By inspection of the numerical results listed in Table I, one
can see that all constraints are fulfilled when running a Monte
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Figure 3. Densities of randomly chosen distributions

Table 1
NUMERICAL RESULTS

least favorable random

distributions distributions | target
type-I error 0.045 0.022 0.05
type-II error 0.046 0.032 0.05
E[=] 0.093 0.096 | 0.10
E|r] 14.34 14.13 9.68

Ao 6.81 6.81 -

A1 2.82 2.82 -

A2 88.08 88.08 -

Carlo simulation with the set of least favorable distributions. It
is noteworthy that the expected run-length of the test, which is
provided by the LP approach, differs 4 to 5 samples from the
results of the Monte Carlo simulations. This can be explained
by the fact the test is designed under the distribution ¢, which
means that the expected run-length is minimized under the
distribution q and, therefore, the expected run-length under all
other distributions is larger. By having a look at Fig. 2, one
can see that the distribution ¢ differs significantly from the
least favorable distributions under both hypothesis. This is the
case since ¢ is chosen such that the expected run-length is
minimized.

The designed test was applied to a second data set, where
the data was generated under randomly selected distributions
inside the band model. These distributions are shown in Fig. 3.
By inspection of the third column of Table I, one can see that
all constrains are fulfilled. The difference in the expected run-
length of the test can be explained in the same way as for the
set of least favorable distributions.

The results presented in this section show that the proposed
approach can provide tests that achieve a predefined perfor-
mance even under distributional uncertainties.

VI. CONCLUSION AND OUTLOOK

This paper provides a first attempt at robust joint sequential
detection and estimation. The resulting test fulfills constraints

on the error probabilities and on the quality of the estimate
under distributional uncertainties. By adopting methods from
the fixed sample size case, an upper bound for the error
probabilities was found such that the constraints are fulfilled
for all feasible distributions. To ensure the performance of the
estimator, two least favorable distributions were used to for-
mulate an upper bound on the estimation quality. These least
favorable distributions maximize the variance and minimize
the expected run-length, respectively.

The test is not optimal in the minimax sense, but it is
guaranteed to achieve a pre-specified performance for all
feasible distributions. Deriving an optimal minimax scheme
is a challenge for further research. Moreover, the very strict
assumption of identically and independently distributed ran-
dom variables should be relaxed in the next steps. Finally,
the class of possible estimators has to be extended such that
all necessary parameters of the underlying distribution can be
estimated.
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