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Abstract—A sparse nonlinear inverse scattering problem aris-
ing in microwave imaging is analyzed and numerically solved for
retrieving dielectric contrast of region of interest from measured
fields. The proposed approach is motivated by a Tikhonov
functional incorporating a sparsity promoting l1-penalty term.
The proposed iterative algorithm of soft shrinkage type enforces
the sparsity constraint at each nonlinear iteration and provides an
effective reconstructions of unknown (complex) dielectric profiles.
The scheme produces sharp and good reconstruction of dielectric
profiles in sparse domains and keeps its convergence during the
reconstruction. Numerical results present the effectiveness and
accuracy of the proposed method.

I. INTRODUCTION

Development of efficient methods and techniques for solv-

ing inverse electromagnetic scattering problems has been

widely emerged in recent years. High demand of such meth-

ods in various applications such as material characterization,

subsurface prospecting, remote sensing, and non-destructive

testing and evaluation [1], [2] enforces the importance and the

need of effective and accurate methods. Inverse electromag-

netic scattering problems reconstruct material properties such

as permittivity and conductivity in an unknown region from

measured electromagnetic fields. However, implementation of

such stable, reliable, and efficient reconstruction algorithms

is challenging because of the nonlinearity of the scattering

equations and ill-posedness of the problem [1], [3], [4].

Several approaches have been proposed in order to over-

come these issues. Global optimization tools, multi-step infor-

mation retrieval techniques, and qualitative methods have been

introduced to alleviate the non-linearity or its effects. More-

over, first order approximations such as diffraction tomog-

raphy, Born and Rytov approximations have been proven in

order to linearize the problem [1], [3], [5]. On the other hand,

innovative sparseness-regularized formulations have recently

emerged as an effective recipe to overcome the non-uniqueness

and/or numerical instability of the inversion process [6], [7].

The reason behind this is that many images have sparse

representations with respect to their expansion basis in the

wavelet domain and this yields new developing approaches

that minimize the cost functions with zeroth/first norm penalty

terms using highly effective iterative shrinkage thresholding

algorithms. Such an increased interest is proven by number of

publications in wide domains [4], [6], [7], [8], [9], [10].

In this work, sparsity constraint is directly applied to

the problem of reconstructing the complex internal dielectric

properties of an object based on knowledge of the external

scattered field which is generated by the interaction between

the object and a known incident field. The nonlinear optimiza-

tion problem is solved by iterative algorithm of soft shrinkage

in order to enforce the sparsity constraint. Sparsity is applied

in each iteration by a soft thresholding function. The proposed

method provides necessary and sufficient conditions to yield

well-posedness and convergence by adding smoothness as well

[11], [12], [13].

II. PROBLEM STATEMENT AND DISCRETIZATION

We consider a 2D configuration with transverse magnetic

polarization (TM) case where the object under investigation

illuminated by a given source numbered as i, i = 1, ..., Ns as

in Fig.1. A source generates an incident electric field Einc

which is polarized along the z-axis with an implicit time

factor exp(−iωt). The object is considered in an investigation

domain D and the different media are characterized by their

propagation constant k(r) such that k(r)2 = ω2ε0εr(r)µ0 +
iωµ0σ(r), where ω is the angular frequency, ε0 and µ0 are

the permittivity and the permeability of the air respectively,

εr(r) and σ(r) are the relative permittivity and conductivity

of the medium as r ∈ D is an observation point. The dielectric

properties of D are described by the inhomogeneous contrast

function, χ(r), which is defined for non-magnetic area such

as χ(r) =
(
k(r)2 − k2B

)
where kB is the propagation constant

of the embedding medium.

A known incident field Einc interacts with the scatterer

yielding to a total field which is the sum of the incident and

scattered fields. The direct scattering problem is to obtain the

total field from the dielectric properties of the investigation do-

main, and then the scattered field at the detectors. The inverse

scattering problem is to retrieve the contrast function of the

region D from the measurements of the scattered fields at the

detectors. We also define the contrast source induced within

the object by the incident wave such as J(r) = χ(r)Etot(r),
Etot being the total field in the object. Assuming no magnetic

media and considering the boundary and radiation conditions

we can obtain two coupled contrast source integral equations
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by applying Green‘s theorem to Helmholtz wave equations

[2], [5] as following

Etot(r) = Einc(r) +

∫

D

G(r, r ′)χ(r ′)Etot(r ′)dr ′ ∀r ∈ D

(1)

Ediff(r) =

∫

D

G(r, r ′)χ(r ′)Etot(r ′)dr ′ ∀r ∈ L (2)

where G(r, r ′) =
i

4
H

(1)
0 (kB‖r− r

′‖) and H
(1)
0 is the 0-th

order Hankel function of the first kind and Ediff is the scattered

field. Solving the equations (1) and (2) the unknown contrast

function can be determined. Following this, the scattering

equations are discretized with the point-matching Method of

Moments as in [5] by considering pixel basis functions

ψk(r) =

{

1 r ∈ Dk,

0 otherwise,
(3)

Dk being the k−th pixel and the unknown contrast, χ(r) =
∑N

k=1 χkψk(r) becomes sparse.

III. NONLINEAR OPTIMIZATION

Soft shrinkage is an approach which minimizes a nonlinear

Tikhonov functional with sparsity promoting penalty term. The

algorithm is based on the iterated soft shrinkage approach

originated for linear operators in the work [6]. A generalization

to nonlinear inverse problems has been studied in [4], [14].

The algorithm performs a gradient descent step which

involves the adjoint gradient of the cost function with a step

size τ , like Landweber method, and then a shrinkage step.

The latter enforces the sparsity of the reconstruction by setting

the small coefficients to zero. Following this, BB method is

suggested to choose the step size in order to overcome the

slow convergence of the iterative soft shrinkage algorithm. The

solution of the inverse problem can be obtained by minimizing

the cost function which is an error between the measured

quantity and the solution obtained by a forward problem. Cost

function to be minimized is of the form

F (χ) =
1

2

∥
∥ζ(χ)− Ediff

∥
∥
2
+ α‖χ‖l1 (4)

whereas ζ(χ) = G(r, r ′)χ(r ′)[I−G(r, r ′)χ(r)]−1Einc. The

l1 penalty can promote a-priori knowledge of the sparse

representation.

Iterative soft shrinkage has the form as

F (χ) =
1

2

∥
∥ζ(χ)− Ediff

∥
∥
2

︸ ︷︷ ︸

K(χ)

+α‖χ‖l1 (5)

where ζ : X 7→ Y is a bounded and nonlinear operator

with respect to unknown contrast χ. At first, the algorithm

has started by choosing an initial guess χ1, and the iteration

continues as

χk+1 = Sα

(

χk − τζ
′
∗(χk)

[

ζ(χk)− Ediff
])

(6)

where τ is the step size, ζ ′(χ) is the gradient of nonlinear

function ζ(χ), and ζ
′
∗(χ) is the adjoint operator. Sα is the

soft shrinkage operator defined componentwise by [6]

(Sα(χ))i =

{

(|χi| − α)sign(χi), if |χi| > α

0, otherwise.
(7)

The term ζ
′
∗(χk)

[

ζ(χk) − Ediff
]

is the gradient of the

discrepancy 1
2

∥
∥ζ(χ)− Ediff

∥
∥
2
. The algorithm which has been

computed is shown in Algorithm.1.

Algorithm 1 Steepest descent reconstruction algorithm with

sparsity constraint

1: Initialize χ1 and α

2: for k = 1, · · · ,K do

3: Solve the direct problem Ediff
(
χk

)

4: Compute the gradient K ′
(
χk

)
= ∇χK (χ)|

χk

5: Smooth the gradient K ′

s

(
χk

)

6: Determine the step size τk
7: Update inhomogeneity by χk+1 = χk − τkK

′

s

(
χk

)

8: Threshold χk+1 by Sα

(
χk+1

)

9: check stopping criterion

10: end for

11: output approximate the minimizer of (5).

1) Gradient K ′

s: The main idea is to obtain the gradient

(Frechet derivative) of the whole discrepancy term by adjoint

method and avoid calculating ζ ′∗(χ). It is emerged in practice

that the gradient K ′(χ) has unnatural oscillating properties and

using smoother gradient can prevent these oscillations. This

process is also called denoising [7], [12], [13]. Therefore, we

look for a Sobolev smoothed gradient K ′

s(χ) by solving

K ′

s(χ)ζ = (δI − β∆)−1K ′(χ)ζ, (8)

where I refers to the identity, ∆ refers to the Laplacian

operator [15]. A proper choice of the weighting parameters

δ and β will allow us to drive the regularization properties

of our algorithm in an efficient and predictable way. For

theoretical justification we refer to [13].

2) Step Size Selection: Selecting the step size adaptively

can increase the convergence speed. Therefore, the step size

τ can be determined in order to fasten the algorithm. The

iterative soft shrinkage algorithm with a fixed step size favors

the classical Landweber method. Thus, the motivation for

increasing the rate of convergence is the comparison with the

classical Landweber iteration whose slow convergence results

from using a constant step size which is very small [4], [9].

Hence, we select the step size in a way to increase the con-

vergence speed where we consider only the steepest descent

operation χk − τK ′

s(χ
k) of the algorithm. The selection is
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done by the two-point rule of Barzilai and Borwein which

calculates the step size as [16]

τk =

〈
χk − χk−1,K ′

s

(
χk

)
−K ′

s

(
χk−1

)〉

〈K ′

s (χ
k)−K ′

s (χ
k−1) ,K ′

s (χ
k)−K ′

s (χ
k−1)〉

. (9)

In the implementation we use this step size as an initial guess

and it is decreased geometrically until the Armijo condition is

satisfied. Particularly, Armijo‘s line search satisfies

J
(
χk − τkK

′(χ)
)
≥ J(χk)− c1τk∇J(χ

k)K ′

s(χ), (10)

where c1 ∈ (0, 12 ) and K ′

s(χ) is the search direction such that

(10) is satisfied. This concludes that function values satisfy

the condition J(χk+1) ≤ J(χk) impose the monotonicity to

the sequence of functions generated by this scheme and this

scheme is globally convergent [17].

3) Priori Constraints: Imposing a-priori constraints can

improve the quality of solutions to the inverse problems

in a great portion [18]. Towards this end, non-negativity is

important in applications like imaging [6], [18]. We know

that in order to have a physical solution the unknowns we

are dealing with should have constraints, the latter being

ǫr(r) ≥ 1 and σ(r) ≥ 0. However, in the general case (as

embedded obstacle in half-space) those constraints do not

impose non-negativity to the real and imaginary parts of

the contrast function. We can consider the constraint by

“Projection” where at each iteration the following projection

ǫr(r) = max (ǫr(r), 1) and σ(r) = max (σ(r), 0) is applied.

Another constraint which can be applied is the way with

“Gradient” where two new real-valued unknowns κ and η

are introduced as εr(r) = 1 + κ2(r) and σ(r) = η2(r). The

gradient of the cost functional with respect to these two

real-valued unknowns being obtained through the classical

chain rule from the cost functional with respect to the

unknown complex-values χ(r).

4) Stopping Criteria: There are many ways to choose the

stopping criteria. One possible way is to check τ when falling

below a small positive constant. It can be interpreted as when

maximum absolute value of step size times search direction

goes below a small positive constant and this is the way that

we are using in our tests in this paper.

IV. NUMERICAL RESULTS

In the following the basis functions ψk have been chosen

as pixel-based. In our case the true value of the relative

permittivity of the object is 2 whereas it is 1 for embedding

medium. The scattering object which is dielectric square sided

λ (1m) under the test is contained in a l = 3 × λ-sided

square investigation area D centered at the origin, and the

discretization size is n × n = 36 × 36 for forward problem

and n × n = 18 × 18 in an inverse problem. The number of

transmitters and receivers located around the investigation area

are 29 as shown in fig.1. The frequency of the transmitters is

300MHz. The measured field samples are generated by adding

10 dB white Gaussian noise.
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Fig. 1: Measured configuration of actual permittivity profile

and source-receiver locations on (x(m), y(m)) axis.

One of the key point of such an inversion is the choice of the

regularization parameters α in (7) and β in (8) (δ being kept

constant and equal to 1). Different tests have been performed

in order to evaluate the sensitivity of the choice of those

parameters on the solution. A proper choice of the weighting

parameters α and β will allow us to drive the regularization

properties of our algorithm in an efficient and predictable way.

In order to achieve a reconstruction which is close to the real

case we make modifications which affect the parameters. At

first we consider the reconstruction as a function of α with

a constant β as in fig. 3. Secondly we examine the same

reconstruction with a constant α as a function of β as in fig. 2.

In the first case we observe a better reconstruction of the

real case by increasing the parameter α such as in figs. 4c

and 4d or in figs. 5c and 5d. The higher the value we choose

for α the sharper the reconstructions are. However, the choice

of α is not arbitrary as can be seen in fig. 3. The error in

permittivity gets bigger for larger α. We get a minimum error

when α is 2.5× 10−2. In the figs. 2 and 3 the relative error

norm is calculated as

εerr
r =

‖εrec
r − εr‖2
‖εr‖2

, (11)

whereas εrec
r is the reconstructed permittivity.

In the other case we would expect the inclusion to get

smoother when we increase β. However, in fig. 2 it can be

observed that there is no crucial differences when β is 1, 1.5

and 2.5 differently than 2. We should choose β carefully and

close to one in order not to lose the differentiability for the

next iteration. Using β as 1.5 shows that the reconstruction

becomes smoother as can be seen in figs. 4e and 5e compared

to the figures without any smoothness.

V. CONCLUSION

Soft iterative thresholding is used to solve the 2-D elec-

tromagnetic inverse scattering problem based on l1 norm

penalty term whereas sparsity is enforced by soft shrinkage

thresholding function. Retrieval of arbitrary shaped targets

from simulated data shows that this approach is effective and
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β = 1.5

Fig. 4: Retrieval of permittivity εr (top) and conductivity σ (bottom) using sparsity and smoothness without noise.
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Fig. 5: Retrieval of permittivity εr (top) and conductivity σ (bottom) using sparsity and smoothness with 10 dB noise data.
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