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Abstract—Speaker localization algorithms often assume static
location for all sensors. This assumption simplifies the models
used, since all acoustic transfer functions are linear time in-
variant. In many applications this assumption is not valid. In
this paper we address the localization challenge with moving
microphone arrays. We propose two algorithms to find the
speaker position. The first approach is a batch algorithm based
on the maximum likelihood criterion, optimized via expectation-
maximization iterations. The second approach is a particle filter
for sequential Bayesian estimation. The performance of both
approaches is evaluated and compared for simulated reverberant
audio data from a microphone array with two sensors.

I. INTRODUCTION

Localization using static sensors has been dealt with the-
oretically and practically for various signal processing ap-
plications including passive or active radio detection and
ranging (RADAR). Passive sonar using moving hydrophones
has been dealt for years [1]. In particular, approaches for
acoustic sensors deal with the specific challenges of rever-
beration, see, e.g., [2]–[5]. In general, most sound source
localization approaches in the literature utilize either time
of arrival (TOA) [6], time difference of arrivals (TDOAs) or
direction of arrivals (DOAs) as measurements of the source in
order to reconstruct the Cartesian source position. A common
assumption is that the acoustic sensor is stationary and that its
position is known. Nonetheless, spatial diversity of an acoustic
sensor installed on a moving platform could be exploited for
improved inference of the source position. Moving micro-
phone arrays are particularly suitable for the field of robot
audition [7], where microphone arrays can be installed in the
limbs and head of an autonomous robot.

The movement of microphone arrays is particularly useful
in situations where the sensor moves faster than the sources.
In this case, the displacement of the sensors over time can
be interpreted as a synthetic widening of the array aperture in
space. This interpretation was first implemented for synthetic
aperture radar (SAR) [8]. We implement this principle for
localizing the coordinates of a source with a single pair of
microphones.

∗The research leading to these results has received funding from the
European Unions Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 609465.

In this paper, we address the challenge of sound source
localization from a moving platform by considering and com-
paring two philosophically different approaches.

A maximum likelihood (ML) technique is presented that
iteratively estimates the source positions from a batch of mea-
surements. ML estimation procedures for localization [9], [10]
are usually characterized by high computational complexity
and by the nonexistence of closed-form solutions. The iterative
expectation-maximization (EM) [11] or recursive EM (REM)
procedures can be applied to maximize the likelihood instead.
The first version of the incremental distributed expectation-
maximization (IDEM) algorithm [12] solves a static localiza-
tion problem. In this paper it is used to incorporate a dynamic
problem.

In practice, applications such as robot audition often require
near real-time processing, such that sound sources must be
localized from short frames of audio data. We decided to
adapt a Bayesian technique to sequentially estimate the source
positions from on-line data. Bayesian estimation [3], [13] con-
siders not only the likelihood of the desired random variables,
but also incorporates prior information by modeling belief
about the dynamics of the sources. The posterior probability
density function (p.d.f.) is therefore maximized instead of
the likelihood. In this paper, the prior imposes the static
location of the source. The resulting Maximum a posteriori
(MAP) estimator can therefore be considered as a penalized
ML approach. In this paper, a particle filter is proposed for
sequential sound source localization.

For both approaches, we assume that only a single, static
source is localized and that the trajectory and positions of the
microphones are known a priori.

The remainder of this paper is organized as follows. The
general model of the problem is in Section II. A description
of the dynamic IDEM is given in Section III. The Bayesian
approach using a particle filter is presented in IV. Section V
is dedicated to simulation results. Conclusions are drawn in
Section VI.

II. SIGNAL MODEL

In the following section models for the source and sensor
dynamics are defined. Furthermore, the measurement model
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of the source is presented which will be used for the sound
source localization algorithms in Sections III and IV.

A. Stationary source dynamics

The source position, pt ,
[
xs(t), ys(t)

]T
, is defined as

the absolute two-dimensional Cartesian position of the source
within the room. In this paper, a static source is assumed, i.e.,

p0 = · · · = pt = p. (1)

B. Measurement model

The microphone array used in this paper consists of one
microphone pair with two-dimensional Cartesian positions,
pm(t) ,

[
xm(t), ym(t)

]T
for m = 1, 2, and where the

platform moves with speed, v(t). The localization procedure
starts with a pair-wise relative phase ratio (PRP) extraction [2]:

φ(t, k) ,
z2(t, k)|z1(t, k)|
z1(t, k)|z2(t, k)|

, (2)

where zm(t, k) is the short-time Fourier transform (STFT) of
the mth microphone signal. The time and frequency indices
are t = 1, . . . , T and k = 0, . . . ,K − 1, respectively.

These PRPs are induced by the TDOA, which can be defined
as:

τ(p,p1(t),p2(t)) ,
||p− p2(t)|| − ||p− p1(t)||

c
, (3)

where || · || denotes the Euclidean norm, and c is the sound
velocity.

We model the PRPs using a Gaussian mixture model
(GMM):

φ(t, k) ∼
∑
p

ψpN c
(
φ(t, k); φ̃k(p, t), σ2

)
, (4)

where ψp is the probability that the speaker emitting at time
t and frequency k is located at position p. N c(·; ·, ·) denotes
the complex-Gaussian p.d.f. with variance σ2. In our model,
the variance is fixed and chosen empirically. The mean of each
Gaussian can be calculated in advance on a grid of all possible
locations:

φ̃k(p, t) , exp

(
−j 2πkτ(p,p1(t),p2(t))

KTs

)
(5)

∀p ∈ P , where Ts denotes the sampling period and P being
the set of all possible locations.

III. THE EM LOCALIZATION ALGORITHM

Based on [14] an EM localization algorithm has been
suggested in [2] with a vector of PRP measurements. In [15]
IDEM has been presented for the same localization problem.
Following [15] and [2], we present an algorithm for the
moving microphones case.

A. Maximum likelihood for dynamic localization

The joint p.d.f. of the PRPs in (2), assuming independence
along time and frequency indexes, is given by:

f(Φ = φ;ψ) =
∏
t,k

∑
p

ψpN c
(
φ(t, k); φ̃k(p, t), σ2

)
, (6)

where ψ = vecp (ψp) and φ = vect,k (φ(t, k)).
The ML estimate of the source locations is given by:

ψ̂ = argmax
ψ

[log f(Φ = φ;ψ)

s.t.
∑
p∈P

ψp = 1 and 0 < ψp < 1]. (7)

B. Hidden variables

The hidden variables, y(t, k,p) are defined as the associ-
ation of each measurement with a source at position p. Let
y = vect,k,p (y(t, k,p)) be the vector concatenation of the
hidden variables. The p.d.f. of y is given by:

f(Y = y;ψ) =
∏
t,k

∑
p

ψpy (t, k,p) . (8)

Given the hidden variables, the p.d.f. of the observations is:

f(Φ = φ|y;ψ) =
∏
t,k

∑
p

y (t, k,p)

×N c
(
φ(t, k); φ̃k(p, t), σ2

)
. (9)

The p.d.f. of the complete data can be deduced from (8)-(9):

f(Φ = φ,Y = y;ψ) =
∏
t,k

∑
p

ψpy (t, k,p)

×N c
(
φ(t, k), φ̃k (p, t) , σ2

)
. (10)

C. The IDEM algorithm

The original IDEM algorithm is capable of detecting the
number of active sources (including the detection of no
activity) and their locations for static scenarios. The IDEM
is applied here for moving sensors. Thanks to the dynamics
of the sensors, we can use here only a single node.

The E-step can be stated as:

Q(ψ|ψ̂
(`−1)

) , E
{

log (f(Φ = φ,Y = y;ψ)) |φ; ψ̂
(`−1)}

(11)

=
∑
t,k,p

E
{
y(t, k,p)|φ(t, k); ψ̂

(`−1)}
·[

logψp + logN c(φ(t, k); φ̃k(p, t), σ2)
]
,

which, in our case, simplifies to:

υ(`) (t, k,p) , E
{
y (t, k,p) |φ(t, k); ψ̂

(`−1)}
(12)

=
ψ̂
(`−1)
p N c

(
φ(t, k); φ̃k (p, t) , σ2

)
∑

p′ ψ̂
(`−1)
p′ N c

(
φ(t, k); φ̃k (p′, t) , σ2

) .
The IDEM applies the E-step, followed by the M-step, as

summarized in Algorithm 1.
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Algorithm 1: Dynamic IDEM localization.

input z1(t, k), z2(t, k);.
Calculate φ(t, k) using (2).
set φ̃k(p, t) using (5).
init ψ̂(−1)

p to uniform p.d.f..
Calculate υ(0) (t, k,p) using (12).

Calculate their mean: ψ̂(0)
p =

∑
t,k υ

(0)(t,k,p)

T ·K .
for ` = 1 to L do

E-step
Calculate υ(`)(t, k,p) using (12).
M-step

Calculate ψ̂(`)
p =

∑
t,k υ

(`)(t,k,p)

T ·K .
end
output ψ̂(L)

p , υ(L)(t, k,p).

IV. BAYESIAN FILTER

As discussed in the previous section, ML estimation infers
knowledge about the source position from the observations
only (see (7)). As only knowledge about the measured data
is taken into account, ML estimators are based on purely
objective observations. Prior belief about the source position
can also be utilized when considering a Bayesian framework.

Under the Bayesian paradigm the desired source position,
p, is considered as a state. Estimates of p can hence be
obtained by construction of the posterior p.d.f. of the states,
ft(p|φ1:t), given the PRPs, φ1:t ,

[
φT1 , . . . ,φ

T
t

]T
where

φt ,
[
φ(t, 1), . . . , φ(t,K)

]T
which is related to the likeli-

hood, f(φt|p), via Bayes’s theorem:

ft(p|φ1:t) =
f(φt|p) ft|t−1(p|φ1:t−1)

f(φt)
, (13)

where the instantaneous likelihood, f
(
φt
∣∣p) is modelled

similar to (6) by assuming independence of PRPs in time and
frequency:

f
(
φt
∣∣p) =

K∏
k=1

N c
(
φ(t, k); φ̃k(p, t), σ2

)
, (14)

where σ2 is the measurement noise variance. Furthermore,
ft|t−1(p|φ1:t−1) in (13) is the predicted p.d.f. given by:

ft|t−1(p|φ1:t−1) =

∫
R2

f(p) ft−1(p|φ1:t−1)dp, (15)

where f(p) is the prior p.d.f. capturing the static nature of the
source and ft−1(p|φ1:t−1) is the posterior p.d.f. at time t−1.

To sequentially obtain the optimal value of p at each time, t,
MAP estimates can be evaluated by maximization with respect
to the variables of interest, i.e.,

p̂ , argmax
p

f(p|φ1:t). (16)

A. Sequential importance sampling

To impose real-valued source states despite the complex
observations, sequential importance sampling [16] is used in
this paper. The posterior at t− 1 is approximated by:

ft−1(p|φ1:t−1) =

Jt−1∑
j=1

w
(j)
t−1 δp̂(j) (p) , (17)

where δp̂(j) (p) denotes the Dirac measure of random variable,
p, centered on particle p̂(j). Inserting (17) into (15) yields:

ft|t−1(p|φ1:t−1) =

∫
R2

f(p)

Jt−1∑
j=1

w
(j)
t−1 δp̂(j) (p) dp (18)

In order to capture the static nature of the source whilst
modelling uncertainty in the particles, p̂(j), the prior, f(p),
is approximated by drawing P importance samples for each
particles, p̂(j), from the proposal distribution,

π
(
p|p̂(j)

)
= N

(
p; p̂(j), Q

)
(19)

where the covariance, Q, allows for deviations of the new
particles via (19), p̂(j,p), from the old particles, p̂(j).

Using (18) and (13), the posterior p.d.f. of the states, p, can
hence be expressed as

ft(p|φ1:t) =

Jt−1∑
j=1

P∑
p=1

w
(j,p)
t δp̂(j,p) (p) , (20)

with weights:

w
(j,p)
t = w̃

(j,p)
t

/
Jt−1∑
j=1

P∑
p=1

w̃
(j,p)
t , (21)

where the unnormalized weights, w̃(j,p)
t , are defined as:

w̃
(j,p)
t , w

(j)
t−1 f(φt|p̂(j,p)). (22)

The point estimate of the source position at each t is extracted
as the weighted average of the particles,

p̃ =
J∑
j=1

P∑
p=1

w
(j,p)
t p̂(j,p)

/
J∑
j=1

P∑
p=1

w
(j,p)
t . (23)

In order to avoid an explosion of the number of particles,
systematic resampling to Jmax particles is applied to the par-
ticle cloud,

{
p̂(j,p) : j = 1, . . . , J ; p = 1, . . . , P

}
, after each

recursion [17]. The Bayesian algorithm is summarised in
Algorithm 2.

V. SIMULATION STUDY AND PERFORMANCE MEASURES

A. Simulation setup

To evaluate the performance of the algorithms, audio data
was generated using the following simulation.

The origin of the microphone array, p0(t) =[
x0(t), y0(t)

]T
, is generated using a constant velocity

model where

p0(t) = F(t) p0(t− 1) + np(t), (24)
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Algorithm 2: Particle filter source tracker

Input PRPs,
{
φ̃k(p, t)

}K
k=1

for j = 1 to J do
for p = 1 to P do

Sample p̂(j,p) from (19)
Evaluate w̃(j,p)

t from (22)
end

end
Normalize weights, w(j,p)

t , from (21)
Re-sample p̂(j,p) [17]
Extract point estimate, p̃ (23)
Output Cartesian source position, p̃.

Fig. 1. Scenario of 6 × 6 × 2.5 m room, with source (black asterisk) at
(4, 4, 1.5) m and moving sensor with initial position at (2, 2, 1.5) m. The
colour code represents a continuum of colors from blue at t = 1 to green at
t = 100.

where np(t) ∼ N
(
02×1, Σ0(t)

)
is the process noise with

covariance, Σ0(t). The matrix F(t) captures the dynamic
model, defined in this paper as a constant velocity model given
by:

F(t) =

[
1 0 ∆T v(t) sin γ(t)
0 1 ∆T v(t) cos γ(t)

]
, (25)

where ∆T is the time delay between t − 1 and t, v(t) is the
velocity the moving platform, and where the array orientation,
γ(t), is given by the random walk:

γ(t) = γ(t− 1) + vγ(t), vγ(t) ∼ N
(

0, σ2
vγ (t)

)
. (26)

The microphone array elements are placed at r({1,2}) =[
±0.25, 0, 0

]T
relative to the array center, such that the

positions of microphone, m ∈ {1, 2}, is given by:

pm(t) = R−1(γt) rm + p0(t), (27)

Fig. 2. The estimated posterior p.d.f., where a black circle marks the true
source position.

where R(γt) is the rotation matrix, defined as:

R(γt) ,

[
cos(γt) − sin(γt)
sin(γt) cos(γt)

]
. (28)

Using (24) and (27), the trajectory of the microphone center in
(24) within a room of size 6× 6× 2.5 m3 was simulated with
the initial position at (2, 2, 1.5) m at a speed of 1 m/s with
orientation variance of σ2

vγ (t) = 0.1 rad2 and process noise
covariance, Σc = 10−9×I4. A single static source was placed
at (4, 4, 1.5) m. The scenario is shown in Fig. 1. Using the
room impulse response (RIR) generator in [18] the RIRs of
100 time steps at time delays of 0.2 s along the trajectory of
the microphone pair were simulated for a reverberation time of
0.3 s. The resulting RIRs were convolved with a 20 s speech
signal from a female speaker constructed from the TIMIT
database. For localization, the height of the microphones and
sources is assumed constant and known, such that the model
in Section II can be used.

The input of both algorithms is constructed by the STFT
with a rectangular window for each microphone. The results
are used to produce the PRPs as described in [2].

B. Results

We present here the results of the two proposed algorithms.
1) IDEM: The IDEM in Alg. 1 is evaluated for σ2 = 0.1.

The estimated posterior p.d.f. after 4 iterations is plotted in
Fig. 2. It can be seen that the position error is zero, when the
source is located on the grid. When it is not on the grid the
erro is dictated mainly by the grid resolution.

This algorithm is very accurate, but it assumes all samples
are used together. As an on-line approach, we have decided
to use the particle filter.

2) Particle filter: The particle filter in Alg. 2 is evaluated
for P = 100 particles for Q = 0.01I and with σ2 = 0.04 and
Jmax = 100. The filter is initialized by J0 = 500 particles that
are uniformly spread within the room region, with at least 1 m
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Fig. 3. Euclidean distance between the state estimates, p̃, and true source
positions, p for the particle filter.

distance from each of the four walls. The importance weights
are initialized to w(i)

0 = 1/J0, ∀i ∈ 1, . . . , J0.
The Euclidean distance between the true source position

and the point estimates of the source over time are plotted in
Fig. 3. The filter achieves its optimal estimation performance
of 5.8 cm at t = 38 when the sensor pair is steering
towards at a source-sensor distance of 1.5 m (see Fig. 1).
The performance degrades to up a Euclidean distance between
30 − 40 cm between t ∈ [60, 98] when the sensor is steering
away from the source.

VI. CONCLUSIONS

In this paper we addressed the challenge of source lo-
calization in a reverberant room using a single moving pair
of microphones. We adapt the SAR concept from the radio
frequency (RF) field. Reverberant audio data was simulated for
a microphone array with two sensors and the complex-valued
PRPs were extracted as measurements. Two approaches for
sound source localization using the PRPs were proposed.

The first approach is a ML approach implemented by an EM
algorithm, which processes all data as a batch. Localization
accuracy is dictated by the grid resolution. The static nature
of the source and the dynamics of the microphones enable
accurate results.

In order to facilitate sequential sound source localization
from on-line measurements, a particle filter was also proposed.
Particle filters are typically aimed at source tracking in highly
dynamic scenarios. In this paper, the approach was chosen in
order to ensure real-valued source position estimates from the
complex PRP measurements. Despite the static nature of the
source localization accuracy of up to 5.8 cm can be achieved.
Due to the sequential nature of the algorithm, this performance
was shown to be dependent on the path of the robot.

In this approach we have decided to compare two mod-
ified algorithms from different paradigms, as a first step of
addressing the challenge of source localization with a single
pair of microphones. Possible extensions include using REM

for on-line processing, solving uncertainty in robot trajectory
and tracking multiple moving sources.
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