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Ibrahim El Khalil Harrane, Rémi Flamary, Cédric Richard
University Nice Sophia Antipolis, France

Email: ibrahim.harrane@oca.eu, cedric.richard@unice.fr, remi.flamary@unice.fr

Abstract—Distributed optimization allows to address inference
problems in a decentralized manner over networks, where agents
can exchange information with their neighbors to improve their
local estimates. Privacy preservation has become an important
issue in many data mining applications. It aims at protecting the
privacy of individual data in order to prevent the disclosure of
sensitive information during the learning process. In this paper,
we derive a diffusion strategy of the LMS type to solve distributed
inference problems in the case where agents are also interested in
preserving the privacy of the local measurements. We carry out a
detailed mean and mean-square error analysis of the algorithm.
Simulations are provided to check the theoretical findings.

I. INTRODUCTION

Distributed adaptation over networks has become a chal-
lenging research area since recent years with the advent of
multi-agent networks. An accessible overview of recent results
in the field can be found in [1]–[5]. The interconnected nodes
continually learn and adapt, as well as perform preassigned
data mining tasks from observations collected by the dispersed
agents. Although centralized strategies can benefit more fully
from information collected throughout the network but stored
and processed at a fusion center, in many situations, distributed
strategies are more attractive to solve inference problems in a
collaborative manner. Some key characteristics of these strate-
gies are robustness, scalability and low-power consumption.
Among various strategies [6]–[8], diffusion LMS is an efficient
algorithm that is particularly attractive due to its enhanced
adaptation performance and low computational complexity [9].
Its variants and performance have been extensively studied in
the literature, under various scenarios [10]–[12].

Adaptive networks may, however, raise significant privacy
concerns about the observations that are collected and shared
by the agents. Privacy preservation has become an important
issue in data mining with the advent of social networks and
recommander systems [13]. In order to prevent the disclosure
of sensitive information during the learning process, privacy
preservation aims at protecting the individual data by making
their reconstruction difficult if impossible [14], [15].

Privacy preserving data mining techniques can be classified
according to the following five items [16]: (i) availability of
the data (centralized, distributed); (ii) sanitization procedure
applied to the data (encryption, corruption, etc.); (iii) learning
algorithm which the privacy preservation technique is designed
for; (iv) data type (raw data or aggregated data); (v) privacy
preservation technique used for the selective modification
of the data. It is important to note that data modification

results in degradation of the database performance. This paper
explores a sanitization procedure for privacy preservation over
adaptive networks that consists of corrupting local raw data.
Perturbation techniques include the use of additive noise to
preserve data privacy while making sure that information can
still be exploited by the data mining algorithm. Interestingly,
this principle was indirectly studied with diffusion LMS in the
case where the additive noise that corrupts the data is caused
by noisy transmission channels [1], [17]. Nevertheless, it was
demonstrated that in many cases, random additive distortion
preserves very little data privacy [18]. Efficient alternatives
that provide guarantees against privacy breaches via linear
transformations exploit multiplicative perturbations [19]–[21].
Finally, an important step in the design of privacy-preserving
algorithms is the identification of appropriate evaluation cri-
teria. Recently, ε-differential privacy has been recognized as
a meaningful criterion. It guaranties that presence or absence
of an individual in a database does not affect the output of a
data mining algorithm significantly. For what concerns us here,
this criterion was considered in an online learning setting with
random additive distortions [22] and in a distributed learning
setting from finite distributed datasets [23].

This paper is a first step towards deriving privacy-preserving
diffusion strategies to address distributed inference problems
in the case where agents are interested in preserving the
privacy of local measurements. We introduce a diffusion LMS
algorithm that corrupts the local measurements by multiplica-
tive noise at each agent while ensuring the convergence of
the algorithm to an unbiased solution. In Section II, the
privacy-preserving diffusion LMS algorithm is presented. We
analyze its convergence in the mean and mean-square sense
in Section III. Simulations are conducted in Section IV.

Notation: Boldface small letters denote vectors. All vectors
are column vectors. Boldface capital letters denote matrices.
The (k, `)-th entry of a matrix is denoted by (·)k`. The (k, `)-
th block of a block matrix is denoted by [ · ]k`. Matrix trace
is denoted by trace(·), and expectation is denoted by E{·}.
Identity matrix of size N is denoted by IN , and the all-one
vector of length N is denoted by 1N . We denote by Nk the
set of node indices in the neighborhood of node k, including
k itself, and |Nk| its cardinality. The operator col(·) stacks
its vector arguments on the top of each other to generate a
connected vector. The other symbols will be defined in the
context where they are used.
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II. PRIVACY-PRESERVING DIFFUSION LMS
We consider a connected network of N nodes. The problem

is to estimate an M × 1 unknown vector from collected
measurements. Each node k has access to temporal measure-
ment sequences {dk(i),uk,i}, with dk(i) denoting a reference
signal, and uk,i denoting an M × 1 regression vector with
covariance matrix Ru,k > 0. The data at node k are assumed
to be related via the linear regression model at time i:

dk(i) = u
>
k,iw

o + vk(i) (1)

where vk(i) is a zero-mean i.i.d. additive noise at node k.
Noise vk(i) is assumed to be independent of any other signal
and has variance σ2

v,k. Let Jk(w) be the mean-square-error
criterion at node k, namely,

Jk(w) = E|dk(i)− u>k,iw|2 (2)

Diffusion LMS strategies for distributed estimation ofwo were
derived in [24] by seeking the minimizer of the following
aggregate cost function:

min
w

Jglob(w) =

N∑
k=1

Jk(w) (3)

in a cooperative manner to improve estimation accuracy.

A. Diffusion LMS
The diffusion LMS algorithm was originally designed for

minimizing the cost function (3) in an adaptive and distributed
manner [1]. The general structure of the algorithm consists of
the following steps:

φk,i−1 =
∑
`∈Nk

a1,`kw`,i−1 (4)

ψk,i = φk,i−1 + µk

∑
`∈Nk

c`,ku`,i[d`(i)− u>`,iφk,i−1] (5)

wk,i =
∑
`∈Nk

a2,`kψ`,i (6)

The first and third steps are aggregation steps. Each node k
combines intermediate estimates of its neighbors. The second
step is an information exchange step where node k receives
of its neighbors their measurements {d`(i),u`,i}. Node k
combines this information and uses it to update its intermediate
estimate φk,i−1 to an intermediate value ψk,i. All other nodes
in the network are simultaneously performing a similar step.

The nonnegative coefficients a1,`k, a2,`k and c`k are the
(`, k)-th entries of two N × N left-stochastic matrices, A1

and A2, and a right-stochastic matrix C, namely,

A>1 1N = 1N , A>2 1N = 1N , C1N = 1N (7)

and

a1,`k = 0, a2,`k = 0, c`k = 0 if ` /∈ Nk (8)

Several adaptive strategies can be obtained as special cases
of (4)–(6) through appropriate selections of matrices A1, A2

and C. For instance, setting A1 = IN leads to the adapt-then-
combine (ATC) diffusion LMS. Setting A2 = IN yields the
combine-then-adapt (CTA) diffusion LMS.

B. Diffusion LMS with privacy-preserving capabilities

Privacy preservation has become an important issue in many
data mining applications. It aims at protecting the privacy of
individual data in order to prevent the disclosure of sensitive
information during the learning process. A possible strategy
is to use the data patterns locally without directly sharing
the original data, and to guarantee that the process does not
provide sufficient information to recover the original data.

This paper describes a privacy-preserving diffusion LMS
algorithm that corrupts the local measurements {d`(i),u`,i}
in (5) while ensuring the algorithm convergence towards an
unbiased estimate of the solution of problem (3). Without loss
of generality, and for the sake of simplicity, we shall assume
that A1 = A2 = IN . Diffusion LMS then reduces to:

wk,i = wk,i−1 − µk

∑
`∈Nk

c`k∇̂wJ`(wk,i−1) (9)

where ∇̂wJ`(wk,i−1) = −u`,i[d`(i)−u>`,iwk,i−1] denotes the
instantaneous approximation at time instant i of the gradient
vector ∇wJ`(w) evaluated at the point wk,i−1 by node `.
In [1], [17], an additive noise component is introduced into
each step of the diffusion strategy to model noisy links
between nodes. We shall not explore this strategy for privacy
protection even though it is frequently used. It has been
shown that in many situations the original data can be closely
estimated from perturbed data using spectral filtering [18],
[25]. In this paper, we propose to substitute ∇̂wJ`(wk,i−1)
in (9) by:

H`,i∇̂wJ`(wk,i−1) (10)

before that node ` sends this information to node k, with H`,i

an M ×M matrix defined as:

H`,i =X
>
`,iX`,i (11)

where X`,i is an Mx×M matrix. Each row of matrix X`,i is
independently drawn from an M -variate Gaussian distribution
with zero mean and covariance Rx,`. If Mx ≥ M , H`,i is
said to be drawn from a Wishart distribution with Mx degrees
of freedom and scale matrix Rx,`. Otherwise, if Mx < M ,
then the Wishart no longer has a proper density. It is a singular
distribution with values in a lower-dimension subspace of the
space of Mx ×Mx matrices.

Our motivations for exploring transformation (10) are two-
fold. Firstly, H`,i is a nonnegative matrix. Therefore, the con-
ditional expectation of (10) given H`,i and wk,i−1, namely,

E{H`,i∇̂wJ`(wk,i−1)|H`,i,wk,i−1}
=H`,i∇wJ`(wk,i−1)

(12)

is a descent direction [26] provided that ∇wJ`(wk,i−1) is
nonzero and does not lie in the null space of H`,i. Secondly,
the parameter Mx allows to fix the rank of H`,i. This allows
to balance the tradeoff between privacy, in the case whereH`,i

is rank-deficient, and convergence rate.
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III. PERFORMANCE ANALYSIS

In this section, we shall study the stochastic behavior of the
privacy-preserving diffusion LMS defined as:

wk,i = wk,i−1 + µk

∑
`∈Nk

c`kH`,iu`,i[d`(i)− u>`,iwk,i−1]

(13)
We first summarize some useful properties and assumptions.
For the sake of conciseness and simplicity, we shall consider
in this paper that Rx,` = σ2

xIM for all `.

A. Preliminary properties and assumptions

In order to analyze the algorithm, we need to recall the first
and second-order moments of H`,i. For clarity, we drop the
subscripts ` and i. We start by providing the mean of H:

E{H} =MxRx =Mxσ
2
xIM (14)

Consider now two independent matrices H1 and H2 drawn
from Wishart distributions with Mx degrees of freedom and
scale matrices Rx = σ2

xIM . We have:

cov{(H1)ij , (H2)k`} =M2
x σ

4
x δij δk` (15)

where δij stands for the Kronecker delta function. Finally, in
the case H =H1 =H2, by Isserlis’ theorem we have:

cov{(H)ij ,(H)k`}
=Mx σ

4
x

(
Mxδijδk` + δikδj` + δi`δjk

) (16)

Before proceeding with the analysis of the algorithm, let
us introduce the following assumptions.

Assumption 1 The regression vectors uk,i arise from
a zero-mean random process that is temporally white and
spatially independent.

Assumption 2 The rows of matrices X`,i arise from
zero-mean Gaussian processes that are temporally white,
mutually independent, and independent of any other process.

Under Assumption 1, uk,i is independent ofw`,j for i ≥ j and
for all `. This assumption is commonly used in the adaptive
filtering literature because it helps simplify the analysis. The
performance results obtained under this assumption match well
the actual performance of stand-alone filters for sufficiently
small step-sizes.

B. Error vector recursion

First of all, we introduce the M × 1 error vectors:

w̃i = w
o −wk,i (17)

and we collect them from across all nodes into the vectors:

w̃k,i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (18)

We also introduce:

M = diag{µ1IM , µ2IM , . . . , µNIM} (19)

Ri = diag

{∑
`∈N1

c`1u`,iu
>
`,i, . . . ,

∑
`∈NN

c`Nu`,iu
>
`,i

}
(20)

Hi = diag{H1,i,H2,i, . . . ,HN,i} (21)
C = C ⊗ IM (22)

Using the definitions (18), (17) and the recursion (13) we get:

w̃i = Biw̃i−1 − Gisi (23)

where

Bi = INM −MHiRi (24)

Gi = MHiC> (25)
si = col{u1,iv1(i),u2,iv2(i), . . . ,uN,ivN (i)} (26)

C. Convergence in the mean

Taking expectation of both sides of recursion (23), using
Assumptions 1 and 2, and E{si} = 0, we find that:

E{w̃i} =
(
INM −ME{HiRi}

)
E{w̃i−1}

=
(
INM −MHR

)
E{w̃i−1} (27)

where

H = E{Hi} = diag(H1, . . . ,HN ) (28)
R = E{Ri} = diag(Ru,1, . . . ,Ru,N ) (29)

Let us now evaluate H. Since it is a block diagonal matrix,
we can use the result (14) from the previous section:

H = E{Hi} =Mx σ
2
x INM (30)

From (27), the algorithm asymptotically converges in the
mean to wo if and only if matrix (INM −MHR) is stable,
meaning that all its eigenvalues lie strictly inside the unit
disc. This leads to the following condition on the step-size
parameters µ`:

µ` <
2

λmax(Mx σ2
xRu,`)

(31)

where λmax(·) stands for the maximum eigenvalue of its
matrix argument [2].

D. Mean-square stability

To analyze the mean-square-error stability, we evaluate the
weighted mean-square deviation E‖w̃‖2Σ where Σ denotes a
nonnegative definite matrix with M ×M block entries [Σ]k`.
The freedom in selecting Σ allows us to extract various types
of information about the network. From relation (23) and using
independence assumptions, we get:

E‖w̃i‖2Σ = E{w̃>i−1B
>
i ΣBiw̃i−1}+E{s>i G

>
i ΣGisi} (32)

Observe that the analysis of (32) is not a direct extension of
the analysis of the diffusion LMS algorithm because of the
presence of the stochastic matrix Hi.
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Let us evaluate the last term in the right-hand side of (32).
We introduce the following notations:

Ki = CH>i MΣMHiC> (33)

The last expectation of (32) is given by:

E{s>i Kisi} = trace
(
E{s>i Kisi}

)
(34)

= trace
(
E{Ki}E{sis>i }

)
(35)

= trace
(
E{Ki}S

)
(36)

with
S = diag(σ2

v,1Ru,1, . . . , σ
2
v,NRu,N ) (37)

To evaluate E{Ki}, we consider E{H>i MΣMHi} because
the matrix C is constant. Its (k, `)-th block is given by:

E{[H>i MΣMHi]k`} = µkµ` E{Hk,i[Σ]k`H`,i} (38)

since Hi is a block diagonal matrix, see (21). In this expres-
sion, [·]k` denotes the (k, `)-th block of its matrix argument.
We start by expanding the matrix product:

E{(Hk,i[Σ]k`H`,i)pq}

=

M∑
m=1

M∑
n=1

([Σ]k`)mn E{(Hk,i)pm(H`,i)nq}
(39)

Let us now evaluate the expectation on the right-hand side. We
have to consider the two cases (k 6= `) and (k = `) separately.
If k 6= `, we obtain from (15):

E{[H>i MΣMHi]k`} = µkµ`M
2
x σ

4
x [Σ]k` (40)

If k = `, we obtain from (16):

E{[H>i MΣMHi]kk}

= µ2
kMx σ

4
x

(
(Mx + 1)[Σ]kk + trace([Σ]kk)IM

) (41)

We denote E{Ki} by K. The (k, `)-th block of the argument
of the trace operator in (36) reduces to:

[KS]k` = σ2
v,`[K]k`Ru,` (42)

since S is a block diagonal matrix. We conclude that the last
expectation in the right-hand side of (32) is given by:

E{s>i Ksi} (43)

=
N∑

k,`,m=1

cmk cm` σ
2
v,m trace

(
E{[H>i MΣMHi]k`}Ru,m

)
where the expectation is given by (40)–(41). This expression
can be simplified making further assumptions. For example, if
the matrix Σ is block diagonal, it becomes:

E{s>i Ksi}

=
N∑

k,`=1

c2k` σ
2
v,k trace

(
E{[H>i MΣMHi]``}Ru,k

) (44)

where the expectation is given by (41). With regards to the
first expectation on the right-hand side of (32), we have:

E(w̃>i−1B
>
i ΣBiw̃i−1) = E‖w̃i−1‖2Σ′ (45)

where we introduced the weighting matrix

Σ′ = E(B>i ΣBi)

= Σ−ΣMHR−R>H>MΣ +O(M2) (46)

where
O(M2) = E{R>i H

>
i MΣMHiRi} (47)

The above expectation depends on higher order moments of
the regression data, which makes its calculation complicated.
Following [1], we focus on the case of sufficiently small step
sizes {µk} where the effect of terms involving higher powers
of the step-sizes can be ignored. A reasonable approximation
for O(M2) for sufficiently small step sizes is:

O(M2) = R>E{H>i MΣMHi}R (48)

where the expectation on the right-hand side was calculated
earlier in (38)–(41).

We studied the steady-state of the privacy-preserving dif-
fusion LMS. Due to the lack of space, we shall not be able
to present this analysis here. The reader will notice that the
simulations confirm the steady-state model accuracy.

IV. SIMULATION RESULTS

We shall now conduct simulations on a simple network to il-
lustrate the proposed algorithm and the analytical performance
model. We considered a connected network consisting of 10
nodes. The optimal parameter vector wo of length L = 5
was randomly selected from a zero-mean Gaussian distribution
with covariance I5. The regression inputs uk,i were zero-
mean random vectors drawn from a Gaussian distribution with
covariance Ru,k = I5 in the first experiment, and

Ru,k =


1 a a2 a3 a4

a 1 a a2 a3

a2 a 1 a a2

a3 a2 a 1 a
a4 a3 a2 a 1

 (49)

in the second experiment with a = 0.3. The background
noises vk(i) were i.i.d. zero-mean Gaussian random variables
of variance σ2

v,k = 10−3, independent of any other signals.
The matrix C was generated using the Metropolis rule [1].
The combination matrices A1 and A2 were set to the identity
for all the algorithms. The step-sizes were set to µk = 5·10−5.
We set the parameter σ2

x =
√
1/Mx so as to keep the same

convergence rate for all methods.
The simulation results were obtained by averaging 100

Monte-Carlo runs. It can be observed in Figure 1 that the
models accurately match the simulated results. First, we
compared the privacy-preserving diffusion LMS in the case
Mx = 1 (rank-one H`,i) and Mx = 5 (full-rank H`,i),
with the diffusion LMS algorithm. The results are reported
in Figure 1(left). As expected, the diffusion LMS algorithm
outperformed its privacy-preserving counterparts. Next, we
studied the influence of Mx on the performance of the privacy-
preserving diffusion LMS. Figure 1 (middle) shows that the
performance increases with Mx. Note that as Mx increases, the
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Fig. 1: (left) Performance comparison between diffusion LMS and privacy-preserving diffusion LMS algorithm for i.i.d.
regression data. (middle) Evolution of the MSD of privacy-preserving diffusion LMS when Mx varies from 1 to 20. (right)
Performance comparison between diffusion LMS and privacy preserving diffusion LMS algorithm for correlated input data.

transformation matricesH`,i converge to IL and the algorithm
degenerates to diffusion LMS and loose its privacy-preserving
property. On the contrary, small parameter values Mx < M
lead to low-rank transformations that ensure privacy. Finally,
in Figure 1 (right), we report the performance obtained for
correlated input data, and confirms the models accuracy.

V. CONCLUSION

Privacy preservation has become an important issue in many
data mining applications, in particular when agents exchange
information over a network to address learning problems in a
decentralized manner. In this paper, we introduced a diffusion
strategy of the LMS type to solve distributed inference prob-
lems in the case where agents are also interested in preserving
the privacy of local measurements. We carried out a detailed
analysis of the stochastic behavior of the algorithm in the mean
and mean-square error sense. Simulations were provided to
check the theoretical findings and confirm the effectiveness of
the proposed method. In a future work, we shall provide an
analysis of the ε-differential privacy of this algorithm.
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