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Abstract—In many applications the pulse duration of a peri-
odic pulse signal is the parameter of interest. Thereby, the non-
band-limited pulse signal is sampled during a finite observation
period yielding to aliasing and windowing effects, respectively.
In this work, the pulse duration estimation based on the mean
value of the samples is considered, and an exact expression of the
mean squared estimation error (averaged over all possible time
shifts) is derived. The resulting mean squared error expression
depends on the observation period, the pulse period and the pulse
duration. Analyzing the effect of these parameters shows that the
mean squared error can be reduced (i) if the observation period
is a multiple of the pulse period, (ii) if the pulse period is not
a multiple of the sampling period, and (iii) if the total number
of samples is a prime number. All results were validated with
simulation results.

Index Terms—sampling process, band width, signal reconstruc-
tion, sampling error, wireless sensor networks (WSN), synchro-
nization, localization, ultrasonic.

I. INTRODUCTION

Following the established sampling theory, band-limited
signals can be perfectly reconstructed from a set of samples
that are collected with a sampling frequency larger than the
double occupied bandwidth [1], [2]. However, this is only true
if the signal is sampled during its infinitely long duration.
In practical applications neither an infinite observation time
can be achieved, nor the underlying signals are band-limited
(e.g., discrete valued and continuous-time signals are not band-
limited).

Consider time-duration measurements in periodic signals.
For example, in ultrasonic reflection measurements for ranging
[3], [4], pulses are emitted periodically, and a device counts
the number of clock cycles between the emission of the pulse
and the reception of the reflection. This setting corresponds to
the sampling of a rectangular pulse signal, that is high between
emission and reception, and low until the next emission. The
pulse duration, i.e., the time that the pulse is on high, is used to
determine the range. Another example is round-trip time (RTT)
based clock synchronization for which clocks are modeled
with discrete events. The corresponding RTT measurements
are samples of a pulse function. In that scenario, the pulse
duration is related to the propagation delay and the clock offset
between two communication nodes [5], [6].

The two examples mentioned use a pulse shaped signal to
determine key system parameters. Thereby, both conditions of

the sampling theorem are violated, the bandwidth of the signal
is infinite and the observation period is limited. Although the
signals are considered as noise free, sampling and aliasing
distorts the signal reconstruction. In this work the question
is raised how accurately signal parameters can be estimated
from non band-limited signals with a finite number of samples.
Previous contributions have already derived upper bounds
on the squared error [7]. Here, for the function space of
sampled pulse signals, an exact formulation of the averaged
squared error on the estimation of the pulse duration is derived.
Moreover, the error analysis gives rise to the following design
suggestions in technical systems:
• Predicting the estimation accuracy for a given number of

samples in a given observation period;
• Selecting the number of pulse signal periods (i.e., the

total observation period) to achieve a desired estimation
accuracy.

• Selecting the number of samples to achieve the minimum
estimation error for a given sampling period and obser-
vation period.

II. PRELIMINARIES

Sampling is the obvious starting point in all discrete signal
processing applications that have a relation to real world
processes. In the following, signals x(t) are considered that
are integrable in the sense of Lebesgue, i.e.,

L1(R) =

{
x(t)

∣∣∣∣ ∫ ∞
−∞
| x(t) | dt <∞

}
. (1)

Sampling x(t) with a period T yields the sampled signal

xs(n) ∈
{
x(nT )

∣∣∣n ∈ Z ∧ T =
1

2B
∧ B <∞

}
. (2)

To reconstruct x(t), the samples xs(n) are interpolated, i.e.,

xi(t) =
∞∑

n=−∞
xs(n)

sin(2πB(t− nT ))

π(t− nT )
, (3)

is the interpolated signal. As commonly known [1], [2]

xi(t) ≡ x(t) , (4)

if and only if x(t) is band-limited by B = [−B,B[.
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A. Signals of interest

In this work, the rectangular pulse function

x(t) =
∞∑

l=−∞

rect
(
t− l P − φ

D

)
(5)

with t, P, φ ∈ R , 0 < D < P and l ∈ Z are considered. The
signal period P is considered to be a fixed parameter, and the
time shift φ and the pulse duration D are considered to be
uniformly distributed variables on the mentioned support. The
considered signal is a low-pass signal, and since it is periodic
in P , it is wide-sense cyclo stationary and ergodic.

Note that x(t) in (5) is discrete valued and hence not band-
limited. The condition (4) can not be achieved due to aliasing
induced by the sampling process.

B. Bounds on the Aliasing Error of Aribtrary Functions

The aliasing error is the difference between the original sig-
nal x(t) and the interpolated signal xi(t), i.e., |x(t)−xi(t)|. In
[7] a upper bound is derived for sampling of one dimensional
low-pass and band-pass signals. The analysis was extended to
multidimensional signals in [8] yielding similar results. For
one-dimensional signals, the main finding is that the aliasing
error is bounded by the out-of-band signal contribution (cf.
[9], [10]) with

|x(t)− xi(t)| ≤ 2

∫
R\B

|X(f)|df , (6)

where X(f) is the spectral representation of x(t), and where
the band B depends on the sampling period in (2).

While the formulation in (6) provides an upper bound on
the aliasing error of arbitrary signals, this work focuses on
pulse-shaped signals as in (5). Hence, although P and φ are
unknown, the general shape (e.g., its discrete amplitude) is
known and can be interpreted as prior knowledge.

The aim of this work is to derive an exact formulation
of the reconstruction error similar to (6). Thereby, first the
frequency domain representation of the periodic infinite time-
continuous time signal (5) is derived, and then the frequency
representation of the sampled version of this signal. Finally,
a rectangular windowing function is included to account for a
finite observation period.

C. Time and Frequency Domain Pulse Signal Representation

The signal of (5) is an even function with a time shift φ
and can be represented by the Fourier coefficients for k ≥ 1
and for k = 0, respectively,

ak =
2

kπ
sin

(
πkD

P

)
, and a0 =

D

P
. (7)

Hence, (5) can be rewritten as

x(t) = a0 +
∞∑
k=1

ak cos

(
2πk

P
(t− φ)

)
=

=
D

P
+
∞∑
k=1

2

kπ
sin

(
πkD

P

)
cos

(
2πk

P
(t− φ)

)
(8)

and the corresponding frequency domain representation is
given by

X(f) =
D

P
δ(2πf)+

∞∑
k=−∞

2

kπ
sin

(
πkD

P

)
δ

(
2πf−k 2π

P

)
ej

2πkφ
P . (9)

D. Frequency Domain Representation of Sampled Pulse Sig-
nals

In this section the sampling of the non-time-limited signal
x(t) in (8) is considered. In contrast to [11], the considered
periodic pulse functions are unbounded in frequency domain.
Nevertheless, it is required that the pulse period P has to be at
least twice the sampling period P ≥ 2T . Due to sampling, all
out-of-band components of X(f) are folded into B according
to the Poisson sum formula [10], [12], [13]

Xs(f) =
1

T

∞∑
m=−∞

X

(
f −m 1

T

)
, (10)

where Xs(f) is the spectral representation of xs(n). Note that
Xs(f) is periodic in f with a periodicity of 1/T . Hence, in
the following Xs(f) will only be considered for f ∈ B with
B = [−B,B[ and B = 1/2T .
X(f) from (9) can be plugged into (10) yielding

Xs(f) =
1

T

∞∑
m=−∞

D

P
δ

(
2πf−m2π

T

)
+

1

T

∞∑
m=−∞

∞∑
k=−∞

2

kπ
sin

(
πkD

P

)
δ

(
2πf−m2π

T
−k 2π

P

)
ej

2πkφ
P ,

(11)

for f ∈ B. The first delta-dirac function is non-equal to zero in
B only if f = 0 and m = 0. The second delta-dirac function
is non-equal to zero if

f = m
1

T
+ k

1

P
, for f ∈ B . (12)

For each k, there exists exactly one m that fulfills (12).
Defining the round modulo function [14] with

� : R× (R \ {0})→ R , (r, p) 7→ r � p := r−
⌊
r

p
+ 0.5

⌋
p ,

(13)
where b·c denotes the rounding to the next lower integer,
allows to rewrite (12) as a function of k only, with

fk =

(
m

1

T
+ k

1

P

)
�
(

1

T

)
=

(
k

1

P

)
�
(

1

T

)
. (14)

Finally, (11) can be rewritten to

Xs(f) =
D

PT
δ(2πf)

+

∞∑
k=−∞\0

2

kπT
sin

(
πkD

P

)
δ (2π(f − fk)) ej2πfkφ . (15)

The sampled time-domain signal for arbitrary φ is finally
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obtained analogue to (8) with

xs(n) =
D

PT
+
∞∑
k=1

2

kπT
sin

(
πkD

P

)
cos (2πfk(nT − φ)) .

(16)

The sampled signal representation of xs(n) in (16) includes
all aliasing components due to sampling. It will be the starting
point for considering a limited observation period in the
following section.

E. Finite Observation Period
To include a finite observation period N T in the frequency

domain representation of Xs(f) in (15), we consider a
non-causal rectangular window yielding

Xs(f) =

bN−1
2 c∑

n=−bN2 c
xs(n) e−j2πfnT , (17)

with xs(n) from (16) for arbitrary φ. Because of its linearity,
we can transform each ak weighted term of the Fourier series
of (16) separately

Xs(f) =

∞∑
k=0

akX
fk
s (f) . (18)

The finite discrete Fourier transform of each cosine function
of (16) can be written by

Xfk
s (f) =

bN−1
2 c∑

n=−bN2 c
cos(2πfk(nT − φ)) e−j2πfnT

= e−j(2πfkφ) sin(πNT (f − fk))

2 sin(πT (f − fk))
, (19)

where the simplification from the first to the second line ap-
plies the generalized formula of the geometric series. Finally,
the frequency domain representation for f ∈ B of the sampled
pulse signal with finite observation period NT is

Xs(f) =
D

PT

sin(πNT (f))

sin(πT (f))

+
∞∑

k=−∞\0

e−j(2πfkφ) sin

(
πkD

P

)
sin(πNT (f − fk))

kπT sin(πT (f − fk))
.

(20)

III. ESTIMATION ERROR OF THE PULSE DURATION

The pulse duration D determines the mean value of the
periodic time-continous signal x(t) in (5), and appears in
X(f = 0) = D/P in (9). A natural choice of estimating
D is using the mean value1 of the sampled signal. Hence,
the estimation error can be characterized by the influence of
aliasing and windowing on Xs(0). l’Hospital’s rule yields

Xs(0) =
D

PT
N

+
∞∑

k=−∞\0

e−j(2πfkφ) sin

(
πkD

P

)
sin(πNTfk)

Tkπ sin(πTfk)
. (21)

1Based on the binary nature of the observed process this estimator is
equivalent to an implementation of a nonlinear edge detector .

The estimator of the pulse duration can be written by

D̂(D,φ;N,P ) =
PT

N
Xs(0). (22)

A. Mean Square Estimation Error
Considering (22) and (21), the estimation error eD as a

function of the random variables D, φ and the fixed parameters
N , P , is given by

eD(D,φ;N,P ) = D − D̂(D,φ;N,P ) (23)

=
P

N

∞∑
k=−∞\0

e−j(2πfkφ) sin

(
πkD

P

)
sin(πNTfk)

kπ sin(πTfk)

=
∞∑

k=−∞\0

cke
−j(2πfkφ) , (24)

with
ck =

P

N
sin

(
πkD

P

)
sin(πNTfk)

kπ sin(πTfk)
. (25)

Note that (24) has the structure of a discrete Fourier transform
with the coefficients ck. Note that ck only depends on Tfk.
Using the round modulo definition (13),

Tfk = k
T

P
−
⌊
kT

P
+ 0.5

⌋
= k

T

P
− v(k)

with v(k) =
⌊
kT
P + 0.5

⌋
∈ Z. The coefficients ck in (25) can

be simplified to

ck =
P

N
sin

(
πkD

P

)
(−1)(N−1)v(k) sin(πNk TP )

kπ sin(πk TP )
. (26)

To characterize the error independent of φ, the mean square
error with respect to φ is evaluated. Due to the ergodic and
wide-sense cyclo-stationary signal in (5), the expectation can
be evaluated with Φ = mP and Φ→∞ to

e2
D(N) = E{|eD(D,φ;N,P )|2}

= lim
Φ→∞

1

Φ

Φ
2∫

−Φ
2

|eD(D,φ;N,P )|2dφ

= lim
Φ→∞

1

Φ

Φ/2∫
−Φ/2

∣∣∣∣∣
∞∑

k=−∞\0

cke
−j(2πfkφ)

∣∣∣∣∣
2

dφ

=
∞∑

k=−∞\0

|ck|2 (27)

=
∞∑

k=−∞\0

P 2

N2
sin2

(
πkD

P

)
sin2(πNk TP )

(kπ)2 sin2(πk TP )
, (28)

where the simplification from the third to the fourth line is
possible since the integration limits tend to infinity. The mean
squared error on the estimation of the pulse duration D, i.e.,
e2
D(N) is exactly characterized by (28). It is averaged over all

possible time shifts φ, and it depends on the pulse period P ,
the number of samples N , and the sampling period T . In the
following, special cases on the relation of the parameters P ,
N and T are discussed.
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e2
D(N)

/
e2

Fig. 1. Mean square error of duty cycle estimation depending on the
observation length NT . The value T = 25/501 = 0.0499 . . . was selected
to guarantee that mP 6= NT and nT 6= P . The error is decaying slowly
to 0.1 of the quantization error at an observation interval of about 20 signal
periods. The (∗) indicate the simulation results.

IV. DISCUSSION ON THE PARAMETER RELATION

By observing (28), one finds in the squared sine in the
enumerator the relation NT/P , and in the squared sine in
the denominator T/P . If NT = mP with m ∈ N+, i.e., the
observation period is a multiple of the pulse period, some
coefficients in (28) will be zero. If the pulse period is a
multiple of the sampling period, i.e., P = nT with n ∈ N+,
the enumerator and the denominator of some coefficients will
tend to zero. In the following, four different cases on the
relation of NT to mP and of nT to P are discussed.

The discussion on the parameter selection plays a key role in
applications, e.g. the number of repeated pulses for ultrasonic
distance measures and the sample frequency used to measure
the time to incoming reflections. Both parameters are easy to
determine and we can achieve higher estimation performance
by optimized parameter relations.

In the following analysis, the pulse period is normalized to
one second, i.e. P = 1 s, and the mean squared estimation
error is normalized to the quantization error induced by T ,
i.e. e2

D(N)/e2 with e2 = T 2/12 [15]. The normalized error
is compared with simulation results using 4000 realizations.

A. Parameter: mP 6= NT and nT 6= P

For the given parameter setting, Fig. 1 depicts the normal-
ized error following the derived analytical expression (28),
indicated by the solid line, and simulation results, indicated
by the (∗) markers. Both results show the same behavior.
Local minima can be observed whenever the NT is close to
a multiple of the pulse period P . In contrast, local maxima
can be observed in between. An evident conclusion is to use
NT = mP as observation length to have the lowest estimation
error. This case will be considered in the following section.

B. Parameter: mP = NT and nT 6= P

Considering NT = mP , the coefficients ck in (28) can be
rewritten to

|ck|2 =
T 2

m2
sin2

(
πkmD

NT

)
sin2(πkm)

k2π2 sin2(πkmN )
(29)

where the numerator is equal to zero. It is obvious, that also
the denominator is zero for some k ∈ Z, i.e., if

k =
vN

m
, (30)

0 1 5 10 15 20
10−2

100

NT
P

e2
D(N)

/
e2

Fig. 2. Plot of the mean square error of duty cycle estimation over NT with
T = 5/107 = 0.04672 . . .. The values for mP = NT and nT 6= P are
indicated by (o). The error is decaying to 0.01 of the quantization error at an
observation interval of about 5 signal periods due to the prime number N .
The (∗) indicate the simulation results.

with v ∈ N+. For those k ∈ Z, the coefficients ck will not be
equal to zero. Note that if N is a prime number, v must be
a multiple of m and only a minimum number of coefficients
ck exists for which numerator and denominator tend to zero.
Hence, for N is a prime number, the minimum mean squared
estimation error e2

D(N) is expected.
Applying de l’Hoptials rule to the non-zero ck coefficients,

i.e. for kT → mP , yields

lim
kT→mP

|ck|2 =
P 2

N2
sin2

(
πkD

P

)
N2

k2π2
(31)

which results for k = imN in

e2
D(N)

∣∣∣∣∣
N=mP

T

=
∞∑
i=1

2T 2

(imπ)2
sin2

(
πimD

T

)
. (32)

In Fig. 2, the analytical estimation error (solid line) and the
simulated estimation error (∗) for mP 6= NT , and the special
cases for mP = NT (o) are depicted. Interestingly, the
minimum value of the mean square error, i.e., for mP = NT ,
is constant also for multiples of fN , f ∈ N+. It can be
concluded that (30) holds also for f multiples of N and leads
to the same set of ck. Therefore, increasing the observation
period does not improve the estimation accuracy, because there
is no dependence on N in (32).

C. Parameter: mP = NT and nT = P

In some practical scenarios (e.g., the ultrasonic range mea-
surement in [3]), the pulse period is equal to a multiple of the
sampling period, and the observation period is a multiple of
the pulse period. Reformulating mP = NT to N = mP/T ,
i.e. N is a multiple of the pulse period due to T = P/n, and
using (30) yields k = vP/T ∈ N+. As (31) holds also for
nT → P it can be simplified to ck not depending on N and
used in (27) to

e2
D(N) =

∞∑
v=1

2T 2

π2v2
sin2

(
πvD

T

)
. (33)

In Fig. 3, the (o) marker indicate the analytical results for
mP = NT and nT = P . The solid line and the (∗) marks
in between indicate the analytical results and the simulation
results, respectively, for mP 6= NT and nT = P . It can
be observed, that for nT = P , setting mP = NT yields
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Fig. 3. Plot of the mean square error of duty cycle estimation over NT with
T = 0.01. The values for mP = NT (o), mP 6= NT (-) and nT = P are
plotted. The error is not decaying beyond 2 times the standard quantization
error. The (∗) indicate the simulation results.

the minimum estimation error. However, this error is constant
regardless how many pulse periods are observed, and it is 200
times larger than the error obtained by setting nT 6= P .

D. Parameter: mP 6= NT and nT = P

In Fig. 3 it could be observed that this parameter setting
yields the highest mean squared error of all compared settings.
It remains to find an analytical expression of the error. For
the special setting of mP 6= NT and nT = P , the sum
in (28) consists of two types of factors: those that can be
directly computed, i.e., k 6= vP/T ; and those that require the
application of de l’Hospital’s rule. The latter is for k = vP/T .
Finally, the analytical formulation of the mean squared error
is

e2
D(N) =

∞∑
v=1

2T 2

π2v2
sin2

(
πvD

T

)
+

∞∑
k=−∞\0∧k 6=v PT

P 2

N2
sin2

(
πkD

P

)
sin2(πNk TP )

(kπ)2 sin2(πk TP )
. (34)

The comparison of the analytical and the numerical results in
Fig. 3 indicate the correctness of (34).

V. CONCLUSION

For sampled periodic pulse signals with finite observation
period, an exact formulation of the mean squared error for
estimating the pulse duration was derived. The resulting error
formulation depends on the observation time, the pulse period
and the pulse duration. As certain relations of these parameters
prevent a direct evaluation of the mean squared error, exact
expressions for these specific settings were presented using de
l’Hospital’s rule. The error formulations were validated with
simulation results. A discussion on the parameter relations
revealed that a minimum mean squared error is achieved if
a full number of pulse periods is covered by the observation
time, and if the number of used samples is equal to a

prime number. For such system settings, an increase of the
observation time can not improve the estimation accuracy.
Moreover, it could be seen that technical systems, where the
pulse period is a multiple sampling period have significant
inferior performance. Both results are counterintuitive and may
have an important impact to design systems.

ACKNOWLEDGMENT

The research from DEWI project (www.dewi-project.eu)
leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreement
no 621353 and the Austrian Research Promotion Agency
(FFG) under grant no. 842547.

REFERENCES

[1] E. T. Whittaker, “On the functions which are represented by the
expansions of the interpolation-theory,” Proceedings of the Royal Society
of Edinburgh, vol. 35, pp. 181–194, 1 1915.

[2] C. Shannon, “Communication in the presence of noise (reprint of classic
paper),” Proceedings of the IEEE, vol. 86, no. 2, pp. 447–457, Feb 1998.

[3] M. Scherhaufl, R. Pfeil, M. Pichler, and A. Berger, “A novel ultrasonic
indoor localization system with simultaneous estimation of position and
velocity,” in Wireless Sensors and Sensor Networks (WiSNet), 2012 IEEE
Topical Conference on, Jan 2012, pp. 21–24.

[4] L. Smith, B. Bomar, and B. Whitehead, “Measuring the level of liquid in
a partially-filled pipe via the ultrasonic pulse-echo method using acoustic
modeling,” in Systems Engineering (ICSEng), 2011 21st International
Conference on, Aug 2011, pp. 292–296.

[5] B. Etzlinger, N. Palaoro, and A. Springer, “Synchronization and delay
estimation with sub-tick resolution,” in Proc. Asilomar Conf. Sig., Syst.,
Comput., Pacific Grove, CA, Nov. 2015.

[6] H.-P. Bernhard, A. Berger, and A. Springer, “Analysis of delta-sigma-
synchronization in wireless sensor nodes,” in Industrial Informatics
(INDIN), 2015 IEEE 13th International Conference on, July 2015, pp.
914–918.

[7] L. J. Brown, Jr., “On the error in reconstructing a non-bandlimited
function by means of the bandpass sampling theorem,” Journal of
Mathematical Analysis and Applications, vol. 18, pp. pp. 75–84, 1967.

[8] J. R. Higgins, Numerical Functional Analysis and Optimization, vol. 12,
no. 3-4, pp. 327–337, 1991.

[9] P. L. Butzer and R. L. Stens, “Sampling theory for not necessarily
band-limited functions: A historical overview,” SIAM Review, vol. 34,
no. 1, pp. pp. 40–53, 1992. [Online]. Available: http://www.jstor.org/
stable/2132784

[10] J. Brown, J.L., “Estimation of energy aliasing error for nonbandlimited
signals,” Multidimensional Systems and Signal Processing, vol. 15, no. 1,
pp. 51–56, 2004.

[11] E. Matusiak and Y. Eldar, “Sub-nyquist sampling of short pulses,” Signal
Processing, IEEE Transactions on, vol. 60, no. 3, pp. 1134–1148, March
2012.
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