
Newton-like Nonlinear Adaptive Filters
via Simple Multilinear Functionals

Felipe C. Pinheiro and Cássio G. Lopes
Dept. of Electronic Systems Engineering, University of São Paulo – São Paulo, SP – Brazil

Emails: felipe.chaud.pinheiro@usp.br; cassio@lps.usp.br

Abstract—In the context of nonlinear systems identification
new Affine Projection Algorithm (APA) and NLMS adaptive
filters (AFs) are developed over the Simple Multilinear model
(SML). Such a model is comprised of a product of linear filters
and allows for an exponential decrease in complexity when
compared to the complete Volterra model. The MSE surface is
developed in terms of data statistical moments and its gradient
vector is presented, computing the corresponding Hessian matrix
in the sequel. The AFs are generated via stochastic approxima-
tions for the data moments and a series of non-trivial derivations
resulting in an APA implementation structurally similar to the
standard APA recursion. The NLMS algorithm is derived as a
particular case. Simulations show good convergence properties
when identifying unknown SML and Volterra plants.

I. INTRODUCTION

Research in nonlinear adaptive filtering deals with situations
where the filtering tasks involve some nonlinear component,
such as in some instances of echo cancellation [1], [2], in
which linear techniques underperform. The literature in the
area is largely focused on polynomial models, such as the
Volterra series [3]–[6]. In order to reduce the high complexity
of such filters, this approach may be alternatively recast via
the Simple Multilinear model (SML) proposed in [7], where
we have derived both the model and a Least Mean Squares
(LMS) filter. This new model corresponds to a product of K
linear filters and involves concepts from multilinear algebra
[8].

In this paper we extend previous work on adaptive nonlin-
ear adaptive algorithms by deriving and testing SML-based
Newton-like algorithms. This is accomplished by estimating
the parameters of a Newton’s method recursion. The resulting
algorithms—Affine Projections Algorithm (APA) and Nor-
malized Least Mean Squares (NLMS)—compare favorably to
existing approaches with respect to computational complexity
and/or mean-square performance, as suggested by simulations.

II. SML AND MEAN-SQUARE SURFACE

Given an input row vector1 ui (1×M) that collects samples
from a signal u(i) and a collection of K vectors {w1, . . . , wK}
(each of size M × 1), the simple multilinear model2 is

The authors were supported by grants from CNPq – Brazil.
1The paper follows the methods and notation from [9]. Bold fonts represent

random signals, variables of the form x(i) represent scalars, ones of the
form yi represent vectors varying in time and capital letters represent either
constants or matrices as dictated by the context.

2Here we present only the result. For more details on the model derivations
see [7].

constructed by imposing decomposability over a homogeneous
Volterra kernel and by exploring a tensor formulation. The
input-output relation of a nonlinear system represented via
SML then becomes

y(i) = (ui ⊗ · · · ⊗ ui)︸ ︷︷ ︸
K times

(w1 ⊗ · · · ⊗ wK)

= u⊗Ki w = (uiw1) · · · (uiwK), (1)

where ⊗ is the Kronecker (tensor) product, w , w1⊗· · ·⊗wK
and u⊗Ki , ui⊗· · ·⊗ui (K times). This allows us to describe
the system with only KM coefficients, in contrast with the
MK ones from the full homogeneous Volterra kernel [6].

As commonly done in adaptive filtering, we take a random
input regressor u (1 × M) and a random “desired” signal
d. We want to estimate an SML model that relates d and
u. This may be pursued by minimizing over the variables
{w1, . . . , wK} the power of the error signal e = d− u⊗Kw.
The cost function—the mean-square error (MSE)—as previ-
ously derived, is

MSE(w1, . . . , wK) = E|e|2 =

Rd − w∗R∗uKd −RuKdw + w∗RuKw, (2)

where the correlation parameters are

RuK = E[u⊗K∗u⊗K], Rd = E|d|2, (3)

RuKd = E[u⊗Kd∗] = R∗duK . (4)

The cost function (2) may be minimized by computing its
gradient, which can be done block-wise:

∂MSE
∂ws

= [−RuKd + w∗RuK]W (s), (5)

where W (s) , (w1 ⊗ · · · ⊗ ŵs ⊗ · · · ⊗ wK) is a MK ×M
matrix and the symbol ŵs implies that the vector ws has been
substituted for the identity matrix IM of order M .

Stacking the blocks from (5) into a vector yields the
total gradient, from which the gradient-descent algorithm is
obtained. Proper instantaneous approximations for RuK and
RuKd give rise to the SML-LMS [7].

A. The Hessian Matrix

Newton’s algorithm requires the calculation of the Hessian
matrix, which is formed from the second partial derivatives of
the MSE in (2). In the complex case, the second derivative
must always be in relation to the conjugate of the variables.

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 1603

One could verify that such matrix, when constructed for
functions of many vectors, would take the form

∇2f =

∂2f

∂w∗
1∂w1

· · · ∂2f
∂w∗

1∂wK

...
. . .

...
∂2f

∂w∗
K∂w1

· · · ∂2f
∂w∗

K∂wK

 . (6)

Each of the elements represented in the (6) are matrices
themselves and must be computed from the cost function (2).

Proposition. The blocks that form the Hessian matrix for the
MSE function are given by

∂2MSE
∂w∗r∂ws

=W ∗(r)RuKW (s), (7)

where W ∗(r) = (w∗1 ⊗ · · · ⊗ ŵ∗r ⊗ · · · ⊗ w∗K) is a M ×MK

matrix and ŵ∗r implies that w∗r has been substituted for the
identity matrix IM of order M .

Proof. Looking at (5), we see that the only term that de-
pends on the conjugate of the coordinates of some wr is
w∗RuKW (s). In [7], the coordinates of this term were ex-
plicitly calculated. The procedure is to realize that the product
u⊗K can be indexed as

(u⊗K)j1,...,jK = u(j1) · · ·u(jK),

where u(r) is the r-th coordinate of u. This covers every
element of u⊗K . Similarly, we can index u⊗K∗ with the
indexes (u⊗K∗)i1,...,iK in a way that we can also index
the product of these two vectors as (u⊗K∗u⊗K)i1,...,iKj1,...,jK

.
The matrix RuK = E[u⊗K∗u⊗K], therefore, inherits this
structure. This is equivalent to looking at this matrix as a
multi-index object—a tensor [8]. The upper and lower indexes
are a tradition of tensor calculus [10]. One can also index
w = w1 ⊗ · · · ⊗ wK in this way. Under this convention, the
coordinates of w∗RuKW (s) were previously computed as

∂(w∗RuKw)

∂(ws)jq
=

∑
i1,...,iK
j1,...,jK

∏
p

(w∗p)ip(RuK)i1,...,iKj1,...,jK

∏
`6=s

(w`)
j`δjrjq .

Then we need only to derivate with respect to the coor-
dinates of the conjugate vectors, resulting in the id and jq
coordinates of (7):(

∂2MSE
∂w∗r∂ws

)id
jq

=
∂2(w∗RuKw)

∂(w∗r)id∂(ws)
jq

=∑
i1,...,iK
j1,...,jK

∏
p6=r

(w∗p)ipδ
id
ir
(RuK)i1,...,iKj1,...,jK

∏
`6=s

(w`)
j`δjsjq . (8)

As id and jq take values from 1 through M , (8) indeed ren-
ders matrix (7). This can be shown as follows: the Kronecker
delta δij indexes the identity matrix, that is, (IM)ij = δij . In
(8), the two instances of the delta work as if occupying the
positions of the coordinates (w∗r)ir and (ws)

js—that is, the
coordinates of an identity IM are occupying the positions of
the coordinates of the vectors w∗r and ws. This is valid for

any pair of indexes id and jq , thus, when reconstructing the
matrix form implied by the coordinates computed in (8), the
substitutions with IM in (7) must be made.

B. Newton’s Method
Once the Hessian matrix has been obtained, Newton’s

algorithm follows, similarly to what is done in [9] for the
linear filter. First we stack the vectors {w1, . . . , wK} into the
KM × 1 vector wC and the corresponding partial gradients
(5) into the 1 × KM total gradient ∇MSE. Then, Newton’s
algorithm is implemented by

wC [i] = wC [i− 1]− µ
(
∇2MSE

)−1
(∇MSE)∗ , (9)

where both the Hessian and the gradient are computed at
wC [i− 1].

Real-time algorithms require instantaneous approximations
for the statistical moments and also resort to efficient ways
to invert, or avoid inverting, of the Hessian matrix. This is
addressed in the sequel.

III. STOCHASTIC APPROXIMATIONS

Adaptive filters make use of real-time data. For example,
APA-like algorithms assume that, at time i, we have access to
the L last input vectors and samples of the desired signal. In
other words, we have {ui, . . . , ui−L+1} and {d(i), . . . , d(i−
L + 1)}. By utilizing these variables, instantaneous approxi-
mations for the quantities RuK and RuKd are

R̃uK =
1

L

i∑
j=i−L+1

u⊗K∗j u⊗Kj , (10)

R̃uKd =
1

L

i∑
j=i−L+1

u⊗Kj d(j)∗ = R̃∗duK . (11)

In the linear case (order of nonlinearity K = 1), this gives
rise to the conventional APA algorithm. In the general case,
some extra steps are required.

A. Gradient Estimation
Using the stochastic approximations (10) and (11) in (5)

returns an instantaneous estimate for the gradient:

∂M̃SE
∂ws

= [−R̃uKd + w∗R̃uK]W (s)

=
1

L

i∑
j=i−L+1

[
−d(j)∗ + w∗u⊗K∗j

]
u⊗Kj W (s). (12)

Equation (12) may be conveniently rewritten as follows.
If we define yws (j) , (ujw1) ̂· · · (ujws) · · ·(ujwK), where
the hat implies a factor being omitted and the w superscript
implies that an specific wC = [w1; . . . ;wK] should be used to
compute this function, we can see that u⊗Kj W (s) = yws (j)uj .
We then define three variables:

di ,

 d(i)
...

d(i− L+ 1)

 (L×1), UKi ,

 u⊗Ki
...

u⊗Ki−L+1

 (L×KM),

ywj ,
(
yw1 (j) · · · ywK(j)

)
(1×K). (13)

2016 24th European Signal Processing Conference (EUSIPCO)

1604

Eq. (12) represents a block gradient. For each j, the
terms of this sum will be multiplied only by yws (j)—the
s-th element of ywj —which shows that the total gradient
has a Kronecker structure. This follows from the fact that
u⊗Kj W (s) = yws (j)uj . We can, therefore, write

∇̃MSE =
1

L

i∑
j=i−L+1

[
−d(j)∗ + w∗u⊗K∗j

] (
ywj ⊗ uj

)
. (14)

If we also introduce the notation

Ti ,

 ywi ⊗ ui
...

ywi−L+1 ⊗ ui−L+1

 (L×KM), (15)

we can get a compact expression for the instantaneous gradi-
ent:

∇̃MSE = − 1

L

[
di − UKi w

]∗
Ti = −

1

L
e∗i Ti, (16)

where ei , di − UKi w (L × 1). And, finally, if we define
yw(j) , (ujw1) · · · (ujwK), computed at wC , and yi ,(
yw(i) · · · yw(i− L+ 1)

)T
(L×1), then we can compute

ei as
ei = di − yi. (17)

B. Hessian Estimation
An instantaneous approximation for the Hessian matrix is

obtained by replacing (10) into (7):

∂2M̃SE
∂w∗r∂ws

=W ∗(r)
1

L

i∑
j=i−L+1

u⊗K∗j u⊗Kj W (s)

=
1

L

i∑
j=i−L+1

(
u⊗Kj W (r)

)∗ (
u⊗Kj W (s)

)
=

1

L

i∑
j=i−L+1

(ywr (j)uj)
∗
(yws (j)uj) . (18)

This follows from u⊗Kj W (s) = yws (j)uj , as it was carried
out in the previous subsection. Similarly, (18) may also be
recast in a more compact form.

Take only the j-th term of the sum. It can also be written
as (ywr (j)

∗yws (j))
(
u∗juj

)
. If we define a matrix Ars whose

elements are given by ywr (j)
∗yws (j), then the complete Hessian

matrix becomes a sum over j of the matricesA1
1u
∗
juj · · · A1

Ku
∗
juj

...
. . .

...
AK1 u

∗
juj · · · AKKu

∗
juj

 = A⊗
(
u∗juj

)
. (19)

Moreover, we have precisely A = yw∗j ywj , so that

∇̃2MSE =
1

L

i∑
j=i−L+1

(
yw∗j ywj

)
⊗
(
u∗juj

)
(20)

=
1

L

i∑
j=i−L+1

(
ywj ⊗ uj

)∗ (
ywj ⊗ uj

)
=

1

L
T ∗i Ti, (21)

where the last equality follows directly from the definition of
Ti in (15).

IV. ADAPTIVE ALGORITHMS

APA and NLMS-like algorithms can be derived from New-
ton’s algorithm and from the stochastic approximations for the
gradient vector (16) and the Hessian matrix (21).

A. APA-like Algorithm

The update equation follows directly from (9), with the
appropriate substitutions.

wC [i] = wC [i− 1]− µ
(
∇̃2MSE

)−1 (
∇̃MSE

)∗
= wC [i− 1] + µ (T ∗i Ti)

−1
T ∗i ei (22)

We cannot invert T ∗i Ti directly, because it is not invertible
in most cases. Thus, we add a regularization term εI and apply
the Matrix Inversion Lemma to get

[εI + T ∗i Ti]
−1
T ∗i = T ∗i [εI + TiT

∗
i]
−1
. (23)

The matrix TiT ∗i (L× L), not only is smaller in the usual
case of L < M , but also has better inversion properties. We
can compute this matrix directly as

(TiT
∗
i)
r
s =

(
y
w[i−1]
i−r+1 ⊗ ui−r+1

)(
y
w[i−1]
i−s+1 ⊗ ui−s+1

)∗
=
(
y
w[i−1]
i−r+1y

w[i−1]∗
i−s+1

)
⊗
(
ui−r+1u

∗
i−s+1

)
=
(
y
w[i−1]
i−r+1y

w[i−1]∗
i−s+1

) (
ui−r+1u

∗
i−s+1

)
. (24)

The two factors in (24) are scalars, so, if we introduce the
notation

Yi ,

y
w[i−1]
i

...
y
w[i−1]
i−L+1

 (L×K), Ui ,

 ui
...

ui−L+1

 (L×M), (25)

then we can say that

TiT
∗
i = (YiY

∗
i) ◦ (UiU∗i) , (26)

where ◦ denotes the Hadamard (or entry-wise) product. This
leads us into the final form of the APA recursion:

wC [i] = wC [i− 1]+µT ∗i [εI + (YiY
∗
i) ◦ (UiU∗i)]

−1
ei. (27)

An implementation of the algorithm, with suitable initial-
ization (as discussed in [7]), is described in Algorithm 1.

B. NLMS-like Algorithm

By setting L = 1, that is, by using only one past sample, an
NLMS-like algorithm can be obtained. This would imply, for
example, Yi = y

w[i−1]
i and Ui = ui. Therefore, UiU∗i = ‖ui‖2

and YiY ∗i = ‖yw[i−1]
i ‖2. It can also be seen that ei = d(i)−

yw[i−1](i) = e(i).
Additionally, it must be that Ti = y

w[i−1]
i ⊗ui. The NLMS

recursion is, therefore,

wC [i] = wC [i−1]+µTi

[
ε+ ‖yw[i−1]

i ‖2‖ui‖2
]−1

e(i). (28)

2016 24th European Signal Processing Conference (EUSIPCO)

1605

Algorithm 1 APA-like algorithm
Initialization
for j = 1 to K − 1 do
wj [0] = [21−j 0 · · · 0 0]T

end for
wk[0] = [0 0 · · · 0 0]T
Iteration
for i = 1 to END do

for ` = 1 to L do
for r = 1 to K do

Compute yor`(i) = ui−`+1wr[i− 1]
end for

end for
for ` = 1 to L do

for r = 1 to K do
Compute yr`(i) = yo1`(i) ̂· · · yor`(i) · · ·yoK`(i)

end for
Compute y`(i) = yK`(i)yoK`(i)
Set Yi(`, :) = [y1`(i) · · · yK`(i)]
Set Ti(`, :) = Yi(`, :)⊗ ui−`+1

end for
Set yi = [y1(i); · · · ; yL(i)]
Compute ei = di − yi
Compute Qi = εI +

(
YiY

∗
i

)
◦
(
UiU

∗
i

)
Compute wC [i] = wC [i− 1] + µT ∗i Q

−1
i ei

end for

Algorithm 2 NLMS-like algorithms
Initialization
for j = 1 to K − 1 do
wj [0] = [21−j 0 · · · 0 0]T

end for
wk[0] = [0 0 · · · 0 0]T
Iteration
for i = 1 to END do

for r = 1 to K do
Compute yor(i) = uiwr[i− 1]

end for
for r = 1 to K do

Compute yr(i) = yo1(i) ̂· · · yor(i) · · ·yoK(i)
end for
Compute y(i) = yK(i)yoK(i)
Set yi = [y1(i) · · · yK(i)]
Compute e(i) = d(i)− y(i)

Compute fi = µe(i)
u∗
i

ε+‖yi‖2‖ui‖2
for r = 1 to K do

Compute wr[i] = w[i− 1] + fiyr(i)
∗

end for
end for

This can be further simplified by separating each wr from
wC . This is done by separating Ti: its first M coordinates
are yw[i−1]

1 (i)ui, the next M terms are yw[i−1]
2 (i)ui, and so

on that the r-th M terms are yw[i−1]
r (i)ui. This leads to the

following update equation, for every r, with 1 ≤ r ≤ K:

wr[i] = wr[i− 1] + µe(i)
y
w[i−1]
r (i)∗u∗i

ε+ ‖yw[i−1]
i ‖2‖ui‖2

. (29)

C. Computational Complexity

It is possible to compute the number of multiplications these
algorithms take, for K ≥ 2. The results are on the Table I.
This assumes O(L3) multiplications to invert an L×L matrix.

TABLE I
COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS.

Algorithm No. of multiplications
SML-NLMS KM + 2M +K2 + 4
SML-APA (2KL+L2+KL2)M+(KL+L2−2L)K+O(L3)

V. SIMULATIONS

For cases I-IV, we have tested the two new algorithms
(NLMS and APA) against polynomial versions of the linear
NLMS and APA algorithms [6], [9]. These algorithms con-
sist of taking all the possible K-order Volterra monomials
u(i)α1 · · ·u(i−M +1)αM , α1 + · · ·+αM = K, and putting
them in the regressor ui. The SML algorithms, conversely,
assume ui to have a delay line structure, because the nonlin-
earity is in the structure of the filter itself. In Cases III and IV
we also compare the new algorithms with the SML-LMS [7].

The Cases I-IV were run with K = 2, N = 5,000 iterations,
1,000 realizations, M = 10, and L = 4 for the APA, with an
uncorrelated, zero-mean, unitary power Gaussian input, trying
to identify an unknown SML plant with additive noise of
power 10−3—except Case IV, which is run through 40,000
iterations and with a colored input. The additional parameters
of the simulation were empirically chosen so to equalize the
steady-state Excess Mean Square Error. The resulting EMSE
curves are presented in Fig. 1.

Case V compares the SML-NLMS with some algorithms
present in the literature. These are all Volterra-based al-
gorithms applied on an NLMS-like framework. These are
the Power Filter (PF) [11], Simplified Volterra with three
diagonals (SV) [1], [2], Sparse-Interpolated Volterra (IV) [3],
[4] and the common Volterra Filter (V). We chose M = 21,
N = 10,000 iterations, K = 2 and the rest being the same as
in the previous cases. The plant was chosen to be a smooth and
highly correlated one. The specific parameters were chosen to
equalize the convergence rates, although only approximately
in the case of the SML, since it exhibited a very distinct path
of convergence. The resulting MSE curves are in Fig. 2a.

Case VI does a direct comparison with the Parallel Cascade
Filter (CF) [12], single branch version. For K = 2, the filters
would produce quite similar algorithms, with the product of
two linear filters. So K = 3 was chosen, which makes the
SML a product of three linear filters and CF a product of a
second order Volterra filter with a linear filter. The unknown
plant was a third order SML model. The algorithms have
been simulated for M = 10, N = 30,000 iterations averaged
through 2,000 realizations. The rest are the same as the other
cases.

VI. DISCUSSION

Fig. 1a shows the SML-NLMS and Volterra-NLMS algo-
rithms converging. We can also see that the Volterra algorithm
converges slower than the SML. The same happens in Fig 1b,
for the APA algorithms. This behavior makes sense, as it is
natural that the SML algorithms would be better at identifying
an SML plant.

2016 24th European Signal Processing Conference (EUSIPCO)

1606

0 1000 2000 3000 4000 5000
−40

−30

−20

−10

0

10
Excess Mean Square Error (estimated)

Iterations

d
B

Volterra−NLMS

SML−NLMS

(a) Case I: NLMS filters.

0 1000 2000 3000 4000 5000
−40

−30

−20

−10

0

10
Excess Mean Square Error (estimated)

Iterations

d
B

Volterra−APA

SML−APA

(b) Case II: APA filters.

0 1000 2000 3000 4000 5000

−40

−30

−20

−10

0

10
Excess Mean Square Error (estimated)

Iterations

d
B

APA

LMS

NLMS

(c) Case III: Comparison with the
LMS; uncorrelated input.

0 1 2 3 4

x 10
4

−40

−30

−20

−10

0

10
Excess Mean Square Error (estimated)

Iterations

d
B

APA
LMS (exploding)

NLMS

(d) Case IV: Comparison with the
LMS; colored input.

Fig. 1. Plot of the EMSE curves from the SML algorithms.

0 5000 10000
−30

−20

−10

0

Mean Square Error (estimated)

Iterations

d
B

IV
SML

SV

V

PF

(a) Case V: SML and various filters.

0 1 2 3

x 10
4

−30

−20

−10

0

Mean Square Error (estimated)

Iterations

d
B

CF

SML

(b) Case VI: SML and P. Cascade.

Fig. 2. Comparing with the literature.

In Fig. 1c we have all algorithms behaving in similar ways,
with the APA being marginally faster. We also can see, mostly
in APA, the mitigation of the effect of slower convergence
speed at the beginning of the process, as it was noted in [7]
for the LMS. On the other hand, in Fig. 1d we see that the
LMS has become unstable (something that happens when we
set its µ greater than 0.0005, but even if we set it lower it
would show higher steady-state EMSE). This shows that the
choice of µ for this algorithm depends on the statistics of the
input signal, something that does not happen for the Newton-
based algorithms. The APA algorithm was the least affected by
the correlated input, but it still shows a decrease in speed and
the existence of modes of convergence throughout the process.

Fig. 2a shows a simulation on a non-SML plant. As ex-
pected, there is some degradation in the steady-state MSE as
compared to the complete Volterra filter (231 coefficients),
but the SML-NLMS performs better than both FP and SV
and shows itself competitive in relation to IV, converging at
the same time to almost the same plateau. Our algorithm
initially seems to converge slowly, but soon speeds up enough
to catch up with the others. In relation to the Sparse Interpo-
lated Volterra (60 coefficients), our algorithm (42 coefficients)
shows comparable performance with 30% fewer filter coeffi-
cients. The Simplified Volterra used 66 coefficients, and the
Power Filter only 21.

In Case VI, we have simulated the SML-NLMS against its
most similar filter of the set, the Parallel Cascade filter. We
are able to see some differences, albeit minor, in convergence,
but the main distinction is in complexity: the SML required
only 30 coefficients while the CF required 66. For third order
models, we would have complexities O(3M) for the SML and
O(M2) for the CF.

VII. CONCLUSION

We have derived two new algorithms based on Newton’s
method when applied to the mean square surface of the SML
model. This extends the results from [7] to APA and NLMS-
like algorithms and maintains the model’s characteristic low
complexity, but now with better tolerance to colored input
signals than the previously derived LMS.

In terms of complexity, conventional Volterra algorithms
take O(L2C) operations per iteration, for the APA, and O(C),
for the NLMS, where C =

(
M+K−1

K

)
is the number of Volterra

coefficients, which shows how complex they can get. From
Table I, we see that the SML-NLMS is only a O(KM)
algorithm and the SML-APA is O(KL2M). We have also
verified a reduction on the number of filter coefficients in
relation to other low-complexity algorithms in the literature,
while maintaining comparable adaptation properties.

Complete understanding of the algorithms still requires
convergence and parameter analysis. Future work also involves
extensions of the model to more general Volterra plants. All
of this will be covered in future publications, together with
some applications and new comparisons.

REFERENCES

[1] A. Fermo, A. Carini, and G. L. Sicuranza, “Simplified volterra filters
for acoustic echo cancellation in gsm receivers,” in Signal Processing
Conference, 2000 10th European, Sept 2000, pp. 1–4.

[2] ——, “Low-complexity nonlinear adaptive filters for acoustic echo
cancellation in gsm handset receivers,” European Transactions on
Telecommunications, vol. 14, no. 2, pp. 161–169, 2003. [Online].
Available: http://dx.doi.org/10.1002/ett.908

[3] E. Batista, O. Tobias, and R. Seara, “A sparse-interpolated scheme
for implementing adaptive volterra filters,” Signal Processing, IEEE
Transactions on, vol. 58, no. 4, pp. 2022–2035, April 2010.

[4] E. Batista, O. J. Tobias, and R. Seara, “A fully lms adaptive interpolated
volterra structure,” in Acoustics, Speech and Signal Processing, 2008.
ICASSP 2008. IEEE International Conference on, March 2008, pp.
3613–3616.

[5] V. Mathews, “Adaptive polynomial filters,” Signal Processing Magazine,
IEEE, vol. 8, no. 3, pp. 10–26, July 1991.

[6] T. Ogunfunmi, Adaptive Nonlinear System Indentification: The Volterra
and Wiener Model Approaches. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2006.

[7] F. C. Pinheiro and C. G. Lopes, “A nonlinear adaptive filter based on the
model of simple multilinear functionals,” CoRR, vol. abs/1603.00427,
2016. [Online]. Available: http://arxiv.org/abs/1603.00427

[8] S. Roman, Advanced Linear Algebra. Springer, 2007.
[9] A. H. Sayed, Adaptive Filters. Wiley-IEEE Press, 2008.

[10] A. J. McConnell, Applications of Tensor Analysis. Dover Publications,
2011.

[11] F. Kuech, A. Mitnacht, and W. Kellermann, “Nonlinear acoustic echo
cancellation using adaptive orthogonalized power filters,” in Acoustics,
Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE
International Conference on, vol. 3, March 2005, pp. iii/105–iii/108 Vol.
3.

[12] T. M. Panicker, V. J. Mathews, and G. L. Sicuranza, “Adaptive parallel-
cascade truncated volterra filters,” IEEE Transactions on Signal Pro-
cessing, vol. 46, no. 10, pp. 2664–2673, Oct 1998.

2016 24th European Signal Processing Conference (EUSIPCO)

1607

