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Abstract—In this paper we consider the problem of learning
the topology of a directed-acyclic-graph, that describes the
interactions among a set of genes, based on noisy double knockout
data and genetic-interactions-profile data. We propose a novel
linear integer optimization approach to identify the complex
biological dependencies among genes and to compute the topology
of the directed-acyclic-graph that matches the data best. Finally,
we apply a sequential scalability technique for large sets of
genes along with our proposed algorithm, in order to provide
statistically significant results for experimental data.

Index Terms—Gene networks, discrete optimization, big data,
graph learning

I. INTRODUCTION

In genomics research and systems biology, uncovering the
interactions among a set of genes with respect to a specified
cell function of a biological system, e.g., the fitness of a
specific bacteria strain, has recently attracted much attention,
[1], since it is fundamental for understanding the biologi-
cal processes that underlie the specific cell function under
study. The interactions among the genes under study can
be characterized by an in-tree, which is a directed-acyclic-
graph (DAG) with a common root node where all edges are
orientated towards the root. In the context of systems biology
such an in-tree is often simply referred to as a DAG, [2], [3].
The hierarchical relationship between two genes in a DAG
describes their hierarchical interaction type [3]. Since DAGs
cannot be observed directly, they are hidden quantities and
only the specified cell function of the organism under study,
referred to as the phenotype, can be monitored. The term phe-
notype describes the particular manifestation of a biological
attribute of an organism that can be observed. For instance,
a common biological attribute of bacteria is growth measured
in colony size, where a particular size of the bacteria colony
is a phenotype of this biological attribute. The role of the
studied genes in the cell machinery, the hierarchical interaction
types of the genes, as well as the DAG, that describes the
latter ones, can be learned by means of knock-out experiments
where a gene or a set of genes is functionally disabled and
the phenotype is measured, [3], [4], [5]. Based on their single-
knockout (SK) and double-knockout (DK) phenotypes, the
gene pairs can be classified into one out of five hierarchical
relationship classes, according to [3]. From the hierarchical
relationship classes the DAG can be inferred [3]. For DAG
inference in general, a variety of probabilistic methods have
been developed. One prominent example is the Chow-Liu
algorithm [6]. However, these methods can only learn the

DAGs underlying the data up to Markov equivalence. This
means that in many cases only the skeleton of the DAG can be
learned but not necessarily the specific orientation of the edges
[6]. To reconstruct the DAG with all its edge orientations, a
variety of methods based on scoring the measurements or on
thresholding the genetic-interaction (GI)-profile data, which is
commonly based on Pearson correlation of the SK and DK
phenotypes, e.g. [7]-[8] respectively, have been developed.
In [5], we have presented the Genetic-Interactions-Detector
(GENIE) algorithm which formulates the DAG reconstruction
based on the hierarchical relationship classes of [3] as a linear
integer program (LIP). However, methods as presented in [5],
[7]-[8] have at least one of the following three important disad-
vantages: D1) poor performance in DAG reconstruction, D2)
no easy incorporation of additional side information, and D3)
no use of prior knowledge. Although showing the above
mentioned disadvantages D1) – D3), methods as presented in
[7]-[8] are among most wide-spread algorithms for detecting
interactions among a set of genes, i.e., the DAG underlying the
different types of data. In this paper, we propose the GI-profile
extended GENIE (GI-GENIE) algorithm that is an extension of
the GENIE-method of [5] by incorporating GI-profile data into
the DAG estimation. Furthermore, the proposed GI-GENIE
algorithm is able to easily incorporate prior knowledge. Thus,
our proposed method is able to overcome the three main
disadvantages summarized in D1) – D3). Finally, we provide
statistically stressable statements regarding the topology of the
DAG underlying the experimental data of [9] on the yeast
microorganism, based on the sequential-scalability (SEQSCA)
technique of [4] and the proposed GI-GENIE algorithm.

II. SYSTEM MODEL

Given a cell process and a species, the functional depen-
dencies among a set of genes G = {1, ..., G}, with G = |G|
elements, can be characterized by a genetic-interaction-map
(GI-map), [10], that is essentially a DAG with a common
root node called reporter level R. In particular, an arbitrary
DAG D can be described as a graph D = (GD, ED) with a
set of nodes GD = {G ∪R} and the set of directed edges
ED =

{
{i, j} , ..., {j, l}

}
[4]. Since genetic interactions can

only be observed through the reporter, all edges are always
orientated in such a way that each path parting from any
arbitrary gene i ∈ G always terminates in the root node R and
any gene appears on the path at most once, i.e., there exist no
cycles in the graph. Hence, DAG D is always connected via its
root node R. The reporter node R is an artificial node, i.e., not
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Fig. 2: Possible hierarchical relationship classes between two arbitrary genes i, j of DAG D according to [3]
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Fig. 1: DAG D0 of 13 genes and root node R

a gene, in the concept of a DAG representing the measured
phenotype of the specific cell process under study. In order
to provide a better comprehension of the information encoded
in a DAG we give a simple example, similar to that in [4],
based on the DAG D0 displayed in Fig. 1. In D0 there exists a
direct edge from gene i0 to gene j0, i.e. {i0, j0} ∈ ED0

, which
indicates that the activity of gene i0 controls the activity of
gene j0. Hence, gene i0 only affects the phenotype via gene j0
and not directly. We emphasize that in this model the existence
of edge {i0, j0} in the DAG only describes the hierarchical
functional dependency between genes i0 and j0 and not the
quantitative effect of gene i0 on gene j0.
Let us denote R(i) ∈ R as the phenotype for a single
gene i ∈ G functionally disabled. In the same way, we
define the phenotype for the DK of genes i, j ∈ G as
R(i, j) ∈ R. Let the datasets Ri = {R(i, 1), ..., R(i, G)}
and Rj = {R(j, 1), ..., R(j,G)} contain all DK phenotypes
involving genes i ∈ G or j ∈ G. The GI-profile data
ρ(i, j) for genes i, j ∈ G can be computed as the Pearson
correlation between the samples of the datasets Ri and Rj ,
respectively. Since the gene pairs i, j and j, i are identical,
it is sufficient to consider only gene pairs i, j ∈ G : j > i.
Throughout this paper we mostly omit the specification that
j is greater than i for notational convenience. However, we
sometimes explicitly state again that only gene pairs i, j ∈ G
for j > i, with their corresponding data types, are considered
for clarity of presentation. In genomics research it is a common
assumption that given an edge between two genes i, j in

DAG D, the GI-profile ρ(i, j) obtains a large value with
high probability. Furthermore, according to [3], each pair
of genes i, j ∈ G :j > i belongs to exactly one out of
five hierarchical relationship classes that are characterized in
Fig. 2. The hierarchical relationship classes k ∈ K = {1, ..., 5}
of [3] are defined according to the model µk(i, j) in which the
single knock-out phenotypes R(i) and R(j) are related with
the DK phenotype R(i, j). Given that the gene pair i, j belongs
to the hierarchical relationship class k then the observed DK
phenotype R(i, j) is described by the model µk(i, j) provided
in Fig. 2. We remark that the five hierarchical dependency
graphs in Fig. 2 do not reflect the absolute adjacency relations,
but the hierarchical relations between genes i, j in DAG D, see
[3], [4]. To clarify this further, consider the example DAG D0

of Fig. 1. All paths from gene i0 to node R pass through gene
j0, i.e., they are in a linear pathway with gene i0 upwards
of gene j0. Hence, the pair of genes i0, j0 belongs to class
k = 1. Since all paths from gene i0 to the reporter level R
do not pass through gene t0 and all paths from gene t0 to
the reporter level do not pass through gene i0, genes i0 and
t0 belong to the hierarchical relationship class k = 3, i.e.,
they are independent of each other. With the same line of
argument, we can determine the hierarchical relationship class
for each pair of genes in DAG D0. Generally, there are strong
dependencies among the hierarchical relationship classes of
[3]. If some gene pairs belong to a specific class then this has
strong implications for all other pairs, as shown in detail in
[4]. Let us consider the case that DAG D0 was not known
and only the hierarchical relationship classes for genes i0 and
j0, i.e., genes i0 and j0 belong to class k = 1, as well as
the hierarchical relationship class for genes i0 and g0, i.e.,
genes i0 and g0 belong to class k = 1, were available. By
definition of the hierarchical dependency graphs in Fig. 2 and
the assumptions, that genes i0 and j0 belong to class k = 1 as
well as that genes i0 and g0 belong to class k = 1, we conclude
that all paths from gene i0 to R pass through genes j0 and g0.
Thus, either all paths from gene g0 to R pass through gene
j0, or vice versa. Consequently, genes j0 and g0 either belong
to the hierarchical relationship class k = 1, or k = 2, see
[5]. Given the SK/DK phenotypes and the GI-profile data, we
can classify the gene pairs i, j to exactly one out of the five
hierarchical relationship classes of Fig. 2 [3] and reconstruct
the DAG topology jointly. Thus, we can formulate the gene
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pair classification and the DAG topology reconstruction jointly
as a coupled multi-hypotheses test, which we address in
Section 3 by a linear integer programming approach.

III. GI-GENIE-ALGORITHM

In this section, we present the proposed GI-GENIE algo-
rithm which jointly formulates the gene pair classification and
the corresponding DAG topology estimation. In order to quan-
tify the mismatch between the measured DK phenotype R(i, j)
and the expected phenotype µk(i, j) under the hypothesis that
the gene pair i, j belongs to class k ∈ K given its respective
SK value, we consider a simple quadratic score, [3],

sk(i, j) =
(
R(i, j)− µk(i, j)

)2
k ∈ K, ∀i, j ∈ G : j > i.

(1)

Let us define the following class-selection variables

αk(i, j) =

{
1 if i, j are in class k
0 else

k ∈ K, ∀i, j :∈ G : j > i (2)

and edge-selection variables

β(i, j) =

{
1 ∃ edge between i,j
0 no edge

∀i, j ∈ G : j > i (3)

Note that in contrast to the class selection αk(i, j) = 1 for
k ∈ K, the edge selection β(i, j) = 1 does not capture any
directionality, i.e., no hierarchical information about the graph
topology. The topology ED of any DAG D can be represented
by the corresponding set of class-selection variables AD =⋃
i,j

{
αD1 (i, j), ..., αD5 (i, j)

}
together with the corresponding set

of undirected edges {β(i, j)} for all i, j :∈ G : j > i. The
GI-GENIE-algorithm yields an estimate EGI of the true DAG
topology ED by computing sets AOGI-GENIE and

{
β̂(i, j)

}
which

are estimates of the true set of class-selection variables and
edge-selection variables, AD, {β(i, j)}, respectively. Based
on SK, DK and GI-profile data, the proposed GI-GENIE-
algorithm is formulated as the following LIP:

OGI-GENIE :

min
{αk(i,j),β(i,j),zl(i,j)}

λd

G∑
i=1

G∑
j=i+1

( |K|∑
k=1

sk(i, j)αk(i, j)
)

− λs
G∑
i=1

G∑
j=i+1

(∑
l

zl(i, j)
)

− λc
G∑
i=1

G∑
j=i+1

ρ(i, j)β(i, j)

+ λp

G∑
i=1

G∑
j=i+1

β(i, j) (4a)

s.t. αk(i, j) ∈ {0, 1} ∀k ∈ K, ∀i, j ∈ G : j > i (4b)
|K|∑
k=1

αk(i, j) = 1∀i, j ∈ G : j > i (4c)

L, topology constraints of [4] (4d)
β(i, j) ∈ {0, 1} ∀i, j ∈ G : j > i (4e)
zl(i, j) ∈ {0, 1} ∀l ∈ G \ {i, j} ,

∀i, j ∈ G : j > i (4f)
1− α3(i, j) ≥ β(i, j)

∀i, j ∈ G : j > i (4g)
Lc =⇒ additional topology constraints (4h)

|G| − 2 + β(i, j) ≥ 1 +
∑

l∈G\{i,j}

zl(i, j) (4i)

∀i, j ∈ G : j > i

where the scalars λd, λs, λc, λp are non-negative weighting
constants to balance the impact of the SK, DK measurements
and the GI-profile data, respectively, on the estimates. Further-
more, the weighting constants λd, λs, λc, λp also compensate
for the different value domains of the two data types. The
functionality of the binary slack variables zl(i, j)∀i, j, l ∈ G :
j > i, l 6= i, l 6= j and of the second summand in (4a) will be
explained below. Furthermore, the logical implications among
the selection variables αk(i, j) are modeled by the topology
constraints L in Eq. (4d) which directly correspond to the
coupling among the hierarchical relationship classes of [3] as
mentioned in Section 2. For details, see [4]. Program OGI-GENIE
can be solved efficiently by branch-and-bound (BB) methods
[11]. Note that λs is assumed to be a very small non-negative
constant, i.e. 0 ≤ λs � 1. The classification-mismatch

(CM) term λd
G∑
i=1

G∑
j=i+1

( |K|∑
k=1

sk(i, j)αk(i, j)
)

in the objective

Eq. (4a) seeks to minimize the classification mismatch, while
the GI-profile (GIP) term in the objective Eq. (4a), i.e.,

−λc
G∑
i=1

G∑
j=i+1

ρ(i, j)β(i, j) + λp
G∑
i=1

G∑
j=i+1

β(i, j), strives to

detect an edge between genes i, j if the GI-profile ρ(i, j) is
larger than the predefined threshold λp

λc
. The joint selection

of the set of class-selection variables AOGI-GENIE and the set
of edge-selection variables

{
β̂(i, j)

}
is highly coupled. Any

pattern of hierarchical relationship classes AOGI-GENIE implies a
specific set of edges

{
β̂(i, j)

}
and any set of edges

{
β̂(i, j)

}
implies a specific pattern of hierarchical relationship classes
AOGI-GENIE . For instance, given that genes i, j are in class three,
i.e., α3(i, j) = 1, there cannot be an edge between both
genes. Thus, β(i, j) = 0 as modeled in (4g). To generally
account for this coupling, set Lc contains a plethora of linear
integer inequalities that model the mutual logical dependencies
between AOGI-GENIE and

{
β̂(i, j)

}
. To exemplarily describe this,

let us focus on equations (6a) to (6c) as given below:

1− β(i, j) ≥ α1(i, j) + α1(i, l) + α2(j, l)− 2 (6a)
1− zl(i, j) ≥ α1(i, j) + α1(i, l) + α2(j, l)− 2 (6b)
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1

2
(α1(i, l) + α2(j, l)) ≥ α1(i, j)− zl(i, j) (6c)

where we assume in the following that i, j, l ∈ G : l > j > i.
Given that α1(i, j) = 1 and α1(i, l) + α2(j, l) = 2 for at
least one gene l, there is gene l situated between genes i
and j in DAG D. Hence, there cannot be an edge between
genes i, j, i.e., β(i, j) = 0. This is strictly enforced by the
constraint in Eq. (6a). Similarly, given that α1(i, j) = 1
again, but now assume that α1(i, l) + α2(j, l) ≤ 1, then
there is no gene l between genes i, j in DAG D, so that
β(i, j) = 1 must hold. To see this, the right-hand-side (RHS)
of Eq. (6b) is in this case equal to or less than 0, so the
slack variables zl(i, j) ∀l ∈ G \ i, j are set to 1 by the slack

term −λs
G∑
i=1

G∑
j=i+1

(∑
l

zl(i, j)
)

in the objective function in

(4a) and finally constraint (4i) enforces that β(i, j) = 1. Now,
assume that β(i, j) = 1 and α1(i, j) = 1, i.e., there is an edge
between genes i, j. Then the RHS of Eq. (6a) and Eq. (6b)
must be less than 0. In this case α1(i, l) +α2(j, l) ≤ 1, hence
there cannot be a gene l between genes i, j in DAG D. Finally,
assume, for example, that β(i, j) = 0 and α1(i, j) = 1, i.e.,
there is no edge between genes i, j. Then there must be at
least one gene l which is situated between genes i, j in DAG
D. Since β(i, j) = 0, the RHS of Eq. (4i) forces at least one
slack variable zl(i, j) to be 0 meaning that the corresponding
gene l is situated between genes i, j. To see that gene l is
between genes i, j, i.e., α1(i, l) + α2(j, l) = 2, draw your
attention to Eq.(6c). Since the RHS of Eq.(6c) amounts to 1
in this case, the left-hand-side (LHS) must also be 1, hence
α1(i, l) +α2(j, l) = 2 holds. However, there exist many more
logical coupling constraints between the set of hierarchical
relationship classes AD and the set of edge selection vari-
ables {β(i, j)}∀i,j∈G:j>i that have been omitted due to space
limitations. Furthermore, the cases j > i > l : l, j, i ∈ G
and j > l > i : l, j, i ∈ G have to be considered as well.
For a detailed explanation, see [4]. Finally we remark that
prior knowledge regarding the interaction between genes i, j,
e.g., obtained from gene databases, can be easily incorporated
into the GI-GENIE-method by, for instance, setting the corre-
sponding edge variable β(i, j) to zero or one. We obtain an
estimated set EGI of the true topology ED of DAG D based
on the computed set of edge selection variables

{
β̂(i, j)

}
of

program OGI-GENIE in (4) where we infer the directionality of
the edges according to AOGI-GENIE .

IV. REAL DATA RESULTS

Since discovering genetic interaction maps, i.e., DAGs, for
specific organisms is an ongoing field of research and the
knowledge on genetic interactions is far away from being com-
plete, there is generally no ground-truth to directly compare
with, even not for yeast which is one of the best understood
organisms. Therefore, we base the evaluation of the detection
performance of the GI-GENIE method on the biological
knowledge that genetic interactions are generally rare and
furthermore on the successful detection of known interactions
provided by the well known yeast database of [15]. We remark

that to be able to make statistically significant statements about
large sets of genes, we have applied the proposed GI-GENIE
algorithm along with the SEQSCA-technique from [4]. The
SEQSCA-technique firstly decomposes a large set of genes
G into a sequence of S small subsets Gs, with |Gs| = NS.
The topology Es of the DAG underlying each subset Gs is
computed by a DAG-estimation algorithm, e.g., the GI-GENIE
algorithm. In each iteration s of the SEQSCA, the adjacency
matrix As is inferred from Es and used to update the reliability
matrix M (s). After S iterations the SEQSCA-method yields
the averaged reliability matrix M ∈ (0, 1)

|G|×|G| where each
entry [M ]i,j∈G denotes the empirical probability that genes
i, j interact with each other that is computed from the se-
quence of reliability matrices M (1), ...,M (S). The SEQSCA
is summarized in Tab. I, for details see [4]. To demonstrate

Initialization: M (0) = 0N×N ; A0 = 0NS×NS
; frequency counter

n
(0)
i,j = 0

Repeat:
1 : Select subset Gs of size NS from G; draw each gene from G

with equal probability without replacement
2 : Frequency update: n(s+1)

i,j = n
(s)
i,j + 1 for all i, j ∈ Gs

3 : Estimate DAG topology Es of set Gs; =⇒ As

4 : Update reliability matrix M (s):
[
M (s+1)

]
i,j

=
[
M (s)

]
i,j

+

[As]κi,κj
, ∀i, j ∈ Gs, κi ∈ {1, ..., NS} ∀i ∈ Gs

Until: s = S;
Set [M ]i,j =

[
M (S)

]
i,j
/n

(S)
i,j ∀i, j ∈ G

TABLE I: Summary of the proposed SEQSCA-algorithm

the benefit of using multiple data-types instead of only one
data type, we compare the reliability matrix results obtained
from SEQSCA and GI-GENIE with those obtained from
SEQSCA and GENIE [5] which only utilizes SK/DK data. We
have applied the above mentioned algorithms to the data set
reported in [9] to obtain the reliability matrices for the GENIE
based SEQSCA as well as for the GI-GENIE based SEQSCA,
MG, MGI, respectively. For computational reasons, we only
considered the first 200 genes, i.e., |G| = 200, of the query
genes list of [9]. Fig. 3 shows MG obtained by the GENIE-
based SEQSCA. In Fig. 4 we have displayed MGI obtained
by the proposed GI-GENIE-based SEQSCA. For both results,
we decomposed G into a sequence of S = 5e4 subsets Gs
of equal size Ns = 10. In Fig. 3, we observe that 78% of
the gene pairs i, j considered by MG of the GENIE-based
SEQSCA of [4] interact with each other with an emperical
probability of less than 20%, i.e., [MG]i,j ≤ 0.2. Hence,
the GENIE-based SEQSCA of [4] yields approximately sparse
results. This is a good performance in terms of sparsity, since
it is known from biology that genetic interactions are generally
very rare. Furthermore, we observe from the reliability matrix
MGI that the proposed GI-GENIE algorithm predicts genetic
interactions with a much lower frequency which means a very
good performance in terms of sparsity. We have computed the
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Method: Γ
SEQSCA & GENIE 53%
SEQSCA & GI-GENIE 74%

TABLE II: Acceptance ratios; ε = 0.05

acceptance ratio

Γ =
Nr

Nt
(8)

where Nr is the number of interactions found with high
significance ([MG]i,j , [MGI]i,j ≥ 1 − ε) and which are
deposited in the data-base of [15] as well, that is used as
a performance measure to assess the detection quality. Nt is
the total number of highly significant interactions. Given the
confirmed interactions at [15] for our set of genes under study,
we remark that evaluating the number of confirmed interac-
tions, that we have also found with our proposed method,
would not be a reasonable performance metric, since [15]
combines knowledge and experimental results of numerous
sources. In contrast to that, our results only use the dataset of
[9] based on colony size measurements of yeast which may
not reflect all existing interactions. As depicted in Tab. II,
we have computed Γ in Eq. (8) for both, the GI-GENIE-
based SEQSCA and the GENIE-based SEQSCA. It is obvious
that the GI-GENIE-based SEQCA outperforms the GENIE-
based SEQSCA of [4], since the acceptance ration for the GI-
GENIE-based SEQSCA is significantly higher than the one of
the GENIE-based SEQSCA.
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Fig. 3: Reliability matrix MG; S = 50000 subsets considered;
subset size NS = 10

V. CONCLUSION

In this paper we have presented the GI-GENIE algorithm
which detects the topology of the DAG underlying the ob-
served SK and DK phenotypes, as well as additional side
information, i.e., GI-profile data. Due to the use of multiple
data types, the proposed GI-GENIE algorithm outperforms
comparable algorithms as presented in [5] which can only
make use of SK/DK data.

50 100 150 200

50

100

150

200

Gene index

G
en

e
in

de
x

0

0.2

0.4

0.6

0.8

1 em
pirical

probability

Fig. 4: Reliability matrix MGI; S = 50000 subsets considered;
subset size NS = 10; λd = 1e3, λs = 8e−6, λc = 1, λp = .85
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