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Abstract— Real world audio signals are generally a mixture of 
harmonic and percussive sounds. In this paper, we present a 
novel method for separating the harmonic and percussive audio 
signals from an audio mixture. Proposed method involves the use 
of a convolutional auto-encoder on a magnitude of the 
spectrogram to separate the harmonic and percussive signals. 
This network structure enables automatic high-level feature 
learning and spectral domain audio decomposition. An 
evaluation was performed using professionally produced music 
recording. Consequently, we confirm that the proposed method 
provides superior separation performance compared to 
conventional methods. 
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I.  INTRODUCTION 
The separation of harmonic and percussive sources is 

widely used in various applications, such as active listening, 
audio sources remixing, and pre-processing, which include an 
automatic description of a pitched signal through the 
elimination of percussive components. Likewise, decreasing 
harmonic components can improve the results of percussive 
source analysis, such as drum beat detection [1]. As shown in 
Figure 1, most audio signals are composed of harmonic and 
percussive components, and the goal of this research on 
harmonic and percussive source separation (HPSS) is to 
decompose a mixture into a sum of two components and utilize 
them in many applications. 

 

Fig. 1. Examples of harmonic, percussive, and mixed sources. 

There have been many previous studies for HPSS, and 
these studies have assumed that harmonic components have a 
time continuity characteristic, and percussive components have 
a frequency continuity characteristic [1, 2]. Ono et al. proposed 
a simple method for separating monaural audio signals into 
harmonic and percussive components based on Euclidean 
distance. This method employed a minimization technique for 
harmonic and percussive components [3]. They also enhanced 
their algorithm using an alternative cost function based on the 
Kullback–Leibler divergence [4]. Another method based on 
median filtering was proposed in [1]. This approach was fast, 
simple, and effective in separating the harmonic and percussive 
components of a monaural audio signal. Furthermore, some 
improvements in HPSS were reported when using the kernel 
additive modeling (KAM) method, which generalizes the 
median filtering method employed in the paper [5, 6]. In 
addition, a nonlinear filter-based HPSS algorithm was 
proposed in [7]. However, these previous researches have 
performance limitations caused by the usage of hand-crafted 
filters. 

The recent development of deep learning algorithms has 
made significant advances in machine learning technology. 
Deep learning has become increasingly important because of 
its significant success in solving complex learning problems. 
Moreover, these breakthroughs in machine learning affect 
audio analysis fields, such as speech and music recognition, as 
well as classification tasks [8, 9]. With this development of 
deep learning, in this paper, we propose a novel HPSS method 
based on the convolutional auto-encoder (CAE) that effectively 
extracts the acoustic features. We also explore the use of CAE 
for monaural HPSS based on a spectrogram in a supervised 
setting. In order to evaluate the performance of the proposed 
method, we compare it to three kinds of conventional HPSS 
methods. As a result, it has been verified that applying the 
proposed method to the spectrogram can separate harmonic and 
percussive signals better than the conventional methods.  

The remainder of this paper is organized as follows: 
Section 2 introduces the proposed architecture of the HPSS 
system, including a detailed schematic; Section 3 presents the 
experimental settings and results obtained using a real world 
music database; and Section 4 draws the conclusions of our 
paper. 
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II. PROPOSED METHOD 
We propose a HPSS algorithm that uses a CAE based 

framework, as shown in Figure 2. First, the spectrogram, which 
was used as an input for the encoder network, was obtained by 
applying a Short Time Fourier Transform (STFT) to a mixture 
audio signal. Next, encoder and decoder networks were 
simultaneously updated to obtain optimal network coefficients 
in training step. In the separation step, the CAE network 
facilitated an acquisition of the masking map for time–
frequency (TF) masking. The masked harmonic and percussive 
signals were restored by applying an inverse STFT (iSTFT). 

 

Fig. 2. Proposed scheme for the harmonic and percussive source separation. 

A. Convolutional Auto-encoder 
The auto-encoder was trained to encode the input data in a 

compressed representation to reconstruct the original signal 
[10, 11]. However, a fully-connected auto-encoder does not 
consider the two-dimensional (2D) structure. On the other 
hand, the CAE introduced in [12] performs excellently because 
a convolutional neural network (CNN) learns high-level feature 
automatically and shows a remarkable performance in 
computer vision [13] and speech classification tasks [14]. Since 
the target source is the spectrogram, which is simultaneously 
indicating time and frequency characteristics, CNN structure is 
used as a basis for the proposed architecture. In this paper, the 
encoder network stacks the convolution and max-pooling 
layers, while the decoder network stacks the convolution and 
up-sampling layers. 

B. Architecture 
Figure 3 presents the structure of the CAE employed in our 

proposed system, which corresponds to the dotted block in 
Figure 2. The construction of the network architecture must be 
carefully considered to connect the network from one mixed 
input audio signal to two separated output signals. As depicted 
in Figure 3, we used STFT as a 2D representation of an audio 
signal with a frame size of 1024 and an overlap length of 75%. 
The spectrogram provided a part of the image measuring 128 × 
128 for the input of the network. This 2D block-based 
acquisition method strides by 32 pixels for every learning 
sample in both the temporal and frequency axes. The number 
of node for each layer was 64, 32, and 16. In addition, 2 × 2 
max-pooling and up-sampling methods were applied on every 
convolutional layer of the encoder and decoder networks, 
respectively. The filter size of the convolution layer was 3 × 3. 
A rectified linear unit (ReLU) [15] was employed for the 
nonlinear activation function of the network, and the entire 
network was optimized using the Adadelta algorithm [16]. The 
neural network parameters were updated to minimize the 
squared error between the predicted value ),(~ fty  and the 
original spectrogram ),( fty  as shown in Eq. (1), where n is the 
number of samples. The hyper parameters and settings for the 
proposed CAE are listed in Table 1. 
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TABLE I.  THE HYPER PARAMETERS AND SETTINGS FOR THE 
CONVOLUTIONAL AUTO-ENCODER  

Parameter Value 

Convolution filter size 3 × 3 

Max poolong & upsampling size Vertical = 2, Horizontal = 2 
Activation function ReLU 

Loss function Mean squared error 

Optimizer Adadelta 

 

Fig. 3. Proposed neural network architecture using a convolutional auto-encoder. 
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C. Time-Frequency Masking 
Since CAE output values are not equal to the corresponding 

portions of the original mixture, it is not appropriate to directly 
use them to separate the harmonic and the percussive 
components. Therefore, the output signals must be constrained 
by applying TF masking to the separated signals. In order to 
ensure proper constraints, we used the soft masking method 
[17]. The soft TF masking formula is presented as follows: 

 
),(~),(~

),(~
),(

ftyfty

fty
ftM

ph

h
h

+
=  (2) 

where ),(~ ftyh  and ),(~ ftyp are the output signals of the 
harmonic and percussive components from the CAE network, 
and ),( ftMh  represents the harmonic part masking function of 
time frame t  and frequency f . Then, the magnitude of 
separated harmonic and percussive sources were acquired from 
Equations (3) and (4). 
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where ),( ftX  is the spectrogram of the mixture audio, 
),(

~
ftS h  and ),(

~
ftS p  are the estimated separation spectral 

magnitudes corresponding to the harmonic and percussive 
sources, respectively. Operator ⊗  was an element-wise 
Hadamard product. 

III. PERFORMANCE EVALUATION  
In this section, we describe the experimental setting and 

report the performance of the proposed HPSS based on CAE 
network. We also compare the performance of the proposed 
method to that of the three following conventional methods: 
FitzGerald’s Median Filtering based HPSS (MFS) [1], a KAM 
based HPSS [5, 6], and a conventional stacked deep neural 
network (DNN) based HPSS. 

A. Databases 
In order to verify the effectiveness of the proposed CAE 

network structure, we used two kinds of databases for the 
experiment. One was the database, which composed of 10 
audio clips with mixed harmonic and percussive components 
from multi-track recordings [18]. In the experiments, it was 
indicated as DB-1 and we tested the database through the 
leave-one-sample-out cross-validation. 

The other was the De-mixing Secrets Dataset 100 
(DSD100), which is a database of professionally recorded 
music sources, designed to evaluate separation performance for 
multiple sources. This database consisted of 100 different 
audio clips, and divided into a development set and a test set. It 
was indicated as DB-2 in the experiments. We used the 

development set for training and validation, and the test set for 
evaluation. All the recorded wave files were approximately 2-7 
minutes long [19]. The experiment was repeated five times for 
each of these two databases. 

B. Pre-processing and Network Settings 
In order to perform the experiments, audio signals were 

resampled to 16 kHz sampling rate and mono channel down-
mixed. Thereafter, the audio signal was converted into a 
spectrogram with a frame size of 1024 and an overlap length of 
75%. From the spectrogram, we obtained a 128 × 128 image 
for the input data. Then, each block was positioned in such a 
way that 75% overlap between adjacent blocks. In other words, 
the 2D block-based acquisition method strides by N⁄4 = 32 in 
both the temporal and frequency axes, as depicted in Figure 4. 

 

Fig. 4. Overlap structure in the spectrogram for network input. 

C. Visualization of the Convolutional Auto-encoder Filters 
Filter visualization is one way to ensure that the CNN 

filters are learning well. In this section, we examined what the 
CAE actually learns and how it understands the input 
spectrogram. From the pre-trained network of the CAE, we 
defined a loss function that seeks to maximize the activation of 
a specific convolutional filter. The input image was initialized 
with uniformly distributed random values. Figure 5 presents an 
exploration of the proposed CAE filters. As shown in Figures 5 
(a) and (b), the harmonic layer filters allowed to see horizontal 
lines, and the percussive layer filters allowed to see vertical 
lines. This confirms that the CAE filters properly separated the 
harmonic and percussive components. 

         
(a) Filters on the harmonic layer         (b) Filters on the percussive layer 

Fig. 5. Exploration of the convolutional auto-encoder filters. 
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D. Experimental Results 
To evaluate the performance of proposed algorithm, we 

performed quantitative analyses, such as Source to Distortion 
Ratio (SDR), Source to Artifacts Ratio (SAR), and Source to 
Interferences Ratio (SIR), as implemented in the bss-eval 
toolbox 3.0 [20]. The higher SDR, SAR, and SIR values 
indicate a better separation quality. As aforementioned, we 
used three conventional methods as the baseline for the 
performance comparison. All evaluation results are presented 
in Figures 6 and 7. In experiments for MFS, the median filter 
size is 31. And the frequency band for the experiment of the 
KAM method is divided into 100, 1000, 3500, and 8000 Hz. 
The network structure for DNN is [2500-2000-2000-2000-
2500] stacked nodes and flatten the spectrogram as an input 
signal. Figure 6 shows the results of the HPSS for DB-1. The 
results illustrated that the proposed CAE method achieved the 
best average separation performance in SDR, SAR, and SIR. 
Compared to the KAM method using soft TF masking, the 
proposed model achieved approximately 1.4 dB, 0.9 dB, and 
4.0 dB gains in SDR, SAR, and SIR, respectively. The poor 
results for the DNN indicated that its network structure did not 
adequately learn the features of the harmonic and percussive 
signals. 

 

 

Fig. 6. Separation performance of the harmonic and percussive sources using 
the DB-1 database. 

Figure 7 presents the performance of the HPSS for database 
DB-2. Similar to that of the DB-1 database, the proposed CAE 
method had the best performance for the DB-2 database. 
Compared to the KAM method using soft TF masking, the 

proposed model achieved approximately 2.1 dB, 1.3 dB, and 
5.4 dB gains in SDR, SAR, and SIR, respectively. 

 

 

Fig. 7. Separation performance of the harmonic and percussive sources using 
the DB-2 database. 

A cross-database experiment was finally conducted to 
verify that the proposed method could be generalized. We 
performed the experiment using the networks trained by the 
opposite databases from previous experiments. That is, we 
tested DB-2 with networks trained through DB-1, and tested 
DB-1 with networks trained through DB-2. All results were 
calculated as mean values. Figure 8 depicts that the proposed 
method provided superior performance for cross-databases than 
the conventional methods. 

 

Fig. 8. Cross-DB separation results of the harmonic and percussive sources. 
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IV. CONCLUSION 
The machine learning field is rapidly expanding because of 

the innovation in new formalizations of machine learning 
problems driven by practical applications. This study proposed 
a novel and effective HPSS algorithm based on a CAE 
structure. The proposed method achieved automatically 
generated convolution filters instead of using the conventional 
hand-crafted filters. The generated filters were learned from the 
spectrogram as filters that detect well the harmonic and 
percussive component characteristics. By applying the 
proposed method to a magnitude of the spectrogram, separated 
harmonic and percussive sources were obtained and their 
qualities were analyzed. The proposed method was shown to 
achieve superior results for the two databases. We also 
confirmed that the proposed method was generally applicable 
through the cross-database experiments. Consequently, it was 
verified that the proposed method provides higher separation 
quality than the conventional methods. 
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