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ABSTRACT

In this paper, we present a time-recursive implementation of
a recent hyperparameter-free group-sparse estimation tech-
nique. This is achieved by reformulating the original method,
termed group-SPICE, as a square-root group-LASSO with a
suitable regularization level, for which a time-recursive im-
plementation is derived. Using a proximal gradient step for
lowering the computational cost, the proposed method may
effectively cope with data sequences consisting of both sta-
tionary and non-stationary signals, such as transients, and/or
amplitude modulated signals. Numerical examples illustrates
the efficacy of the proposed method for both coherent Gaus-
sian dictionaries and for the multi-pitch estimation problem.

Index Terms— Online estimation, covariance fitting,
group sparsity, multi-pitch estimation.

1. INTRODUCTION

Estimating a sparse parameter support for a high-dimensional
regression problem has been the focus of much scientific at-
tention during the last two decades, as this methodology has
shown its usefulness in many applications, ranging from spec-
tral analysis [1–3], array- [4–6] and audio processing [7–9],
to biomedical modeling [10], and magnetic resonance imag-
ing [11, 12]. In its vanguard, notable contributions were done
by, among others, Donoho et al. [13] and Tibshirani et al. [14].
Their methods are effectively equivalent but are termed dif-
ferently; the basis pursuit de-noising (BPDN) and the least
absolute selection and shrinkage operator (LASSO), respec-
tively, are nowadays a common component in the standard
scientific toolboxes. These methods will estimate a parameter
vector which reconstructs the signal using only a small num-
ber of regressors from the regressor matrix, i.e., a small num-
ber of columns from an (often highly underdetermined) lin-
ear system. More recently, a methodology termed the group-
LASSO [15] was developed for modeling a signal where the
sparse parameter support is assumed to be clustered into pre-
defined groups, with the justification that some signal sources
are better modeled by a group of regressors rather than just
one. The above mentioned methods, as well as the vast ma-
jority of sparse estimators, have in common the requirement
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of selecting one or several hyperparameters, controlling the
degree of sparsity in the solution. This may be done using,
e.g., application-specific heuristics, cross-validation, or us-
ing some information criteria, which may often be compu-
tational burdensome and/or inaccurate. The discussed sparse
estimation approaches typically assume having access to one
or more offline frames of data, each having time-stationary
signal support. For many applications, such as, for instance,
audio processing, data is often generated online, with large
correlation between consecutive frames, and with a varying
degree of non-stationarity. To better accommodate these con-
ditions, one may use a sparse recursive least squares (RLS)
approach (see, e.g., [16, 17]), such as the one derived in [18]
for the multi-pitch estimation problem. In a recent effort,
the sparse iterative covariance-based estimator (SPICE) [19]
utilizes a criteria for covariance fitting, originally developed
within array processing, to form sparse estimates without the
need of selecting hyperparameters. In fact, SPICE may shown
to be equivalent to the square root (SR) LASSO [20]; in a co-
variance fitting sense, SPICE may be as a result be viewed as
the optimal selection of the SR LASSO hyperparameter [21].
In this paper, we extend the method proposed in [22], which
generalizes SPICE for grouped variables, along the lines of
[23] to form recursive estimates in an online-fashion, rem-
iniscent to the approach used in [24]. By first reformulat-
ing group-SPICE as an SR-LASSO, we then derive an effi-
cient method for sparse recursive estimation formed via prox-
imal gradient iterations, enabling recursive estimation of non-
stationary signals. We justify the proposed method accord-
ingly by numerical examples, illustrating its performance as
on par with group-SPICE for stationary signals, and outper-
forming an online SPICE for group-sparse non-stationary sig-
nals.

2. NOTATIONAL CONVENTIONS

In this paper, we use the mathematical convention of letting
lower-case letters, e.g., y, denote scalars, while lower-case
bold-font letters, y, denote column vectors and upper-case
bold-font letters, Y, denote matrices. Furthermore, E de-
notes the expectation operator, ∇ the first order derivative,
and (·)> and (·)H the transpose and hermitian transpose, re-
spectively. Also, | · | denotes the absolute value of a com-
plex number, while ‖·‖q and ‖·‖F denotes the `q-norm for
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q ≥ 1 and the Frobenius norm, respectively. We let diag(a)
denote the diagonal matrix with diagonal vector a, and tr(A)
the matrix trace of A. We describe the structure of a ma-
trix or vector by ordering elements within hard brackets, e.g.,
y =

[
y(1) y(2)

]>
, while a set of elements is described

using curly brackets, e.g., N = {1, 2, . . .} denotes the set of
natural numbers. We use subscripts to denote a subgroup of
a vector or matrix, while time indices are indicated within
parentheses, e.g., xk(t) denotes the variables in subgroup xk
at time t. Superscript typically denotes a power operation, ex-
cept for when the exponent is within parentheses, e.g., x(j),
which denotes the j:th iteration of x. Finally, we also make
use of notations (x)+ = max(0, x), unit(x) = x/ ‖x‖2, and
x ∈ Bin(n, p), where the latter denotes that x is binomally
distributed with n independent trials and probability parame-
ter p.

3. GROUP-SPARSE ESTIMATION VIA THE
COVARIANCE FITTING CRITERION

Here, we consider an N sample signal frame which may be
reasonably well approximated by a select few variables in the
linear signal model

y = Ax + e (1)

where A ∈ CN×M and x ∈ CM denote the regressor matrix
(or dictionary) and the response variable vector, respectively,
and where e denotes the approximation error and noise. In
our signal model, we assume that a possible signal source is
represented by a sum of column vectors from the dictionary
rather than just one, such that it may be clustered into K pre-
defined groups,

A =
[

A1 . . . AK

]
(2)

Ak =
[

ak,1 . . . ak,Lk
]

(3)

where the k:th group thus have Lk basis vectors, and con-
sequently the dictionary has altogether M =

∑K
k=1 Lk

columns. By construction, we consider a group-sparse re-
gression problem, where only a small number of the K
possible groups are represented in the signal. We assume
that e is reasonably homoscedastic, i.e., E(eeH) = σI , as
well as that the variables in x are independent and identically
distributed with a random phase, uniformly distributed over
[0, 2π). The covariance matrix may thus be expressed as

R = E(yyH) = APAH + σI (4)

where P is a diagonal matrix with the diagonal vector

p =
[

p1 . . . pK
]>

(5)

pk =
[
pk,1 . . . pk,Lk

]>
(6)

which corresponds to the squared magnitude of the response
variables, i.e.,

pk,` = |xk,`|2 (7)

for the `:th component in the k:th dictionary group. To ac-
count for the group-sparse structure, we have relaxed the
orginal covariance fitting criterion used in [19] by following
the lines of [22] and thus seek to minimize

g(p, σ) = yH
(
APAH + σI

)−1
y +

K∑
k=1

vk ‖pk‖∞ (8)

with respect to the unknown variables p and σ, where

vk =
√

tr(AH
k Ak) = ‖Ak‖F (9)

Following the derivations in [22], minimizing (8) with respect
to p and σ is equivalent of minimizing

g(x) = ‖y −Ax‖2 +
K∑
k=1

√
vk
N
‖xk‖2 (10)

with respect to the original variable x, which is a square root
group-LASSO [25] with the regularization parameter individ-
ually set for each group as

√
vk/N .

4. RECURSIVE ESTIMATION VIA PROXIMAL
GRADIENT

To allow for a recursive estimation of x which can be im-
proved or changed adaptively as new samples are added, let
x(n) denote a linear filter for some time point n ∈ {1 ≤ n ≤
N}. Also, we reformulate the first term in (10), here denoted
q(·), such that a forgetting factor, 0 < λ ≤ 1, is utilized to
give older samples less importance than newer samples, i.e.,

q(y(n),x(n)) =

√√√√ n∑
t=1

λn−t|y(t)−α(t)>x(t)|2 (11)

where y(n) and α(t)> denote the vector of samples up to n
and the t:th row of A, respectively. On matrix form, q(·) may
be equivalently formulated as

q(y(n),x(n)) =
∥∥∥√Λ(n)

(
y(n)−A(n)x(n)

)∥∥∥
2

(12)

where A(n) =
[
α(1) . . . α(n)

]>
denotes the first n

rows in A, and where Λ(n) = diag(
[
λn−1 . . . λ0

]
).

Our aim is to implement a proximal gradient algorithm rem-
iniscent of [26] to estimate x(n),∀n, to which end one may
iteratively upper-bound q(·) by centering it around the previ-
ous iteration’s estimate, x(j−1)(n), i.e.,

q(y(n),x(j)(n)) ≤ q(y(n),x(j−1)(n))

+ (x(j)(n))− x(j−1)(n)))T ∇q(y(n),x(j)(n)))

+
1

2h

∥∥∥x(j)(n))− x(j−1)(n))
∥∥∥2
2

(13)
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Algorithm 1 The proposed online group-SPICE algorithm
1: Intitiate n← 0,R← 0, r← 0, γ ← 0 and set x(n) = 0
2: while n < (N − τ) do
3: Reset j ← 0 and warm start u(j) ← x(n)
4: Add τ new samples and set n← n+ τ
5: Update R, r, and γ using (23)
6: repeat {proximal gradient iterations}
7: Update gradient∇q(y(n),u(j))) using (18)
8: Take a gradient step, from u(j) to z, using (16)
9: Apply group-wise shrinkage u

(j+1)
k using (15)

10: j ← j + 1
11: until convergence
12: Save x(n) = u

(j)
k

13: end while

for some step size h > 0, and instead of minimizing (10) one
may equivalently instead iteratively minimize [26]

g̃ =
1

2h

∥∥∥x(j)(n))− h∇q(y(n),x(j−1)(n))
∥∥∥2
2

+
K∑
k=1

µk

∥∥∥x(j)
k (n)

∥∥∥
2

(14)

for a suitable choice of regularization µk. By solving the sub-
gradient equations of (14), previously shown in, e.g., [27] and
here omitted due to page restrictions, one obtains the closed-
form solution for the k:th group as

x
(j)
k = (‖zk‖ − hµk)+ unit(zk) (15)

where z =
[

z>1 . . . z>K
]>

is formed as

z = x(j−1)(n)− h∇q
(
y(n),x(j−1)(n)

)
(16)

in which the gradient of (12) becomes

∇q(y(n),x(n)) =
−A(n)HΛ(n)

(
y(n)−A(n)x(n)

)
∥∥∥√Λ(n)

(
y(n)−A(n)x(n)

)∥∥∥
2

(17)

wherein the superscript of x(j−1)(n) was temporarily omitted
for notational convenience.

5. EFFICIENT RECURSIVE UPDATES FOR
NEW SAMPLES

One may facilitate an efficient estimation process when new
samples are introduced by reusing old computations. To that
end, the derivative (17) may be expressed as

R(n)x(n)− r(n)√
γ(n)− 2R (r(n)Hx(n)) + x(n)R(n)x(n)

(18)
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Fig. 1. Exact recovery rates from 500 Monte-Carlo samples
estimated with online group-SPICE (OL-GSPICE) in com-
parison to other methods, where an coherent Gaussian dictio-
nary is used, with C = 3 active groups.

where

r(n) = A(n)HΛ(n)y(n)

R(n) = A(n)HΛ(n)A(n)

γ(n) = y(n)HΛ(n)y(n) (19)

Let
[
y(n+ 1) . . . y(n+ τ)

]>
, τ ∈ N denote a vector

of τ new samples available for estimation, and (+τ) the time
indices from n+ 1 to n+ τ . Then,

y(n+ τ) =
[

y(n)> y(+τ)>
]>

(20)

A(n+ τ) =

[
A(n)

A(+τ)

]
(21)

Λ(n+ τ) =

[
λτΛ(n) 0

0> Λ(τ)

]
(22)

which, if inserted into (19), yields the updating formulas

r(n+ τ) = λτr(n) + A(+τ)HΛ(τ)y(+τ)

R(n+ τ) = λτR(n) + A(+τ)HΛ(τ)A(+τ)

γ(n+ τ) = λτγ(n) + y(+τ)HΛ(τ)y(+τ) (23)

The hyperparameters, µk, from (15), are in (10) defined as
µk =

√
vk/N . In a time-recursive scheme, however, when

new samples are added and older samples are given smaller
importance, one must choose µk accordingly. As the sample
size and dictionary matrix increase, governed the forgetting
factor, one may select µk(n) as

µk(n) =

√√√√ √
tr
(
Rk,k(n)

)
(λn − 1)/(λ− 1)

(24)
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Fig. 2. True parameters for a simulated non-stationary multi-pitch signal (left), with corresponding estimates of the proposed
method (middle), in comparison with the online-SPICE estimator (right).

where the denominator results from the geometric sum∑n−1
t=0 λ

t and Rk,k(t) = Ak(t)
HΛ(n)Ak(n), which is

obtained by choosing a submatrix of the recursively updated
R(t) with rows and columns corresponding to group k. The
step size, h, may, e.g., be chosen along the lines of [27].
Algorithm 1 summarizes the proposed method, which has
computational complexity O(M2). The main cost occurs at
line 5 and is independent of the sample size, n.

6. NUMERICAL RESULTS

In this section, we compare the proposed estimator to relevant
estimators for some different scenarios. We begin by exam-
ining the case of a cohrerent Gaussian dictionary, which is
constructed by letting

ak,` =
∑
Iρk,`

bk′,`′ , bk′,`′ ∈ N (0, I) (25)

where bk,`,∀(k, `) are independent and identically dis-
tributed Gaussian vectors with zero mean and unit variance.
The set Iρk,` selects a mix of n ∈ Bin

(
M − Lk, ρ

)
of these

vectors, the indices of which are uniformly drawn from

(k′, `′) ∈ {k : 1 ≤ k ≤ K, k′ 6= k} × {1 ≤ ` ≤ Lk} (26)

This results in a dictionary of mixed Gaussian regressors, with
no linearly dependent components within the groups, but for
every component in a group, there will on average be (M −
Lk)ρ components in other groups to which it is linearly de-
pendent. The parameter ρ thus controls the degree of regres-
sor coherence, 0 ≤ ρ ≤ 1. Figure 1 verifies the stationary
performance of the proposed method in comparison with the
non-recursive group-SPICE, the standard SPICE, the group-
LASSO with an oracle choice of hyperparameter, as well as
the (greedy) block matching pursuit [28] and block orthog-
onal matching pursuit [29]. The results are based on 500
Monte-Carlo (MC) simulations of N = 100 samples with

C = 3 groups, having L1 = L2 = L3 = 10 components,
randomly drawn from a dictionary with K = 200 blocks of
size L = 10, with dictionary coherence ρ = 0.1. To measure
performance, we use the exact recovery rate (ERR) metric,
defined as the rate of correct support recovery, i.e.,

ERR(i) = 1
{
Î(i)C = I(i)C

}
(27)

for the i:th MC simulation, averaged over all simulations,
where I(i)C and Î(i)C denote the true and the estimated sup-
port, respectively. To be able to make comparisons with the
abovementioned stationary estimators, we use λ = 1 for the
proposed method. As can be seen from the figure, the online
group-SPICE performs on par with a group-LASSO, which
has been given the oracle hyperparameter, whereas SPICE
(without grouping) yields significantly poorer results. Next,
we examine estimation results for a multi-pitch dictionary,
where the k:th candidate dictionary group in the dictionary
is

αk(t) =
[
ei2πfk/fs1t) · · · ei2πfk/fsLkt

]
at sample point t, i.e., where the regressors are Fourier vec-
tors with frequencies at an integer multiple of the fundamental
frequency candidate fk. Here, we simulate a non-stationary
signal by allowing C = 2 sources to have a dynamic support
changing at random locations over a frame N = 5 · 103 sam-
ples. We let the dictionary contain K = 50 candidate funda-
mental frequencies, fk, uniformly spaced on [100, 800) Hz,
with fs = 44 kHz. Figure 2 illustrates the true signal (left),
the estimates of the proposed estimator (middle), and the es-
timates of the online SPICE (right). The figure clearly shows
favorable performance of the online group-SPICE, whereas
online SPICE is prone to misclassification. This is likely due
to the harmonic structure of the multi-pitch dictionary, mak-
ing it highly coherent, with the consequence that many erro-
neous candidate groups partly fit the signal.
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