
Optimization of Fractal Image Compression 
Based on Genetic Algorithms 

 
 
 
 
 
 
 
 
 
 
 
Abstract 
 
The fractal image compression problem put forward three major 
requirements: speeding up the compression algorithm, improving 
image quality or increasing compression ratio. Major variants of 
the standard algorithm were proposed to speed up computation 
time. But most of them lead to a bad image quality, or a lower 
compression ratio. In this paper we present an implementation 
based on genetic algorithms. The main goal is to accelerate image 
compression without significant loss of image quality and with an 
acceptable compression rate. Results shown in section 3 prove 
that genetic compression is a good choice.  
 

I. INTRODUCTION 

 
A major challenge of both theoretical and practical 

interest is the resolution of the inverse problem: finding an IFS 
whose attractor is a target of two dimensional (2D) shapes [1]. 
An exact solution can be found in some particular cases, but in 
general, no exact solution is known. 
As the function to be optimized is extremely complex, most of 
them make some a priori restrictive hypotheses, such as use of 
affine IFS, with a fixed number of functions.  

The major inconvenient of the current fractal 
compression algorithm, is its high computational demands. To 
find existing redundancies (called self-similarities in fractal 
terms), this algorithm must perform many tests and 
comparisons between different areas of the compressed image 
[2]. We cannot find easily similar parts in any natural images, 
so algorithm complexity is very high, which lead to a very 
slow compression process. 

Genetic algorithms are generally used when we want 
to solve an optimization problem which is multimodal, 
multidimensional, and have a large search space with different 
optima. Such problems, does not have deterministic algorithms 
to get the global optimum, and if exist, the algorithm is an 
exhaustive search along the solution space, which lead to 
exponential time and machine resources consuming. With NP-
Hard problems, using deterministic search is impossible. The  
 

points. Algorithms of this kind are best suited for the problems 
described above, and their use to solve different complexes 
problem has prove their capacities. Both exploitation of best 
solution and exploration of the entire search space are assured, 
and an appropriate optimal solution can be found in reasonable 
number of iterations.    
The genetic algorithms are principally destined to complex 
problems, were no exact solution exist, and an exhaustive 
brows of the related search space lead to an NP-Hard problem, 
or high computation time. Our goal is to accelerate the 
compression process, by improving the standard compression 
algorithm with a genetic search technique. 
This idea was exploited by some authors in different ways, 
because the optimisation can be viewed from different angles, 
and be applied on different parameters. Our approach is to use 
genetic algorithm to optimise the search of similarities in the 
target image, the standard optimisation methods are sufficient 
for the calculation of related parameters when the similarity is 
detected. 
 

II. GENETIC ALGORITHM FOR IFS INVERSE 
PROBLEM 

 
Genetic algorithms work with a population of individuals 

which are iteratively adapted towards the optimum by means 
of a random process of selection, recombination and mutation 
[4]. During this process, a fitness function measures the quality 
of the population, and selection favours those individuals of 
higher quality. Most of the evolutionary algorithms described 
in the literature for solving the IFS inverse problem follow the 
optimization problem. In this case, each individual is an IFS 
model consisting of a number of transformations and its fitness 
is given by some convenient measure of similarity between the 
target image and the IFS attractor [3, 5].  
To generate the IFS code of a given image by the use of 
genetic algorithms, two different approaches of representation 
can be considered: 
 
  1) Consider the whole IFS of the coded image as an   
individual, and then iterate the genetic algorithm on a 
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population of IFS, each IFS is constituted by a fix number of 
transformations (depending on the partition) as genes [6]. 
  2) For each range bloc we associate a population of 
transformation as individuals, each transformation (individual) 
is represented by its parameters as genes [7].  
Our work is based on the second approach, in the following, 
the main elements of the used algorithm are presented. 

 
III.   GENETIC COMPRESSION SCHEMA 

 
Genetic algorithms are used to improve compression schema, 
principally to accelerate coding time. For each range domain 
Ri, the set of all possible domain blocks is genetically browsed 
until we find an appropriate solution. The GA. search space 
parameters are the domain block coordinates and the isometric 
flip. The luminance and contrast (S and O) parameters are 
computed as done in the standard algorithm. The fractal 
compression scheme for a single image can be seen as in the 
following algorithm. 
 

 
$ 
 
 
 
 
 
 
 
 
 A. Chromosomes codification  
A chromosome in our algorithm is constituted by 5 genes, from 
which only 3 genes are submitted to genetic modification, the 
two others are computed by the RMS equation.  We have the 
genes : 
  1) Xdom , Ydom, flip : which are optimised by genetic search; 
  2) Contrast O, and luminance S: which are computed form the     
  RMS equation. 
 
   This will improve both compression speed and reconstruction 
quality, the following figure show our chromosomal 
representation of the IFS: 

 
 
 
 
 
 
 
 
B. The Fitness Function 
The fitness function assign to each individual in the population 
numeric values that determine its quality as a potential 
solution. The fitness denotes the individual ability to survive 
and to produce offspring. In our case, the  fitness   is  given  by  
the  inverse  of  the  RMS  error between  the  coded  range  
block,  and  the  domain block determined by the 
transformation  coordinates   Xdom  and  Ydom,  and transformed  

with corresponding luminance and contrast values. 
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 Fitness function (T)= 100 / (RMS(Ri ,T(Ri))) 
 
C. Genetic Operators 
The two principal operators used in our implementation are: 
crossover operator, and mutation operator. Their patterns and 
structure is presented in the following. 
 
1) Crossover operator: The crossover operator combines two 
individuals in the current population, to produce two offspring 
individuals included in the new generation. According to our 
chromosome representation, the crossover operator compute 
result coordinates for the offspering individuals by using a 
linear combinaison of  the parents coordinates.  
 
For the first offspring : 

Xdom =a* Xdom
p1+(1-a)* Xdom

p2 
Ydom =a* Ydom

p1+(1-a)* Ydom
p2 

 

For the second offspring:  
 Xdom =(1-a)* Xdom

p1+(1-a)* Xdom
p2 

Ydom =(1-a)* Ydom
p1+(1-a)* Ydom

p2 
 

is a random real number in [0,1]. The figure 2  
present the schema used by the crossover operator. 
 
  
 

 

 

 

 

 

 

 

 

 

 

 
 

2) Mutation Operator: Mutation operator modifies the 
chromosome genes randomly according to the mutation 
probability. The genes Xdom, Ydom and flip are changed with a 
random generated value respectively in [0, L], [0, W], and [0, 
7] intervals (L and W are the target image dimensions).Figure 
4   illustrates the mutation operator schema. 

 
1. P ← Generate (LIFS) randomly 
2. For all LIFS pi ∈ P evaluate by applying (pi) to generate an image and 
measuring its distance (using the L1 or L2 metric) to the original image; 
3. While termination criteria not met; 
4. Do reproduce pi ∈ P according to evaluation; 
5. Apply the desired mutation operator to some pi ∈  P, selected in some 
way, creating new LIFS; 
6. Apply the desired mating operator to some pi , pj ∈ P selected in some  
way, creating new LIFS; 
7. Evaluate new LIFS (as above); 
8. Replace the worst old strings with the best new strings. 
 

 
Figure 1. The genetic fractal compression algorithm 

 

Xdom Ydom Oopt Sopt Flip 

Optimized by 
genetic algorithms 

Computed by RMS 
equation 

Figure 2. The chromosome codification. 
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(1-a)* Ydom
1+a* Ydom
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(1-a)* Xdom
1+a* Xdom
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Xdo
1

m 
Y1

do

m 
Flip1 Xdo

2

m 
Y2

do

m 
Flip2 

Xdom Ydom Flip Xdom Ydom Flip 

Parent 1 Parent 2 

Offspring 1 

Figure 3.  The Crossover operator pattern 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3) Selection Process: To avoid the premature convergence 
effect, linear scaling is applied to each individual fitness. Then, 
the Roulette wheel method is used as a selection process. 

4) Termination criteria: Any genetic algorithm must find the 
optimal solution for a given problem in a finite number of 
steps. In our implementation, two criteria can cause the 
termination of the algorithm when applied to a given range 
block: 
1) An acceptable value of fitness for the best in individual in 
the population is reached; 
2) A maximum predefined count of generations is reached. 
This maximum count is a predefined parameter of the 
algorithm; it was determined experimentally and fixed to 20 
generation in our implementation.  
 
5) The parameters of the algorithm: The behaviour of the 
genetic algorithm can be controlled using many initial 
conditions and parameters .We can control convergence speed, 
solutions quality and algorithm evolution when adjusting and 
modifying these parameters. In our algorithm, we have two 
different sets of parameters: the genetic evolution parameters 
given by: 
• Population size; 
• Crossover rate; 
• Mutation rate; 
• Number of generations. 
 
And the fractal compression pattern parameters given by: 
• The  lowest block size used for ranges decomposition (in 

the case of QuadTree schema); 
• The number of flips and isometrics applied to each domain 

block;  
• The decomposition error limit, this parameter is 

introduced to improve the QuadTree decomposition 
schema; 

• The RMS error limit fixed to decide if a given 
transformation is accepted.  

The number of bits used to quantify and code luminance and 
contrast parameters, fixed experimentally to 5 and 7 bits 
respectively.    
In table 1, the set of optimal values of all the algorithm 
parameters is given. These values ensure compromise between 
execution time and solutions optimality.      

 
 
 
 
 
 
 
 
 
 
 
 
 

IV.   SIMULATION AND RESULTS 
 
All presented results were obtained on a PIII-INTEL 800MHz 
with 128Mo of RAM size. 
 
A. Genetic Compression Algorithm with Regular Partition 
The decomposition schema is a regular partition with 8x8 and 
4x4 block size. The genetic algorithm optimises the domain 
block search. Results are as follow: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. Genetic algorithms with Quadtree decomposition:  
The genetic compression algorithm was used with Quadtree 
partitioning. Different parameters were used for each test, and 
the obtained results are given in both table forms and graphical 
forms. Examples of reconstructed images are also given to 
illustrate  reconstruction quality. 

Xdom Ydom Flip 

Random 
value R 

R=1 R=2 

Rand 

Ydom 

Flip 

Xdom 

Rand 
 
Flip 

Xdom 

Ydom 

Rand 

 

Figure 3. Mutation operator schema 

 

Population Size 100 

Maximum generations 20 

Crossover rate From 0.7 to 0.8 

Mutation rate 0.1 

RMS limit 5.0 

Decomposition error limit 10.0 

Flips and isometrics count 8 

 

 

TABLE 1. OPTIMAL PARAMETERS OF OUR GENETIC COMPRESSION 
ALGORITHM 

 
Figure 4. Lenna image Compression ratio variation for different 

RMS error 

 

 
Figure 5. Decompressed Barb image, compressed with 8x8 

genetic algorithm  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V.  CONCLUSION 
 
It is clear that the best image quality is always obtained using 
the standard schema, but its computation time makes it 
unpractical. So we must accept less quality in favour of quick 
compression. Our main goal was to accelerate standard 
compression schema, without greatly decreasing both image 
quality and compression ratio. Further more this work 
demonstrates the genetic algorithm ability to solve complex 
problems.  

VI. FUTURE WORKS: DECOMPOSITION WITH 
EVOLUTIONARY COMPUTATION 

 
Here, for a fixed size square block partition a fractal code is 
required as in standard fractal coding, but for each range the 
best D codebook entries are kept in a list together with the 
optimal scaling and offsets parameters. We take N times this 
configuration as the starting population for the evolution. The 
offspring are built by randomly merging two neighbouring 
blocks. The fractal code is modified by only considering the 
transformations kept in the lists of those two blocks. A 
selection is performed by only keeping the fittest 
configurations in terms of collage error. 
The main improvement introduced our approach lies in the 
stochastic search (random mutations), and not in the crossover 
schema. Results on the effects of crossover rate and mutation 
rate may provide some insight on that point. 
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Figure 6. Decompressed Lena image using QuadTree 

decomposition with RMS=5.0 (ratio 9.14:1) 

RMS 
Limit 

Execution 
Time 

Quality 
(dB) 

Compression 
Ratio 

Ranges count 

0.0 
2.0 
4.0 
5.0 
8.0 
10.0 
15.0 
20.0 
25.0 

2 m 44 s 
1 m 56  s 

49 sec 
43 sec 
36 sec 
33 sec 
21 sec 
14 sec 
15 sec 

 35.66  
35.03  
34.89  
34.80  
34.50  
30.50  
22.33  
19.36  
19.01  

4.29 :1 
6.35 :1 
9.28 :1 
9.82: 1 
9.95 :1 
10.05 :1 
13.66 :1 
19.34 :1 
26.25 :1 

4069 blocks 
2770 blocks 
2023 block 
1792 blocks  
1768 blocks 
1750 blocks 
1288 blocks 
910 blocks 
670 blocks 

 

TABLE 2.  DIFFERENT COMPRESSION RESULTS OF LENA 
IMAGE WHILE APPLYING DIFFERENT  

VALUES OF RMS ERROR LIMIT 

 
Figure 7. Lena image quality variation according to RMS limit values 

Population 
size 

Execution 
Time 

Quality 
(dB) 

Compression 
Ratio 

Ranges 
count 

5 
10 
20 
50 

100 
250 
500 
1000 

9 sec 
11 sec 
14 sec 
23 sec 
44 sec 

2 m 24 sec 
7 m 4 sec 

23 m 4 sec 

29.62 
29.98 
30.21  
32.11 
32.23 
33.74  
34.56 
35.12 

8.30 :1 
8.35 :1 
8.72 :1 
9.36 :1 
9.83 :1 

10.35 :1 
10.83 :1 
10.97 :1 

2119  
2107  
2017  
1879  
1789  
1699  
1624  
1603  

 

TABLE 3. DIFFERENT COMPRESSION RESULTS OF LENA IMAGE 
WHILE APPLYING DIFFERENT VALUES OF POPULATION SIZE 

 
Figure  8. Lena image compression ratio variation according 

to population size values 
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