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Abstract—Digital signal processors with Harvard 
architecture are being gradually replaced by digital signal 
processors with VLIW (Very Long Instruction Word) 
architecture for high-end applications. Owing to exploiting the 
principles of parallel instruction processing and parallel data 
processing, the new architecture provides the calculation power 
to implement complex algorithms of digital signal processing. 
On the other hand, it is very difficult to write programs such 
that they make optimum use of architecture properties. The 
paper summarizes the present authors’ experience obtained in 
optimum design of algorithms for digital signal processors with 
VLIW architecture. Using this new approach it was, for 
example, possible to optimize compilation from the C language 
into the assembler of TMS320C6414 (Texas Instruments) 
digital signal processor for type GSM encoder [7] and to speed 
up the processing about 25 times. The method consists in a 
closer linkage between the theory of digital signal processing, 
software tools and hardware. 

I. INTRODUCTION 
In a single clock cycle the digital signal processor with 
Harvard architecture will read a single instruction, which is 
then decoded and executed. Although a single instruction 
may be processed simultaneously by several partial units 
(arithmetic-logic unit, data address unit, etc.) of digital 
signal processor working in parallel, the operations of partial 
units cannot be grouped arbitrarily. The instruction set 
contains simple instructions for each partial unit 
(e.g. addition instructions or register-to-memory move 
instructions) and a limited number of complex instructions, 
where available combinations of parallel activity of several 
units are encoded (e.g. multiply and accumulate instruction 
with parallel register-to-memory moves) [1, 2].  

In the case of VLIW digital signal processors the 
instruction set contains a group of simple instructions for 
each partial unit of the processor. The source codes are most 
often written in the C language and the optimization is 
performed by the compiler. However, for the compilation to 
be efficient, the source code must, with a view to parallel 
processing, be written using compiler functions (intrinsics), 
compiler keywords and compiler directives. Several typical 
examples will be given to show a principal procedure of 

algorithm optimization. 
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II. ALGORITHM OPTIMIZATION USING DIGITAL SIGNAL 
PROCESSING THEORY 

A. State-Space Equation Optimization for IIR digital 
filters 

The state-space representation of a discrete system defines 
the relation between the input discrete signal, the state-space 
discrete variables and the output discrete signal. As with 
continuous systems it is of greater advantage to write one 
sth-order difference equation as 1st-order difference 
equations for the state-space variables [3]: 
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where y[n] is the output discrete signal and x[n] is the input 
signal. The vector of state-space variables is defined as 

[ ] [ ] [ ] [ ][ ]T21 nvnvnvn sL=v . Matrices A, B, C and D 
determine the properties of the discrete system. The IIR 
(Infinite Impulse Response) digital filter is one of the 
possible realizations of a linear time-invariant discrete 
system. It is obtained by quantizing the system parameters, 
the input and the output signal and the partial results of 
arithmetic operations when calculating the complete 
solution. Two basic types of decomposition into state-space 
difference equations are known : the first canonic form 
(direct form transposed) and the second canonic form (direct 
form). Digital filters are used very often and their realization 
takes up considerable computation time. It is therefore 
important to find an optimum form of realizing them. It is 
characteristic of robust structure realizations that the 
response to initial conditions does not affect the total 
complete response very much. In the literature the 
implementation of the 2  canonic form is mostly given here, 
which is however absolutely unsuitable for implementation 
of the IIR digital filters in fixed-point digital signal 
processors. The difference equations must be prepared in 
homogeneous form, i.e. such that the basic instruction-the 
multiply and accumulate instruction is made the best 
possible use of. It is exactly the 1  canonic form that meets 
this condition far better. Fig.1 gives the structure of the 1  
canonic form for a discrete system of the 2 -order.
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Fig.1. Signal-flow graph of a 2nd-order discrete system in the 1st canonic 
form. 

The state-space difference equations for the system in 
Fig.1 are: 
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For a number of common applications it can be seen that it 
is of advantage to use the 1st canonic form (Fig.1) in the 
realization of a 1st- or 2nd-order section of IIR digital filter in 
a fixed-point digital signal processor. Then it no longer 
matters whether these partial sections will be connected in 
cascade (series) or in parallel. This choice, however, need 
not be of general validity and it is necessary, from case to 
case, to analyse the difference equations of the respective 
algorithm and to rewrite them such that they are optimum 
from the viewpoint of the architecture used in the digital 
signal processor.  

B. Zero-pole TTS Vocal Tract Model 
Modelling the vocal tract in TTS synthesis is an example of 
when it is preferable to use the 2nd canonic form [4]. A new 
state-space cepstral vocal-tract model has been designed, 
which approximates both the formants and the antiformants 
of the frequency response for voiced and unvoiced speech 
sounds. It thus differs from the currently used LPC model, 
which approximates the formants alone. Unlike methods of 
the type of PSOLA, this method provides for modelling the 
prosody and requires less memory capacity. The synthesis 
starts from the cepstral coefficients obtained by analysing 
the speech signal. A structure of parametric vocal-tract 
model is proposed, which is formed by combining type IIR 
and type FIR digital filters. Experiments have shown [5] that 
employing a type IIR digital filter of maximally 5th-order 
guarantees sufficient approximation accuracy for both the 
sampling frequency fs = 8 kHz (N0 = 26 cepstral 
coefficients) and the frequency fs =16 kHz (N0 = 52 cepstral 
coefficients). Fig. 2 gives the signal-flow graph of a vocal 
tract model of the 5th-order realized by a digital filter of the 
type of IIR, which is expressed in the 2nd canonic form. 
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Fig. 2. Cepstral vocal-tract model of 5 -order for N  cepstral coefficients, 
realized by an IIR digital filter in 2  canonic form. FIR digital filters are 
also realized in 2  canonic form [4
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The 5th-order vocal tract model for N0 cepstral coefficients 

c[n] in Fig.2 can be represented using a set of state-space 
canonic equations in the optimal form: 
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Convolution for N0 cepstral coefficients is then defined as 

follows: 
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for   i = 1, 2, 3, ... , s  ,   s = 5  .    (4) 

By the signal-flow graph in Fig.2, output signal y[n] 
equals: 
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If in this equation we now substitute the state-space 

variable w1[n], we obtain the following simplification: 
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The algorithm is now optimally adapted for 

implementation on a fixed-point digital signal processor. 
It is likewise possible to choose between two types of 

butterfly when realizing the FFT algorithm. There are two 
large groups of FFT algorithms, namely DIT (Decimation in 
Time) and DIF (Decimation in Frequency) algorithms. From 
the viewpoint of algorithm homogeneity the DIF butterfly is 
absolutely unsuitable. Also when implementing other types 
of algorithm (e.g. speech synthesis via LPC in the case of 
GSM, type text-to-speech synthesis, etc.) it is appropriate to 
respect this condition of homogeneity [6]. 

III. PROCEDURE OF COMPILING OPTIMIZATION 
In parallel processing the algorithm can be realized for 

several input signal samples at the same time or different 
parts of the algorithm are processed in parallel. Using 
parallel processing the computation speed of algorithm 
processing increases substantially. The condition is that the 
algorithm is written by an experienced programmer directly 
in the assembly of the digital signal processor or that the 
source code written in a high-level program language (such 
as the ANSI-C or C++ languages), is compiled by first-rate 
compiler. In the optimization procedure it is not sufficient to 
use only hardware or software but the difference equations 
that describe the algorithm must be arranged and optimized 
beforehand in order to obtain the highest computational 
throughput of the digital signal processor architecture. Using 
the knowledge of digital signal processing, the program can 
be optimized and this has much influence on its size and the 
data processing speed. If the algorithm is theoretically well 
composed, both more channels and more communication 
protocols can be served by one VLIW digital signal 
processor. 
Compilers designed for digital signal processors are part of 
the IDE (Integrated Design Environment). Texas 
Instruments’ Code Composer Studio or Motorola’s Code 
Warrior can be quoted as examples. These compilers differ 
from the ANSI-C or C++ standard in a few details, which in 
the ultimate result have a considerable effect on the speed 
and stability of algorithm implementation. The basic 
difference lies in that the defined data types are fully 
adapted to the architecture of digital signal processor. The 
number of data bits and the format of storing numbers in a 
given code (mostly the two’s complement) correspond to the 
actual storage of numbers in digital signal processor 
registers. Another difference as regards the above standards 

is the definition of macro instructions and compiler 
directives by means of which the programmer defines in the 
source code additional information. The data in question 
concern, for example, mutual relations between variables, 
rounding of values in memories, etc. This set-up information 
is used by the compiler in the optimization process and if 
used properly, this information can greatly increase the 
compilation effectiveness as measured by the computation 
demanding of the compiled binary code. Conversely, 
incorrect application leads to the creation of a binary 
machine code, which is potentially dangerous and can cause 
run-time errors. Two independent variables, X and Y, for 
example, stored in different parts of data memory can be 
stored in the memory or loaded from the memory in parallel. 
If the variables shared a common memory space, then 
writing a value in variable X would entail a change also in 
the value of variable Y. In that case the value read from Y 
depends on whether the reading operation is executed before 
or after the operation of writing into X. In the case that 
variables X and Y are the arguments of a function passed on 
by a reference, it is not possible at the time of compilation to 
find out whether or not the two variables share the memory 
space. The compiler assumes they do and creates a more 
secure binary machine code, which, however, requires 
longer and more computation demanding. 

IV. EXAMPLE OF GSM VOICE CODING OPTIMIZATION 
The source code of the GSM Half Rate codec by ETSI 

(European Telecommunications Standards Institute) 
organisation was optimized [7]. The optimization proceeded 
in the Code Composer Studio for digital signal processor of 
the C64xx series. The source code includes several functions 
that implement an IIR digital filter. These are functions 
lpcIir, lpcZsIir, lpcIrZsIir, lpcZsIirP, lpcZiIir. 
These functions were optimized first in the C language using 
intrinsic functions and compiler keywords, similar to the 
optimization of function iir. Second they were also 
optimized in the linear assembly. Average computation 
demand in clock cycles of these functions is shown in Table 
I. In the case of optimizing in the C language, computation 
demand decreased approximately more than 6 times, in the 
case of optimizing in the linear assembly the computation 
demand decreased as much as 7.5 times. 

TABLE I 
COMPUTATION DEMAND OF THE FUNCTIONS OF ORIGINAL SOURCE CODE, 
THE FUNCTIONS OPTIMIZED IN THE C LANGUAGE AND THE FUNCTIONS 
OPTIMIZED IN THE LINEAR ASSEMBLY. 

clock cycles function 
original C language assembly 

lpcIir 2 735 416 348
lpcZsIir 2 248 360 322
lpcIrZsIir 2 048 366 294
lpcZsIirP 2 229 379 321
lpcZiIir 2 744 345 298



 
 

 

After optimizing the above functions the other functions 
of source code were optimized. Average computation 
demand in clock cycles of the encode and decode processes 
is shown in Table II. In the case of optimizing in the C 
language the computation demand decreased approximately 
5 times. In the case of optimizing in the linear assembly the 
computation demand decreased approximately 9 times. Thus 
it is possible to serve 9 times more speech channels in 
comparison with the original source code. 

TABLE II 
COMPUTATION DEMAND OF THE ENCODE AND DECODE PROCESSES OF THE 
ORIGINAL SOURCE CODE, THE SOURCE CODE OPTIMIZED IN THE C LANGUAGE 
AND THE SOURCE CODE OPTIMIZED IN THE LINEAR ASSEMBLY. 

function clock cycles 
 original C language assembly 

Encode 3 209 855 644 018 327 682
Decode 108 562 46 349 44 829

V. CONCLUSION 
Writing algorithms in the assembly of fixed-point digital 

signal processors of the type of VLIW is very demanding. 
Several instructions are being processed in every clock 
cycle, their number being given by the number of active 
parallel units. Executing any instruction takes a different 
number of clock cycles. This is due to the high degree of 
pipelining. The program thus contains several parallel 
computation paths, which the programmer must follow 
incessantly. Under these conditions it is very easy to make a 
mistake. Moreover, grouping instructions into parallel paths 
is subject to many constraints, which are given by the 
architecture of the given digital signal processor. For 
example, if only two address buses are available, then only 
two values can be read from the memory in one clock cycle. 
All this strongly depends on the particular type of digital 
signal processor. By contrast, the development of programs 
for processors with superscalar architecture (Pentium from 
Intel, etc.) is simpler from this viewpoint since parallel 
instruction grouping is performed by the hardware unit in 
the processor structure (Schedule Unit). In spite of the above 
difficulties we often cannot avoid writing the algorithm 
directly in the assembly of digital signal processor since this 
is the only way how to achieve the maximum speed of 
calculating the critical parts of the source code. 

The proposed procedure of implementing algorithm in 
the VLIW digital signal processors might be as follows: 

• In the proposed method the difference equations or other 
mathematical equations are modified in order to be as 
homogeneous as possible. In arithmetic operations, 
type VLIW digital signal processors use similar 
principles as digital signal processors with Harvard 
architecture. 

• The algorithm is first written in the C or C++ language 
and its functionality and stability are tested. 

• When testing the digital signal processor in the IDE the 
computation requirements of individual functions or 

parts of the code written in the C language are 
analysed. If the total computation requirement of the 
algorithm is too high, the source code in the C 
language is modified and optimized using the 
directives and other tools of the compiler. When using 
the parallelism of instructions and data to the maximum 
extent there is a danger the arithmetic may be 
saturated. 

If even this measure does not help, the only thing that can 
be done is to optimize the critical code parts directly in the 
assembly of digital signal processor. This step, however, 
requires a very good knowledge of the architecture of digital 
signal processor and experience of digital signal processors 
that make use of pipelining and parallel processing. 
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