

Digital Signal Processing Algorithm Optimization for VLIW Digital
Signal Processors

Zdenek Smékal, Member IEEE, Petr Sysel

Abstract—Digital signal processors with Harvard
architecture are being gradually replaced by digital signal
processors with VLIW (Very Long Instruction Word)
architecture for high-end applications. Owing to exploiting the
principles of parallel instruction processing and parallel data
processing, the new architecture provides the calculation power
to implement complex algorithms of digital signal processing.
On the other hand, it is very difficult to write programs such
that they make optimum use of architecture properties. The
paper summarizes the present authors’ experience obtained in
optimum design of algorithms for digital signal processors with
VLIW architecture. Using this new approach it was, for
example, possible to optimize compilation from the C language
into the assembler of TMS320C6414 (Texas Instruments)
digital signal processor for type GSM encoder [7] and to speed
up the processing about 25 times. The method consists in a
closer linkage between the theory of digital signal processing,
software tools and hardware.

I. INTRODUCTION
In a single clock cycle the digital signal processor with
Harvard architecture will read a single instruction, which is
then decoded and executed. Although a single instruction
may be processed simultaneously by several partial units
(arithmetic-logic unit, data address unit, etc.) of digital
signal processor working in parallel, the operations of partial
units cannot be grouped arbitrarily. The instruction set
contains simple instructions for each partial unit
(e.g. addition instructions or register-to-memory move
instructions) and a limited number of complex instructions,
where available combinations of parallel activity of several
units are encoded (e.g. multiply and accumulate instruction
with parallel register-to-memory moves) [1, 2].

In the case of VLIW digital signal processors the
instruction set contains a group of simple instructions for
each partial unit of the processor. The source codes are most
often written in the C language and the optimization is
performed by the compiler. However, for the compilation to
be efficient, the source code must, with a view to parallel
processing, be written using compiler functions (intrinsics),
compiler keywords and compiler directives. Several typical
examples will be given to show a principal procedure of

algorithm optimization.

Z. Smékal is with the Department of Telecommunications, Brno

University of Technology, 612 00 Czech Republic (corresponding author to
provide phone: +420-541-149-171; fax: +420-541-149-192; e-mail:
smekal@ feec.vutbr.cz).

P. Sysel is with the Department of Telecommunications, Brno University
of Technology, 612 00 Czech Republic.

II. ALGORITHM OPTIMIZATION USING DIGITAL SIGNAL
PROCESSING THEORY

A. State-Space Equation Optimization for IIR digital
filters

The state-space representation of a discrete system defines
the relation between the input discrete signal, the state-space
discrete variables and the output discrete signal. As with
continuous systems it is of greater advantage to write one
sth-order difference equation as 1st-order difference
equations for the state-space variables [3]:

[] [] [
[] [] [] ,1

,1
nxnny
nnn

DvC
xBvAv

+=+
]+=+

 (1)

where y[n] is the output discrete signal and x[n] is the input
signal. The vector of state-space variables is defined as

[] [] [] [][]T21 nvnvnvn sL=v . Matrices A, B, C and D
determine the properties of the discrete system. The IIR
(Infinite Impulse Response) digital filter is one of the
possible realizations of a linear time-invariant discrete
system. It is obtained by quantizing the system parameters,
the input and the output signal and the partial results of
arithmetic operations when calculating the complete
solution. Two basic types of decomposition into state-space
difference equations are known : the first canonic form
(direct form transposed) and the second canonic form (direct
form). Digital filters are used very often and their realization
takes up considerable computation time. It is therefore
important to find an optimum form of realizing them. It is
characteristic of robust structure realizations that the
response to initial conditions does not affect the total
complete response very much. In the literature the
implementation of the 2 canonic form is mostly given here,
which is however absolutely unsuitable for implementation
of the IIR digital filters in fixed-point digital signal
processors. The difference equations must be prepared in
homogeneous form, i.e. such that the basic instruction-the
multiply and accumulate instruction is made the best
possible use of. It is exactly the 1 canonic form that meets
this condition far better. Fig.1 gives the structure of the 1
canonic form for a discrete system of the 2 -order.

nd

st

st

nd

 z − 1

 v2[0]δ[n]

 − b0

v2[n]

x[n] 1/b2

 − b1 z − 1
 v1[0]δ[n]

 y[n]

 v1[n]

 a2

 a1

 a0

Fig.1. Signal-flow graph of a 2nd-order discrete system in the 1st canonic
form.

The state-space difference equations for the system in
Fig.1 are:

[] [] [] []
[] [] []

[] [] []{ } .1
,1

,1

12
2

002

2111

nvnxa
b

ny

nybnxanv
nvnybnxanv

+=

−=+
+−=+

 (2)

For a number of common applications it can be seen that it
is of advantage to use the 1st canonic form (Fig.1) in the
realization of a 1st- or 2nd-order section of IIR digital filter in
a fixed-point digital signal processor. Then it no longer
matters whether these partial sections will be connected in
cascade (series) or in parallel. This choice, however, need
not be of general validity and it is necessary, from case to
case, to analyse the difference equations of the respective
algorithm and to rewrite them such that they are optimum
from the viewpoint of the architecture used in the digital
signal processor.

B. Zero-pole TTS Vocal Tract Model
Modelling the vocal tract in TTS synthesis is an example of
when it is preferable to use the 2nd canonic form [4]. A new
state-space cepstral vocal-tract model has been designed,
which approximates both the formants and the antiformants
of the frequency response for voiced and unvoiced speech
sounds. It thus differs from the currently used LPC model,
which approximates the formants alone. Unlike methods of
the type of PSOLA, this method provides for modelling the
prosody and requires less memory capacity. The synthesis
starts from the cepstral coefficients obtained by analysing
the speech signal. A structure of parametric vocal-tract
model is proposed, which is formed by combining type IIR
and type FIR digital filters. Experiments have shown [5] that
employing a type IIR digital filter of maximally 5th-order
guarantees sufficient approximation accuracy for both the
sampling frequency fs = 8 kHz (N0 = 26 cepstral
coefficients) and the frequency fs =16 kHz (N0 = 52 cepstral
coefficients). Fig. 2 gives the signal-flow graph of a vocal
tract model of the 5th-order realized by a digital filter of the
type of IIR, which is expressed in the 2nd canonic form.

 x[n]

β

 1
15

−1 −1

c(1)
1
4

4
9

z−1

z−1

z−1

z−1

z−1

 z−1

 z−1

 z−1

z−1

z−1

1
7

 c(1) c(1) c(1)
c(1)

c(2) c(2) c(2) c(2) c(2)

 c(3) c(3) c(3) c(3) c(3)

 c(N0−1)

 c(N0−2) c(N0−2) c(N0−2) c(N0−2) c(N0−2)

c(N0−3) c(N0−3) c(N0−3) c(N0−3) c(N0−3)

 c(N0−1) c(N0−1) c(N0−1)
 c(N0−1)

y[n]

w1(n)
w5(n) w4(n) w3(n) w2(n)

w6(n)

v5(n) v4(n) v3(n) v2(n) v1(n) w1(n−1)

w1(n−N0+1)

w1(n−2) w5(n−2)

w1(n−3) w5(n−2)

w5(n−N0+1)

Fig. 2. Cepstral vocal-tract model of 5 -order for N cepstral coefficients,
realized by an IIR digital filter in 2 canonic form. FIR digital filters are
also realized in 2 canonic form [4

th
0

nd

nd].
The 5th-order vocal tract model for N0 cepstral coefficients

c[n] in Fig.2 can be represented using a set of state-space
canonic equations in the optimal form:

[] [] [] [] [] ,1,,1 51151211 ==−∗= αα nvnwnwncnv

[] [] [] [] [] ,
9
4,,1

51

52
2

51

52
322 ==−∗=

α
α

α
α nvnwnwncnv

[] [] [] [] [] ,
4
1,,1

52

53
3

52

53
433 ==−∗=

α
α

α
α nvnwnwncnv

[] [] [] [] [] ,
7
1,,1

53

54
4

53

54
544 ==−∗=

α
α

α
α nvnwnwncnv

[] [] [] [] [] ,
15
1,,1

54

55
5

54

55
655 ==−∗=

α
α

α
α nvnwnwncnv

[] [] [] [] [] [] [].654321 nwnwnwnwnwnxnw +−+−+= β (3)

Convolution for N0 cepstral coefficients is then defined as

follows:

[] [] [] [] () ,
1

1

0

∑
−

=

−=∗=
N

m
iii mnwncnwncnv

for i = 1, 2, 3, ... , s , s = 5 . (4)

By the signal-flow graph in Fig.2, output signal y[n]
equals:

[] [] [] [] [] [] [].654321 nwnwnwnwnwnwny +++++=

If in this equation we now substitute the state-space

variable w1[n], we obtain the following simplification:

[] [] [] [] [] [] []

[] [] [] [] [] []

[] [] [] [] []

[] [] [] [][] .2 642

65432

65432

654321

nwnwnwnx

nwnwnwnwnw

nwnwnwnwnwnx

nwnwnwnwnwnwny

+++=

+++++

+−+−+=

+++++=

β

β
 (5)

The algorithm is now optimally adapted for

implementation on a fixed-point digital signal processor.
It is likewise possible to choose between two types of

butterfly when realizing the FFT algorithm. There are two
large groups of FFT algorithms, namely DIT (Decimation in
Time) and DIF (Decimation in Frequency) algorithms. From
the viewpoint of algorithm homogeneity the DIF butterfly is
absolutely unsuitable. Also when implementing other types
of algorithm (e.g. speech synthesis via LPC in the case of
GSM, type text-to-speech synthesis, etc.) it is appropriate to
respect this condition of homogeneity [6].

III. PROCEDURE OF COMPILING OPTIMIZATION
In parallel processing the algorithm can be realized for

several input signal samples at the same time or different
parts of the algorithm are processed in parallel. Using
parallel processing the computation speed of algorithm
processing increases substantially. The condition is that the
algorithm is written by an experienced programmer directly
in the assembly of the digital signal processor or that the
source code written in a high-level program language (such
as the ANSI-C or C++ languages), is compiled by first-rate
compiler. In the optimization procedure it is not sufficient to
use only hardware or software but the difference equations
that describe the algorithm must be arranged and optimized
beforehand in order to obtain the highest computational
throughput of the digital signal processor architecture. Using
the knowledge of digital signal processing, the program can
be optimized and this has much influence on its size and the
data processing speed. If the algorithm is theoretically well
composed, both more channels and more communication
protocols can be served by one VLIW digital signal
processor.
Compilers designed for digital signal processors are part of
the IDE (Integrated Design Environment). Texas
Instruments’ Code Composer Studio or Motorola’s Code
Warrior can be quoted as examples. These compilers differ
from the ANSI-C or C++ standard in a few details, which in
the ultimate result have a considerable effect on the speed
and stability of algorithm implementation. The basic
difference lies in that the defined data types are fully
adapted to the architecture of digital signal processor. The
number of data bits and the format of storing numbers in a
given code (mostly the two’s complement) correspond to the
actual storage of numbers in digital signal processor
registers. Another difference as regards the above standards

is the definition of macro instructions and compiler
directives by means of which the programmer defines in the
source code additional information. The data in question
concern, for example, mutual relations between variables,
rounding of values in memories, etc. This set-up information
is used by the compiler in the optimization process and if
used properly, this information can greatly increase the
compilation effectiveness as measured by the computation
demanding of the compiled binary code. Conversely,
incorrect application leads to the creation of a binary
machine code, which is potentially dangerous and can cause
run-time errors. Two independent variables, X and Y, for
example, stored in different parts of data memory can be
stored in the memory or loaded from the memory in parallel.
If the variables shared a common memory space, then
writing a value in variable X would entail a change also in
the value of variable Y. In that case the value read from Y
depends on whether the reading operation is executed before
or after the operation of writing into X. In the case that
variables X and Y are the arguments of a function passed on
by a reference, it is not possible at the time of compilation to
find out whether or not the two variables share the memory
space. The compiler assumes they do and creates a more
secure binary machine code, which, however, requires
longer and more computation demanding.

IV. EXAMPLE OF GSM VOICE CODING OPTIMIZATION
The source code of the GSM Half Rate codec by ETSI

(European Telecommunications Standards Institute)
organisation was optimized [7]. The optimization proceeded
in the Code Composer Studio for digital signal processor of
the C64xx series. The source code includes several functions
that implement an IIR digital filter. These are functions
lpcIir, lpcZsIir, lpcIrZsIir, lpcZsIirP, lpcZiIir.
These functions were optimized first in the C language using
intrinsic functions and compiler keywords, similar to the
optimization of function iir. Second they were also
optimized in the linear assembly. Average computation
demand in clock cycles of these functions is shown in Table
I. In the case of optimizing in the C language, computation
demand decreased approximately more than 6 times, in the
case of optimizing in the linear assembly the computation
demand decreased as much as 7.5 times.

TABLE I
COMPUTATION DEMAND OF THE FUNCTIONS OF ORIGINAL SOURCE CODE,
THE FUNCTIONS OPTIMIZED IN THE C LANGUAGE AND THE FUNCTIONS
OPTIMIZED IN THE LINEAR ASSEMBLY.

clock cycles function
original C language assembly

lpcIir 2 735 416 348
lpcZsIir 2 248 360 322
lpcIrZsIir 2 048 366 294
lpcZsIirP 2 229 379 321
lpcZiIir 2 744 345 298

After optimizing the above functions the other functions
of source code were optimized. Average computation
demand in clock cycles of the encode and decode processes
is shown in Table II. In the case of optimizing in the C
language the computation demand decreased approximately
5 times. In the case of optimizing in the linear assembly the
computation demand decreased approximately 9 times. Thus
it is possible to serve 9 times more speech channels in
comparison with the original source code.

TABLE II
COMPUTATION DEMAND OF THE ENCODE AND DECODE PROCESSES OF THE
ORIGINAL SOURCE CODE, THE SOURCE CODE OPTIMIZED IN THE C LANGUAGE
AND THE SOURCE CODE OPTIMIZED IN THE LINEAR ASSEMBLY.

function clock cycles
 original C language assembly

Encode 3 209 855 644 018 327 682
Decode 108 562 46 349 44 829

V. CONCLUSION
Writing algorithms in the assembly of fixed-point digital

signal processors of the type of VLIW is very demanding.
Several instructions are being processed in every clock
cycle, their number being given by the number of active
parallel units. Executing any instruction takes a different
number of clock cycles. This is due to the high degree of
pipelining. The program thus contains several parallel
computation paths, which the programmer must follow
incessantly. Under these conditions it is very easy to make a
mistake. Moreover, grouping instructions into parallel paths
is subject to many constraints, which are given by the
architecture of the given digital signal processor. For
example, if only two address buses are available, then only
two values can be read from the memory in one clock cycle.
All this strongly depends on the particular type of digital
signal processor. By contrast, the development of programs
for processors with superscalar architecture (Pentium from
Intel, etc.) is simpler from this viewpoint since parallel
instruction grouping is performed by the hardware unit in
the processor structure (Schedule Unit). In spite of the above
difficulties we often cannot avoid writing the algorithm
directly in the assembly of digital signal processor since this
is the only way how to achieve the maximum speed of
calculating the critical parts of the source code.

The proposed procedure of implementing algorithm in
the VLIW digital signal processors might be as follows:

• In the proposed method the difference equations or other
mathematical equations are modified in order to be as
homogeneous as possible. In arithmetic operations,
type VLIW digital signal processors use similar
principles as digital signal processors with Harvard
architecture.

• The algorithm is first written in the C or C++ language
and its functionality and stability are tested.

• When testing the digital signal processor in the IDE the
computation requirements of individual functions or

parts of the code written in the C language are
analysed. If the total computation requirement of the
algorithm is too high, the source code in the C
language is modified and optimized using the
directives and other tools of the compiler. When using
the parallelism of instructions and data to the maximum
extent there is a danger the arithmetic may be
saturated.

If even this measure does not help, the only thing that can
be done is to optimize the critical code parts directly in the
assembly of digital signal processor. This step, however,
requires a very good knowledge of the architecture of digital
signal processor and experience of digital signal processors
that make use of pipelining and parallel processing.

ACKNOWLEDGMENT
The paper was prepared within the framework of N°
102/04/1097 project of the Grant Agency of the Czech
Republic.

REFERENCES
[1] S.K. Mitra and J.F. Kaiser, ed., Handbook for Digital Signal

Processing John Wiley & Sons, New York, 1993
[2] Kuo, S.M., Gan, W./S., Digital Signal Processors (Architectures,

Implementations, and Applications). New Jersey: Prentice Hall, 2004.
[3] Z. Smékal, Generalized Canonic Models of the Digital Filter for

Digital Signal Processing. in Proc. of the IASTED International Conf.
"Applied Informatics AI-96", February 1996, Innsbruck, Austria,
pp.380-383.

[4] Z. Smékal, R. Vích, Cepstral Speech Synthesis Optimised for Dual
Harvard Architecture of DSP. in Proceedings of the International
Conference on Telecommunications (ICT 2000), May 2000, Acapulco,
Mexico, pp.244-248.

[5] R. Vích, J. Pribil, Z. Smékal, New Cepstral Zero-Pole Vocal Tract
Models for TTS. in Proceedings of the International Conference
EUROCON '2001, July 7-9, 2001, Bratislava, Slovakia, pp.459-462.

[6] Z. Smékal, M. Vondra Optimized Speech Synthesis in Digital Signal
Processor using the Cepstral Model of Vocal Tract in 48th
International Scientific Colloquium Technical University of Ilmenau,
September 22-25, 2003.

[7] ETSI EN 300 969 V8.0.0: 2000-07. Digital cellular
telecommunications system (Phase 2+); Half rate speech; Half rate
speech transcoding (GSM 06.20 version 8.0.0 Release 1999).

	Index
	ISCCSP 2006

	ISCCSP 2006 Home Page
	Conference Info
	Welcome Message
	Organizing Committee
	Technical Program Committee
	About Morocco
	Sponsors

	Sessions
	Monday, 13 March, 2006
	PLEN1-High fidelity telepresence and teleaction - Integ ...
	CONT1-Observer design in communication system
	SIG7-Content based access and retrieval from visual dig ...
	COM1-Mobile and wireless communications
	POSA1-Filtering and signal processing applications (par ...
	POSB1-Image processing part I (diffusion/detection/text ...
	PLEN2-Statistical MIMO processing
	CONT2-Observer theory and applications
	COM2-Recent developments in discrete multitone methods ...
	SIG2-Signal processing in audio and acoustics
	POSA2-Video processing
	POSB2-Communication receiver, OFDM and CDMA
	SIG3-Geophysical signal processing
	COM3-Network and QOS
	POSA3-3-D signal processing
	POSB3-Biomedical signal and image processing
	POSC3-Control design methods

	Tuesday, 14 March, 2006
	PLEN3-CDMA in retrospect
	COM4-Advanced techniques for mobile radiocommunications
	SIG4-Blind source separation and its applications
	CONT4-Control system modeling and identification
	POSA4-Image processing part II
	PLEN4-Ontology based annotation tools for multimedia li ...
	CONT5-Hybrid systems
	COM5-Large scale, large band and asymptotic systems (pa ...
	SIG5-Multichannel image processing
	POSA5-Speech and audio processing
	POSB5-Communications
	COM6-Large scale, large band and asymptotic systems (pa ...
	SIG6-Speech recognition
	POSA6-Image processing (compression)
	POSB6-Network and QOS
	POSC6-Control system modeling and identification
	PLEN7-The interaction between information and control

	Wednesday, 15 March, 2006
	PLEN6-Distributed signal processing for sensor networks
	CONT8-Navigation and control of underwater vehicles
	SIG1-Video processing
	CONT7-Control design and non linear methods
	COM7-Communications
	POSA7-Signal processing and applications (part II)
	POSB7-Signal processing
	PLEN5-Polynomial control: past, present and future
	COM8-Data converters for communications
	SIG8-Iterative techniques for signal processing
	POSA8-Watermarking, indexing and steganography
	POSB8-Implementations and other
	COM9-Wireless networks and services
	SIG9-Image processing (recognition/detection)
	POSA9-Filtering
	POSC9-Non linear control and hybrid systems

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	All papers
	Papers by Session
	Papers by Topic

	Topics
	I. Communications Track
	I.1. Digital Communications
	I.2. Space-Time Coding
	I.3. OFDM and CDMA
	I.4. Mobile and Wireless Communications
	I.5. Networks and QOS
	I.6. DSP For Communications
	I.7. Communications Receivers
	I.8. Other Communications Applications
	II. Control Track
	II.1 Nonlinear Control and Applications
	II.2. Control System Modelling and Identification
	II.3. Power Systems and Electrical Machines and Drives
	II.4. Control design methods
	II.5. Discrete and Hybrid systems
	III. Signal Processing Track
	III.1. Image Processing
	III.2. Video and Multimedia Signal Processing
	III.3. Signal Processing and Applications
	III.4. Biomedical Signal and Image Processing
	III.5. Speech and Audio
	III.6. Adaptive and Non-Adaptive Filtering and Implemen ...
	II.6. Control Applications
	Blind source separation and its applications, Adel BELO ...
	Wireless networks and services, Ali ALMUTAIRI
	Advanced Techniques For Mobile Radiocommunications, Sam ...
	ﬁContent-based Access and Retrieval from Visual Digital ...
	"large scale, Large band and Asymptotic systems&qu ...
	"Hybrid Systems" Maria Prandini & Marco C ...
	"Observer Theory and Applications" Hassan Ham ...
	"Recent Developments in Discrete Multitone Methods ...
	"Observer designs in Communication Systems" M ...
	"Geophysical Signal Processing" Jean Marc Cha ...
	"Signal Processing in Audio and Acoustics" Ru ...
	"Iterative techniques for signal processing" ...

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Zdenek Smekal
	Petr Sysel

