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Abstract

Classical objective criteria evaluate speech quality using one
quantity which embed all possible kind of degradation. For
speech denoising applications, there is a great need to deter-
mine with accuracy the kind of the degradation (residual back-
ground noise, speech distortion or both). In this work, we pro-
pose two perceptual bounds UBPE and LBPE defining regions
where original and denoised signals are perceptually equivalent
or different. Next, two quantitative criteria PSANR and PSADR
are developed to quantify separately the two kinds of degrada-
tion. Some simulation results for speech denoising using differ-
ent approaches show the usefulness of proposed criteria.

1. Introduction
Evaluation of denoised speech quality can be done using sub-
jective criteria such as MOS (Mean Opinion Score) or DMOS
(Degradation MOS) [1]. However, such evaluation is expen-
sive and time consuming so that, there is an increasing interest
in the development of robust quantitative speech quality mea-
sures that correlate well with subjective tests. Objective criteria
can be classified according to the domain in which they operate.
We relate for example the Signal to Noise Ratio (SNR) and seg-
mental SNR operating in time domain [2], the Cepstral Distance
(CD) and Weighted Slope Spectral distance (WSS) operating in
frequency domain [2] and Modified Bark Spectral Distortion
(MBSD) operating in perceptual domain [3]. Perceptual mea-
sures are shown to have the best chance of predicting subjective
quality of speech and other audio signals since they are based
on human auditory perception models.

The common point of all objective criteria is their ability of
evaluating speech quality using a single parameter which embed
all kind of degradations after any processing. Indeed, speech
quality measures are basing their evaluation on both original
and degraded speeches according to the following application
C:

C : E2 −→ R
(x, y) 7−→ c

(1)

where E denotes the time, frequency or perceptual domain. x
(resp. y) denotes original speech (resp. observed speech altered
by noise or denoised speech after processing) and c is the score
of the objective measure.

Mathematically, C is not a bijection from E2 to R. It means
that it is possible to find a signal y′ which is perceptually dif-
ferent from y but has the same score than the one obtained with
y (c(x, y) = c(x, y′)). We relate for example the case of an
original signal x which is corrupted by an additive noise to con-
struct the signal y. Then, x is coded and decoded using a CELP

coder to obtain the signal y′. It is obviously that the degrada-
tion noticed in both y and y′ are not the same. Degradation of
y is heard as a background noise and the degradation of y′ is
perceptually heard as distortion of original signal. However, in
a previous work, we show that they have the same SNR [4].

In this paper, we aim improving speech quality evaluation
by separating two kinds of degradation which are the additive
residual noise and the speech distortion. Each degradation will
be evaluated using its adequate criterion so that the non bijection
C will be avoided and replaced by a bijection one characterized
by a couple of outputs instead of a single output. Moreover,
thanks to the advantage of perceptual tools in the evaluation
of speech quality, the new couple of criteria will be based on
auditor properties of human ear.

2. Study context: speech denoising
Before defining novel criteria of speech quality evaluation, let’s
define the different kinds of degradation altering speech. With-
out loss of generality, we consider the speech denoising applica-
tion and we use spectral denoising approaches. They are viewed
as a multiplication of noisy speech spectrum Y (m, k) by a real
positive coefficient filter H(m, k) (see for example [5]). The
estimated spectrum of clean speech is written

Ŝ(m, k) = H(m, k)Y (m, k), (2)

where m (resp. k) denotes frame index (resp. frequency index).
The estimation error spectrum ξ(m, k) is given by

ξ(m, k) = S(m, k)− Ŝ(m, k). (3)

We assume that speech and noise are uncorrelated. Thus,
the estimated error power spectrum is given by

E{|ξ(m, k)|2} = [H(m, f)− 1]2E{|S(m, k)|2}
+H(m, k)2E{|N(m, k)|2}, (4)

where |N(m, k)|2 denotes the noise power spectrum.
Since 0 < H(m, k) < 1, the first term of Eq. 4 expresses

the ‘attenuation’ of clean speech frequency components. Such
degradation is perceptually heard as a distortion of clean speech.
However, the second term expresses the residual noise which is
perceptually heard as a background noise. Since, it is additive,
it is possible to formulate it as an ‘accentuation’ of clean speech
frequency components.

3. Proposed perceptual characterization of
audible degradation

We aim to perceptually characterize the degradation altering de-
noised speech. Hence, auditory properties of human ear are



considered. More precisely, the masking concept is used: a
masked signal is made inaudible by a masker if the masked sig-
nal magnitude is below the perceptual masking threshold MT. In
our case, both degradation can be audible or inaudible according
to their position regarding the masking threshold. We propose
to find decision rules to decide on the audibility of residual noise
and speech distortion by using the masking threshold concept.
If they are audible, the audibility rate will be quantified accord-
ing to the proposed criterion. There are many techniques to
compute masking threshold MT, we use in this paper Johnston
model well known for its simplicity and well used in coding
context [6].

3.1. Perceptual characterization of audible noise

According to MT definition, it is possible to add to the clean
speech power spectrum, the MT curve (considered as a ‘certain
signal’) so that the resulting signal (obtained by inverse FFT)
has the same audible quality than the clean one. The result-
ing spectrum is called Upper Bound of Perceptual Equivalence
“UBPE” and is defined as follows

UBPE(m, k) = Γs(m, k) + MT (m, k), (5)

where Γs(m, k) is the clean speech power spectrum.
When some frequency components of the denoised speech

are above UBPE, the resulting additive noise is heard.

3.2. Perceptual characterization of audible distortion

By duality, some attenuations of frequency components can be
heard as speech distortion. Thus, by analogy to UBPE, we
propose to calculate a second curve which expresses the lower
bound under which any attenuation of frequency components
is heard as a distortion. We call it Lower Bound of Perceptual
Equivalence “LBPE”. To compute LBPE, we used the au-
dible spectrum introduced by Tsoukalas and al for audio signal
enhancement [7]. In such case, audible spectrum is calculated
by considering the maximum between clean speech spectrum
and masking threshold.

When speech components are under MT, they are not heard
and we can replace them by a chosen threshold σ(m, k).
The proposed LBPE is defined as follows

LBPE(m, k) =

(
Γs(m, k) if Γs(m, k) ≥ MT (m, k)

σ(m, k) otherwise .

(6)
The choice of σ(m, k) obeys only one condition σ(m, k) <

MT (m, k). During this work, we choose it equal 0 dB.

3.3. Usefulness of UBPE and LBPE

Using UBPE and LBPE, we can define three regions char-
acterizing the perceptual quantity of denoised speech: fre-
quency components between UBPE and LBPE are percep-
tually equivalent to the original speech components, frequency
components above UBPE contain a background noise and fre-
quency components under LBPE are characterized by speech
distortion. This characterization constitutes our idea to iden-
tify and detect audible additive noise and audible distortion. As
illustration, we present in Fig. 1 an example of speech frame
power spectrum and its related curves UBPE (upper curve in
bold line) and LBPE (bottom curve in dash line). The clean
speech power spectrum is, for all frequencies index, between
the two curves UBPE and LBPE. We remark that the two

curves are the same for most peaks. It means that for these fre-
quency intervals, any kind of degradation altering speech will
be audible. If it quite over UBPE, it will be heard as back-
ground noise. In the opposite case, it will be heard as speech
distortion.

Figure 1: An example of UBPE and LBPE in dB of clean
speech frame.

4. Audible degradation estimation
4.1. Audible additive noise PSD estimation

Once UBPE calculated, the superposition of denoised signal
power spectrum and UBPE leads to separate two cases.
The First one corresponds to the regions of denoised speech
power spectrum which are under UBPE. In such case,
there is no audible residual noise. In the second case, some
denoised speech frequency components are above UBPE,
the amount above UBPE constitutes the audible residual
noise. As illustration, we represent in Fig.2 an example of
denoised speech power spectrum and its related UBPE curve
calculated from clean speech. The used denoising approach is
spectral subtraction [5]. From Fig.2, we notice that frequency
regions between 1 kHz and 2 kHz are above UBPE, they
hence contain residual audible noise. In term of listening tests,
such residual noise is annoying and constitutes in some cases
the musical noise. Such musical noise is well popular and
constitutes the main drawback of spectral subtraction.

Once the UBPE is calculated, it is possible to estimate the
audible power spectrum density of residual noise using a sim-
ple subtraction when it exists. Hence, the residual noise power
spectrum density PSD is written

Γp
n(m, k) =

8><>:
Γŝ(m, k)− UBPE(m, k)

if Γŝ(m, k) > UBPE(m, k)

0 otherwise

(7)

where Γŝ(m, k) denotes the PSD of denoised speech and the
suffix p designs the perceptually sense of the PSD.

4.2. Audible speech distortion PSD estimation

We use the same methodology as the one used for residual back-
ground noise. We represent in Fig.3 an example of denoised
speech power spectrum and its related curve LBPE calculated
from the clean speech. We notice that some regions are under
LBPE (for example regions between 1.5 kHz and 2 kHz), they



Figure 2: Superposition of a denoised speech power spectrum
and its related clean speech UBPE.

hence constitute the audible distortion of the clean speech. In
term of listening tests, they are completely different from resid-
ual background noise. They are heard as a loss of speech tonal-
ity.
It is possible to estimate the audible distortion PSD Γp

d as fol-
lows

Γp
d(m, k) =

8><>:
LBPE(m, k)− Γŝ(m, k)

if Γŝ(m, k) < LBPE(m, k)

0 otherwise .

(8)

Figure 3: Superposition of a denoised speech frame and its re-
lated clean speech LBPE.

5. Audible degradation evaluation
In this section, we detail the proposed approach to quantify sep-
arately the two kinds of degradation. The assessment of the
denoised speech quality by means of two parameters permits
to overcome the problem of non bijection of classic objective
evaluation and to better characterize each kind of speech degra-
dation. Hence, instead of the application defined in Eq. 1, we
develop a novel application from perceptual domain to R2

C : E2 −→ R2

(x, y) 7−→ (PSANR, PSADR)
(9)

where PSANR and PSADR are two parameters related re-
spectively to the residual noise and the distortion.

The definition of PSANR and PSADR is inspired from
the SNR definition which is the ratio between signal energy
and noise energy. Thanks to Parseval theorem it can be calcu-
lated in frequency domain. Moreover, since the UBPE and
LBPE are perceptually equivalent to the original signal, the
proposed definition uses the energy of UBPE and LBPE in-
stead of the energy of the clean speech. The time domain signal
related to UBPE is called “upper effective signal” whereas the
time domain signal related to LBPE is called “lower effective
signal”. In the following subsection, we define the proposed
criteria.

5.1. Perceptual noise criterion PSANR

The perceptual residual noise criterion is defined as the ratio
between the upper effective signal which is the UBPE and the
audible residual noise. The Perceptual Signal to Audible Noise
Ratio PSANR(m) of frame m is calculated in frequency do-
main (due to the Parseval theorem) and it is formulated as fol-
lows

PSANR(m) =

PN
k=1 UBPE(m, k)PN

k=1 Γp
n(m, k)

. (10)

5.2. Perceptual distortion criterion PSADR

By the same manner, we define the Perceptual Signal to Audible
Distortion Ratio PSADR(m) of frame m as a ratio between
the lower effective signal which is LBPE and the audible dis-
tortion. The PSADR(m) is given by:

PSADR(m) =

PN
k=1 LBPE(m, k)PN

k=1 Γp
d(m, k)

. (11)

5.3. PSANDR criteria

to compute the global PSANR and PSADR of the to-
tal speech sequence, we are referred to the segmental SNR
SNRseg thanks to its better correlation with subjective tests
when compared to the traditional SNR. The principle of seg-
mental SNR consists on determining the SNR for each frame
SNR(m) and then calculating their geometric mean over the

total number of frames SNRseg = N

qQN
m SNR(m) [2].

Moreover, since the SNR and SNRseg are usually expressed
in dB. The geometric mean is equivalent to the arithmetic mean
in log domain.
Using this approach, we compute the global PSANR and
PSADR for a given sequence of speech. Next, the couple
(PSANR,PSADR) defines the new criterion to evaluate both
kinds of degradation. We call it Perceptual Signal to Audible
Noise and Distortion Ratio “PSANDR”.

6. experimental results
6.1. Test signals

To show the ability of PSANDR to take into account the per-
ceptual effect of an additive noise, we add artificial noise, con-
structed from the masking threshold by multiplying it with a
factor α ≥ 0 (y(n) = s(n) + αMT (n)). In Fig.4, we repre-
sent the evolution of SNRseg , PSANR and PSADR versus
α. For the range of α between 0 and 1, SNRseg decreases
which means that there is a degradation of speech. This fact is
true in term of signal to noise ratio but not true in term of per-
ceptual sense, because the power of added artificial noise don’t
overtake MT. With PSANR, the amount of audible noise is



null (see Eq. 7) and the PSANR is infinity which is truncated
to 35 dB in our simulations. For α > 1, the background noise
becomes audible and the PSANR decreases as α increases but
remains above SNRseg . This is explained by the ability of the
clean speech to mask a certain portion of the added noise.

We notice that for any value of α, the second term PSADR
is still constant and is equal to 35 dB. In fact, there is no distor-
tion of the clean speech and the only audible degradation is the
background noise.

Figure 4: Evolution of SNRseg , PSANR and PSADR ver-
sus α in case of additive noise.

6.2. real signals

Let’s now compare some denoising techniques by means of the
new objective criteria. We propose to denoise a corrupted sig-
nal, by gaussian noise with SNR = 0 dB, using the following
techniques:

• Classical wiener filtering [5].
• Perceptual filtering proposed by Gustafsson and al in [8]

which consists in masking the residual noise and allow-
ing a variable speech distortion.

• Modified wiener technique [9]. In this technique, the
shape of the tones is used as a selective parameter to de-
tect and eliminate musical tones.

Evaluation of denoising quality is done using classic objec-
tive criteria (segmental SNR, WSS, MBSD) and the proposed
PSANDR. Results are resumed in Tab.1. In term of SNRseg ,
the used techniques are comparable even if there is a little im-
provement noticed with perceptual technique. But, subjective
tests show that the denoised signals are completely different.
Using WSS criterion, the best score is obtained with percep-
tual technique and it is nearly equal to the noisy speech score.
Although, subjective tests show that the two signals are percep-
tually different. Indeed, the denoised speech using perceptual
technique is heard as distorted version of clean speech and not
as clean speech with background noise. In term of MBSD, the
perceptual technique is also the best. However, this technique
is characterized by a loss of the speech tonality comparing to
wiener technique. Thus, we can see that classic evaluation tools
don’t give any idea of the kind and nature of the degradation of
the signals. PSANR, giving idea about residual noise, shows
that perceptual technique is the best one regarding noise atten-
uation. PSADR, determining the distortion of the denoised
signals, shows that the important distortion is obtained using
perceptual technique. These observations are confirmed by sub-
jective tests.

Table 1: Evaluation of denoised signals.

SNRseg

dB WSS MBSD
PSANR

dB
PSADR

dB
noisy

speech -4.30 46.07 2.32 -3.90 17.27
wiener

technique 1.05 74.25 0.28 5.04 7.53
modified
wiener 1.13 69.63 0.19 5.54 7.01

perceptual
technique 1.62 45.41 0.15 12.71 6.93

7. Conclusion
The spectral and perceptual analysis of the degradation, in the
case of denoised speech, imposes to separate between residual
noise and signal distortion. We first propose two curves UBPE
and LBPE to calculate the audible residual noise and audible
distortion. Next, two parameters PSANR and PSADR char-
acterizing the two kinds of degradation are developed. Sim-
ulation results comparing different denoising approaches and
classical objective measures, show a better characterization of
degradation nature of denoised signal. The calculation of the
degree of correlation of the proposed criteria with MOS crite-
rion constitutes the perspectives of our work.
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ceptuelle de la dégradation apportée par les techniques de
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