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Abstract

We use a multi-layer perceptron (MLP) to transform cep-
stral features into features better suited for speaker recogni-
tion. Two types of MLP output targets are considered: phones
(Tandem/HATS-MLP) and speakers (Speaker-MLP). In the for-
mer case, output activations are used as features in a GMM
speaker recognition system, while for the latter, hidden activa-
tions are used as features in an SVM system. Using a smaller
set of MLP training speakers, chosen through clustering, yields
system performance similar to that of a Speaker-MLP trained
with many more speakers. For the NIST Speaker Recognition
Evaluation 2004, both Tandem/HATS-GMM and Speaker-SVM
systems improve upon a basic GMM baseline, but are unable to
contribute in a score-level combination with a state-of-the-art
GMM system. It may be that the application of normalizations
and channel compensation techniques to the current state-of-
the-art GMM has reduced channel mismatch errors to the point
that contributions of the MLP systems are no longer additive.

1. Introduction

The speaker recognition task is that of deciding whether or not
a (previously unseen) test utterance belongs to a given target
speaker, for whom there is only a limited amount of train-
ing data available. The traditionally successful approach to
speaker recognition uses low-level cepstral features extracted
from speech in a Gaussian mixture model (GMM) system. Al-
though cepstral features have proven to be the most successful
choice of low-level features for speech processing, discrimina-
tively trained features may be better suited to the speaker recog-
nition problem. We utilize multi-layer perceptrons (MLPSs),
which are trained to distinguish between either phones or speak-
ers, as a means of performing a feature transformation of cep-
stral features.

There are two types of previous work that are directly re-
lated to our research, both involving the development of dis-
criminative features. In the phonetically discriminative case,
the use of features generated by one or more MLPs trained to
distinguish between phones has been shown to improve perfor-
mance for automatic speech recognition (ASR). At ICSI, Zhu
and Chen, et al. developed what they termed Tandem/HATS-
MLP features, which incorporate longer term temporal infor-
mation through the use of MLPs whose outputs are phone pos-
teriors [1, 2].

In the area of speaker recognition, Heck and Konig, et
al. focused on extracting speaker discriminative features from
MFCCs using an MLP [3, 4]. They used the outputs from the
middle layer of a 5-layer MLP, which was trained to discrimi-
nate between speakers, as features in a GMM speaker recogni-
tion system. The MLP features, when combined on the score-
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level with a cepstral GMM system, yielded consistent improve-
ment when the training data and testing data were collected
from mismatched telephone handsets [3]. A similar approach
was followed by Morris and Wu, et al.[5]. They found that
speaker identification performance improved as more speakers
were used to train the MLP, up to a certain limit [6].

In the phonetic space, we use the Tandem/HATS-MLP fea-
tures in a GMM speaker recognition system. The idea is that we
can use the phonetic information of a speaker in order to distin-
guish that speaker from others.

In the speaker space, we train 3-layer Speaker-MLPs of
varying sizes to discriminate between a set of speakers, and then
use the hidden activations as features for a support vector ma-
chine (SVM) speaker recognition system. The intuition behind
this method is that the hidden activations from the Speaker-
MLP represent a nonlinear mapping of the input cepstral fea-
tures into a general set of speaker patterns. Our Speaker-MLPs
are on a larger scale than any previous work: we use more train-
ing speakers, training data, and input frames of cepstral fea-
tures, and larger networks.

To begin, Section 2 outlines the experimental setup. The
results of our experiments are reported in Section 3. Finally, we
end with discussion and conclusions in Section 4.

2. Experiments
2.1. Overall Setup

The basic setups of the Tandem/HATS-GMM and Speaker-
SVM systems are shown in Figures 1 and 2, respectively.
Frames of perceptual linear prediction (PLP) coefficients, as
well as frames of critical band energies in the former case, are
the inputs to the MLPs. A log is applied to either the output
or hidden activations, and after either dimensionality reduction
or calculation of mean, standard deviation, histograms, and per-
centiles, the final features are used in a speaker recognition sys-
tem (GMM or SVM).

2.2. Baseline GMM Systems

We make use of two types of GMM baselines for purposes of
comparison. The first is a state-of-the-art GMM system, which
was developed by our colleagues at SRI, and which we will refer
to as SRI-GMM [7]. It utilizes 2048 Gaussians, CMS, T-norm,
H-norm, and channel mapping to improve its results. We use
this system for score-level combinations, in which the scores
from SRI's GMM system are combined with the scores from
our MLP features systems. For more details, see Section 2.6.
The second system, on the other hand, is a very basic GMM
system, with 256 Gaussians, and which includes only CMS,
without any other normalizations. This system, which we will
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refer to as Basic-GMM, is useful for the purpose of feature-

level combination (where we use MFCC features augmented
with MLP features as features in the GMM system), as well as
for score-level combination.

2.3. Tandem/HATS-MLP Features

There are two components to the Tandem/HATS-MLP features,
namely the Tandem-MLP and the HATS-MLP. The Tandem-
MLP is a single 3-layer MLP, which takes as input 9 frames
of PLPs (12th order plus energy) with deltas and double-deltas,
contains 20,800 units in its hidden layer, and has 46 outputs,
corresponding to phone posteriors. The hidden layer applies
the sigmoid function, while the output uses softmax.

The HATS-MLP is actually two stages of MLPs that per-
form phonetic classification with long-term (500-1000 ms) in-
formation. The first stage MLPs take as input 51 frames of log
critical band energies (LCBE), with one MLP for each of the
15 critical bands; each MLP has 60 hidden units (with sigmoid
applied), and the output layer has 46 units (with softmax) corre-
sponding to phones. For the HATS (Hidden Activation TRAPS)
features, the hidden layer outputs are taken from each first-stage
critical band MLP, and then input to the second-stage merger
MLP, which contains 750 hidden units, and 46 output units.

The Tandem-MLP and HATS-MLP features are then com-
bined using a weighted sum, where the weights are a normalized
version of inverse entropy. The log is applied to the output, and
a Karhunen-Loeve Transform (KLT) dimensionality reduction
is applied to reduce the output feature vector to an experimen-
tally determined optimal length of 25. This process is illustrated
in Figure 1.

The Tandem/HATS-MLP system is trained on roughly 1800

hours of conversational speech from the Fisher [8] and Switch-
board [9] corpora.

2.4. Speaker-MLP Features
2.4.1. Speaker Target Selection Through Clustering

As a contrast to using all speakers with enough training data
available (with the idea that including more training speakers
will yield better results), we also implemented MLPs trained us-
ing only subsets of specifically chosen speakers. These speak-
ers were chosen through clustering in the following way. First, a
background GMM model was trained using 286 speakers from
the Fisher corpus. Then, a GMM was adapted from the back-
ground model with the data from each MLP-training speaker.
These GMMs used 32 Gaussians, with input features of 12th
order MFCCs plus energy and their first order derivatives. The
length-26 mean vectors of each Gaussian were concatenated
to form a length-832 feature vector for each speaker. Prin-
cipal component analysis was performed, keeping the top 16
dimensions of each feature vector (accounting for 68% of the
total variance). In this reduced-dimensionality speaker space,
k-means clustering was done, using the Euclidean distance be-
tween speakers, fér = 64 andk = 128. Finally, the sets of 64

and 128 speakers were chosen by selecting the speaker closest
to each of the (64 or 128) cluster centroids.

2.4.2. MLP Training

Asetof 64, 128, or 836 speakers was used to train each Speaker-
MLP, with 6 conversation sides per speaker used for training,
and 2 for cross-validation (CV). The training speaker data came
from the Switchboard-2 corpus [9]. The set of 836 speakers in-
cluded all speakers in the Switchboard2 corpus with at least 8
conversations available. The smaller sets of speakers, selected
through clustering, used training and CV data that was balanced
in terms of handsets.

ICSI's QuickNet MLP training tool [10] was used to train
the Speaker-MLPs. The input to each Speaker-MLP is 21
frames of PLPs (12th order plus energy) with first and second
order derivatives appended. The hidden layer applies a sigmoid,
while the output uses softmax.

Table 2 shows the sizes of MLPs (varying in the number of
hidden units) trained for each set of speakers.

2.5. SVM Speaker Recognition System

The GMM system is well suited to modeling features with fewer
than 100 dimensions. However, problems of data sparsity and
singular covariance matrices soon arise in trying to estimate
high dimensional Gaussians. Previous work in speech recog-
nition (HATS) has shown that there is a great deal of infor-
mation in the hidden structure of the MLP. Preliminary experi-
ments also showed that reducing the dimensionality of the hid-
den activations using principal component analysis (PCA) or
linear discriminant analysis (LDA), so that the features could
be used in a GMM system, yielded poor results. In order to take
advantage of the speaker discriminative information in the hid-
den activations of the Speaker-MLPs, we use an SVM speaker
recognition system, which is better suited to handle the high di-
mensional sparse features, is naturally discriminative in the way
itis posed, and has proven useful in other approaches to speaker
verification.

Since the SVM speaker recognition system requires the
same length feature vector for each speaker (whether a target,
an impostor, or a test speaker), we produce a set of statistics



to summarize the information along each dimension of the hid- 3.3. Speaker-SVM
den activations. These statistics (mean, standard deviation, his-
tograms of varying numbers of bins, and percentiles) are then
used as the SVM features for each speaker. For our experi-
ments, the set of impostor speakers used in the SVM system
is a set of 286 speakers from the Fisher corpus designed to be
balanced in terms of gender, channel, and other conditions.

Both the cross-validation and SRE2004 results for the Speaker-
MLPs are shown in Table 2 for each size MLP. It is clear that
the CV accuracy increases with respect to the number of hidden
units, for each training speaker set. The accuracy increase on
adding further hidden units does not appear to have reached a
plateau at 2500 hidden units for the 836 speaker net, though
2.6. System Combinations Using LNKnet for the.purposgs of the current_study the training times became
prohibitive. With the computation shared between 4 CPUs, it
In order to improve upon the baseline of the SRI-GMM system,  took over 4 weeks to train the MLP with 2500 hidden units.
we choose to combine our various systems on the score-level Similar to the CV accuracy, the speaker recognition results
with the SRI-GMM, using LNKnet software [11]. We use a  improve with an increase in the size of the hidden layer when
neural network with no hidden Iayer and SlngId OUtpUt non- Considering a given number of training Speakersl
linearity, which takes two or more sets of likelihood scores as
input. We use a round-robin approach and divide our test data i #spkrsi Hid. units i CV acc. i DCFx10 i EER (%) i

into two subsets for development and evaluation. 64 200 37.8% 0.753 51.04
3 R | 64 1000 47.8% 0.715 20.41

- Results 128 1000 | 39.4% | 0702 | 20.45

3.1. Testing Database 128 2000 44.5% 0.691 19.70
836 400 20.5% 0.756 22.88

In order to compare the performance of our systems, we use the

database released by NIST for the 2004 Speaker Recognition ggg 1850000 ggg:ﬁ 8;?1‘ gé%
Evaluation (SRE) [12]. This database consists of conversational 836 2500 35 5% 0689 19.91

speech collected in the Mixer project, and includes various lan-
guages and various channel types. We use only telephone data, Table 2:Speaker-SVM results improve as the number of hidden
containing a variety of handsets and microphones. units, as well as the CV accuracy, increase.

One conversation side (roughly 2.5 minutes) is used for
both the training of each target speaker model and the testing of
each test speaker. As performance measures, we use the detec
tion cost function (DCF) of the NIST evaluation and the equal
error rate (EER). The DCF is defined to be a weighted sum of
the miss and false alarm error probabilities, while the EER is
the rate at which these error probabilites are equal.

In Table 3, the results are given for the score-level combina-
tion of the 64 speaker, 1000 hidden unit, Speaker-SVM system
with the Basic-GMM and SRI-GMM systems. For the SRI-
GMM, the best combination is yielded when the Speaker-MLP
is trained with 64 speakers and 1000 hidden units (although
the 128 speakers with 2000 hidden units does somewhat bet-
ter in combination with the Basic-GMM). There is a reason-
3.2. Tandem/HATS-GMM able gain made when combining the Speaker-SVM system with
the Basic-GMM, but there is no significant improvement for the

For NIST’s SRE2004, the DCF and EER results are given in  -gmpination of the Speaker-SVM and SRI-GMM systems.
Table 1 for the Basic-GMM system, the Tandem/HATS-GMM

system, and their score- and feature-level combinations, as i [ DCFx10 | EER (%) |
well as for the SRI-GMM system and its combination with the

Tandem/HATS-GMM. Changes relative to each baseline (where Basic-GMM 0.724 18.48

a positive value indicates improvement) are shown in parenthe- Speaker-SVM 0.715 20.41

ses Score-level fusion| 0.671 (7%)| 17.52 (5%)
Alone, the Tandem/HATS-GMM system performs slightly SRI-GMM 0.374 9.01

better than the Basic-GMM system. Feature-level combination Speaker-SVM 0.715 20.41

of MFCC and Tandem/HATS features in a GMM system, as Score-level fusion| 0.373 (0%) | 9.01 (0%)

well as score-level combination of the Tandem/HATS-GMM  Table 3:System combination with 64 speaker, 1000 hidden unit,
system with the Basic-GMM, both yield significant improve-  Speaker-SVM improves Basic-GMM results, but not the SRI-
ments. When the Tandem/HATS-GMM system is combined on  GMM.

the score-level with the SRI-GMM system, there is no gain in

performance over the SRI-GMM alone. 3.4. Mismatched Train and Test Conditions

i i DCEX10 i EER (%) i We now consider matched (same gender and handset) and mis-
- matched (different gender or handset) conditions between the
Basic-GMM 0.724 18.48 training and test data. Such a breakdown is given in Table 4 for
Tandem/HATS-GMM 0.713 (20/00) 18.48 (Ooﬁ’) both the Tandem/HATS-GMM and Speaker-SVM systems and
Score-level fuspn 0.618 (15%) | 16.26 (12%) their score-level combinations with the Basic-GMM and SRI-
Feature-level fusion | 0.601 (17%)| 16.35 (12%) GMM. For each combination, changes relative to the appropri-

SRI-GMM 0.374 9.01 ate baseline system are given in parentheses.
Tandem-GMM 0.713 18.48 When considering a score-level fusion with the Basic-
Score-level fusion | 0.378 (-1%) | 9.09 (-1%) GMM system, gains are made in the matched and especially

GMM system, especially in combination, but there is no im- and Speaker-SVM. For the SRI-GMM baseline, combination
provement for SRI-GMM system. with the Tandem/HATS-GMM and Speaker-SVM systems has
marginal impact in either the matched or mismatched case.



System Alone Fusion with Basic-GMM | Fusion with SRI-GMM
Matched | Mismatched| Matched | Mismatched| Matched | Mismatched
EER (%) EER (%) EER (%) EER (%) EER (%) EER (%)
Basic-GMM 9.13 22.65 - - - -
SRI-GMM 5.74 10.71 - - - -
Tandem/HATS-GMM 12.53 21.54 8.67 (5%) | 19.84 (12%)|| 5.74 (0%) | 10.77 (-1%)
Speaker-SVM (1000hu, 6404) 13.93 23.56 8.78 (4%) | 20.95 (7%) || 5.74 (0%) | 10.64 (1%)

Table 4: Breakdown of results for matched and mismatched conditions for the MLP-based systems and their score-level fusions with

the Basic-GMM and SRI-GMM.

4. Discussion and conclusions

For the first time, phonetic Tandem/HATS-MLP features were
tested in a speaker recognition application. Although developed
for ASR, the Tandem/HATS-MLP features still yield good re-
sults for a speaker recognition task, and in fact perform better
than a basic cepstral GMM system; even more improvement
comes from score- and feature-level combinations of the two.
Prior related work used discriminative features from MLPs
trained to distinguish between speakers. Motivated by having
a well-established infrastructure for neural network training at
ICSI, we felt that there was potential for making greater gains
by using more speakers, more hidden units, and a larger con-
textual window of cepstral features at the input. Even though
preliminary experiments confirmed this, ultimately, however,
a smaller subset of speakers chosen through clustering proved
similar in performance and could be trained in less time.
Although the MLP-based systems do not improve upon the
SRI-GMM baseline in combination, this result could be ex-
plained by considering the difference in the performance be-
tween the two types of systems: standalone, each MLP-based
system performs much more poorly than the SRI-GMM. The
addition of channel compensating normalizations, like T-norm
[13], to an MLP-based system should help reduce the perfor-
mance gap between the MLP-based system and the SRI-GMM.
It may then be possible for the MLP-based system to improve
upon the state-of-the-art cepstral GMM system in combination,
in the event that the performance gap is narrowed sufficiently.
Similar to results observed in prior work, the Speaker-SVM
system improved speaker recognition performance for a cep-
stral GMM system lacking sophisticated normalizations (such
as feature mapping [14], speaker model synthesis (SMS) [15],
and T-norm); such a result was also true for the Tandem/HATS-
GMM system. However, no gains were visible in addition with
the SRI-GMM, which is significantly improved from the Basic-
GMM (as well as the GMM systems of Wu and Morris, et al.
and Heck and Konig, et al.) by the addition of feature mapping,
T-norm, as well as increasing the number of Gaussians to 2048.
As shown in Table 4, combinations of the Basic-GMM with
the phonetic- and speaker-discriminant MLP-based systems of
this paper do yield larger improvements for the mismatched
condition (which refers to the training data and test data being
different genders or different handset types). However, such a
result does not hold for combinations of the MLP-based systems
with the SRI-GMM. The previous work of Heck and Konig, et
al., completed prior to the year 2000, showed that the great-
est strength of an MLP-based approach was for the case when
there is a handset mismatch between the training and test data,
however, the state-of-the-art has since advanced significantly in
normalization and channel compensation techniques. As a re-
sult, the contributions of the MLP-based systems, without any
normalizations applied, to a state-of-the-art cepstral GMM sys-
tem are no longer significant for the mismatched condition.
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