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Voiced segments of speech are assumed to be composed of 
non-stationary voiced acoustic objects which are generated as 
stationary (secondary) response of a non-stationary drive 
oscillator and which are analysed by introducing a self-
consistent part-tone decomposition. The self-consistency 
implies that the part-tones (of voiced continuants) are suited to 
reconstruct a topologically equivalent image of the hidden 
drive (glottal master oscillator). As receiver side image the 
fundamental drive (FD) is suited to describe the broadband 
voiced excitation as entrained (synchronized) and/or 
modulated primary response and to serve as low frequency 
part of the basic time-scale separation of auditive perception, 
which separates phone or timbre specific processes from 
intonation and prosody. The self-consistent time-scale 
separation avoids the conventional assumption of stationary 
excitation and represents the basic decoding step of the phase-
modulation transmission-protocol of self-consistent (voiced) 
acoustic objects. The present study is focussed on the 
adaptation of the contours of the centre frequency of the part-
tone filters to the chirp of the glottal master oscillator.  
 

1. INTRODUCTION 
 
Many methods being conventionally used to analyze non-
stationary (speech) signals like short time Fourier analysis or 
wavelet analysis [1, 2] are based on a complete and orthogonal 
decomposition of the signal into elementary components. The 
amplitudes of such components can be interpreted in terms of 
a time-frequency energy distribution. The elementary 
components are preferentially chosen as near optimal time-
frequency atoms, which are each characterized by a reference 
time 0  and angular frequency 0 . As a characteristic feature 
of wavelet analysis, the time-frequency atoms are chosen on 
different time scales. Time-frequency atoms are wave packets 
which are optimized to describe simultaneously event 
(particle) and wave type properties of non-stationary wave 
processes [3]. Their most general form can be written as 
second order logarithmic expansion of a complex signal 
around the reference time  resulting in a complex Gaussian 
of the form  
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Contrary to the conventional one [3], this parametric set of 
time-frequency atoms is characterized by a quadratic trend 
phase or a linear trend phase velocity (angular frequency)  
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with relative chirp rate c. Due to their neglect of the chirp 
parameter, the time-frequency atoms of short time Fourier 
analysis and wavelet analysis are preferentially aimed at linear 
time invariant (LTI) systems [1] (with a time periodic 
deterministic skeleton). In contrast to the latter approaches, the 
present one is aimed at non-stationary acoustic objects which 
represent a superposition of time-frequency atoms with 
chirped angular frequencies. The general aim, however, is not 
a complete and orthogonal decomposition of the speech signal, 
but a (potentially incomplete) decomposition into part-tones 
which can be interpreted as topologically equivalent images of 
plausible underlying acoustic modes [4-8]. The part-tones are 
generated by bandpass filters with impulse responses which 
represent optimal or near optimal time-frequency atoms. The 
preference of time-frequency atoms of the form (1a) results 
from the aim to generate part-tones with a maximal time reso-
lution, which is compatible with a frequency resolution being 
necessary to isolate a sufficient number of topologically 
equivalent images of the underlying acoustic modes.  
 

Like in auditory scene analysis, an a priori knowledge 
about the behaviour of the underlying acoustic modes can be 
used to remove a potential ambiguity of the unknown acoustic 
object parameters (in particular of the time course of the centre 
frequencies of the bandpass filters). In case of voiced speech it 
is “known” a priori that the common origin of the acoustic 
modes (the pulsed airflow through the glottis) and the 
nonlinearity of the aero-acoustic dynamics in the vocal tract 
lead to a characteristic phase locking of the acoustic modes [5-
8].  

In the situation of signal analysis the detection of a strict 
( ) synchronization of the phases of a priori independent 
part-tone pairs (with non-overlapping spectral bands) repre-
sents a phenomenon, which has a low probability to happen by 
chance, in particular, when the higher harmonic order n has a 
large value. For such part-tone pairs it can therefore be 
assumed that there exists an uninterrupted causal link between 
those part-tones, including the only plausible case of two 
uninterrupted causal links to a common drive, which can be 
identified as a glottal master oscillator [4-8]. Since the ( ) 
phase-locking with 
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coupling of the acoustic modes to the glottal oscillator, a 
stable synchronization of a priori independent part-tone 
phases can be taken as a confirmation of topological equiva-
lence between these part-tones and respective acoustic modes 
in the vocal tract of the transmitter.  

 
Based on the a priori knowledge about the phase locking 

of the acoustic modes, the phase velocity contours of the part-
tones can be assumed to be centered around harmonic mul-



tiples ( hπ2  with integer h) of the frequency contour of the 
glottal oscillator. A cluster analysis of harmonically norma-
lized part-tone phase velocity contours can thus be used to 
identify a consistent set of part-tone phases, which is suited to 
reconstruct a unique phase velocity of the fundamental drive 
[6-8]. The present study is focussed on the construction of 
centre frequency contours of the bandpass filters which are 
consistent with the corresponding part-tone phase velocity 
contours. Self-consistently reconstructed part-tone phases are 
proven to be suited for a phase-modulation transmission 
protocol of voiced speech.  
 

2. VOICE ADAPTED PART-TONES 
 
In case of the characteristic isolated pulse type events of stop 
consonants, single time-frequency atoms are potentially suited 
to describe such events. For real time analysis of voiced conti-
nuants it is unavoidable to generate part-tones which result 
from causal bandpass filters. The present study uses an all 
pole approximation of complex -tone bandpass filters with 
approximately gamma-distribution like amplitudes of the 
impulse response [10]. For sufficiently high autoregressive 
order, the -function like amplitude distribution guarantees a 
near optimal time-frequency atom property of the impulse 
responses. (That is why an autoregressive order (

Γ

Γ

Γ -order) 
 will be used in the example instead of the more common 

choice  [11, 10].)  
5=Γ

4=Γ
 

The choice of (roughly) audiological bandwidths for the 
part-tone decomposition has the effect that we can distinguish 
a lower range of part-tone indices characterized by guaranteed 
single harmonic (resolved) part-tones and a range of potential-
ly multiple harmonic (unresolved) part-tones. In the resolved 
part-tone range  the harmonic order  is identical to 
the part-tone index j. To avoid a substantial over-completeness 
(and a priori correlation between neighbouring part-tones) in 
the unresolved range , the set of harmonic part-tones 
is pruned according to the respective equivalent rectangular 
bandwidths (ERB). A typical set of part-tones may have the 
harmonic orders 

61 ≤≤ j jh

Nj ≤<6

{ } { ...,15,12,10,8,6...,,2,1=jh }. (Diplophonic 
voice types may lead to rational winding numbers mnh jj /=  
with a common subharmonic period number  [5-8].) In 
particular for speech segments, which correspond to nasals or 
vowels it is typical that some of the part-tones in the (a priori) 
unresolved range are also dominated by a single harmonic 
acoustic mode. The under-completeness of the part-tones in 
the (a priori) resolved range has a welcome noise suppression 
effect.  

1>m

 
The all pole approximation of the gammatone filters has 

the advantage of a fast autoregressive algorithmic 
implementation [10]. For theoretical reasons we prefer its 
description in terms of a matrix recursion with a lower 
triangular matrix L of dimension  which plays the role of the 
cascade depth of the cascaded first order autoregressive filter,  
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with input signal  being sampled at discrete times t , tS Γ -
dimensional vectors , { }',,, ttt zwvtX L= { }'0,,0,11 L=e , 

  and matrix  00 =X
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The scalar λ  represents the damping factor of every first order 
autoregressive filter and is directly related to the ERB of the 
Γ -tone filter, )exp( ERBaΓ−=λ , the Γ -order dependent factor 

 being given e.g. in [10]. The complex phase factor Γa
)exp( tiω  defines the instantaneous centre filter frequency 

being simply related to the instantaneous 
angular velocity .  The unusual feature is the time 
dependence of the angular velocity 

πω 2/ttF =

tω

tω  which will be specified 
later. The inverse of matrix L is the lower triangular matrix 
with ones on and below the diagonal. It can be used to obtain 

 as a power series of matrix tX 1−L , 
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The filter output is represented by the last component  of 
vector t . Therefore we are interested in the matrix element 
in the lower left corner of any power of matrix 

tz
X

1−L . For the 
(n+1)th power this element can easily be obtained by complete 
induction as the ratio of three factorials !)!1/()!1( nn −Γ−Γ+ . 
Taking into account the additional dependence on the part-
tone index j, the output of the (non-normalized) bandpass filter 
of part-tone j is thus obtained as  
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For  the set of (normalized) part-tones can be 
interpreted as a highly over-sampled time-frequency decom-
position of the speech signal 't  where the over-sampling is 
restricted to the time axis. The non-normalized part-tones (4) 
can be used to generate the part-tone phases (carrier phases)  
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as well as the (harmonically) normalized part-tone phases 

jtj h/,ϕ  in the frequency range of the pitch. If the trajectory 
(contour) of the centre filter frequency πω 2/, kj  is chosen as 
identical to the one of the instantaneous frequency  of 
a constant amplitude input signal  

= 0k
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application of bandpass filter (4) generates the output  
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This filter output has the remarkable property that its instanta-
neous phase velocity is identical to the one of the input signal. 
For a given filter frequency contour, other input signals 
experience a damping due to interference of the phase factors. 
For a given input frequency contour, other filter frequency 
contours generate a phase distortion of the output. In the limit 

∞→t , the sum in equation (6) represents an asymptotic gain 



factor . Being exclusively dependent on the bandwidth 
parameter j

Γ,jg
λ  and the Γ  order, the gain factors can be used to 

obtain the normalized part-tone amplitudes Γ= ,,, / jtjtj gza .  
 

For more general voiced input signals the determination 
of filter frequency contours, which are identical to frequency 
contours of some underlying acoustic modes, represents a non-
trivial problem. Conventionally [14-17] the adjustment of the 
filter frequency contours of part-tones (or “sinusoidal compo-
nents”) is achieved by introducing a short-time stationary 
(zero-chirp) subband decomposition which is densely sampled 
with respect to frequency and by determining for each point in 
time local maxima of the amplitudes of the subbands with 
respect to frequency. In a second step the maximizing 
frequencies of consecutive points in time are tested, whether 
they are suited to form continuous frequency contours. 
Suitable maxima are joined to form weakly non-stationary 
contours and part-tones. It is well known that the non-
stationarity of natural voiced speech leads to frequent death 
and birth events of such contours, even within voiced 
segments [14-16].  

 
The present approach is aimed at self-consistent centre 

filter frequency contours which are chosen as identical (or as 
consistent) to the frequency contours of the respective part-
tones (outputs). It is based on the assumption that sustained 
voiced signals are composed of one or several part-tones 
which can iteratively be disclosed and confirmed to be self-
consistent, when starting from appropriate contours of the 
centre filter frequency. In a first step we restrict the self-
consistency to a single part-tone. In this case the self-con-
sistency is defined as the existence of a centre filter-frequency 
contour of the bandpass filter being used to generate the part-
tone which can be obtained as stable invariant set of the 
iteration of two cascaded mappings, where the first mapping 
uses a filter-frequency contour (out of a basin of attraction of 
preliminary frequency contours) to generate a part-tone phase 
velocity contour and the second mapping relates this part-tone 
phase velocity contour to an update of the mentioned filter-
frequency contour. Whereas the first mapping is given by part-
tone filter (4) and phase definition (5), the second mapping is 
chosen according to the acoustic properties of the assumed 
underlying physical system.  

 
The acoustic properties include the physical law natura 

non facit saltus. The resulting smoothing of the centre filter 
frequency is suited to improve the convergence properties of 
the adaptation. Being inspired by equation (1b) the smoothing 
step might simply be chosen as a linear approximation of the 
trend of the filter-frequencies within each analysis window. 
However, due to the time reversal asymmetry of the Γ -tone 
filters, a negative chirp rate leads to a singularity of the instan-
taneous period length of the impulse response at finite times. 
This singularity can be avoided, if the time dependence of 
centre filter frequency  of part-tone j is chosen 
separately depending on the sign of the (relative) chirp rate 

. For negative chirp rate it is useful to assume alternatively 
a linear trend of the inverse of the respective centre filter 
frequency with a smooth transition at zero chirp rate  
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As is well known, human pitch perception is not limited 
to the frequency range of the separable part-tones. In particular 
it is known that the modulation amplitudes (envelopes) of the 
higher frequency subbands play an important role in hear 
physiology and psychoacoustics [11, 12]. It is therefore 
plausible to extend the analysis of part-tone phases to the non-
separable range, i.e. to phases, which can be derived from the 
envelopes of the part-tones. Being used preferentially for part-
tones with unresolved harmonics, the envelope phases are 
determined e.g. as Hilbert phases of (appropriately scaled and 
smoothed) modulation amplitudes (envelopes) of part-tones.  

 
To achieve a more uniform time evolution of the 

envelope phases and in agreement to well known results from 
hear-physiology and psycho-acoustics [11, 12], the normalized 
modulation amplitudes  Γ= ,,, / jkjkj gza  are submitted to a 
sublinear transformation (scaling) and smoothing prior to the 
determination of the Hilbert phases. It is common practice to 
choose a power law with an exponent in the range 33.0=ν  
[11, 12]. In contrast to the carrier phases (which do not need a 
correction due to their self-consistency as expressed in 
equation (6)) the envelope phases need a group delay 
correction of the respective part-tones. The part-tone index 
specific part of this correction has been derived from the 
maxima of the amplitude of the impulse responses of equation 
(4) [10]. The relative importance of the envelope phases is 
expected to increase, when the voice source changes from a 
modal (ideal) voice to a breathy one.  

 
3. PART-TONES OF A SIMPLE PULSED EXCITATION  

 
To demonstrate the generation of self-consistent part-tones of 
a non-stationary voiced acoustic object, a sequence of 
synthetic glottal pulses with a chirped frequency is chosen as 
input signal. For simplicity the pulses are chosen as constant 
amplitude saw teeth with a power spectrum, which is roughly 
similar to the one of the glottal excitation. The pulse shape is 
described by an impulse function [21] or wave shaper function 
[22] of the form  
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where tψ  represents the phase of an artificial glottal master 
oscillator [5-8]. The parameter s (chosen to be 6) determines 
the ratio of the modulus of the downhill slope of the glottal 
pulses to the uphill one. The chirp of the glottal oscillator is 
described by a time dependent phase velocity )()( tt ψω &=  
which is chosen in analogy to equation (7), however, with 
potentially different chirp rate  and initial phase velocity . 
(In the specific example, the glottal chirp parameter  is 
chosen to generate a doubling of the frequency (or period 
length) after about 25 periods.) The fundamental phase 

'c '
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'ψ  is 
obtained by integrating the analogue of equation (7) with 
respect to time t (replacing index k)  
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In the situation of signal analysis, appropriate contours of 

the centre filter frequency of the part-tone specific bandpass 
filters have to be obtained iteratively from the observed signal. 
As part of the time scale separation step of the second 
mapping of the last section, we assume that these contours can 
be described (within the current rectangular window of 
analysis) by a simple smooth function of time chosen as 
indicated in equation (7). The part-tone adaptation of the filter-
frequency contour of the bandpass filter of part-tone j can thus 
be achieved by estimating the parameters of equation (7). To 
reduce the dependence of the estimate on the size and position 
of the window of analysis (and/or to avoid the adaptation of 
the window length to the instantaneous period length), time 
scale separation ansatz (7) is extended by a π2  periodic 
function )/( , jtjj hP ϕ  of the respective normalized part-tone 
phase  
 
 )/(/ ,, jtjjjjtj hPth ϕαϕ +=&   (10a) 
 )/(/ ,, jtjjjtjj hPth ϕαϕ +−=& .  (10b) 
 
The π2  periodic function )(ϕjP  accounts for the periodic 
oscillations of the phase velocity around the long term trend 
being generated by the characteristic auto phase-locking and is 
approximated by an appropriate finite order Fourier series. 
The Fourier coefficients as well as the trend parameter jα  are 
obtained by multiple linear regression.  
 

Within a voiced segment of speech the adaptation of the 
parameters is performed sequentially for successive analysis 
windows. The initial value of the centre filter frequency of the 
current window is therefore typically given as result of the 
adaptation of the filter chirp of the preceding analysis window. 
Thus we treat the latter parameter as given ( ) and 
concentrate on the convergence properties of the chirp 
parameter of a filter-frequency contour. The adaptation of a 
single parameter can be represented graphically. To explain 
the approach to self-consistency we use a graph, which shows 
the trend parameter  of equations (10a or 10b) for several 
part-tone indices j as function of the common filter chirp rate 
c. To make figure 1 suited for the graphical analysis it gives 
the estimates of the relative trend  for the indices  j 
= 2, 4, 6, 9  (corresponding to the sequence of the fixed points 
from bottom to top) as function of the relative filter chirp rate 

.  
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The iterative adaptation of the chirp parameter of each 

filter-frequency contour can be read off from figure 1 by an 
iteration of two geometric steps: Project horizontally from one 
of the described curves to the diagonal of the first quadrant 
(which indicates the line where the fixed points of the iteration 
are situated) and project vertically down (or up) to the curve 
again. As can be seen from figure 1, the chirp parameters of all 
four part-tones have a stable fixed point (equilibrium) within a 
well extended basin of attraction of the chirp parameter which 
exceeds the shown interval of the abscissa. The fixed points 
(corresponding to the more general invariant sets of the 
preceding section) indicate the final error of the filter chirp 

which depends not only on the part-tone index but also on the 
size of the analysis window (which was chosen to have a 
length of about five periods of the glottal process). Due to the 
simple least squares regression of equations (10a,b), the 
modulus of the trend jα  is systematically underestimated.  

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.8

0.85

0.9

0.95

1

1.05

1.1

rel. filter chirp

re
l. 

pa
rt

−
to

ne
 c

hi
rp

 

Figure 1: Estimated relative part-tone chirp rates as function 
of the relative chirp rate of the respective centre filter fre-
quency, given for the envelope phase of part-tone 9 (circles, 
top) and the three carrier phases of part-tones 2, 4, and 6 (lines 
crossing the diagonal from bottom to top). All chirp rates are 
given relative to the chirp rate of the input sawtooth process 
defined in equations (8-9). The arrows and the diagonal of the 
first quadrant explain the algorithm, to determine the self-
consistent centre filter frequencies.  
 

4. MULTI  PART-TONE STABLE ACOUSTIC OBJECTS 
 

It is well known that human pitch perception can be trained to 
switch between analytic listening to a spectral pitch and 
synthetic listening to a virtual pitch [12, 16]. It is thus 
plausible to correlate the described single part-tone stable 
acoustic objects (with a macroscopic basin of attraction of the 
filter frequency contour or contour parameters) to outstanding 
part-tones, which are potentially perceived as spectral pitches 
by analytic listening [16, 27]. The number of stable invariant 
sets (fixed points) with a macroscopic basin of attraction 
depends in particular on the width of the power spectrum of 
the voiced signal. In the example of the last section a strong 
asymmetry of the sawteeth (  in equation 10) favors the 
stability of higher order fixed points.  

1>>s

 
From psychoacoustic experiments it is also known that 

virtual pitch is a more universal and robust percept than 
spectral pitch [4, 16]. Based on the a priori assumption that 
the signal is generated by a voice production system, which 
generates several phase locked higher frequency acoustic 
modes, the observed (carrier or envelope) phase velocity of 
one part-tone might be used to adjust the centre filter 
frequency of other part-tones. This opens the possibility to use 
a more robust multi part-tone adaptation strategy which can be 
expected to converge even in cases with no single part-tone 
stability.  

In analogy to the single part-tone stability of the last sec-
tions we relate multipart-tone stability of an acoustic object to 



the existence of a fundamental phase velocity contour which 
can be obtained as stable invariant set of the iteration of three 
cascaded mappings, where the first mapping relates a prelimi-
nary fundamental phase velocity contour (out of a macros-
copic basin of attraction) to a set of filter-frequency contours, 
the second mapping uses the set of filter-frequency contours to 
generate a corresponding set of part-tone phase velocity 
contours and the third mapping relates a subset of the part-tone 
phase velocity contours to update the fundamental phase 
velocity contour. The first mapping makes use of the charac-
teristic auto-phase-locking of the voiced excitation 
( ). The second mapping is given by filter (4) and 
phase (5) and the third mapping uses cluster analysis to 
identify invertible phase relations which are suited to re-
construct the phase velocity of the fundamental drive [4-8].  

kjkj h ,0, ωω =

 
This way the contradiction between Rameau’s concept of 

a son fundamentale or fundamental bass [20] and Seebeck’s 
observation, that pitch perception does not rely on a funda-
mental acoustic mode as part of the heard signal [21], can be 
reconciled by replacing Rameau’s son fundamentale by the 
described FD. Being an abstract order parameter and in need 
of a confirmation of its existence, the FD of a multi-part-tone 
voiced acoustic object cannot be reconstructed from a single 
part-tone alone. This qualifies the instantaneous fundamental 
phase velocity as acoustic correlate of virtual pitch perception. 
When reconstructed coherently for uninterrupted voiced 
speech segments, the fundamental phase becomes the central 
ingredient of a phase modulation decoder of voiced speech.  

 
Contrary to the conventional psycho-acoustic theory [12, 

16] (originating from Ohm and Helmholtz) which interprets 
the amplitudes of part-tones (with psycho-acoustically cali-
brated bandwidths) as primary acoustic cues, it is expected 
that the deviations of the phases of self-consistently 
determined part-tones from the synchronization manifold of 
the unperturbed ideally pulsed excitation have a comparable or 
higher relevance for acoustic perception than the corres-
ponding amplitudes [17]. At the present state of analysis this 
hypothesis is mainly based on deductive arguments, which 
favor phase modulation features as more differentiated and 
robust cues for the distinction of the voiced phones of human 
speech as well as for the distinction of their speakers.  

 
5. CONCLUSION 

 
A transmission protocol of non-stationary self-consistent 

(voiced) acoustic objects is outlined, which are generated as 
stationary response of a non-stationary fundamental drive 
(FD) and which can self-consistently be decomposed into non-
stationary part-tones. Self-consistent part-tones are charac-
terized by phase velocities which are consistent with the centre 
filter frequencies being used to generate the part-tones. The 
second property of the self-consistent acoustic objects 
qualifies them as most elementary symbols of a voice 
transmission protocol which is centred on a time scale 
separation with a precise and robust decoding option. It is 
hypothesized that the self-consistent decomposition of speech 
segments, which are suited to transmit voiced continuants, 
leads to a subset of part-tones which shows generalized 

synchronization of their phases. The iterative identification of 
multi part-tone stable voiced acoustic objects relies on and 
enables a high precision reconstruction of a fundamental phase 
which can be confirmed as phase of a topologically equivalent 
image of a glottal master oscillator on the transmitter side. As 
topologically equivalent image on the receiver side, the self-
consistent FD represents the long time scale part of the basic 
time scale separation known from human acoustic perception. 
The self-consistent reconstruction of the FD avoids the 
assumption of a frequency gap being necessary to justify the 
conventional assumption of a stationary or periodic voice 
source.  
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