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Abstract 
In this paper, we modify the Sparse Coding Shrinkage (SCS) 
method with an appropriate optimal linear filter (Wiener filter) 
in order to improve its efficiency as a speech enhancement 
algorithm. 
SCS transform is only applicable for sparse data and speech 
features do not have this property in either time or frequency 
domains. Therefore we have used Linear Independent 
Component Analysis (LICA) to transfer the corrupted speech 
frames to the sparse code space in which noise and speech 
components are separated by means of a shrinkage function. 
Before employing SCS, Wiener filtering was applied on the 
ICA components to reduce noise energy and consequently the 
SCS shrinkage threshold. Experimental results have been 
obtained using connected digit database TIDIGIT 
contaminated with NATO RSG-10 noise data.  

1. Introduction 
The primary purpose of noise compensation methods applied 
in the context of speech processing is to reduce the effect of 
any signal which is alien to and disruptive of the message and 
to extract original speech as pure as possible. Depending on 
the application, speech enhancement methods aim at speech 
quality improvement and or speech or speaker recognition. 
Some common noise compensation methods are a) Spectral 
Subtraction, b) least mean square (LMS), adaptive filtering, c) 
filter-based parametric approaches , d) Hidden Markov Model 
(HMM)-based speech enhancement techniques. Wavelet 
transform has also been employed in speech enhancement 
systems during recent years [1].  
In this paper we focus on modifying a relatively new method 
that is Sparse Coding Shrinkage. It has been used in [2, 3] for 
image denoising and in [4] for speech enhancement. The 
advantages of this method with respect to other popular 
methods can be summarized as: 1) Most algorithms apply 
Fourier transform, discrete Fourier transform or Karhunen-
Loeve transform which facilitate the estimation of the clean 
speech model parameters. However, SCS is based on a data-
driven transformation that is highly conformed to the structure 
of clean speech data. 2) Most methods just amend the 
distorted amplitude of the speech signal leaving the phase 
unprocessed. On the other hand, experimental results have 
shown that phase parameter plays a relatively important role 
in speech quality [5].  In the SCS method, the speech frame is 
uniformly processed without need to separating the amplitude 
and phase data. Independent Component Analysis is a basic 
method for blind source separation. In Linear Independent 
Component Analysis (LICA), the goal is to transfer the 

observed data to the independent source space. Assuming that 
all independent sources are supergaussian, ICA technique will 
be equivalent to sparse coding method [2]. 
Denoising process includes an offline training stage in which 
clean speech frames are employed for estimating the ICA 
transform matrix and required parameters of the shrinkage 
function. These estimated functions can then be used to extract 
the clean components from the noisy ones. 
The organization of the paper is as follows: First we explain in 
detail each of the methods used for speech enhancement in 
section 2. Section 3 demonstrates the noise reduction 
capability of the proposed algorithm through the computer 
simulations. Finally, conclusions are given in the last section. 
 

2. Algorithms used in the proposed 
enhancement method 

Sparse Coding Shrinkage is carried out in 2 stages: 
1) Transferring data to the sparse coding space that is 

performed using ICA in this paper. 
2) Computing Shrinkage function for each sparse code that 

can be achieved through Maximum Likelihood Estimation.  
In this section we have provided details about the employed 
algorithms.  

2.1. Independent Component Analysis 

Linear Independent component analysis mixing model can be 
formulated as [6]: 

=x As  (1) 

We can rewrite the Eq. (1) as: 

i i
i

s=∑x a  (2) 

where ,ia x  and is  are basis functions , observed vector and 
independent components respectively. This ICA model is a 
generative model, i.e. it describes how the observed data are 
generated by a process of mixing the components is . After 
estimating the matrix A, we can compute its inverse, say W, 
and obtain the independent components simply by:  

1, −s = Wx W = A  (3) 

In mixing model, A and s are both unknown and should be 
solely estimated using observed data x. One estimation 
method is to use probabilistic characteristics of components 
that are assumed independent in ICA method. It has been 
shown that component independency in ICA mixing model is 



directly related to maximum nongaussianity of the 
components. One robust criterion for nongaussianity testing is 
negetropy that can be expressed as: 

gaussJ(y) H(y ) H(y)= −  (4) 

In which H is entropy function and J(y) represents the entropy 
difference between random value y and Gaussian 
variable gaussy , which has the same covariance matrix as y. 

J(y) will be zero if and only if y is Gaussian, otherwise it has 
positive non-zero value. Using a robust estimation of 
negentropy and ascent gradient method, we can rewrite W 
matrix rows as following: 

{ } { }T TE g( ) E g ( )  + −′= −w x w x w x w     (5) 

where x is the observed vector and w- and w+  represent the 
W matrix row before update and after update respectively. 
Here g(u)=tanh(au) and a is selected so that 1<a<2. In order 
to increase the convergence speed, data is whitened in the 
first step. Hence, the searching space is limited to the space 
perpendicular to the previous vectors (rows). 

2.1.1. Parametric estimation of the probabilistic 
density function of the independent components  

Probability density of independent components is defined as a 
generalized exponential function as follows [7]: 

2 1 βω(β) x µp(x|µ,σ,β) exp c(β)
σ σ
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where µ is the mean parameter, σ represents standard 

deviation and Γ  is Gamma function. iβ  is the parameter 
that controls the deviation of probability density function 
from normal distribution. The higher β gets ( 1>>β ), the 
more the super-Gaussian of the independent components PDF 
is. Assuming si components with zero mean )0( =µ and unit 

variance )( 1σ 2 = , we can estimate β  by Maximum A 
Posterior (MAP) method as follows:  
 

i

i

i β i i

β i i i

β max p(β |s )

max p(s |β )p(β )

= ∝
 (7) 

 Assuming )p(βi is uniform for 1βi > and making the 

derivative with respect to iβ  equal to zero, we can estimate 

iβ  by means of iteration methods. 
 
 
 

2.2. Shrinkage function extraction 

SCS uses Maximum A Posterior for estimating the non-
Gaussian variable contaminated with Gaussian noise.  
Suppose s is the random non-Gaussian variable and ν  is the 
Gaussian noise with zero mean and unit variance and y is the 
observed variable, so that: 

y s ν= +  (8) 

We want to extract s from the observed vector y. If the 
probability density function of s is shown by  p, then we can 
estimate s by: 

2
u 2

1s argmin (y u) f(u)
2σ
 = − +  

  (9) 

where logpf −= and 2σ  is the noise variance. Minimizing 
the left side of (9) and making its derivative with respect to u 
equal to zero is equivalent to the following equation: 

2

1 ˆ ˆ(s y) f (s) 0
2σ

′− + =  (10) 

For the Laplace function in the form of 

|)s|λexp(
2
λ)sp( ˆˆ −= , we have )ssign()s(f ˆˆ =′ . After 

substitution of (s)f ′  in (10), we find 2λσys −=ˆ  for 
2λσy > and the equation has no answer for 2λσy < . 

Assuming that the clean signal components are sparse, we can 

conclude that, for 2λσy < the observed component y is 

only resulted from noise and therefore 0s =ˆ . In general, 
nonlinear relationship between ŝ  and y components can be 
stated: 

2ŝ g(y) sign(y) max(0, y λσ )= = × −  (11) 

where g represents the shrinkage function. In ICA space, the 
probability density of the clean speech, p(s) , can be obtained 
as explained in section 2-1-1. Assuming generalized 
exponential distribution for s, it is unlikely to find ŝ  with 
respect to y from (10) in the closed form. The shrinkage 
function of a high sparse variable ( 1>>β ) can be 
approximated as [1]: 

2 2

ŝ sign(y)

y bd y bd
max(0, ( ) 4σ (a 3) )

2 2

= ×

− +
+ − +

   
(12) 

 
where d is the standard deviation of the independent 

components and 2σ  is the noise components variance in ICA  

space and 1)|}s{|1/d/(Ea 2 −=  , 21)a(ab += . Two 
examples of shrinkage function are illustrated in Fig.1. Since 
independent components extracted from speech have high 
sparsity, we can use the shrinkage function stated in (12). 
  



 
Figure 1: Two example of shrinkage function. Solid 
line:  the shrinkage function of Laplace distribution 
(11), Dotted line: the shrinkage function of 
supergaussian distribution (12). 

2.3. The Proposed Method 

In previous works, SCS is used alone for speech 
enhancement. It seems that shrinkage threshold reduction can 
reduce the approximations used in solving (10) and therefore 
may result in improvement in denoising process. Shrinkage 
threshold is directly related to the noise energy. This 
relationship is apparent in the shrinkage function of Laplace 
distribution, i.e. (11). Shrinkage threshold reduction can be 
carried out by applying an appropriate preprocessing. One 
preprocessing method that can keep the Guassianity of the 
noise is a linear transform and optimal linear transform that 
causes maximum noise reduction can be a Wiener filter. 
Wiener filter applied in ICA space can be easily found [8]:  

1T
n( )−= −F I I WR W  (13) 

where I is the unit matrix and is equivalent to the covariance 
matrix of independent components. Note that independent 
components attained from ICA model have zero mean and 
unit variance. Besides, W is the unmixing matrix of ICA 
model and nR   is the noise covariance matrix in the time 
domain.  Additive noise ν  can be found by applying F 
function on ICA space components. 

ˆ ˆ ˆ ˆ ˆ→F(s + ν) - s = ν (F - I)s + Fν = ν  
T T

ν̂ ν= +R (F - I)(F - I) FR F  
(14) 

ν  has Gaussian distribution and according to the central limit 
theorem, and employing only linear function, ν̂  can also be 
assumed  Gaussian. The σ  in (12) can be substituted with 
diagonal components of the covariance matrix ν̂R (noise 
variance) and the resultant shrinkage function can be applied 
to each noisy component. 

3. Experimental Results 
In the experimental setup, we first train the ICA model with 
22 files extracted from TIDIGIT database. For this purpose, 
we divide the speech files to the frames of 40 samples with 
one sample frame shift (sampling frequency is 8 kHz). 
After applying hamming window on the frames and 
eliminating the mean value, ICA training algorithm using 
negentropy criteria was performed. W matrix has been 
estimated in the training process and independent components 
were calculated by s = Wx . β corresponds to the probability 

density function of independent components and a, d and b 
pertaining to the shrinkage function have been also estimated. 
The estimated β  was in the range of 7-12 that verified the 
supergaussianity of the independent components. Finally, we 
found 40 shrinkage functions for 40 independent components. 
In order to test the algorithm, 30 files have been selected 
randomly and specific noises were added manually from 
NATO RSG-10 noise data. We used two parameters for 
evaluating the enhancement capability of our approach which 
are global SNR and segmental SNR. Table 1 and Table 2 
include the obtained values of global and segmental SNRs 
respectively after applying Wiener filter, Shrinkage function 
and jointly using them aimed to improving the speech signal 
quality. Segmental SNR results represent the difference 
between segmental SNR of the input noisy speech and 
enhanced speech signal. The results show that our proposed 
method (with the presumption of having only Gaussian noise) 
not only improved the SNR of the speech signal in the 
presence of white noise but also could be efficient for the 
speech signal contaminated with the colored noise. Except for 
the Volvo noise (where the Wiener filter has reduced the 
noise level considerably) it can be seen that our proposed 
method has made a significant improvement in all SNRs. 

4. Conclusion 
In this paper we proposed a new method by jointly using 
Sparse Coding Shrinkage and Wiener filtering. In general, 
each speech enhancement algorithm independently reduces 
the effect of a specific noise. Thus, combinational algorithms 
can be more efficient in various noise environments. For 
example, in the presence of Volvo noise, Table 1 shows that 
the performance of Wiener filter in reducing the noise level is 
considerable, in comparison with the SCS effect. Therefore, 
jointly use of these methods may lead to better results in the 
presence of various types of noises. On the other hand, 
Wiener filter improves the SCS method performance by 
reducing the shrinkage threshold of the shrinkage function. 
The performance of the proposed method should be further 
studied before its application in speech recognition systems. 
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