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Abstract
The emerging applications of wireless speech communication
are demanding increasing levels of performance in noise ad-
verse environments together with the design of high response
rate speech processing systems. This is a serious obstacle to
meet the demands of modern applications and therefore these
systems often needs a noise reduction algorithm working in
combination with a precise voice activity detector (VAD). This
paper presents a new voice activity detector (VAD) for improv-
ing speech detection robustness in noisy environments and the
performance of speech recognition systems. The algorithm de-
fines an optimum likelihood ratio test (LRT) involving Multiple
and correlated Observations (MCO). An analysis of the method-
ology for N = {2, 3} shows the robustness of the proposed ap-
proach by means of a clear reduction of the classification error
as the number of observations is increased. The algorithm is
also compared to different VAD methods including the G.729,
AMR and AFE standards, as well as recently reported algo-
rithms showing a sustained advantage in speech/non-speech de-
tection accuracy and speech recognition performance.

1. Introduction
The emerging applications of speech communication are de-
manding increasing levels of performance in noise adverse envi-
ronments. Examples of such systems are the new voice services
including discontinuous speech transmission [1, 2, 3] or distrib-
uted speech recognition (DSR) over wireless and IP networks
[4]. These systems often require a noise reduction scheme
working in combination with a precise voice activity detector
(VAD) [5] for estimating the noise spectrum during non-speech
periods in order to compensate its harmful effect on the speech
signal.

During the last decade numerous researchers have studied
different strategies for detecting speech in noise and the influ-
ence of the VAD on the performance of speech processing sys-
tems [5]. Sohn et al. [6] proposed a robust VAD algorithm
based on a statistical likelihood ratio test (LRT) involving a sin-
gle observation vector. Later, Cho et al [7] suggested an im-
provement based on a smoothed LRT. Most VADs in use to-
day normally consider hangover algorithms based on empirical
models to smooth the VAD decision. It has been shown re-
cently [8, 9] that incorporating long-term speech information
to the decision rule reports benefits for speech/pause discrim-
ination in high noise environments, however an important as-
sumption made on these previous works has to be revised: the
independence of overlapped observations. In this work we pro-
pose a more realistic one: the observations are jointly gaussian
distributed with non-zero correlations. In addition, important
issues that need to be addressed are: i) the increased computa-
tional complexity mainly due to the definition of the decision

rule over large data sets, and ii) the optimum criterion of the
decision rule. This work advances in the field by defining a
decision rule based on an optimum statistical LRT which in-
volves multiple and correlated observations. The paper is orga-
nized as follows. Section 2 reviews the theoretical background
on the LRT statistical decision theory. Section 4 considers its
application to the problem of detecting speech in a noisy sig-
nal. Finally in Section 4.1 we discuss the suitability of the pro-
posed approach for pair-wise correlated observations using the
experimental data set AURORA 3 subset of the original Spanish
SpeechDat-Car (SDC) database [10] and state some conclusions
in section 6.

2. Multiple Observation Probability Ratio
Test

Under a two hypothesis test, the optimal decision rule that min-
imizes the error probability is the Bayes classifier. Given an
observation vector ŷ to be classified, the problem is reduced to
selecting the hypothesis (H0 or H1) with the largest posterior
probability P(Hi|ŷ). From the Bayes rule:

L(ŷ) =
py|H1(ŷ|H1)

py|H0(ŷ|H0)

>
<

P [H0]

P [H1]
⇒ ŷ ↔H1

ŷ ↔H0
(1)

In the LRT, it is assumed that the number of observations
is fixed and represented by a vector ŷ. The performance of
the decision procedure can be improved by incorporating more
observations to the statistical test. When N measurements ŷ1,
ŷ2, . . . , ŷN are available in a two-class classification problem,
a multiple observation likelihood ratio test (MO-LRT) can be
defined by:

LN (ŷ1, ŷ2, ..., ŷN ) =
py1,y2,...,yN |H1(ŷ1, ŷ2, ..., ŷN |H1)

py1,y2,...,yN |H0(ŷ1, ŷ2, ..., ŷN |H0)
(2)

This test involves the evaluation of an N-th order LRT
which enables a computationally efficient evaluation when the
individual measurements ŷk are independent. However, they
are not since the windows used in the computation of the obser-
vation vectors yk are usually overlapped. In order to evaluate
the proposed MCO-LRT VAD on an incoming signal, an ade-
quate statistical model for the feature vectors in presence and
absence of speech needs to be selected. The joint probability
distributions under both hypotheses are assumed to be jointly
gaussian independently distributed in frequency and in each part
(real and imaginary) of vector with correlation components be-
tween each pair of frequency observations:

LN (ŷ1, ŷ2, ..., ŷN ) =
Q

p∈{R,I}{
Q
ω

pyω
1 ,yω

2 ,...,yω
N
|H1

(ŷω
1 ,ŷω

2 ,...,ŷω
N |H1)

pyω
1 ,yω

2 ,...,yω
N
|H0

(ŷω
1 ,ŷω

2 ,...,ŷω
N
|H0)

}p
(3)



This is a more realistic approach that the one presented in [9]
taking into account the overlap between adjacent observations.
We use following joint gaussian probability density function for
each part:

pyω|Hs(ŷω|Hs)) = KHs,N · exp{−1

2
(ŷT

ω (CN
yω,Hs

)−1ŷω)}
(4)

for s = 0, 1, where KHs,N = 1

(2π)N/2|CN
yω,Hs

|1/2 , yω =

(yω
1 , yω

2 , . . . , yω
N )T is a zero-mean frequency observation vec-

tor, CN
y,Hs

is the N-order covariance matrix of the observation
vector under hypothesis Hs and |.| denotes determinant of a ma-
trix. The model selected for the observation vector is similar to
that used by Sohn et al. [6] that assumes the discrete Fourier
transform (DFT) coefficients of the clean speech (Sj) and the
noise (Nj) to be asymptotically independent Gaussian random
variables. In our case the observation vector consist of the real
and imaginary parts of frequency DFT coefficient at frequency
ω of the set of m observations.

3. Evaluation of the LRT
In order to evaluate the MCO-LRT, the computation of the in-
verse matrices and determinants are required. Since the covari-
ances matrices under H0&H1 are assumed to be tridiagonal
symmetric matrices1, the inverses matrices can be computed as
the following:

[C−1
yω

]mk = [
qk

pk
− qN

pN
]pmpk N − 1 ≥ m ≥ k ≥ 0 (6)

where N is the order of the model and the set of real numbers
qn, pn n = 1 . . .∞ satisfies the three-term recursion for k ≥ 1:

0 = rk(qk−1, pk−1)+σk+1(qk, pk)+ rk+1(qk+1, pk+1) (7)

with initial values:

p0 = 1
q0 = 0

and p1 = −σ1
r1

and q1 = 1
r1

(8)

In general this set of coefficients are defined in terms of orthog-
onal complex polynomials which satisfy a Wronskian-like rela-
tion [11] and have the continued-fraction representation[12]:
�

qn(z)

pn(z)

�
=

1

(z − σ1)− ª r2
1

(z − σ2)− ª . . .ª r2
n−1

(z − σn)
(9)

where ª denotes the continuos fraction. This representation is
used to compute the coefficients of the inverse matrices evalu-
ated on z = 0. In the next section we show a new VAD based on
this methodology for N = 2 and 3, that is, this robust speech

1The covariance matrix will be modeled as a tridiagonal matrix, that
is, we only consider the correlation function between adjacent observa-
tions according to the number of samples (200) and window shift (80)
that is usually selected to build the observation vector. This approach
reduces the computational effort achieved by the algorithm with addi-
tional benefits from the symmetric tridiagonal matrix properties:

[CN
yω

]mk =

2
4

σ2
ym

(ω) ≡ E[|yω
m|2] if m = k

rmk(ω) ≡ E[yω
myω

k ] if k = m + 1
0 other case

3
5 (5)

where 1 ≤ i ≤ j ≤ N and σ2
yi

(ω), rij(ω) are the variance and corre-
lation frequency components of the observation vector yω (denoted for
clarity σi, ri) which must be estimated using instantaneous values.

detector is intended for real time applications such us mobile
communications. The decision function will be described in
terms of the correlation and variance coefficients which consti-
tute a correction to the previous LRT method [9] that assumed
uncorrelated observation vectors in the MO.

4. Application to voice activity detection
The use of the MO-LRT for voice activity detection is mainly
motivated by two factors: i) the optimal behaviour of the so
defined decision rule, and ii) a multiple observation vector for
classification defines a reduced variance LRT reporting clear
improvements in robustness against the acoustic noise present
in the environment. The proposed MO-LRT VAD is described
as follows. The MO-LRT is defined over the observation vec-
tors {ŷl−m, . . . , ŷl−1, ŷl, ŷl+1, . . . , ŷl+m} as follows:

`l,N =
X

ω

1

2

(
yω

T ∆ω
Nyω + ln

"
|CN

yω,H0 |
|CN

yω,H1
|

#)
(10)

where ∆ω
N = (CN

yω,H0)
−1 − (CN

yω,H1)
−1, N = 2m + 1 is

the order of the model, l denotes the frame being classified as
speech (H1) or non-speech (H0) and yω is the previously de-
fined frequency observation vector on the sliding window.

4.1. Analysis of JGPDF Voice Activity Detector for N = 2

In this section the improvement provided by the proposed
methodology is evaluated by studying the most simple case for
N = 2. In this case, assuming that squared correlations ρ2

1 un-
der H0&H1 and the correlation coefficients are negligible under
H0 (noise correlation coefficients ρn

1 → 0) vanish, the LRT can
be evaluated according to:

`l,2 =
1

2

X
ω

L1(ω)+L2(ω)+2
√

γ1γ2

"
ρs
1p

(1 + ξ1)(1 + ξ2)

#

(11)
where ρs

1 = rs
1(ω)/(

√
σs

1σ
s
2) is the correlation coefficient of

the observations under H1, γi ≡ (yω
i )2/σn

i (ω) and ξi ≡
σs

i (ω)/σn
i (ω) are the SNRs a priori and a posteriori of the DFT

coefficients, L{1,2}(ω) ≡ γ{1,2}ξ{1,2}
1+ξ{1,2}

− ln(1 + ξ{1,2}) are the
independent LRT of the observations ŷ1, ŷ2 (connection with
the previous MO-LRT [9]) which are corrected with the term
depending on ρs

1, the new parameter to be modeled, and l in-
dexes to the second observation. At this point frequency ergod-
icity of the process must be assumed to estimate the new model
parameter ρs

1. This means that the correlation coefficients are
constant in frequency thus an ensemble average can be esti-
mated using the sample mean correlation of the observations
ŷ1 and ŷ2 included in the sliding window.

4.2. Analysis of JGPDF Voice Activity Detector for N = 3

In the case for N = 3 the properties of a symmetric and tridi-
agonal matrix come out. The likelihood ratio can be expressed
as:

`l,3 =
X

ω

ln
KH1,3

KH0,3
+

1

2
ŷT

ω ∆ω
3 ŷω (12)

where ln
KH1,3
KH0,3

= 1
2

h
ln
h

1−(ρ2
1+ρ2

2)H0

1−(ρ2
1+ρ2

2)H1

i
− ln

�Q3
i=1(1 + ξi)

�i
,

and ∆ω
3 is computed using the following expression under
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Figure 1: a) JGPDF-VAD vs. MO-LRT decision for N = 2 and
3. b) ROC curve for JGPDF VAD with lh = 8 and Sohn’s VAD
[6] using a similar hang-over mechanism.

hypotheses H0&H1:
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Assuming that squared correlations under H0&H1 and the

correlations under H0 vanish, the log-LRT can be evaluated as
the following:

`l,3 = 1
2

P
ω

P3
i=1 Li(ω) +

2
√

γ1γ2ρs
1√

(1+ξ1)(1+ξ2)

+
2
√

γ2γ3ρs
2√

(1+ξ2)(1+ξ3)
− 2

√
γ1γ3ρs

1ρs
2√

(1+ξ1)(1+ξ2)2(1+ξ3)

(14)

5. Experimental Framework
The ROC curves are frequently used to completely describe the
VAD error rate. The AURORA 3 subset of the original Span-
ish SpeechDat-Car (SDC) database [10] was used in this analy-
sis. The files are categorized into three noisy conditions: quiet,
low noisy and highly noisy conditions, which represent differ-
ent driving conditions with average SNR values between 25dB,
and 5dB. The non-speech hit rate (HR0) and the false alarm rate
(FAR0= 100-HR1) were determined in each noise condition.

Using the proposed decision functions (equations 14 and
11) we obtain an almost binary decision rule as it is shown in
figure 1(a) which accurately detects the beginnings of the voice
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Figure 2: a) ROC curve analysis of the jGpdf-VAD (N = 3)
for the selection of the hang-over parameter lh. b) ROC curves
of the jGpdf-VAD using contextual information (eight MO win-
dows for N = 2) and standards and recently reported VADs.

periods. In this figure we have used the same level of informa-
tion in both methods (m = 1). The detection of voice endings
is improved using a hang-over scheme based on the decision of
previous frames. Observe how this strategy cannot be applied
to the independent LRT [6] because of its hard decision rule and
changing bias as it is shown in the same figure. We implement
a very simple hang-over mechanism based on contextual infor-
mation of the previous frames, thus no delay obstacle is added
to the algorithm:

`h
l,N = `l,N + `l−lh,N (15)

where the parameter lh is selected experimentally. The ROC
curve analysis for this hang-over parameter is shown in figure
2(a) for N = 3 where the influence of hang-over in the zero
hit rate is studied with variable detection threshold. Finally, the
benefits of contextual information [9] can be incorporated just
averaging the decision rule over a set of multiple observations
windows (two observations for each window). A typical value
for m = 8 produces increasing levels of detection accuracy as
it is shown in the ROC curve in figure 2(b). Of course, these re-
sults are not the optimum ones since only pair-wise dependence
is considered here. However for a small number of observations
the proposed VAD presents the best trade-off between detection
accuracy and delay.



6. Conclusion
This paper showed a new VAD for improving speech detec-
tion robustness in noisy environments. The proposed method
is developed on the basis of previous proposals that incorporate
long-term speech information to the decision rule [9]. How-
ever, it is not based on the assumption of independence be-
tween observations since this hypothesis is not realistic at all.
It defines a statistically optimum likelihood ratio test based on
multiple and correlated observation vectors which avoids the
need of smoothing the VAD decision, thus reporting significant
benefits for speech/pause detection in noisy environments. The
algorithm has an optional inherent delay that, for several appli-
cations including robust speech recognition, does not represent
a serious implementation obstacle. An analysis based on the
ROC curves unveiled a clear reduction of the classification er-
ror for second and third order model. In this way, the proposed
VAD outperformed, at the same conditions, the Sohn’s VAD, as
well as the standardized G.729, AMR and AFE VADs and other
recently reported VAD methods in both speech/non-speech de-
tection performance.

6.1. Computation of the LRT for N = 2

From equation 4 for N = 2 we have that the MCO-LRT can be
expressed as:

`l,2 =
X

ω

ln
KH1,2

KH0,2
+

1

2
ŷT

ω ∆ω
2 ŷω (16)

where:

ln
KH1,2

KH0,2
=

1

2
ln
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=
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1 σH0
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2 − (rH1
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(17)
and Cyω is defined as in equation 5. If we assume that the
voice signal is observed in additive independent noise, that is
for i = 1, 2:

H1 : σH1
i = σn

i + σs
i

H0 : σH0
i = σn

i

(18)

and define the correlation coefficient ρHs
1 ≡ r

H1
1q

σ
H1
1 σ

H1
2

and the

a posteriori SNR ξi ≡ σs
i

σn
i

, we have that:
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=
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(19)
On the other hand, the inverse matrix is expressed in terms of
the orthogonal complex polynomials qk(z), pk(z) as:

(C2
yω,Hs

)−1 =

0
@
h

q0
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− q2
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p0p0

h
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− q2

p2
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p0p1h
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− q2

p2

i
p0p1

h
q1
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− q2

p2

i
p1p1

1
A

Hs

(20)
where p0 = 1, q0 = 0, p1 = −σ1/r1 and q2/p2 = σ2/(r2

1 −
σ1σ2) under hypothesis Hs. Thus the second term of equation
16 can be expressed as:

ŷT
ω ∆ω

2 ŷω = (yω
1 )2(∆ω

2 )00 + (yω
2 )2(∆ω

2 )11 + 2yω
1 yω

2 (∆ω
2 )01
(21)

where (∆ω
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2 σ
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,
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σ
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1

σ
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2 σ
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H0
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H1
1

σ
H1
2 σ

H1
1 −(r

H1
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and (∆ω
2 )01 =

r
H0
1

(r
H0
1 )2−σ

H0
2 σ

H0
1

− r
H1
1

(r
H0
1 )2−σ

H0
2 σ

H0
1

. Finally, if we define the a

priori SNR γi ≡ (yω
i )2/σn

i (ω) and neglect the squared corre-
lation functions under both hypotheses we have equation 11.
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