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Abstract 

 
Like almost all natural phenomena, speech is the result 
of many nonlinearly interacting processes; therefore any 
linear analysis has the potential risk of underestimating, 
or even missing, a great amount of information content. 
Recently the technique of Empirical Mode 
Decomposition (EMD) has been proposed as a new tool 
for the analysis for nonlinear and nonstationary data. We 
applied EMD analysis to decompose speech signal into 
intrinsic oscillatory modes. Besides, the LPC analysis of 
each mode provides an estimation of formants. 

 
1. Introduction 

 
Speech signal, as with many real-world signals, are 
nonstationary, making Fourier analysis unsatisfying 
since the frequency contents changes across the time. In 
time-frequency analysis, we analyse the frequency 
content across a small span of time and then move to 
another time position [1] and [2]. The major drawback 
of most time- frequency transforms is that the 
rectangular tiling of the time frequency plane does not 
match the shape of many signals. 

On the other hand, basis decomposition techniques 
such as Fourier decomposition or the wavelet 
decomposition have also been used to analyse real 
world signals [3]. The main drawback of these 
approaches is that the basis functions are fixed, and do 
not necessarily match varying nature of signals.  

In this paper, we use the empirical mode 
decomposition (EMD), first introduced by N. E. Huang 
and al. in 1998 [4]. This technique adaptively 
decomposes a signal into oscillating components. The 
different components match the signal itself very well. 
Because the approach is algorithmic, it does not allow 
expressing the different components in closed form. The 
EMD is in fact type of adaptive wavelet decomposition 
whose sub bands are built as needed to separate the 
different components of the signal. 

EMD was applied to a number of real situations [5], 
[6] and [7], motivating us to consider work on naturally 
speech decomposition in order to delimit EMD 
limitations and possibilities.  
The out line of the present paper is as follows. Firstly 
we introduce the new non linear decomposition 
technique known as empirical mode decomposition. 
Then we apply this technique to decompose a simple  

 
signal consisting of a sum of three pure frequencies. The 
second section presents results of this approach applied 
to speech signal decomposition. Computing the LPC 
analysis of different intrinsic mode functions provides 
measure of formant speaker. Last section concludes this 
work. 
 

2. Empirical mode decomposition 
 
The empirical mode decomposition is a signal 
processing technique proposed to extract all the 
oscillatory modes embedded in a signal without any 
requirement of stationarity or linearity of the data. The 
goal of this procedure is to decompose a time series into 
components with well defined instantaneous frequency 
by empirically identifying the physical time scales 
intrinsic to the data that is the time lapse between 
successive extrema [8]. 

Each characteristic oscillatory mode extracted, 
named Intrinsic Mode Function (IMF), and satisfies the 
following properties: an IMF is symmetric, has unique 
local frequency, and different IMFs do not exihibit the 
same frequency at the same time. In other words the 
IMFs are characterized by having the number of 
extrema and the number of zero crossings equal (or 
different at most by one), and the mean value between 
the upper and lower envelope equal to zero at any point. 
 

The algorithm operates through six steps [4]: 
 

1) Identification of all the extrema (maxima and 
minima) of the series x(t). 

2) Generation of the upper and lower envelope via 
cubic spline interpolation among all the maxima 
and minima, respectively. 

3) Point by point averaging of the two envelopes to 
compute a local mean series m(t). 

4) Subtraction of m(t) from the data to obtain a IMF 
candidate d(t)=x(t)-m(t). 

5) Check the properties of d(t): 
• If d is not a IMF (i.e it does not satisfy the 

previously defined properties), replace x(t) 
with d(t) and repeat the procedure from step 1 

• If d is a IMF, evaluate the residue m(t)=x(t)-
d(t) 

Repeat the procedure from step 1 to step 5 by sifting the 
residual signal. 



 

 

The sifting process ends when the residue satisfies a 
predefined stopping criterion. 
By construction, the number of extrema is decreased 
when going from one residual to the next (thus 
guaranteeing that the complete decomposition is 
achieved in a finite number of steps), and the 
corresponding spectral supports are expected to 
decrease accordingly. Selection of modes rather 
corresponds to an automatic and adaptative (signal 
dependent) time variant filtering [9] and [10]. 

At the end of the algorithm, we have: 
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where mn(t) is the residue and di is the intrinsic mode 
function at mode i that has the same numbers of zero 
crossing and extrema; and is symmetric with respect to 
the local mean. 

Another way to explain how the empirical mode 
decomposition works is that it picks out the highest 
frequency oscillation that remains in the signal. Thus, 
locally, each IMF contains lower frequency oscillations 
than the one extracted just before. This property can be 
very useful to pick up frequency changes, since a 
change will appear even more clearly at the level of a 
IMF [5]. 

Figure 1 shows the starting point of signal 
decomposition and the IMF candidate obtained after 
little iteration.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1: At the top: the original signal with upper and lower 
envelope. The thick line represents the point by point mean 

value of the envelopes. Below: the signal d after little 
iteration. The iteration continue until becomes IMF. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Decomposition of sum of 3 sinus signal of frequency 

100Hz, 300 Hz and 1000 Hz by 5 first IMFs. 
 
 

Figure 2, shows a signal which is the sum of three 
pure frequencies having the following frequencies: 100 
Hz, 300 Hz and 1000 Hz, and the five IMFs followed by 
the residue. The signal is composed by 1000 samples 
with a sampling frequency of 20 kHz.  

We can see that each component has the same 
number of zero crossings as extrema and is symmetric 
with respect to zero line. We note that the first mode 
which corresponds naturally to the highest frequency 
shows clearly the 1 kHz frequency present in the signal. 
Consequently the second mode depicts 300Hz 
frequency and the third one corresponds to the lowest 
frequency i.e. 100Hz. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Spectral analysis of composite signal (frequency 
100Hz, 300 Hz and 1000 Hz) and its 5 first IMFs. 

 
 

 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: LPC analysis of composite signal and its IMFs 

 
Fourier analysis of the composite signal and its IMFs 

as depicted in Figure 3, shows that the highest frequency is 
identified from the first IMF and the lowest one is given by 
the third IMF. 

We compute also the LPC analysis of signal and the 3 
IMFs using autocorrelation method. As expected, LPC 
analysis shows peaks at 1 kHz, 300 Hz and 100 Hz. 

This analysis demonstrates once again the 
efficiency of the proposed method in decomposing the 
signal in spectral domain [12]. The proposed 
decomposition detects all frequencies constituting the 
signal separetly.  

The EMD procedure, according to the above 
specifications, is used in the next section for the 
decomposition of speech signal issued from Keele 
database as described in the next section. 
 
 

3. EMD analysis of voiced speech signal 
 
In the previous section we illustrate the efficiency of the 
empirical mode decomposition of a typical signal which 
is the sum of pure frequencies in detecting these 
frequencies. This approach is used to decompose the 
speech signal in order to analyze its formant 
frequencies. 

We take as an example of speech signal, a vowel /o/ 
pronounced by a female speaker f1, extracted from the 
Keele University database and sampled at 20 kHz. 
Figure 5 shows the different modes obtained from the 
empirical mode decomposition of the vowel /o/ and the 
residue of the last algorithm step.  

In our approach, we proceed to an LPC analysis of 
the IMFs represented in figure 5 and its comparison to 
results of the same analysis operated on speech signal. 
The results are depicted in figures 6 and 7.  

The LPC analysis achieved for the first IMF shows 
a curve that fits approximately curve corresponding to 
speech signal but the peaks for IMF are sharper. The 
first analyzed IMF doesn’t depict the low frequency 
composition of the signal. In fact it concerns the highest 
frequency. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5: Illustration of the EMD: vowel /o/ speaker f1  
and first five IMFs 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: LPC analysis of vowel /o/ speaker f1 (dashed line)  
and of the first signal’s IMF (solid line). 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: LPC analysis of  vowel /o/ speaker f1 and IMFs of 

the signal (second and third). 
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This result, mode by mode, in a frequency profile 
can be interpreted as the frequency response of some 
equivalent filter. As evidenced in figures 6 and 7, the 
collection of all such filters tend to estimate the different  
resonant frequencies of the vocal tract. 

An other example for speech signal is given to 
emphasize the efficiency of this method. It’s about a 
vowel /a/ expressed by a male speaker m2. The 
achieved EMD is depicted in figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Illustration of the EMD: vowel /a/ speaker m2  

and the different IMFs. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 9: LPC analysis vowel /a/ speaker m2 and the two first 
IMFs. Solid line, concerns LPC analysis of the first IMF, the 
dashed line represents vowel /a/ of speaker m2, and the third 

curve concerns the second IMF. 
 

Figure 9 depicts the LPC analysis of the 
corresponding speech signal and its 3 first IMFs. We 
note that peaks given by IMFs are more distinguishable 
than those releated to speech. 
 
 

4. Conclusion 
 
In this work, we have proposed a new methodology to 
decompose a speech signal into different oscillatory 
modes and to extract the resonant frequencies of the 
vocal tract i.e. formants from the LPC analysis of 
different intrinsic mode functions called IMFs. LPC 
analysis of IMFs shows the frequency components. 

If we represent all the LPC analysis, we may obtain a 
complete description of the speech production model. A, 
study of the residue can be considered and compared to 
the frequency representation of the glottal pulse. 
 Besides, we can look for a new time-frequency 
attributes obtained from the EMD analysis and based on 
an instantaneous frequency calculation of each 
component of the decomposition. 
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