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Abstract

We present a method to use multilayer perceptrons (MLPs) for
a verification task, i.e. to verify whether two vectors are from
the same class or not. In tests with synthetic data we could show
that the verification MLPs are almost optimal from a Bayesian
point of view. With speech data we have shown that verification
MLPs generalize well such that they can be deployed as well
for classes which were not seen during the training.

1. Introduction

Multilayer perceptrons (MLPs) are successfully used in speech
processing. For example they are used to calculate the phoneme
posterior probabilities in hybrid MLP/HMM speech recognizers
(see for example [1]). In this case their task is to output for every
phoneme the posterior probability that a given input feature vec-
tor is from this phoneme. They are thus used to identify a feature
vector with a given phoneme. Expressed in more general terms
the MLPs are used for the identification of input vectors with a
class from within a closed set of classes.

There are applications however, where the identification of
input vectors is not necessary but it has to be verified whether
two given input vectors x and y are from the same class or not.
In Section 2 we present two verification tasks in the domain of
speech processing. In this work we show that MLPs have the ca-
pability to optimally solve verification problems. Furthermore
we have observed in a task with real-world data that the verifi-
cation MLPs can even be used to discriminate between classes
which were not present in the training set. This is an especially
useful property for two reasons:

• The verification MLP is usable for an open set of classes.

• Since we do not need training data from the classes
present in the application but can collect training data
from other classes which have the same classification
objective (e.g. classifying speakers). Therefore we can
build a training set of a virtually unlimited size.

In Section 2 we present the motivation for our approach to
class verification and outline how MLPs can be used for that
purpose. The structure and training of our verification MLPs is
described in Section 3. Our evaluation methods are described
in Section 4. In order to test whether verification MLPs are
capable of performing the verification task in an optimal way
from a Bayesian point of view we made experiments with syn-
thetic data. These experiments and their results are described
in Section 5. The results of experiments with speech data are
shown in Section 6. Finally, our conclusions are summarized in
Section 7.

2. Motivation
Our method to decide whether two speech signals are spoken
by the same speaker or not includes the following 3 steps: First
equally worded segments are sought in the two speech signals.
This results in a series of frame pairs where both frames of a pair
are from the same phoneme. In a second step for each frame pair
the probability that the two frames come from the same speaker
is computed. Finally, the global indicator that the two speech
signals were spoken by the same speaker can be calculated from
these frame-level probabilities. See e.g. [2] for a more detailed
description of the speaker-verification approach. We used the
verification MLPs for the following two tasks:

• In order to seek phonetically matching segments in two
speech signals with a method based on dynamic pro-
gramming we need a phonetic probability matrix. This
matrix is spanned by the two signals and every element
Pij(x1i, x2j) gives the probability that frame i of sig-
nal 1 given as feature vector x1i and frame j of signal 2
given as feature vector x2j are from the same phoneme.
The probabilities Pij(x1i, x2j) are calculated by an ap-
propriately trained verification MLP.

• For every frame pair we use a verification MLP to calcu-
late a score which stands for the probability that the two
phonetically matching frames are from the same speaker.
In this case we use a MLP which was trained with data
from speakers which are not present in the test. There-
fore we make use of the generalization property of the
verification MLP.

3. Verification MLP
Since the MLP has to decide whether two given input vectors
x and y are from the same class the MLP has to process vector
pairs rather than single vectors. The target output of the MLP
is os if the two vectors of the pair are from the same class and
od if they are from different classes. The vectors are decided
to belong to the same class if the output is closer to os and to
different classes otherwise.

The sizes of the 3-layer perceptrons used for the experi-
ments described in Sections 5 and 6 are as follows:

input 1st hidden 2nd hidden outputdataset
size layer layer layer

synthetic
data

2 · 2...5 20 (tanh) 10 (tanh) 1 (tanh)

phoneme
verification

2 · 26 80 (tanh) 35 (tanh) 1 (tanh)

speaker
verification

2 · 16 70 (tanh) 18 (tanh) 1 (tanh)



The verification MLPs are trained by means of the backpropa-
gation algorithm. For a hyperbolic tangent output neuron a good
choice for the output targets is os = 0.75 and od = −0.75 such
that the weights are not driven towards infinity (see for example
[3]).

4. Performance evaluation
In order to evaluate a verification MLP, we measure its verifica-
tion error rate for a given dataset and compare it to a reference
error rate which is optimal in a certain sense. By formulating
our verification task as a classification problem, we can use the
Bayes error as a reference. The Bayes error is known to be
optimal for classification problems given the distribution of the
data.

To reformulate a verification task as a classification prob-
lem, each pair of vectors is assigned one of the following two
groups:

GS group of all vector pairs where the two vectors are from
the same class

GD group of all vector pairs where both vectors are from dif-
ferent classes.

In the case of synthetic data it is possible to calculate the Bayes
verification error since the data distributions are given in a para-
metric form. For real-world problems the data distributions are
not given in a parametric form and hence the Bayes verification
error can’t be computed directly. In this case we can use a k
nearest neighbor (KNN) classifier to asymptotically approach
the Bayes error as described below.

The KNN approach is a straightforward means of classifi-
cation. The training set for the KNN algorithm consists of train-
ing vectors with known classification (atr,i, btr,i) where atr,i is
the training vector and btr,i is its associated class. A test vector
atst,j is classified by seeking the k nearest training vectors atr,i

and it is assigned to the class which is most often present among
the k nearest neighbors. The KNN classifier is known to reach
the Bayes error when an infinite number of training vectors is
available (see e.g. [4]) and is therefore a means to approximate
the Bayes error if the data distributions are not known in a para-
metric form.

5. Experiments with synthetic data
The aim of the experiments with synthetic datasets, i.e. datasets
with known data distributions, was to test if the verification
MLP achieves the lowest possible verification error from a
Bayesian point of view. The data sets had 2 to 4 classes and
were 2- to 5-dimensional. We illustrate these investigations by
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Figure 1: Structure of the verification MLPs.
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Figure 2: Synthetic data: 2 classes with 2-dimensional non-
Gaussian distributions.

means of an experiment with a 2-dimensional dataset with 2
classes that are distributed as shown in Figure 2.

The number of training epochs which were necessary to
train the verification MLP depended largely on the type of the
dataset. We observed the following dependencies:

• If only a few features carried discriminating information
and all other features were just random values the verifi-
cation MLP learned quickly which features were useful
and which ones could be neglected.

• The shape of the distributions strongly influenced the
number of epochs that were necessary for the train-
ing. For example, two classes distributed in two paral-
lel stripes or classes that had a non-linear Bayes deci-
sion boundary, such as those shown in Figure 2, required
many epochs.

Figure 3 shows the error rates of different verification methods
for data distributed as shown in Figure 2. It can be seen that
the error of the verification MLP is almost as low as the Bayes
error. Note that the MLP was trained with a fixed number of
20’000 vector pairs. We are only interested in the best possi-
ble verification error for a given task and not in the verification
error in function of the number of training vectors (see Section
1). Therefore the MLP training set was chosen as large as nec-
essary.

For all investigated datasets the verification error achieved
with the verification MLP was not significantly higher than the
Bayes verification error.

6. Experiments with speech data
6.1. Data description and feature extraction

For a speaker verification task with single speech frames we
used speech signals from 48 male speakers recorded from dif-
ferent telephones. From short speech segments (32 ms frames)
the 13 first Mel frequency cepstral coefficients (MFCCs) were
extracted and used as feature vectors for our experiments. For
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Figure 3: Class verification error for the test set as shown in
Figure 2: the KNN verification error is shown in function of the
training set size. As expected, with increasing size it approxi-
mates the Bayes limit which is indicated by the dotted line. The
error rate of the verification MLP is close to the Bayes error.

the phoneme verification task the first derivatives of the MFCCs
were used in addition to the static MFCCs. The data from all
speakers was divided into 3 disjoint sets (i.e. no speaker was
present in more than one set). The MLP and KNN training vec-
tor pairs were extracted from the training set (26 speakers). The
validation set (10 speakers) was used to stop the MLP training
at the optimal point and to find the optimal k of the KNN classi-
fier. The test vector pairs were taken from the test set (12 speak-
ers). Within all sets vector pairs were formed in a way that the
two vectors of a pair were always from the same phoneme. In
every set the number of pairs with vectors of the same speaker
and the number of pairs with vectors from different speakers
were equal.

6.2. Phoneme Verification

In this task the objective was to decide whether two speech fea-
ture vectors originate from the same phoneme. In this task the
same classes (phonemes) are present in all 3 datasets since all
signals have similar phonetic content. Yet all sets are extracted
from different speakers as is described in Section 6.1.

Because of the slow convergence of the KNN for this ver-
ification problem we used two types of input, namely pairs of
concatenated vectors pin = (x, y) as mentioned above and
coded vector pairs pin = (|x − y|, x + y) (see [5] for details
about the input coding). This input coding sped up the training
of the MLPs and led to a faster convergence of the KNN.

The verification error of an MLP trained with 580000 vector
pairs is shown in Figure 4. For comparison also the KNN error
rate in function of the training set size is drawn. It can be seen
that with this data the verification KNN converges much slower
than with synthetic data. This was expected because of the more
complex nature of the problem. It can only be guessed where

10
2

10
4

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of KNN training vectors

R
at

e 
of

 w
ro

ng
 v

er
ifi

ca
tio

n

 

 
Verification with KNN (input coding)
Verification with KNN (no input coding)
Verification with ANN (input coding)
Verification with ANN (no input coding)

Figure 4: Phoneme verification task: The KNN error rates de-
crease with increasing number of KNN training vectors. The
error rates of the verification MLPs are shown as dots. The error
rates for both, KNN and MLP are given for coded and uncoded
input vectors.

the asymptote and therefore the Bayes error will be. It seems
that the verification error of the MLP is close to the Bayes ver-
ification error however. Since we did not have enough training
data we could not prove this assumption. Furthermore it does
not seem that the input coding had a big effect on the optimal
verification result - the verification MLP which used coded in-
put vectors was even a bit better.

6.3. Speaker Verification

In this task the objective was to decide whether two speech
frames are from speech signals of the same speaker or not. In
this case all 3 sets of classes (speakers) were disjoint. Therefore
a good generalization of the verification MLP is required.

The experiment results are shown in Figure 5. It can be
seen that the KNN verification error in function of the training
set size decreases much slower than in the experiments done
with synthetic data and does not even reach the verification error
of the MLP. This is possible since the training and test set have
some mismatch because the speaker sets are disjoint. Here it can
be seen very well that the KNN which is based on coded vector
pairs converged much quicker. In this case the verification ANN
which used coded vector pairs was a bit worse however.

The MLP has a quite low verification error if it is consid-
ered that the feature vectors x and y were extracted from single
speech frames only. If all phonetically matching frame pairs of
two equally worded speech segments of about 1 s length are fed
separately into the MLP and the output values of the MLP are
averaged, the verification error rate is about 6 %.
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Figure 5: Speaker verification: The KNN error rates decrease
with increasing number of KNN training vectors. The error
rates of the verification MLPs are shown as dots. The error
rates for both, KNN and MLP are given for coded and uncoded
input vectors.

7. Conclusions
By means of experiments we have shown that the error rate of an
appropriately configured and trained verification MLP is close
to the Bayes error rate. Depending on the class distributions,
the training can be fairly time-consuming, however. This is not
critical in our application since the MLP is class independent
and does not need to be trained whenever new classes are added
to the application.

For speech data with a virtually unlimited set of classes, as
is for example the case in speaker verification, MLP-based class
verification has shown to be very efficient not only in terms of
verification error but also with respect to computational com-
plexity. For a speaker-verification task the good generalization
property of the verification MLP could be shown. Thus the ver-
ification MLPs are able to learn a general rule to distinguish
between classes rather than class-specific features.
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