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1. Introduction 
 
This paper proposes the use of the Hartley Phase Cepstrum as a tool for signal analysis. The phase of a signal 
conveys critical information, which is exploited in a variety of applications. The role of phase is particularly 
important for the case of speech or audio signals. Accurate phase information extraction is a prerequisite for 
speech applications such as coding, synchronization, synthesis or recognition. However, signal phase extraction 
is not a straightforward procedure, mainly due to the discontinuities appearing in it (‘wrapping’ effect). A 
variety of phase ‘unwrapping’ algorithms have been proposed to overcome this point, when the extraction of 
the accurate phase values is required. In order to extract the phase content of a signal for subsequent utilization, 
it is necessary to choose a function that can encapsulate it. In this paper we propose the use of the Hartley 
Phase Cepstrum (HPC).  
 
2. The Hatrley Phase Cepstrum 
 
In general, computation of the cepstrum of a signal belongs to a class of methods known as homomorphic 
deconvolution processes, [1]. A homomorphic process describes the invertible procedure in which a signal is 
transformed into another domain via an orthogonal transform Ξ , a non-linear process is applied to the 
transformed signal in the new domain, and the result is transformed back to the original domain, via the inverse 
transform, :  1−Ξ
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Figure 1: Summary of the homomorphic deconvolution process 
 

In the special case where  and  represent the DTFT (Discrete-Time Fourier Transform) and the IDTFT 
(Inverse Discrete-Time Fourier Transform), respectively, while the non-linear process is the evaluation of the 
Fourier phase spectrum,  
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where ))(( ωSℜ and ))(( ωSℑ are the real and imaginary components of the Fourier transform )(ωS of the 
signal , respectively, we obtain the so-called Fourier Phase Cepstrum, )(ts )(τFc :  

))(()( ωϕτ IDTFTcF =         (2) 
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The Fourier phase spectrum (2nd stage of figure 1) experiences two categories of discontinuities. The first 
category of the discontinuities (‘extrinsic’) is related to the use of the arctan function and is overcome using 
the ‘unwrapping’ algorithm, [2]. The second category of discontinuities (‘intrinsic’) originates from the 
properties of the signal itself and is overcome with their compensation, [3]. Hence, for the Fourier case, the 
non-linear process (2nd stage of figure 1) can be divided into the three stages:  
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Figure 2: Stages of the non-linear part of the homomorphic deconvolution process applied to the Fourier case 
 
For the Hartley Phase Cepstrum case, the first, the second and the third stages of figure 1 are the DTHT 
(Discrete-Time Hartley Transform), the evaluation of the Hartley phase spectrum [4], i.e.  

)(ωY ))(sin())(cos( ωϕωϕ +=  (3) 

and the IDTHT (Inverse Discrete-Time Hartley Transform), respectively. Hence, the Harley Phase Cepstrum is 
defined as: 

))(()( ωτ YIDTHTcH =         (4) 

The Hartley phase spectrum (equation (3)), unlike its Fourier counterpart (equation (1)), does not have 
‘wrapping’ ambiguities. Hence, it experiences only the ‘intrinsic’ category of discontinuities, which can be 
detected and compensated, [4].  
So, for the Hartley case, the non-linear process (2nd stage of figure 1) can be divided in the following two 
stages:  
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Figure 3: Stages of the non-linear part of the homomorphic deconvolution process applied to the Hartley case. 
 
The proposed HPC is a signal feature that bears certain advantages over its Fourier counterpart, especially 
useful for practical applications in speech. These advantages are based on the properties of the respective 
spectra, which carry over to the cepstral domain thanks to the analytic relations that hold between the two 
domains. Localization ability and robustness to noise are two such advantages. As a simplified example of a 
signal, let us consider a pulse signal in the time domain. The Fourier Phase Cepstrum can identify only a single 
pulse, due to the ambiguities introduced by the use of the ‘unwrapping’ algorithm, whereas the Hartley Phase 
Cepstrum can indicate the location of a sequence of pulses, even for the case where noise is present [5]. 
Moreover, the HPC, unlike its Fourier counterpart, is more tolerant to noise – a property justified via the shape 
of the probability density function of the HPC, in the case where the time domain signal is pure Gaussian noise 
(section 3). Another property of the HPC, of interest in speech synthesis, is its invertibility: Unlike the Fourier 
case (figure 2), both stages of the non-linear process of the evaluation of the HPC (figure 3) are invertible, 
because the ‘unwrapping’ algorithm is not used. 
 
 
 



3. Noise robustness of the HPC 
 
The aim of this section is to show why the Hartley phase spectrum is more immune to noise as compared to the 
Fourier phase spectrum. To this end are employed the Probability Density Functions (PDFs) of the Hartley and 
of the Fourier phase spectra, in the special case of a pure Gaussian noise signal. The PDF of the Hartley phase 
spectrum is given by: 
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where β  denotes the Hartley phase function values, )(ωY . (See [5] for the proof of eq. (5) – proof not shown 
here because of lack of space).  

The shape of )(βHp  is shown in figure 4 (left). It can be observed from figure 4 (left) that the peaks of this 
PDF are in its upper and lower range of the horizontal axis (i.e. 2  and 2− ). However, the information 
content of the signal, in the Hartley phase spectrum, is encapsulated in the zero crossings with respect to the 
frequency axis rather than in the minimum / maximum values of the cosinusoidal signal (i.e. 2± ), [5]. 
Consequently, noise mainly affects the higher and the lower domain of the Hartley phase spectrum values and 
hence, its information content (encapsulated in the zero-crossings, middle part of its domain) is less affected.  
For the Fourier phase spectrum case though, assuming again a Gaussian noise signal, and if the arctan function 
is omitted from eq. (1), then the )(βFp  is a Cauchy distribution, assuming that the real and the imaginary 
parts of the Fourier spectrum are independent, [6]. In this case: 
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where now β  denotes the Fourier phase spectrum, )(ωϕ . The Cauchy distribution )(βFp  (shown for 
5)(5 <<− ωϕ  in figure 4 (right)), similarly to the Gaussian distribution, is symmetrical about 0=β  with its 

maximum value at 0=β . However, the Cauchy distribution falls more rapidly as β  increases and also its 
tails are heavier, compared to the Gaussian. Audio signals (e.g. speech, mechanical sounds etc.), convey a 
heavy noise additive component and hence, the PDFs of their phase spectra are similar to the Cauchy 
distribution for the Fourier case and to the distribution in eq. (5) for the Hartley case, respectively.  

 
Figure 4: PDFs (a) of the Hartley phase spectrum, )(ωY , (left) and (b) of the Fourier phase spectrum, )(ωϕ , 

(right) for a pure Gaussian noise signal. 
 



It should be noted here that, if the definition of the conventional Fourier phase spectrum is used (i.e. if the 
arctan function is not omitted in eq. (1) ) then the PDF of the phase spectrum is no more a Cauchy, (see, eg., 
[6], chapter V.5); rather, it becomes uniform in πωϕπ <<− )( . 
Nevertheless, in either of the above two choices for the definition of the Fourier phase spectrum (i.e., either 
including the arctan function or not), the information content is distributed across the whole range of )(ωϕ  
values and hence there does not exist a specific region of the PDF horizontal axis where the information 
content is mainly encapsulated. This constitutes a major difference to the case of the Hartley phase spectrum, 
where, as pointed out earlier, information lies mainly towards the two endpoints of the PDF range. This 
difference in the shapes of the respective PDFs justifies the relative noise immunity of the proposed HPC.  
 

4. Conclusions  
 

The phase of a signal as a function of frequency conveys meaningful information that is particularly useful for 
speech or audio signals. Accurate phase extraction is crucial in various speech processing applications, such as 
localization, synchronization, coding, etc. The major disadvantage of the computation of the phase spectrum 
via the Fourier transform is the heuristics employed of the compensation of the ‘extrinsic’ discontinuities 
(‘wrapping’ ambiguities). The effect of the ‘wrapping’ ambiguities is more severe in the case where noise is 
present. The Hartley phase spectrum, on the other hand, is advantageous as (a) it does not convey ‘extrinsic’ 
discontinuities and (b) due to its structure, it is less affected by the presence of noise, as justified through 
comparison of the shapes of the respective PDFs. As signal localization applications show, the phase content of 
a signal is encapsulated in a more efficient and easy to identify manner in the Hartley Phase rather than in the 
Fourier Phase Cepstral function. Hence, the Hartley Phase Cepstrum is proposed here as a promising and viable 
substitute to its Fourier counterpart. 
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