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Abstract

Support Vector Machines (SVM) are state-of-the-art methods
for machine learning but share with more classical Artificial
Neural Networks (ANN) the difficulty of their application to
temporally variable input patterns. This is the case in Auto-
matic Speech Recognition (ASR). In this paper we have recalled
the solutions provided in the past for ANN and applied them to
SVMs performing a comparison between them. Preliminary re-
sults show a similar behaviour which results encouraging if we
take into account the novelty of the SVM systems in compari-
son with classical ANNs. The envisioned ways of improvement
are outlined in the paper.

1. Introduction

Hidden Markov Models (HMMs) have become the most em-
ployed core technique for Automatic Speech Recognition
(ASR). After several decades of intense research work in the
field, it seems that the HMM ASR systems are very close
to reach their limit of performance. Some alternative ap-
proaches, most of them based on Artificial Neural Networks
(ANNs), were proposed during the late eighties and early
nineties. Among them, it is worth to draw out attention to hy-
brid HMM/ANN systems (see [1] for an overview), since the
reported results were comparable or even slightly superior to
those achieved by HMMs.

On the other hand, during the last decade, a new tool ap-
peared in the field of machine learning that has proved to be
able to cope with hard classification problems in several fields
of application: the Support Vector Machines (SVMs) [2]. The
SVMs are effective discriminative classifiers with several out-
standing characteristics, namely: their solution is that with max-
imum margin; they are capable to deal with samples of a very
high dimensionality; and their convergence to the minimum of
the associated cost function is guaranteed.

Nevertheless, it seems clear that the application of these
kernel-based machines to the ASR problem is not straightfor-
ward. In our opinion, the main difficulties to be overcome are
three: 1) SVMs are originally static classifiers and have to be
adapted to deal with the variability of duration of speech utter-
ances; 2) the SVMs were originally formulated as a binary clas-
sifier while the ASR problem is multiclass; and 3) current SVM
training algorithms are not able to manage the huge databases
typically used in ASR. In order to cope with these difficulties,
some researchers have suggested hybrid SVM/HMM systems
[3, 4], that notably resemble the previous hybrid ANN/HMM
systems ([5]). In this paper we comparatively describe both
types of hybrid systems (SVM/ and ANN/HMM), highlighting

both their common fundamentals and their special character-
istics with the aim of also conducting an experimental perfor-
mance comparison for both clean and noisy speech recognition
tasks.

2. Hybrid systems for ASR

As aresult of the difficulties found in the application of ANN to
speech recognition, mostly motivated by the temporal variabil-
ity of the speech instances corresponding to the same class, a
variety of different architectures and novel training algorithms
that combined both HMM with ANNs were proposed in the late
80’s and 90’s. For a comprehensive survey of these techniques
see [1]. In this paper, we have focused on those that employ
ANNSs (and SVMs) to estimate the HMM state posterior proba-
bilities proposed by Bourlard and Morgan ([5, 6]).

The starting point for this approach is the well-know prop-
erty of using feed-forward networks such as multi-layer percep-
trons (MLPs) of estimating a posteriori probabilities given two
conditions:

1. There must be enough number of parameters to train a
good approximation between the input and output layers
and

2. A global error minimum criterion must be used to train
the network (for example, mean square error or relative
entropy).

The fundamental advantage of this approach is that it in-
troduces a discriminative technique (ANN) into HMM (genera-
tive systems) while retaining their ability to handle the temporal
variability.

However, this original formulation had to be modified to
estimate the true emission (likelihood) probabilities by apply-
ing Bayes’ rule. Therefore, the a posteriori probabilities output
should be normalized by the class priors to obtain what is called
scaled likelihoods. This fact was further reinforced by posterior
theoretical developments in the search of a global ANN opti-
mization procedure (see [7]).

Thus, systems of this type keep being locally discriminant
given that the ANN was trained to estimate a posteriori proba-
bilities. However, it can also be shown that, in theory, HMMs
can be trained using local posterior probabilities as emission
probabilities, resulting in models that are both locally and glob-
ally discriminant but the problem is that there are generally
mismatches between the prior class probabilities implicit to the
training data and the priors that are implicit to the lexical and
syntactic models that are used in recognition. In spite of this,



some results imply that for certain cases the division by the pri-
ors is not necessary [7].

Among the advantages of using hybrid approaches we can
cite the following (from [7]):

e Model accuracy: both MLP and SVM have more flexi-
bility to provide more accurate acoustic models includ-
ing the possibility of including different combinations of
features as well as different sizes of context.

e Local discrimination ability (at a frame level).

e Parsimonious use of parameters: all the classes share the
same ANN parameters.

e Complementarity: since the combination of results from
standard HMM systems have been proved to provide bet-
ter results

3. Experimental Setup
3.1. Database

We have used the well-known SpeechDat Spanish database
[8] for the fixed telephone network. This database comprises
recordings from 4000 Spanish speakers recorded at 8 kHz over
the fixed PSTN using an E-1 interface, in a noiseless office en-
vironment.

In our experiments we have used a large vocabulary (more
than 24000 words) continuous speech recognition database.
The training set contains approximately 100 hours of voice from
3496 speakers (71000 utterances). The callers spoke 40 items
whose contents are varied, comprising isolated and connected
digits, natural numbers, spellings, city and company names,
common applications words, phonetically rich sentences, etc.
Most items are read, some are spontaneously spoken. The test
set, corresponding to a connected digits task, contains approx-
imately 2122 utterances and 19855 digits (3 hours) from 315
different speakers.

3.2. Parameterization

In our preliminary experiments we have used the classical pa-
rameterization based on 12 MFCCs (Mel-Frequency Cepstral
Coefficients) plus energy, and the first and second derivatives.
These MFCCs are computed every 10 ms using a temporal win-
dows of 25 ms. Thus, the resulting feature vectors have 39 com-
ponents. In this work, we have considered two different kinds
of normalization for the features.

The first normalization considered was a per utterance nor-
malization, that is, every parameter is normalized in mean and
variance according to the following expression:

#i[n] = ”“’0[7;]7;;” (1)

where z; [n] represents the i*" component of the feature
vector corresponding to frame n, ¢ is the estimated mean from
the whole utterance, oy is the estimated standard deviation, and
0 is a constant just to avoid numerical problems (for our exper-
iments, we have chosen 6 = 10).

Thus, per utterance normalization will be more appropriate
in the case of noisy environments where test and training con-
ditions do not match. Nevertheless, when we work in a noise-
less environment, the second normalization we consider pro-
vides better performance like we explain in following sections.
This normalization consist of a global normalization, that is, we
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Figure 1: The whole hybrid recognition system. First, initial
phone evidences are estimated using MLPs or SVMs, then these
evidences are integrated as local scores for decoding.

compute the global mean and variance for all the parameteri-
zation utterances in the training set, and finally each parameter
normalized in mean and variance according to the next expres-
sion:

b [n] = m7 )
o
where x; [n] represents the i*" component of the feature
vector corresponding to frame n, w is the estimated mean from
all the utterances in the training set and o is the estimated global
standard deviation.

3.3. Baseline experiment with HMMs

Our reference result is the recognition rate achieved by an left-
to-right HMM-based recognition system. We use 18 context-
dependent phones with 3 states per phone. Emission probabili-
ties for each state were modelled by a mixture of 16 Gaussians,
as described in [8].

For this paper, we have partitioned every phone into three
segments and obtained a segmentation of the database by per-
forming a forced alignment with this HMM baseline experiment
considering each segment delimited by the state transitions of
this system (see [4]).

3.4. Experiments with Hybrid Recognition Systems

In this work we consider two different hybrid recognition sys-
tems, an ANN/HMM system and a SVM/HMM one. Both of
them use a Viterbi decoder using posterior probabilities as local
scores as discussed in 2.

The whole hybrid recognition system is composed of two
stages shown in Figure 1. The first stage estimates initial ev-
idences for phones in the form of posterior probabilities using
an MLP or an SVM. The second stage is a classical Viterbi de-
coder where we replace the likelihoods estimates provided by
the reference HMM-based recognition system by the posteriors
estimates obtained in the first stage.

While the reference HMM-based recognition system uses
the whole training data set (71000 utterances), the hybrid sys-
tems (SVM- and ANN-based recognition systems) only use a
small portion of the available training data, due to a practical
limitation respect to the number of training samples that the
SVM software can consider. Therefore, we have considered
useful to evaluate the evolution of the accuracy of each sys-
tem performing incremental tests using balanced subsets of the
available training data (equal number of frames per phone, ran-
domly selected from the whole training set), between 250 and
20000 frames per phone.

3.4.1. Experiments with SVMs

In this case, a multiclass SVM (using the /-vs-I approach) is
used to estimate posterior probabilities for each frame using
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Figure 2: Frame recognition rate of SVMs and ANNs.

Platt’s approximation ([9]). The SVM uses a RBF (Radial Ba-
sis Function) kernel whose parameter, the standard deviation
o, must be tuned by means of a cross-validation process, as
well as a parameter C, which establishes a compromise between
error minimization and generalization capability in the SVM.
The values we have used in our experiments are C' = 256 and
o = 0.007812 [4].

3.4.2. Experiments with ANNs

Posterior probabilities used by the Viterbi decoder are now ob-
tained using a MLP trained on a smaller version of the training
set, as we mentioned before. The MLP has one hidden layer
with 1800 units. MFCC features jointly with energy, delta and
acceleration features are used as inputs. There are 54 output
units, each of them corresponding to a different part of phone,
as we described in section 3.4. The MLP is trained using the
relative entropy criterion and the back propagation factor p was
experimentally fixed at 0.14.

4. Preliminary Results and Discussion

This section is devoted to the presentation and discussion of
the results obtained by the systems described in the previous
section.

Preliminary experiments show a similar behaviour of both
SVMs and ANNSs at a frame classification level. For the first
data normalization method presented in section 3, we observe
little differences between SVMs and ANNs. Also, we can see
in figure 2 that better results are achieved when more samples
are added to the training database, up to a final recognition
rate around 61% obtained for the maximum number of input
samples our SVM-based system can handle (1080000, 20000
frames per phone).

We have noticed that this first normalization method
presents a problem: delta and acceleration coefficients do not
have unitary variance. This is due to the constant 6 added to
the standard deviation in (1). The value used in the experiments
(10) is not comparable with the standard deviation of the data
and it results in a excessive normalization. This is a problem
for the SVM and ANN-based systems. For the first case, the
SVM employs a RBF kernel with the same variance for all di-
mensions, while the training data present different variances for
each component (or, at least, for the static, delta and accelera-

tion coefficients). For the latter, this may cause to start in a point
far from the solution and, as a consequence, to slow down the
convergence of the algorithm. This has led us to apply a sec-
ond normalization stage to the database, in order to get a uni-
tary variance for all the components of the training data. Some
experiments show an important improvement of the previous
results (around 4.5%).

Preliminary experiments at word and sentence levels show
results are comparable with respect to those of the standard
HMM-based speech recognition system used as a baseline.
These results are specially promising due to the fact that SVM
and ANN-based systems are trained using a maximum of only
3.04% of the available data samples, whereas HMMs are trained
using the entire database. This limit is imposed by the SVM
software used in the experiments [10], which requieres to man-
tain the kernel matrix in memory.

In addition, as we have stated in section 2, both SVMs and
ANNSs provide posteriors to the Viterbi decoder, whereas what
we really need and HMMs compute are likelihoods. We think
that the hybrid methods might benefit from the use of likeli-
hoods instead of posteriors [5], just by dividing them by the a
priori probabilities.

Finally, one of the major drawbacks of current HMM-based
automatic speech recognition systems is its poor robustness
against noisy conditions. During the last years, several tech-
niques aimed at increasing the performance of these systems
have been presented, most of them consisting in some pre-
processing of the voice signal or modifications of the parame-
terization stage. From previous experiments ([11]) we suspect
that SVM-based systems could provide inherent robust mod-
els. Besides, as discussed in section 2, hybrid systems are more
amenable for its use with different types of parameterizations
that do not comply with the restrictions of independence im-
posed by HMM. This could result advantageous in the search
of robustness.

5. Conclusions

In this paper we have performed a comparison of the accuracy
of MLPs and SVMs at a frame level showing a similar perfor-
mance. However, we still think there is room for improvement
of the latter, specially in noisy environment conditions. The
maximum margin principle used for its training can make an
important difference under those conditions. There are also sev-
eral issues that should be address as the possibility to incorpo-
rate more training samples, the addition of a wider context in
the feature vectors, the selection of appropriate feature sets and
the computation of further results at a word level.
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