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ABSTRACT 
 
This paper compares the identification rates of a speaker 
recognition system using several parameterizations, with special 
emphasis on the residual signal obtained from linear and nonlinear 
predictive analysis. It is found that the residual signal is still useful 
even when using a high dimensional linear predictive analysis. On 
the other hand, it is shown that the residual signal of a nonlinear 
analysis contains less useful information, even for a prediction 
order of 10, than the linear residual signal. This shows the inability 
of the linear models to cope with nonlinear dependences present in 
speech signals, which are useful for recognition purposes. 
 

Index Terms— Neural networks, speaker recognition, 
nonlinearities, prediction methods 
 

1. INTRODUCTION 
Several parameterization techniques exist for speech [17] and 
speaker [15] recognition, cepstral analysis and its related 
parameterizations such as Delta-Cepstral features, Cepstral Mean 
Subtraction, etc. being the most popular. 
There are two main ways to compute the cepstral coefficients and 
one important drawback in both cases: relevant information is 
discarded, as follows. 
1. LP-derived cepstral coefficients. The linear prediction 

analysis produces two main components, the prediction 
coefficients (synthesis filter) and the residue of the predictive 
analysis. This latter signal is usually discarded. However, 
experiments exist [9] where it is shown that human beings are 
able to recognize the identity of the speaker listening to 
residual signals of LP analysis. Based on this fact several 
authors have evaluated the usefulness of the LPC-residue and 
have found that although the identification rates using this 
kind of information alone does not perform as well as the LP-
derived cepstral coefficients, a combination of both can 
improve the results [20,12,14,22,11]. 

2. Fourier Transform derived cepstral coefficients. Instead of 
working out a set of Linear prediction coefficients, are based 
on the power spectrum information, where phase information 
has been discarded. [19] proposed the use of new acoustic 
features based on the short-term Fourier phase spectrum. The 
results are similar to the LP-derived cepstral coefficients. 
Although these (phase spectrum) features cannot outperform 
the classical cepstral parameterization, the results are 
improved using a combination of both features. 

In this paper we will focus on the first kind of parameterization, 
because they are a clear alternative to the nonlinear predictive 
models, which have shown an improvement over the classical 
linear techniques in several fields (for a recent overview about 
these techniques [7]). 
In [4,6] we proposed a new set of features and models based on 
these types of nonlinear models and an improvement was also 
found when this information was combined with the traditional 
cepstral analysis, but so far, the relevance of the residual signals 
from linear and nonlinear predictive analysis has not been studied 
and compared. 
In this paper we will study if the relevance of the residual signal is 
due to an insufficient linear predictive analysis order or because of 
the incapability of the linear analysis to model nonlinearities 
present in speech and demonstrate is usefulness for speaker 
recognition purposes. This important question has not been solved 
in previous papers that focus on a typical 8 to 16 prediction order. 
 

2. EXPERIMENT SET UP 
2.1. Database 
For our experiments we have used the Gaudi database [16]. We 
have used one subcorpora of 49 speakers acquired with a 
simultaneous stereo recording with two different microphones. The 
speech is in wav format with a sampling frequency (fs) = 16 kHz, 
16 bit/sample and the bandwidth is 8 kHz. 

From this database we have generated narrow-band signals 
using the potsband routine that can be downloaded from [21]. This 
function meets the specifications of G.151 for any sampling 
frequency. Thus, our study has been performed on telephone 
bandwidth.  

 
2.2. Identification algorithm 
In this study, we are only interested in the relative performance 
between linear and nonlinear analyses. Thus, we have chosen a 
simple algorithm for speaker recognition. 
In the training phase, we compute, for each speaker, empirical 
covariance matrices based on feature vectors extracted from 
overlapped short time segments of the speech signals. As features 
representing short time spectra we use both linear prediction 
cepstral coefficients (LPCC) and mel-frequency cepstral 
coefficients melceps [3]. In the speaker-recognition system, the 
trained covariance matrices for each speaker are compared with an 
estimate of the covariance matrix obtained from a test sequence 
from a speaker. An arithmetic-harmonic sphericity measure is used 
in order to compare the matrices [1]:  



( ) ( )lCCCCd testjjtest log2)tr()tr(log 11 −= −− , where )tr(⋅ denotes 

the trace operator, l is the dimension of the feature vector, Ctest and 
Cj is the covariance estimate from the test speaker and speaker 
model j, respectively. 

 
2.3. Parameterizations 
We have used the following parameterizations 
1. LP-derived cepstral coefficients (LPCC) 
2. Fourier transform derived cepstral coefficients (melceps) 
3. LP- residue coefficients 
The first two first parameterizations can be found, for instance, in 
[17,15,3], while the third is proposed in [11] and will be described 
in more detail next. 
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Figure 1. LP residual signal parameterization 
 
Feature extraction from the LP-residual signal 
We will use the Power Difference of Spectrum in Subband (PDSS) 
obtained as follows [11]: 
1. Calculate the LP-residual signal using the Pth-order linear 

prediction coefficients. 
2. Calculate the Fast Fourier Transform (fft) of the LP-residual 

signal using zero padding in order to increase the frequency 

resolution: ( ) 2
S fft residue=  

3. Group power spectrum into P subbands. 
4. Calculate the ratio of the geometric to the arithmetic mean of 

the power spectrum in the ith subband, and subtract it from 1: 
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sample number of frequency points in the ith subband and Li, 
Hi is the lower and upper limit of frequency in ith subband 
respectively. We have used the same bandwidth for all the 
bands. 

PDSS can be interpreted as the subband version of spectral flatness 
measure for quantifying the flatness of the signal spectrum. Figure 
1 summarizes the procedure. 
 

3. NEW POSSIBILITIES USING NON-LINEAR 
PREDICTIVE ANALYSIS 

Although the relevance of residual NL-predictive analysis for 
speaker recognition has not been studied previously, nonlinear 
predictive analysis has been widely studied in the context of 
speech coding. For instance, [5] revealed that a forward ADPCM 
scheme with nonlinear prediction can achieve the same Segmental 
Signal to Noise Ratio (SEGSNR) as the equivalent linear 

predictive system (same prediction order) with one less 
quantization bit. 
We propose an analogous scheme replacing the linear predictor 
with a nonlinear predictor. Figure 2 shows the scheme. 
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Figure 2: Block diagram used to calculate PDSS parameters from 
NL-prediction residual signal. 
 
We have used a Multi-Layer Perceptron (MLP). The structure of 
the neural net has 10 inputs, 2 neurons in the hidden layer, and one 
output. The selected training algorithm was the Levenberg-
Marquardt [10]. The number of epochs has been set up to 6. First 
layer and hidden layer transfer functions are tansig, while the 
output layer is linear. 
 

4. EXPERIMENTAL RESULTS 
Obviously one important question when dealing with residual 

LP signals is: Is the information contained in this residual signal 
coming from an insufficient predictive analysis order? That is, 
what happens when the prediction analysis order is so high that it 
is not possible to extract more relevant information using a linear 
analysis? 

The experimental approach used to solve this question is to use 
a number of LP coefficients higher than usual. Two possible 
results can be obtained: 
1. When the analysis order is increased, the discriminative 

power of the residual signal is reduced to simple chance 
results. This means that there is potential for speaker 
recognition rate improvements through extraction of the LP 
coefficients in a more efficient manner, probably by 
increasing the number of coefficients. 

2. When the analysis order is increased, the residual signal still 
contains useful information. This means that a linear analysis 
is unable to extract this information, and there is room for 
improvement combining parameterizations defined on the LP 
coefficients and the residual signal. In order to obtain the 
optimal results, both signals should be extracted and 
optimized jointly. 

Figure 3 shows the results obtained with the following 
parameterizations: Melcepstrum, LPC –P residue, LPCC, LPC-80 
residue, MLP 10x2x1 and several combinations between them. 
LPC-P residue is the parameterization obtained from the residual 
P-analysis order. 
It is interesting to observe the following: 
 The residual signal of an LPC-80 analysis can produce a 

recognition rate higher than 80% for a 15 dimensional vector 
extraction. Thus, it was found that the residual signal of a LP 
analysis contains relevant information, and this is due to the 
inability to extract this information using a linear analysis 
(80th order analysis is enough to model short term and long 



term dependencies between samples, but if the analysis is 
linear, it is limited to linear dependencies). 

 The residual signal of a nonlinear predictive analysis, as 
expected, produces the lower recognition rates, because the 
relevant information has been retained in the predictor 
coefficients. However, a maximum of 70% recognition rate is 
possible. 
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Figure 3: Identification for several parameterization algorithms. 
 
4.1. Opinion fusion 
One way to improve the results is by means of a combination of 
different classifiers opinion [13,8]. In our case, we will use the 
same classifier scheme, but different parameterizations. In order to 
study the complementarity of the parameterizations studied, we 
have computed the correlation coefficient and scatter diagrams. 
Table 1 shows the correlation coefficients between distances of 
several parameterizations. The higher the correlation, the smaller 
the complementarity of both measures. Figure 2 shows a scatter 
diagram, which represents points on a two-dimensional space. The 
coordinates correspond to the obtained distance measures, which 
correspond to each parameterization (one in each axis). Looking at 
the diagram we observe that the points diverge from a strip. Thus, 
they have complementary information and can be combined in 
order to improve the results. 
 

Table 1: Correlation coefficients between obtained distance 
values for P=20 

 LPCC Mel-
ceps 

LP-20 
resid 

LP-80 
resid 

MLP 
10x2x1 

LPCC  0,79 0,68 0,52 0,55 
melceps 0,79  0,69 0,56 0,62 
LP-20 resid 0,68 0,69  0,78 0,64 
LP-80 resid 0,52 0,56 0,78  0,60 
MLP 10x2x1 0,55 0,62 0,64 0,60  

 
When combining different measures, special care must be taken 
for the range of the values. If they are not commensurate, some 
kind of normalization must be applied. We have tested the 

following, based on a sigmoid function [18], 1
1 ii ko

e−
′ =

+
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opinion of the ith classifier. ,i im σ  are the mean and standard 
deviation of the opinions of the i classifier, obtained with data 
from the authentic speakers (intra-model distances). 

We have limited the combinations to the outputs of two 
different classifiers, and the sum and product combination rules 
[13]. 

 
Table 2. Identification rates (combinations with sum rule) 

            P 
Param. 

5 10 15 20 25 30 40 

LPCC 46.9 90.6 93.5 97.1 98.0 98.8 94.7 
Melceps 65.7 89.8 92.7 95.5 93.5 91.8 87.4 
LP-P resid 44.1 75.9 84.1 78.4 82.0 78.8 77.1 
LP-80 resid 32.7 72.2 78.0 78.0 73.5 68.6 68.6 
MLP resid 20.0 65.3 70.2 66.1 65.3 62.9 53.5 
LPCC+LP-P 64.9 89.8 94.7 97.6 97.1 97.1 95.1 
LPCC+MLP 51.0 91.4 95.1 97.1 97.96 98.4 95.1 
 
We have experimentally observed that slightly better results are 
obtained without normalization. Looking at figure 4 it can be seen 
that the distance values obtained with the residual signal 
parameterization have less amplitude (about 2 to 3 times). Thus, if 
the normalization is not done, it is equivalent to a weighted 
combination where the LPCC distances have more influence over 
the combined result than the residual signal. 
Figure 3 and table 2 summarize the identification rates for several 
vector dimensions (P) and different combined parameters. 
 

5. CONCLUSIONS 
So far several papers have established that a combination between 
classical parameters (LPCC, melceps) with some kind of 
parameterization computed over the residual analysis signal can 
yield improvements in recognition rates. In our experiments we 
have found that this is only true when the analysis order ranges 
from 8 to 16. These values have been selected mainly because a 
spectral envelope can be sufficiently fitted with this amount of 
data, so there was no reason to increase the number of parameters. 
Although we consider that this is true for speech analysis, 
synthesis and coding, it is interesting to observe that the 
parameterization step for a speaker recognition system is twofold: 
1. We make a dimensionality reduction, so it is easier to 

compute models, distances between vectors, etc. 
2. We make a transformation from one space to another one. In 

this new domain, it can be easier to discriminate between 
speakers, and some parameterizations are better than others. 

Thus, we are not looking for good quality representation of the 
speech signal (or a compromise between good representation with 
the smallest number of parameters). We are just looking for good 
discrimination capability. 
In our experiments we have found that for parameter vectors of 
high order, although the residual signal has a significant 
discriminative power among speakers, this signal seems to be 
redundant with LPCC or melceps, and it is not useful. 
If instead of using the residual signal of a linear analysis a 
nonlinear analysis is used, both combined signals are more 
uncorrelated and although the discriminative power of the NL 
residual signal is lower, the combined scheme outperforms the 
linear one for several analysis orders. 



The results show that there is just a marginal improvement on the 
results when increasing the number of parameters (the 
identification rate plot saturates), but the residual signal is whiter 
when increasing the prediction order, especially for the nonlinear 
analysis. This is a promising result, because although a good 

parameterization based on nonlinear analysis has not yet been 
established, this paper reveals that the NL analysis can extract 
more relevant information with the same prediction order as a 
linear analysis. Thus, it opens a new way for investigation that has 
started to provide successful results [2]. 

 

 
Figure 4: Scatter diagram of distances for observing the correlation between parameters. 
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