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Abstract 

Analysis of speech signals can be performed with the aid of 

linear or nonlinear statistics using appropriate prediction 

algorithms. In this contribution, speech features are treated 

using the results of a nonlinear prediction based on Volterra 

series. Features are investigated representing the prediction 

gain by nonlinear statistics and representing individual 

coefficients of the nonlinear components. The features are 

estimated quasi continuously resulting in a feature signal. 

Additionally, to obtain features which are highly sensitive to 

segmentation shifting, an asymmetric window function is 

integrated into the prediction algorithm. The analyses of 

speech signals show that the estimated features correlate with 

the glottal pulses. Furthermore, the investigations show that 

using the first individual nonlinear coefficient as a feature is 

advantageous over using the prediction gain. 

 

1. Introduction 

Speech analysis is usually performed using linear models and 

statistics. However, nonlinear components are also contained 

in the speech signal [1]. The voiced excitation is caused by 

vibrations of the vocal folds which can be described by a 

nonlinear oscillator; additionally nonlinear fluid dynamics are 

effective. Nonlinear systems and operators, like the energy 

operator, can be used for speech analysis [2],[3]. In this 

contribution nonlinear components of the speech signal are 

estimated by nonlinear prediction. The nonlinear system of a 

Volterra series is used for the prediction. The estimation can 

be achieved by an adaptive algorithm like LMS or RLS [4]. 

Another approach for the estimation is to minimize the 

prediction error of individual signal segments, which can be 

applied to coding [5] or speech generation [6]. For speech 

analysis the integration of an appropriate window function can 

be relevant [7]. In [7] speech features based on the prediction 

gain are discussed. In this contribution, features of nonlinear 

coefficients of the predictor are proposed delivering feature 

signals advantageously for analysis. Additionally, a post-

processing of the feature signal is carried out accentuating the 

regions of glottal closures.   

 

2. Nonlinear Prediction 

The nonlinear predictor based on Volterra systems estimates a 

signal value  ( )x n   by a linear combination of last signal 

values  ( )x n k−   and, additionally, by a linear combination 

of products of last signal values. Here, without loss of 

generality systems are treated with the first and second order 

Volterra kernels only, leading to the prediction error 
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e is the prediction error and ˆ( )x n  is the estimation of ( )x n . 

The coefficients 1h  represent the linear components whereas 

2h′  represent the nonlinear components; 2h′  are coefficients 

of the second-order kernel 2h , which can be assumed 

symmetrically 2 2( , ) ( , )h i k h i k′ =   for i k=  and  

2 2( , ) 2 ( , )h i k h i k′ = ⋅  for  i k≠ . For speech analysis the 

speech signal is segmented in frames. Due to the 

segmentation a window function ( )w n  is integrated into the 

estimation of the nonlinear prediction. If the window function 

is applied directly to the signal ( )x n   the prediction error 

results in 
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leading to different weights of the components, especially 

between the linear and nonlinear components. For this reason 

the window function has to be applied to the error ( )e n   

yielding the weighted error ( ) ( ) ( )we n w n e n= ⋅ . Applying to 

eq. (1) results in 
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The predictor coefficients are determined by minimizing the  

weighted error 

                            2( ) minwn
e n →∑ ,                            (3) 

which is explained in the following section. 

2.1. Vector based nonlinear prediction 

The prediction is applied to a segment of the speech signal, so 

that it is convenient to describe the signals by vectors. For 



that purpose the analyzed weighted signal ( ) ( ) ( )u n w n x n= ⋅  

is described by the vector                                              

    ( )T(0) (0), (1) (1), , ( ) ( )w x w x w K x K= ⋅ ⋅ ⋅u …  

of length 1L K= + . Since the prediction error  ( )we n  

contains last values ( )x n k− , additionally the vectors iu  and 

,i ku  containing the shifted signals with fixed weights are 

defined by 
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The estimation of the weighted signal values ( )u n  can be 

described by the vector û  with 
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By these definitions the prediction problem can be described 

by the vector equation ˆw = −e u u . Since the error depends on 

the order N of linear coefficients and order M of nonlinear 

coefficients, the error ,N M
w w→e e  is extended by the 

superscripts N and M: 
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Equation (6) represents a vector based description of eq. (2). 

From the equations (5) and (6) it can be seen that the optimal 

prediction û   is an expansion of  u  by the vectors iu  and 

,i ku . For this expansion the vectors iu  and ,i ku  are 

transformed into an orthogonal basis { }mv   with the dot 

products , 0m k =v v . This is performed by the Gram-

Schmidt orthogonalization. Since the vectors of the basis  

{ }mv   are orthogonal, the optimal coefficients mb  in 

description of the basis { }mv  can easily be obtained by  

                   2, | |m m mb = u v v  ,                            

yielding an expansion with the vectors mv . Finally the 

coefficients mb   of basis { }mv  are converted back into the 

original basis of { },,i i ku u . The resulting coefficients 

minimize the Euclidean norm | ,N M
we  | representing a least 

square estimation. 

Since in eqs. (2), (6) signal values outside of the frame 

appear, represented by negative arguments of n k− , the 

vector lengths are truncated in such a way that only values 

inside of the analyzed segment appear in the vectors.  

3. Speech Features 

The results of the nonlinear prediction can be utilized to 

define speech features. One approach is to consider the 

prediction gain by the nonlinear components. The gain can be 

described by the ratio between the prediction errors with and 

without nonlinear components, which is used in [7]. The 

logarithmic error ratio leads to the feature definition: 
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Nonlinear coefficients 2( , )h i k′  are considered for the 

prediction error of the denominator, which can be seen from 

the superscript M. Since the nonlinear coefficients contribute 

only to a decrease of the prediction error, the feature ,
gain
N MF  

has positive values.  

Another approach for defining features is to consider 

individual values of the estimated predictor coefficients, 

especially these of the nonlinear components. Here the value 

of the nonlinear coefficients 2( , )h i k′  of the prediction of 

orders N and M are used leading to the feature  

                  ,
2, ( , )N M

i kF h i k′=  . 

3.1. Feature signals 

The feature F is obtained from the results of the nonlinear 

prediction. To consider the time-dependence of the feature, 

the speech signal is segmented into overlapping frames 

analyzed individually. Applying the nonlinear prediction to 

each segment yields the corresponding values of the speech 

feature F. To measure the features quasi continuously in time, 

the displacement of the segments is chosen to one sample. 

Hence, the sequence of the feature values which are estimated 

from the segments represents a feature signal ( )F n . Each 

value ( )F n  is obtained from the nonlinear prediction of a 

segment. The estimation is influenced by the type of the 

window function w of the prediction algorithm. If a Hann-

window is used, the feature F can be estimated smoothly in 

time, however, the time resolution of the feature estimation is 

blurred. This behaviour is caused by the shape of the window; 

the Hann window is insensitive to small changes of the 

segmentation since its values tend continuously towards zero 

to the left and right side. In contrast to that, an asymmetric 

window with a value greater one at one side is sensitive to 

small changes of the segmentation and can deliver a more 

precise time resolution. The window aw  defined by 
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delivering a strong discontinuity between the left-side values 

and values outside of the window, which can be assumed as 

zero. The asymmetric window is shown in fig. 1. 

 

Figure 1: Asymmetric window function aw . 

  

4. Analysis of Speech 

For the analysis of individual sounds and speech utterances, 

speech signals with a sampling rate of 16 kHz are 

investigated. The speech signals are segmented and analyzed 

as described in the previous section. Fig. 2 shows the 

estimated feature signals 16,1
gain ( )F n  and 16,1

1,1 ( )F n  from the 

analysis of the vowel /a/; additionally, the original speech 

waveform and the LPC-residual is shown. The main impulses 

of the residual of fig. 2(b) indicate the abrupt glottal closures, 

which are denoted as the glottal closure instances (CGI). It 

can be seen that the feature signal has peaks correlating with 

those of the residual. Hence, the peaks of the feature signals 

indicate the CGI. The high time resolution of the feature 

signal results from the asymmetric window. In the case of 

voiced fricatives often many impulses occur in the residual, 

which can be seen from fig. 3 showing the analysis of the 

voiced fricative /z/. The LPC-residual shows a more or less 

unperiodic structure and especially the high incidence of 

pulses makes it hard to detect the impulses corresponding to 

the glottal closures. In contrast to that, the feature signals are 

more periodic and have fewer pulses. The analyses show that 

the feature signal 16,1
1,1 ( )F n  shows even mostly only one 

dominant positive pulse per period corresponding to the 

glottal closure; therefore the feature 16,1
1,1 ( )F n  is advantageous 

in comparison to the prediction gain delivering often more 

potential pulses per period. One reason for that is given in the 

following: For the prediction with order 1M =  only the 

nonlinear coefficient 2(1,1)h′  is effective. The prediction gain 

depends on the absolute value of the coefficient, whereas the 

feature 16,1
1,1 ( )F n  preserves the information about the sign of 

the coefficient 2(1,1)h′ . Analysis results show that the glottal 

closures cause impulses with positive sign. Other regions of 

the feature signal show also impulses or bulges, however, for 
16,1

1,1 ( )F n  they have usually negative sign. Hence, by the 

feature signal 16,1
1,1 ( )F n  the impulses of glottal closure can be 

separated from the other regions with the aid of the sign of 

2(1,1)h′ . In comparison to that the feature 16,1
gain ( )F n  cannot 

distinguish since the information of the sign is lost in the 

prediction gain.  

 

Figure 2: Analysis of the vowel /a/: (a) analyzed speech 

signal, (b) corresponding LPC-residual, (c) feature signal 

of prediction gain 16,1
gain ( )F n , (d) feature signal 16,1

1,1 ( )F n . 

 

Figure 3: Analysis of the voiced fricative /z/: (a) analyzed 

speech, (b) corresponding LPC-residual, (c) feature signal 

of prediction gain 16,1
gain ( )F n , (d) feature signal 16,1

1,1 ( )F n . 

Overall, the analyses show that especially the feature signal 
16,1

1,1 ( )F n  is suitable for detection of regions of glottal closures 

not only for stationary speech signals, but also for speech 

utterances. A post-processing of the feature signal is useful to 

mark the regions of glottal closures. At first, fluctuations of 

the mean value differing from zero should be compensated; 

additionally, the power of the feature signal should be 

balanced achieving a constant envelope of the amplitude. 

Therefor a short-time estimation of the mean of the feature 

signal is subtracted to each feature value. After that, each 

feature value is divided by a short-time estimation of the 

power of the feature signal resulting in the modified feature 

signal 16,1
1,1 ( )F nɶ . 

Figure 4 shows the analysis of the German word [nUl]. The 

curves 4(c) and (d) show the initial feature and the modified 

feature signal 16,1
1,1 ( )F nɶ ; variations of the mean and the power 

of the feature signal are balanced. After that the modified  



 

Figure 4: Analysis of word [nUl]: (a) analyzed speech 

signal, (b) feature signal of prediction gain 16,1
gain ( )F n , (c) 

feature signal 16,1
1,1 ( )F n , (d)  processed feature 16,1

1,1 ( )F nɶ , 

(e) derived feature signal ( )f n′ . 

feature signal is convolved by a finite pattern-signal g 

depicted in fig. 5 which has a pointed shape resulting in the 

signal 

            16,1
1,1( ) ( ) ( )f n F n g n= ∗ɶ ; 

the mean value of the signal g is zero. The convolution 

implies dot products with time-shifted segments. If the 

segment is similar to the pointed shape, a high value results. 

 

Figure 5: Pattern-signal g. 

Since only positive correlations with the pointed shape are of 

interest, negative values of f are set to zero by 

        '( ) ( ( ) sgn( ( )) ( )) / 2f n f n f n f n= + ⋅ . 

The curve 4(e) shows the derived feature signal '( )f n  

representing the positive values of the convolution results of 

the modified feature signal of the utterance [nUl]. The peaks 

indicate regions of glottal pulses.  

In figure 6 the analysis result for the utterance [vaIma] of the 

German word “Weimar” is shown. It can be seen that the 

corresponding feature signal ( )f n′  represents a sequence of 

pulses, which is disturbed only occasionally by artifacts. 

 

Figure 6: Analysis of word [vaIma]: (a) analyzed speech 

signal, (b) derived feature signal ( )f n′ . 

5. Conclusions 

Speech features based on nonlinear prediction are proposed 

and discussed for the analysis of speech. The features are 

correlated with the voiced excitation and especially with the 

glottal pulses. For analysis of real speech, one important 

feature of estimation algorithms is their robustness. 

Concerning this, features based on the first nonlinear 

prediction coefficient have been proven advantageously in 

comparison to the prediction gain. The deciding reason for 

this fact is that the informational content of the sign of the 

coefficient is useful. By the use of that feature signal with an 

additional post-processing the algorithm is applicable to 

analyse real speech. 
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