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Abstract 
We present an effective method to merge the acoustic units 
between Chinese and English to develop a 
language-independent speech recognition system. Chinese as a 
tonal language has large differences from English. An optimal 
Chinese phoneme inventory is set up in order to keep 
consistent with the representation of English acoustic units. 
Two different approaches for Chinese-English bilingual 
phoneme modeling are illustrated and compared. One is to 
combine the Chinese and English phonemes together based on 
International Phonetic Association (IPA). The other is a 
data-driven method on the basis of the confusion matrix. 
Experimental results show that all these methods are feasible 
and the data-driven method reduced the WER by 0.73% in 
Chinese and 3.76% in English relatively compared to the 
IPA-based method. As a by-product, the idea of data sharing 
across languages can obtain relative 8.7% error reduction 
under noise condition. 

1. Introduction 
With the increasing internationalization, research in 
multilingual speech recognition (MSR) has gained more and 
more interest in the last few years. But Chinese as one of the 
most important languages in the world was not considered as 
much as western languages in some present MSR systems 
[1][2][3] because of its own peculiarity. So a thorough 
research on the Chinese-English bilingual recognition is 
potentially needed, especially the groundwork of a MSR 
system: the selection of language-independent acoustic units. 

So far, there are two main frameworks when solving the 
MSR problem. One is using a language identification (LID) 
module to identify the speech as a specific language. Then the 
specific monolingual utterance can be recognized by 
language-dependant speech recognizers. The other is using a 
universal framework including multi-lingual acoustic model, 
language model and decoder. In the first framework an 
apparent weak is that the upper bound of performance is 
limited by the accuracy of LID module. Thus we use the 
second framework to study how to construct a consistent 
Chinese-English phoneme inventory and acoustic model. 

Linguistically speaking, there are many differences 
between Chinese and English since they come from two 
different language families [4]. Firstly, Chinese is a kind of 
tonal language, including 5 tones; Secondly it is monosyllabic 
mainly in CV  structure where C is consonant and V is 
vowel, whereas English is a kind of atonal language whose 
structure is more complex than Chinese. As a result in most 
cases the basic acoustic units are different largely between the 
two languages. For example, the Chinese mono phoneme is 
often represented by initials and tonal finals rather than more 
subtle units as English. So it is essential to make the acoustic 

units of the two languages uniform. This paper gives some 
experiments about how to split the phonemes of Chinese to 
make it keep consistent with English representations. 

Some phonemes across the two languages may be similar 
enough to be equated. Those resemblances must be merged 
together for decreasing the number of parameters in the 
acoustic model. At present there are two main methods of 
phoneme cluster. One is based on phonetic knowledge; the 
other is data-driven. Both of the methods are studied to find 
the most suitable universal phoneme inventory and build a 
language-independent acoustic model which keeps balance 
between the number of parameters and system performance in 
a real MSR framework. 

The remainder of this paper is organized as follows. In 
section 2, an approach of Chinese phone splitting to subtle 
units and two methods of bilingual phoneme clustering are 
illustrated in detail. Some experimental results on language 
independent speech recognizer with different cluster 
technologies are compared in section 3. Conclusion is given 
in section 4. 

 

2. Building Language-Independent Acoustic 
Model and MSR System 

In order to define a universal phoneme sets for the two 
languages, we firstly split original Chinese initials and tonal 
finals into subtle units consistent with the representation of 
English. If the phonemes of the two languages are put together 
directly, the final number of acoustical model parameters 
would be much large and be a burden for decoder. The cluster 
of phonemes can be performed either manually or 
automatically. A kind of most common used method of 
data-driven cluster is based on the direct distance of mono 
phoneme models. However this method does not consider the 
context of the phonemes. In order to utilize the information of 
triphones a new data-driven method based on the concept of 
confusion matrix is given. 

2.1. Setup of Chinese phoneme inventory 

In our original system the acoustic units are initials and tonal 
finals, a total number of 213, which is a characteristic of 
Chinese. In order to be compatible with English atonal 
phonemes, we discard the tones at first, as a result with the 
total number of 69. There still exist some compound vowels 
in the atonal Chinese phoneme inventory although they have 
resembled to an extent with English units. So splitting 
according to IPA [5] at various levels is attempted with a 
number of comparative experiments. Detailed results are 
shown in table 1. Finally the best Chinese inventory is given 
with a total number of 49 (including silence and short pause), 



balanced in size with English phoneme set with the number of 
42 (including silence and short pause). 

Table 1. Results of recognition in various phoneme 
sets of Chinese 

 213 tonal 
set 

69 atonal 
set 

57 atonal 
set 

49 atonal 
set 

43 atonal 
set 

Accuracy
(%) 94.9 94.1 94.2 94.4 94.0 

In this group of comparative experiments, the training set 
includes 70 hours data and the test set is 863test set including 
9042 read utterances. From the results we could conclude that 
the set of 49 phonemes provides the best performance 
comparative with other atonal sets, although there still exists a 
disparity from the original tonal phone set. 

2.2. Experience-based phoneme cluster 

After the subtle split of Chinese phonemes, we get two sets of 
similar phoneme inventories representing the two languages. 
Then the language-dependent phonemes should be combined 
into one set in order to realize the language-independent 
phoneme modeling. A manual and direct way of building 
bilingual inventory is according to the phonetic knowledge. 
Some language-dependent phonemes which are represented 
by the same IPA symbols can be merged into one unit. Table 
2 is a list of IPA-based Chinese-English universal phoneme 
set consisting of 67 units (excluding silence, short pause and 
garbage model). In this table 19 pairs of phonemes sharing the 
same IPA symbols are merged, thus the total number of 
parameters is reduced by more than 21% comparative to the 
total number of the two sets, which is 89.  

Table 2. Phoneme cluster based on IPA 

Lang. Phonemes number

Chinese 

p_ch t_ch nn_ch k_ch z_ch c_ch sh_ch r_ch 
zh_ch ch_ch j_ch q_ch x_ch h_ch a_ch 

au_ch at_ch e_ch err_ch ix_ch iy_ch v_ch 
iaa_ch ioo_ch iee_ch iii_ch iuu_ch ivv_ch

28 

English 
b_en ch_en d_en dh_en g_en hh_en jh_en 

r_en sh_en th_en v_en w_en y_en z_en 
zh_en ah_en ao_en aw_en ay_en oy_en 

20 

Merged 

b_ch/p_en f_ch/f_en n_ch/n_en g_ch/k_en 
ng_ch/ng_en d_ch/t_en m_ch/m_en 

l_ch/l_en s_ch/s_en aa_ch/aa_en 
ee_ch/eh_en ak_ch/ae_en o_ch/ow_en 
uu_ch/uh_en u_ch/uw_en ea_ch/ey_en 

ii_ch/ih_en er_ch/er_en i_ch/iy_en 

19 

 

2.3. Data-driven phoneme cluster 

The data-driven method of cluster is based on the statistical 
similarity or distance measurement rather than phonetic 
knowledge. So far the clustering algorithm is mostly applied 
Bhattacharyya distance [6] as a theoretical similar measure 
between two Gaussian distributions. However this approach 
considers only the mono phoneme’s distance without any 
information of context. A novel method of distance 
measurement with the information of triphones, which is 
similar to [7][8], is used in this study. The phonemes’ 
distances are calculated according to confusion matrix 
between English and Chinese phonemes. The confusion is 

measured by finding the best path for test data of one 
language on the other’s triphone model. The optimization is 
realized by simple Viterbi decoding and a large number of 
training utterances are required. 

Detailed steps are as follows: 
(1)  Based on the English triphone HMM model, find the 
most possible phoneme series for every Chinese utterance 
using Viterbi decoding. That is 
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where enΛ means the best possible English phoneme series, 

engtriM  means the English triphone model, and 

chO represents the Chinese training utterance. Then based on 

the time information to align enΛ and the real phoneme 

array chΛ by DTW. 
(2)  A confusion matrix is build by a large number of 
training data. The degree of confusion is calculated by 

)(/)|( chichienjenjchi NNC λλλ=→               (2) 

where enjchiC → means the distance of Chinese phoneme i  

from English phoneme j , and )( chiN λ  and )( enjN λ  

represent the number of Chinese phoneme i  and the number 
of English phoneme j  respectively. Thus a matrix denotes 
the distance of Chinese phonemes from English phonemes is 
achieved. 

(3)  Vice verse. Change the places of English and Chinese 
and repeat the step 1 and 2 to calculate the distance of English 
phonemes from Chinese phonemes. 

(4)  Since the measure is asymmetrical, the average distance 
is given as follows: 

2/)( chienjenjchi CCC →→ +=                     (3) 

In order to compare with IPA-based method, we limited the 
size of data-driven cluster to 67 mono phonemes. The English 
training data come from TIMIT corpora including 6300 
utterance, and transcriptions with the time information are 
available. The Chinese data come from 863test sets, including 
9042 sentences with the time information transcriptions. 
Experimental results show that when the training data exceeds 
2000 utterances the distance of phonemes in the confusion 
matrix is stable. Thus the size of our training data can gain the 
reliable statistical measurement. Table 3 shows the result of 
bilingual phoneme inventory using data-driven method. 
 
 
 
 
 
 



Table 3. Phoneme cluster based on Confusion Matrix 
Data-Driven 

Lang. Phonemes number

Chinese 

ng_ch l_ch t_ch nn_ch z_ch c_ch r_ch
j_ch q_ch x_ch h_ch aa_ch ee_ch ak_ch
o_ch ii_ch er_ch at_ch e_ch err_ch
ix_ch iy_ch v_ch iaa_ch ioo_ch iee_ch
iuu_ch ivv_ch 

28

English 

ng_en t_en l_en dh_en hh_en r_en th_en
v_en z_en zh_en eh_en ae_en uh_en
uw_en ih_en er_en ah_en ao_en aw_en
oy_en 

20

Merged 

a_ch/aa_en au_ch/ay_en b_ch/b_en 
ch_ch/ch_en d_ch/d_en ea_ch/ey_en 

f_ch/f_en g_ch/g_en i_ch/iy_en 
iii_ch/y_en k_ch/k_en m_ch/m_en 

n_ch/n_en p_ch/p_en s_ch/s_en 
sh_ch/sh_en u_ch/u_en uu_ch/ow_en 

zh_ch/jh_en 

19

3. Experiments and Discussion 
 The goal of the experiment is to evaluate the performance of 
our language-independent LVCSR system and compare the 
cluster method based on IPA with our proposed approach 
based on confusion matrix data-driven. 

3.1. Corpora and experiment setup 

The training data has about 340 hours Chinese speech data 
(including various dialects) and 160 hours English data 
(including TIMIT, WSJ). These data are recorded under 
relatively clean acoustic conditions. The recognizer makes use 
of continuous density HMM with Gaussian mixture for 
acoustic model. Each triphone model is a 3-state left-to-right 
with Gaussian mixture observation densities (typically 32 
components). The acoustic feature of speech is MFCC with 
39 dimensions. 

The size of vocabulary is 43K for Chinese and 50K for 
English. The bilingual dictionary is composed of the pooled 
monolingual dictionaries and consists of 93K entries. The 
training corpora of bilingual language model (BILM) are the 
combination of Chinese and English data. In order to test the 
performance of language-independent acoustic model we also 
build monolingual LM, labeled as MONOLM. 

We selected two sets of Chinese testing data in order to 
evaluate the performance under various situations. One is 
recorded under clean acoustic condition, including 341 
Chinese sentences labeled as TestCH1, while the other is 
recorded under noise condition consisting of 200 sentences 
labeled as TestCH2. The English testing data is standard 
WSJ0 testing set labeled as TestEN, including 330 English 
utterances. 

3.2. Experiments and discussion 

For the purpose of comparing the language-independent 
system with the language-dependent system, we conducted 
the experiments on the monolingual LVCSR system. Table 4 
shows the word error rates of the baseline on different testing 
sets. 

Table 4. The monolingual results on different testing 
sets 

 TestCH1 TestCH2 TestEN 
WER (%) 25.8 36.8 9.7 

In order to compare the two methods of cluster we trained the 
acoustic model on the two bilingual phoneme sets, labeled as 
IPA and CMDD. They are combined with different language 
models MONOLM and BILM. The comparative results are 
shown in Table 5. 

Table 5. The comparative results of 
language-independent models 

 TestCH1 
(%) 

TestCH2 
(%) 

TestEN 
(%) 

IPA-MONOLM 27.1 36.0 10.8 
CMDD-MONOLM 26.8 36.0 11.1 

IPA-BILM 27.4 36.4 13.3 
CMDD-BILM 27.2 36.2 12.8 

From the table 4 and table 5, we can see that the bilingual 
system can achieve comparable performance to the 
monolingual system whether in English or Chinese testing 
sets. In the worst cases the WER increased 1.6% in Chinese 
and 3.6% in English respectively. This may be due to the 
dramatic increase of the size of bilingual dictionary, with 
nearly 10K entries. 

By comparing the IPA cluster method with CMDD method 
in table 5, we can see that the CMDD method accepts 
moderate improvements in various testing conditions except 
combined with the monolingual language model in TestEN 
set. This loss may result both from the unmatchable acoustic 
and language model and from the asymmetric size of training 
data between English and Chinese. But on English testing set, 
using bilingual LM a significant improvement can be 
observed, with WER relative reduction by 3.76% than 
IPA-based method. Although the improvement is not dramatic 
as a whole, the advantage of CMDD is evident whether for 
adjusting the size of phoneme inventory or from the 
theoretical foundations. As a result, the method of confusion 
matrix data-driven gives us a promising belief that a great 
improvement can be achieved by conditioning the size of 
universal phoneme inventory and bilingual dictionary. 

It is interesting that in the universal system the performance 
is improved greatly under noise conditions TestCH2, which 
WER is from 36.8% to 36%. For confirming the contribution 
of bilingual acoustic models which share data across 
languages we put them into monolingual systems, avoiding 
the influences of merged dictionary and language model. The 
results are listed in Table 6. These results demonstrated that 
the shared data across language can deduce the WER by %8.7 
relatively, making the recognizer more robust under noise 
condition. 

 
 



Table 6: Acoustic model performance comparison 
under noise conditions 

 Monolingual 
baseline 

IPA bilingual 
model 

CMDD 
bilingual model

WER(%) 36.8 33.6 34.2 
 

4. Summary and Future Work 
In this paper, we presented the work of setting up Chinese 
phoneme inventory and two methods of building 
language-independent MSR system. By comparing the two 
cluster sets on different testing data and language models, the 
CMDD cluster method outperforms the IPA-based approach 
as a whole. As a by-product, the sharing data across languages 
provides us a new idea to improve the performance of 
recognizer under noise condition. In future experiments, we 
will try various methods to build bilingual language model 
and select the optimal size of universal phoneme inventory. It 
is also a challenging task about how to combine the 
experience-based method and data-driven method. This 
approach proposed in this paper could be generalized to other 
languages. 
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