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ABSTRACT scales that may differ from block to block. This featureaHto

This paper proposes a no-reference PSNR estimation meth(%%apply the algorithm to video sequences, encoded using cur

for video sequences subject to lossy DCT-based encodinrem DCT-based standards. The final resultis a PSNR estimate

such as MPEG-2 encoding. The proposed method is bas&‘a‘ilt |s'computed without the n.eed of the original data, tBus r
sembling a no-reference quality metric.

on DCT coefficient statistics, which are modeled by Laplace ,
probability density functions, with parametar The distri- The performance of the proposed algorithm has been eval-
Hated using several video sequences, subject to diffeogit c

bution’s parameter is computed from the received quantize ’ i
data, by combining maximum-likelihood with linear predic- ing rates. The resulting PSNR estimates have shown greater
accuracy than the ones provided by a state-of-the-art

tion estimates. The resulting coefficient distributions tren | o

used for estimating the local error due to lossy encodingeesi Method [2], proposed with the same objective. _
no knowledge about the original (reference) sequences is re The paper is organized as follows: after the introduction,
quired, the proposed method can be used as a no-referer®@€ction 2 depicts the framework for the ML estimation; the

metric for eva|uating the qua“ty of the encoded video Se.use of prediction is SyntheSiZEd in section 3, section 4 show
guences. how to compute a blind PSNR score from the estimated DCT

coefficient distribution; results are depicted in sectio@id

Index Terms— Image quality, no-reference metric, pa- finally, some remarks and topics for future investigatioa ar
rameter estimation given in section 6.

1. INTRODUCTION
2. ML PARAMETER ESTIMATION
In the past few years, quality monitoring of multimedia data
has become an important matter, especially due to the isicreaBlock-based DCT coefficient data distribution of naturat im
ing transmission of digital video contents over broadbardl a ages can be modeled by a zero-meaplaceprobability den-
wireless networks. From a quality of service perspectitve, isity function @df) [3](excluding the DC coefficients). More
would be desirable to evaluate the quality of the received co accurate models can be found in literature, such as general-
tents at the user's end. This kind of system would have tized gaussian [4] or gaussian mixtures [5]. The choice of the
deal with different distortion sources, such as lossy eimzpd laplacian model represents a reasonable tradeoff between a
of media data and transmission errors. Moreover, and sinaauracy and simplicity.
the original signals are not available at the receiver, iual Using8 x 8 blocks, with horizontal and vertical frequency
scores must be provided with few knowledge about the origpairs (i,7) € {0,...,7} x {0,...,7} and(4,5) # (0,0), the
inal - reduced referencenetrics - or no knowledge at all - coefficient’s distribution is thus described by:
no-referencenetrics.
This paper suggests a hew technique that estimates errors (i, 7) o

due to lossy compression in block-based DCT (discrete eosin fx(@) = 5 P (=AG 7)), @)
transform) video encoding schemes, the most used in today’s
panorama. Itis assumed that the statistics of the origi@I D where(i, ) is the distribution’s parameter for frequency pair
coefficient data are well modeled byLaplacedistribution, (4, j) andx is the coefficient value. For notation simplicity,
with parameten. This parameter is estimated from the quan-the indexegz, j) will be dropped along the text.
tized values, available at the receiver, combining maximum
likelihood (ML) estimation method with a linear prediction
scheme, as suggested in [1] for still images. The method pré-1- A estimation using the original coefficient data
posed here can be seen as a generalization of [1] for DC
coefficients subject to linear quantization, with quarticra

Xn estimate for), using the original coefficient data, can be
obtained using the maximum-likelihood (ML) method. Rep-
*Corresponding author: tomas.brandao@Ix.it.pt resenting byx;, the k-th original coefficient value at a given




frequency, an ML estimate fox is given by: whereN, and N; are the number of coefficients quantized to
zero and non-zero values, respectively, #hds the sum of

N
N _ .
Ayr = arg max {1og H fx(xk)} = — . @ the_abs_oluti v.alues of non-zero coefficients. The solutfon o
A Pt >y |7kl (7) is given by:

where N represents the number of DCT coefficients at the 9  —NoA+ \/NgAQ —4(NA +251)(N1A - 257)
given frequency (which is the same as the number of blocks) vz = — 1 log INA + 45, ’
For the remainder of this papev;,;, will often be referred as (8)
original \. a result already derived in [6].

_ Let us now take a deeper insight to see what happens to
2.2. X estimation using quantized coefficient data Au L as the quantization steps during encoding increase. In

lossy DCT-based encoding, important compression gains re-
Admitting that only quantized data is available for estimat syt from increasing the number of coefficients that are guan
the original coefficient distribution, the ML method canals tized to zero. As the quantization steps increase, mordicoef
be used for estimating the value bf cients will fall on this situation. It is common, even at zage

N compression rates, to have all DCT coefficients quantized to
Az = arg max {1og H P(Xk)} , (3) 0 at high frequency positions. For such cases, (6) can be ap-
A Pt proximated by:
where P(X},) represents the probability of having valig, N qfke_*#
at the quantizer’s output. Assuming that the quantizemis li Z 27% =0. 9)
ear with quantization step,, which may differ from block to k=1, 1 —e" 72
block, P(X}) can be written as: Xk=0
o It can be easily concluded that the solution for this equeatio
kt 5 A N . . . L .
P(X}) = / A=Azl g |s_)\ML = o0, which means that 'thg estimated distribution
Xp-% 2 will be a Dirac’s deltafunction. Similarly, for the constant
gy _ ~ (4 quantization scales (eq. (8)), @& — N, thenN; — 0,
= {1 —e b if X =0; S1 — 0and,asa consequenéem — 00.
Le X+ (1 — e72a ), otherwise. Aware of these problems, the authors of [2] propose to

model the original DCT coefficients distribution as a mietur

Substituting (4) in (3) leads to: of two Laplacepdfs: one is estimated based on all quantized

. N ra, coefficient values, while the other is estimated considgrin
AMmL = arg mAaX{ Z log(1—e” 72" )+ non-zero quantized values only. This strategy is more ftobus
k=1, when a high percentage of the coefficients is quantized to 0,
N Xr=0 (5)  but still fails if all DCT coefficients at a given frequencyear
Z log %(e_MXk‘Jr%)(l ey, guantized to zero.
k=1,
X1#0 3. AESTIMATION BY ADDING PREDICTION

Differentiating with respect to\ and after simple algebraic

manipulations, we get: The issue described at the end of the previous section can

be tackled by exploring the correlation betwekwalues at
N qfke,% N q ¢ e neighbouring DCT frequencies, as suggested in [1]. Using
27& + Z (Qk — | X% + 1ke*qk) 0, matrix notation, a prediction value forat a given frequency
2 k=1

)1?:21,0 l—e k=1 can be written as: R .
©6) Ap = A, B, (10)
whose solution can be found by using an iterative root findingvith
algorithm. In this work, a simple implementation ldéwton- 1 Bo
Raphsofs method has been used, taking a small value (i.e. Avy B
0.01) as the initial solution guess. Convergence to theecorr Av = : andg = : ’
solution has been achieved in all experiments. /\;K 6}(

For the particular case where the encoder uses the same ] k ) : o
quantizer scales for all image blocks, i¥, : ¢, = A, such whereK is the neighbourhood siza,, is a vector consisting
g 1 . k 1

as in JPEG encoding, (6) can be written as: of the neighbourhood values agds the weight vector.
The weight vecto3 has been computed by minimizing

e M(NA+28)) + e*%NOA + NiA —25; =0, (7) the square error between the origip\aindﬁp, in a randomly



i To estimate\ ¢ for each frequency, we start by computing
i Anz andrq for all frequency positions. Theh, is com-
puted recursively starting from the lower frequencies,igi z
zag scan order. At the start of the recurrence the values of
Az are used for prediction but, as the recurrence progresses,
predictions will be based on previously estimated values.

4. PSNR ESTIMATION

The parameter estimation method described in the previous
section can be used for the purpose of blindly estimate the
PSNR of images subject to DCT-based lossy encoding, with-
out requiring the original image data. Assuming pixel value

chosen image set - 15 still images taken from LIVE imagd" te range of0; 255}, the image PSNR is usually given by:

Fig. 1. Neighbourhood configuration.

database [7]. By following the square error minimizatioi cr 552
terion, 3 is given by: PSNRap) = 10l0g10 +——3——> (13)
M 22k=1%k
B=(ATA)TIATA, (11)

whereM is the number of pixels ang is the squared error
between thé:-th reference and distorted pixel. In the context

where of this paper,M will be the number of DCT coefficients un-
1 )\7(}) o )\1(}) A der analysis ane? = (X} — x1)? will be the squared differ-
1 )\(21) )\(5 \2) ence between original and quantized coefficients. Note that
A — S I - . _ in accordance with Parceval's theorem (and since DCT is an
: : : : unitary transform), it is indifferent to measure PSNR in the
1 )\(L) o /\gﬁ{) A pixel or in the DCT domain.

If the original DCT data distribution was known, the local
AisalL x (K + 1) matrix, whereL is the number of images Mean square erréi at thek-th coefficient could be estimated
in the training set. Each eIeme,n&l,f is thek-th neighbour in by observing the quantized values, according to:

thel-th image. As for the vectaX, it consists of the original +00
values of), per image, at the position to predict. The training €p = / fx (@] X3) (X — ) da. (14)
procedure is carried out for each frequency position toipted e

The neighbourhood configuration used in the experimentgisingBayes ruleand knowing that’( Xy |z) = 1 if the coef-
is illustrated in figure 1. Since low-frequency DCT coeffi- ficient z lies in the quantization interval centeredf,, and
cients are less vulnerable to the effects of lossy comummessi P(Xy|z) = 0, otherwise, (14) can be rewritten as:
its structure has been chosen with the purpose of recuysivel .
predict values fon, starting from those frequency positions. 2 1 k o

The predictiorﬁ\p that results from (10) can then be com- &k = P(Xk) /xk_ Fx(@)(Xy o) de, 13)
bined with \,,7. in order to improve the estimation accuracy
for the original DCT distribution parameter. Since ML es-With fx(z) and P(X}) given by (1) and (4), respectively.
timates become more inaccurate as the rate of coefficienid'® laplacian parameter to use in these expressions will be
guantized to zero increases, more trust should be givereto tihe value of\; that results from (12).
predictor in this case. On the other hand, if the number of co-
efficients quantized to zero is low, the ML estimator will hos 5. RESULTS
likely get accurate results, so there is no real need fortée p
dicted value. Based on these premises, a simple criterion fd he effectiveness of the proposed algorithm has been evalu-
combiningj\p with Xyz is to weight them proportionally to  ated using the video sequences displayed in figure 2 subject t

the rate of DCT coefficients quantized to zero: MPEG-2 encoding. Sequences have been encoded at differ-
R X R entrates, between 256 and 4096 kbit/s, using a GOP-12 frame
Ar =10 + (1 — 7o) Amr, (12)  structure with a prediction interval of 3 frames

(IBBPBBPBBPBB...).
wherer, = Ny /N represents the rate of coefficients quan- PSNR of the encoded sequences has been estimated for
tized to zero and\; is the final estimation for the distribu- each I-frame and confronted with its true value. Figure 3 de-
tion’s parameter. picts two examples that illustrate the PSNR evolution along



Fig. 2. Video sequences used in the experiments. From left to: rightg Coastguard TempeteFootball; Foreman Stephan
Table-tennisMobile & Calendar All sequences havéh2 x 288 resolution and 25 Hz frame rates.
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(a) Coastguard (512kb/s). (b) Stephan (1024kb/s).

Fig. 3. PSNR estimation examples.

APred. LC ability to estimate the local error due to encoding, the meéth
Mean error [dB] 0.632  0.968 proposed in the paper may also be useful for other applica-
Root mean square error [dB] 0.806 1.171 tions, such as artifact reduction.
Error value at percentile 99 [dB] 2.324  3.257
Correlation (with true value) 0.993 0.988 7 REFERENCES
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