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ABSTRACT

This paper proposes a no-reference PSNR estimation method
for video sequences subject to lossy DCT-based encoding,
such as MPEG-2 encoding. The proposed method is based
on DCT coefficient statistics, which are modeled by Laplace
probability density functions, with parameterλ. The distri-
bution’s parameter is computed from the received quantized
data, by combining maximum-likelihood with linear predic-
tion estimates. The resulting coefficient distributions are then
used for estimating the local error due to lossy encoding. Since
no knowledge about the original (reference) sequences is re-
quired, the proposed method can be used as a no-reference
metric for evaluating the quality of the encoded video se-
quences.

Index Terms— Image quality, no-reference metric, pa-
rameter estimation

1. INTRODUCTION

In the past few years, quality monitoring of multimedia data
has become an important matter, especially due to the increas-
ing transmission of digital video contents over broadband and
wireless networks. From a quality of service perspective, it
would be desirable to evaluate the quality of the received con-
tents at the user’s end. This kind of system would have to
deal with different distortion sources, such as lossy encoding
of media data and transmission errors. Moreover, and since
the original signals are not available at the receiver, quality
scores must be provided with few knowledge about the orig-
inal - reduced referencemetrics - or no knowledge at all -
no-referencemetrics.

This paper suggests a new technique that estimates errors
due to lossy compression in block-based DCT (discrete cosine
transform) video encoding schemes, the most used in today’s
panorama. It is assumed that the statistics of the original DCT
coefficient data are well modeled by aLaplacedistribution,
with parameterλ. This parameter is estimated from the quan-
tized values, available at the receiver, combining maximum-
likelihood (ML) estimation method with a linear prediction
scheme, as suggested in [1] for still images. The method pro-
posed here can be seen as a generalization of [1] for DCT
coefficients subject to linear quantization, with quantization
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scales that may differ from block to block. This feature allows
to apply the algorithm to video sequences, encoded using cur-
rent DCT-based standards. The final result is a PSNR estimate
that is computed without the need of the original data, thus re-
sembling a no-reference quality metric.

The performance of the proposed algorithm has been eval-
uated using several video sequences, subject to different cod-
ing rates. The resulting PSNR estimates have shown greater
accuracy than the ones provided by a state-of-the-art
method [2], proposed with the same objective.

The paper is organized as follows: after the introduction,
section 2 depicts the framework for the ML estimation; the
use of prediction is synthesized in section 3; section 4 shows
how to compute a blind PSNR score from the estimated DCT
coefficient distribution; results are depicted in section 5, and
finally, some remarks and topics for future investigation are
given in section 6.

2. ML PARAMETER ESTIMATION

Block-based DCT coefficient data distribution of natural im-
ages can be modeled by a zero-meanLaplaceprobability den-
sity function (pdf) [3](excluding the DC coefficients). More
accurate models can be found in literature, such as general-
ized gaussian [4] or gaussian mixtures [5]. The choice of the
laplacian model represents a reasonable tradeoff between ac-
curacy and simplicity.

Using8×8 blocks, with horizontal and vertical frequency
pairs(i, j) ∈ {0, ..., 7} × {0, ..., 7} and(i, j) 6= (0, 0), the
coefficient’s distribution is thus described by:

fX(x) =
λ(i, j)

2
exp (−λ(i, j)|x|), (1)

whereλ(i, j) is the distribution’s parameter for frequency pair
(i, j) andx is the coefficient value. For notation simplicity,
the indexes(i, j) will be dropped along the text.

2.1. λ estimation using the original coefficient data

An estimate forλ, using the original coefficient data, can be
obtained using the maximum-likelihood (ML) method. Rep-
resenting byxk thek-th original coefficient value at a given



frequency, an ML estimate forλ is given by:

λML = arg max
λ

{

log

N
∏

k=1

fX(xk)

}

=
N

∑N

k=1 |xk|
, (2)

whereN represents the number of DCT coefficients at the
given frequency (which is the same as the number of blocks).
For the remainder of this paper,λML will often be referred as
original λ.

2.2. λ estimation using quantized coefficient data

Admitting that only quantized data is available for estimating
the original coefficient distribution, the ML method can also
be used for estimating the value ofλ:

λ̂ML = arg max
λ

{

log

N
∏

k=1

P (Xk)

}

, (3)

whereP (Xk) represents the probability of having valueXk

at the quantizer’s output. Assuming that the quantizer is lin-
ear with quantization stepq

k
, which may differ from block to

block,P (Xk) can be written as:

P (Xk) =

∫ Xk+
q
k
2

Xk−
q
k
2

λ

2
e−λ|x|dx

=

{

1 − e−
λq

k
2 , if Xk = 0;

1
2e−λ|Xk|+

λq
k

2 (1 − e−λq
k ), otherwise.

(4)

Substituting (4) in (3) leads to:

λ̂ML = arg max
λ

{
N

∑

k=1,
Xk=0

log(1 − e−
λq

k
2 )+

N
∑

k=1,
Xk 6=0

log
1

2
(e−λ|Xk|+

λq
k

2 )(1 − e−λq
k )}.

(5)

Differentiating with respect toλ and after simple algebraic
manipulations, we get:

N
∑

k=1,
Xk=0

q
k

2 e−
λq

k
2

1 − e−
λq

k
2

+

N
∑

k=1,
Xk 6=0

(

q
k

2
− |Xk| +

q
k
e−λq

k

1 − e−λq
k

)

= 0,

(6)
whose solution can be found by using an iterative root finding
algorithm. In this work, a simple implementation ofNewton-
Raphson’s method has been used, taking a small value (i.e.
0.01) as the initial solution guess. Convergence to the correct
solution has been achieved in all experiments.

For the particular case where the encoder uses the same
quantizer scales for all image blocks, i.e.∀k : q

k
= ∆, such

as in JPEG encoding, (6) can be written as:

e−λ∆(N∆ + 2S1) + e−
λ∆

2 N0∆ + N1∆ − 2S1 = 0, (7)

whereN0 andN1 are the number of coefficients quantized to
zero and non-zero values, respectively, andS1 is the sum of
the absolute values of non-zero coefficients. The solution of
(7) is given by:

λ̂ML = −

2

∆
log

−N0∆ +
√

N2

0
∆2

− 4(N∆ + 2S1)(N1∆ − 2S1)

2N∆ + 4S1

,

(8)
a result already derived in [6].

Let us now take a deeper insight to see what happens to
λ̂ML as the quantization steps during encoding increase. In
lossy DCT-based encoding, important compression gains re-
sult from increasing the number of coefficients that are quan-
tized to zero. As the quantization steps increase, more coeffi-
cients will fall on this situation. It is common, even at average
compression rates, to have all DCT coefficients quantized to
0 at high frequency positions. For such cases, (6) can be ap-
proximated by:

N
∑

k=1,
Xk=0

q
k

2 e−
λq

k
2

1 − e−
λq

k
2

= 0. (9)

It can be easily concluded that the solution for this equation
is λ̂ML = ∞, which means that the estimated distribution
will be a Dirac’s delta function. Similarly, for the constant
quantization scales (eq. (8)), asN0 → N , thenN1 → 0,
S1 → 0 and, as a consequence,λ̂ML → ∞.

Aware of these problems, the authors of [2] propose to
model the original DCT coefficients distribution as a mixture
of two Laplacepdfs: one is estimated based on all quantized
coefficient values, while the other is estimated considering
non-zero quantized values only. This strategy is more robust
when a high percentage of the coefficients is quantized to 0,
but still fails if all DCT coefficients at a given frequency are
quantized to zero.

3. λ ESTIMATION BY ADDING PREDICTION

The issue described at the end of the previous section can
be tackled by exploring the correlation betweenλ values at
neighbouring DCT frequencies, as suggested in [1]. Using
matrix notation, a prediction value forλ at a given frequency
can be written as:

λ̂p = λT

υ
β, (10)

with

λυ =
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λυ1
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λυK
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,

whereK is the neighbourhood size,λυ is a vector consisting
of the neighbourhood values andβ is the weight vector.

The weight vectorβ has been computed by minimizing
the square error between the originalλ andλ̂p, in a randomly
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Fig. 1. Neighbourhood configuration.

chosen image set - 15 still images taken from LIVE image
database [7]. By following the square error minimization cri-
terion,β is given by:

β̂ = (ΛT
Λ)−1

Λ
Tλ, (11)

where
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.

Λ is aL× (K + 1) matrix, whereL is the number of images
in the training set. Each elementλ

(l)
υk

is thek-th neighbour in
the l-th image. As for the vectorλ, it consists of the original
values ofλ, per image, at the position to predict. The training
procedure is carried out for each frequency position to predict.

The neighbourhood configuration used in the experiments
is illustrated in figure 1. Since low-frequency DCT coeffi-
cients are less vulnerable to the effects of lossy compression,
its structure has been chosen with the purpose of recursively
predict values forλ, starting from those frequency positions.

The prediction̂λp that results from (10) can then be com-
bined withλ̂ML in order to improve the estimation accuracy
for the original DCT distribution parameter. Since ML es-
timates become more inaccurate as the rate of coefficients
quantized to zero increases, more trust should be given to the
predictor in this case. On the other hand, if the number of co-
efficients quantized to zero is low, the ML estimator will most
likely get accurate results, so there is no real need for the pre-
dicted value. Based on these premises, a simple criterion for
combiningλ̂p with λ̂ML is to weight them proportionally to
the rate of DCT coefficients quantized to zero:

λ̂f = r0λ̂p + (1 − r0)λ̂ML, (12)

wherer0 = N0/N represents the rate of coefficients quan-
tized to zero and̂λf is the final estimation for the distribu-
tion’s parameter.

To estimatêλf for each frequency, we start by computing
λ̂ML and r0 for all frequency positions. Then̂λp is com-
puted recursively starting from the lower frequencies, in zig-
zag scan order. At the start of the recurrence the values of
λ̂ML are used for prediction but, as the recurrence progresses,
predictions will be based on previously estimated values.

4. PSNR ESTIMATION

The parameter estimation method described in the previous
section can be used for the purpose of blindly estimate the
PSNR of images subject to DCT-based lossy encoding, with-
out requiring the original image data. Assuming pixel values
in the range of[0; 255], the image PSNR is usually given by:

PSNR[dB] = 10 log10

2552

1
M

∑M

k=1 ε2
k

, (13)

whereM is the number of pixels andε2
k is the squared error

between thek-th reference and distorted pixel. In the context
of this paper,M will be the number of DCT coefficients un-
der analysis andε2

k = (Xk − xk)2 will be the squared differ-
ence between original and quantized coefficients. Note that,
in accordance with Parceval’s theorem (and since DCT is an
unitary transform), it is indifferent to measure PSNR in the
pixel or in the DCT domain.

If the original DCT data distribution was known, the local
mean square error̂ε2

k at thek-th coefficient could be estimated
by observing the quantized values, according to:

ε̂2
k =

∫ +∞

−∞

fX(x|Xk)(Xk − x)2dx. (14)

UsingBayes ruleand knowing thatP (Xk|x) = 1 if the coef-
ficient x lies in the quantization interval centered inXk, and
P (Xk|x) = 0, otherwise, (14) can be rewritten as:

ε̂2
k =

1

P (Xk)

∫ Xk+
q
k
2

Xk−
q
k
2

fX(x)(Xk − x)2dx, (15)

with fX(x) and P (Xk) given by (1) and (4), respectively.
The laplacian parameter to use in these expressions will be
the value of̂λf that results from (12).

5. RESULTS

The effectiveness of the proposed algorithm has been evalu-
ated using the video sequences displayed in figure 2 subject to
MPEG-2 encoding. Sequences have been encoded at differ-
ent rates, between 256 and 4096 kbit/s, using a GOP-12 frame
structure with a prediction interval of 3 frames
(IBBPBBPBBPBB...).

PSNR of the encoded sequences has been estimated for
each I-frame and confronted with its true value. Figure 3 de-
picts two examples that illustrate the PSNR evolution along



Fig. 2. Video sequences used in the experiments. From left to right: Akyo; Coastguard; Tempete; Football; Foreman; Stephan;
Table-tennis; Mobile & Calendar. All sequences have352 × 288 resolution and 25 Hz frame rates.
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(a) Coastguard (512kb/s).
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(b) Stephan (1024kb/s).

Fig. 3. PSNR estimation examples.

λ Pred. LC
Mean error [dB] 0.632 0.968
Root mean square error [dB] 0.806 1.171
Error value at percentile 99 [dB] 2.324 3.257
Correlation (with true value) 0.993 0.988

Table 1. PSNR estimation error statistics.

the video sequences. For comparison purposes, the results
computed by thelaplacian compensation(LC) algorithm pro-
posed in [2] are also displayed.

Table 1 depicts the global experimental results, which ac-
count for all the video sequences, encoded at the mentioned
rates (these results correspond to 960 PSNR estimates). As
can be observed both from the figures an table, PSNR esti-
mates based on the proposed algorithm forλ estimation are
quite accurate, and closer to the true values than those result-
ing from thelaplacian compensationmethod.

6. CONCLUSIONS

A new method for estimating the original DCT coefficient
distribution, from their quantized values, has been proposed.
This method assumes that quantization is linear, but may have
different scales throughout each video frame. The proposed
frame work has been applied to compute the PSNR of en-
coded video sequences, without requiring the original ones.

For future work, we are planning on using similar ideas
for H.264/AVC encoded sequences, eventually with a differ-
ent coefficient distribution model and a different predictor
structure due to smaller block size in H.264/AVC. Due to its

ability to estimate the local error due to encoding, the method
proposed in the paper may also be useful for other applica-
tions, such as artifact reduction.
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