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ABSTRACT 

 
This paper presents the macroblock/slice level pipeline 
structure for an H.264/AVC HP@L4.2 codec. In H.264/AVC, 
level 4.2 (L4.2) in high profile (HP) describes the 
encoding/decoding capability of 1920×1088@64p sequence/ 
bitstream of up to 62.5 Mbps. To meet this tremendous 
specification, the novel hardwired architecture of the 
H.264/AVC codec is also presented. It supports both encoding 
and decoding and shares commonly used hardware modules. In 
our system, the video subsystem including the H.264/AVC 
codec is classified into four principle functions: video coding, 
memory management, reference cache-buffer control, and top 
control. With regard to H.264/AVC processing, the video 
coding function comprises eight modules. These modules are 
arranged as a six-stage macroblock pipeline for the encoder and 
a four-stage macroblock pipeline for the decoder. With the 
proposed schemes adopted, a software C model and an FPGA 
platform were developed for verification. The simulation results 
indicate that our design approach successfully performs the 
real-time encoding/decoding of the H.264/AVC HP@L4.2 
sequence/bitstream at an operating frequency of 266MHz. 
 
Index Terms: H.264/AVC, high profile, level4.2, VLSI, 
pipelining structure 
 

1. INTRODUCTION 
 
With the efforts of the Joint Video Team (JVT), formed by both 
the ITU-T Video Coding Experts Group (VCEG) and the 
ISO/IEC Moving Picture Experts Group (MPEG), the present 
standardization process of H.264/AVC has been finalized in 
2004 and it provides the good video quality at substantially 
lower bitrates than previous standards and increased flexibility 
in the use of various applications [1]. H.264/AVC outperforms 
other previous coding standards in coding performance; 
however, this is achieved at the cost of extensive computational 
complexity. Specifically, the resulting coding gain comes from 
state-of-the-art coding tools such as context-adaptive entropy 
coding, intra prediction, multiple reference frames, more 
accurate pixel interpolation, variable block sizes, and in-loop 
filter particularly for low bitrates. 

In recent years, several preceding researches pertaining to 
this subject have investigated the analysis, design, and 
implementation of the hardware architecture of the H.264/AVC 
BP/MP codec for HD application [2][3]. According to these 
researches, hardware acceleration is a prerequisite for the real-
time application of H.264/AVC due to high computational 

complexity, memory access requirements, data dependency, and 
a long coding path. In addition, they drew the optimal design 
and implementation based on target specifications. However, 
adopting those designs intactly just by means of (1) raising the 
operating frequency or (2) putting an additional bus/memory/ 
pipeline stage to suit the design, because of the lower memory 
bandwidth requirement and longer processing cycles of 
macroblock pipeline stage, is undesirable. In particular, 
applying these designs is at best a suboptimal solution for our 
design specification in resource/power aspects. 

In this paper, in order to overcome the design obstacles to 
achieve the efficient codec architecture and its real-time 
processing, the macroblock level pipeline structures for the 
H.264/AVC HP@L4.2 encoder/decoder are presented together 
with bandwidth reduction schemes for external memory. The 
proposed H264/AVC system comprises three principal sub-
systems: audio, TS, and video. The video sub-system is further 
divided into four principal functions, namely, video coding, 
memory management, reference cache-buffer control, and top 
control. In consideration of data dependency, resource sharing, 
and processing cycle, we divide the video coding function into 
eight primitive coding modules: SDMA, IPME, SPMES, 
SPMEM, MCR, RECON, ENT, and DEBLK. These modules 
are rearranged as a six-stage macroblock pipeline for the 
encoder and a four-stage macroblock pipeline for the decoder 
according to different coding purposes and higher level of 
parallel processing. With the proposed schemes adopted, the 
software C model and FPGA platform were developed for 
verification. The simulation results indicate that our design 
approach successfully meets the real-time encoding/decoding of 
the H.264/AVC HP@L4.2 sequence/bitstream at an operating 
frequency of 266MHz. 

The remainder of this paper is organized as follows. In 
Section 2 describes our system architecture. Section 3 presents 
the proposed macroblock level pipeline structures; Section 4, 
the implementation results. Finally, the concluding remarks are 
provided in Section 5. 
 

2. DESIGN CONSIDERATION 
 
In H.264/AVC, in comparison with the main profile (MP), the 
high profile (HP) represents some additional coding 
functionalities, which includes monochrome (4:0:0) support for 
input format flexibility and nine intra8×8 modes, 4×4/8×8 
transform adaptivity, quantization scaling matrices, and 
separate Cb/Cr QP control in order to improve the coding 
performance and codec flexibility; moreover, the HP is regarded 
as 20% more complex than the MP with the target applications 



remaining the same. The term of level 4.2 (L4.2) in the high 
profile describes the encoding/decoding capability of 1920× 
1088@64p sequence/bitstream of up to 62.5 Mbps, respectively. 
The bitrate (bps) and the macroblock throughput (MBps) of 
HP@L4.2 respectively need to be 3.125 and 2.125 times more 
than those of MP@L4.0, which is a specification for HDTVs. 

The excessive HP@L4.2 specification results in two major 
problems for hardware design and its implementation. First, the 
processing cycles are inversely proportional to the operating 
frequency and the data rates. Subsequently, this greatly 
increases the hardware cost and the design overhead. For 
efficient hardware implementation, highly utilized parallel 
architectures with hardware-oriented encoding algorithms are 
required. Second, the bus bandwidth requirement also increases 
alongside higher data rates. For example, the encoding of a 
4:2:0 1920×1088 reference-B picture (1 slice/picture) with 2 
references requires a minimum of about 12.5 Mbytes. Hence, 
efficient memory management and bus arbitration must be 
considered to reduce the bus bandwidth.  

Our system supports encoder/decoder functionalities 
together. Thus, the commonly employed hardware modules 
must be designed such that they can share both coding paths. 
This can be achieved by module interface (I/F) modification by 
means of a codec controller as well as hardware register setting 
by an RSIC processor. 

According to the H.264/AVC HP@L4.2 specification, the 
maximum macroblock processing rate is 522,240 MBps for 
1920×1088@64p. According to our peak specification, the 
target macroblock processing rate is 489,600 MBps for 
1920×1088@60p. When the system runs at 266 MHz, the 
maximum processing cycles are represented by 543 clock/MB, 
that is, the value of the system operating frequency divided by 
the target macroblock processing rate. However, considering the 
time taken by the RISC unit to process the sequence parameter 
set, picture parameter set, and slice header information of 
H.264/AVC and to manage the system level control signal and 
the system margin for real-time applications, the target 
processing cycles of our design specification are set to 500 
clock/MB with an approximate 10% margin.  
 

3. PROPOSED PIPELINE ARCHITECTURE 
 
3.1. System Overview 
 
Our system is targeted for HD applications that include HDTVs 
and next-generation optical discs (e.g. Blu-ray, HD-DVD). On 

the other hand, one of the main aims of our research is to 
achieve more data throughput with less resources/power in the 
coming applications, which is scheduled to commence shortly. 
Fig. 1 shows the block diagram of this system. 

The system comprises three principal sub-systems: audio, 
TS, and video. The audio subsystem performs the 
encoding/decoding of Blu-ray/HD-DVD audio using a dedicated 
audio RISC. The TS subsystem processes the packing/ 
unpacking of Blu-ray/HD-DVD wrapper, multiplexing/ 
demultiplexing of TS bitstream, and encoding/decoding of the 
H.264/AVC entropy coder (CAVLC/CABAC). The video 
subsystem is responsible for encoding/decoding the 
functionalities of the H.264/AVC video. The video subsystem is 
further divided into four principal functions, namely, video 
coding, memory management, reference cache-buffer control, 
and top control. Taking into account data dependency, resource 
sharing, and parallel processing, and the processing cycle, the 
video coding function is further separated into eight primitive 
coding modules: SDMA, IPME, SPMES, SPMEM, MCR, 
RECON, DBLK, and ENT. These coding modules may include 
several subcoding modules. For example, IPME includes RC. 
The following seven subcoding modules are in an increasing 
stage order of encoder: RC, INTE, CC, MD, INTD, TNQ, and 
MVP. Table 1 presents a brief description of all the coding 
modules. The memory management function consists of the 
following two modules: BAP (bus access port) and BAM (bus 
access multiplexer). All requests from the video subsystems to 
the external memory pass through BAM/BAP. According to our 
analysis on bus request types, patterns, timings, and lengths 
with respect to video sub-system, these modules performs bus 
arbitration and choose the most adequate request among 
complex request inputs. 

The reference cache-buffer control (RCB) carries out pre-

Table 1. Coding modules and their operation description: 
Encoder only (e), decoder only (d) 

 

RC (e) Rate-control by a scheme that maintains constant 
quality at target bitrate 

INTE (e) Intra-mode derivation 

CC (e) Correction of the missing color information caused 
by luma ME, by properly modifying MBQP  

MD (e) Mode decision 

INTD Predictor generation in an intra macroblock 

TNQ IDCT/DCT/Q/IQ 

MVP Derivation of motion vector predictor 

SDMA It performs reference data management for a given 
buffer size for IPME/SPMES/SPMEM /MCR, 
specifically pre-buffering of reference picture to 
improve bus efficiency. It requires an amount of 
reference cache-buffers to storage 

IPME (e) Integer-pel motion estimation 

SPMES (e) Searching part of sub-pel motion estimation 

SPMEM (e) MC part of sub-pel motion estimation 

MCR (d) It reads reference data from external memory for 
motion compensation when SDMA doesn’t take it. 

MCP Motion compensation 

RECON It performs macroblock reconstruction from outputs 
of TNQ, INTD, and MCP.  

DEBLK In-loop filter 

ENT It performs the packing/unpacking of data. In fact, 
the coding is performed in a TS subsystem. 
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Fig. 1. Block diagram of the overall system 
 



buffering of the reference data for inter prediction to reduce bus 
bandwidth by means of reusing reference data. The proposition 
for this is that the reference index and motion vector are 
distributed in limited ranges over most cases of inter prediction. 
According to our profiling, this proposition is more than 90% 
accurate. However, this approach has an inevitable shortcoming 
in that it needs a mass buffer for reference pictures.  

The top control function (TOP) is responsible for overall 
controls for the video subsystem with regards to the following 
jobs: codec register load, coding flow control, I/F arrangements 
between coding modules, and stage buffer management. 
 
3.2. Two-level pipeline architecture 
 
We employ the two-level pipeline architecture in this system. 
First, a parsing part by a RISC processor and a coding part by a 
hardwired codec together form a slice-level pipeline structure. 
Subsequently, the coding part operates under the macroblock-
level pipeline structure. In the slice-level pipeline process, each 
of the parsing and coding parts becomes a pipeline stage. In the 
parsing stage, the parsing part processes the slice data and the 
codec register setting. In the coding stage, the hardwired codec 
begins processing according to codec registers set by the RISC 
processor. The two-pipeline stage is executed concurrently and 
stalls whenever the previous stages are not completed on time. 

The second level pipelining is carried out on a macroblock 
level in the coding part. The detailed description of the 
macroblock-level pipelining structures is described in the 
following subsection. 
 
3.3. Macroblock-level pipeline architecture 
 
The proposed system architecture and the macroblock-level 
pipeline structure, with regard to the encoder are shown in 
Figure 2. We employ the six-stage macroblock pipeline 
structure, which contains seven primitive coding modules, 
namely, SDMA, IPME, SPMES, SPMEM, RECON, DEBLK, 
and ENT. A brief description of these has already been 
presented in Table 1. According to our analysis, we design all 
stages and primitive modules under the target processing cycles 
with evenly distributed computation and bus requirements. 

With regard to the decoder, its design is very similar to 
that of the encoder system. The decoder system architecture and 
its macroblock-level pipelining structure are presented in 

Figure 3. The decoder system employs the four-stage 
macroblock pipelining structure, containing five primitive 
coding modules, namely, SDMA, ENT, MCR, RECON, and 
DEBLK. The modules, which are commonly adopted by both 
the encoder and decoder, are reused. 
 
3.4. Hardware algorithm modification 
 
To improve the codec performance, we address the four 
principal issues that are adopted in our system. First, the 
primitive coding modules, such as SDMA, DEBLK, ENT, and 
MCR, need the external memory access. Here, to reduce 
waiting cycles, these modules adopt pre/post-buffering. For 
example, in the (N-1)th MB, pre-buffering prepares any 
information for Nth MB. Thus, a processing in the Nth MB 
begins without data waiting. Even if it requires the store buffer 
of 2 Mbytes or more, it deserves to be adopted, particularly for 
real-time HD applications. 

Second, the typical ME process uses only luma data due to 
issues pertaining to human vision and the trade-off of visual 
quality and computational complexity. However, it cannot 
search the accurate MV if the current region and reference 
region have the same luma values but different chroma values. 
According to our approach, following the application of the 
conventional ME process, our color correction (CC) method is 
applied to compensate for the missed color residual. This 
procedure is illustrated in Figure 4. The color correction can be 
regarded as a suboptimal method to compensate missing color 
information with much less resource/computational complexity 
than the luma/chroma ME. 
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Fig. 2. Block diagram of the encoding system with the six-stage 
macroblock pipelining architecture 
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Fig. 3. Block diagram of the decoding system with the four-stage 
pipelining architecture 

 

Predicted 

Macroblock

Original 

Macroblock

Color Space 

Conversion

Color Space 

Conversion

Color Difference 

Measure

Color Coefficient 
Adjustment

To make it easy to detect the 
missing chroma information, the 
color space is converted.

The color correction is arranged 
in the 4th stage.

Select the suitable distance 
measure.

Using color differences as a 
criterion, adjust chroma 
coefficients.  

 
Fig. 4. Flow diagram of the color correction 



 
Third, the entropy coder in H.264/AVC has a great amount 

of data dependencies by means of context adaptation; hence, it 
requires sequential processing by bin-wise recursive processing. 
Moreover, its processing cycles are proportional to data rates 
and thus, in a worst case scenario, they are far beyond the target 
processing cycles to prevent real-time processing, while its 
average processing cycles are definitely lower than the target 
cycles. To resolve this problem, we arrange the entropy coder 
into the TS subsystem, and data exchange between the TS 
subsystem and the video subsystem is achieved through external 
memory. Here, a hardware accelerator is for entropy 
encoding/decoding by 1 clock/bin processing. 

Lastly, IPME requires an accurate MVP for a search center 
and an MV cost. However, IPME and MD are in a different 
stage, and thus, IPME never uses final MVs to derive MVPs. 
As a suitable alternative, IPME uses the intermediate MVs, 
which is derived from itself as inputs for MD. It operates well 
with minor quality degradation. 
 

4. IMPLEMENTATION RESULTS 
 
The H.264/AVC HP@L4.2 codec that adopts the proposed 
pipeline architecture has been developed and tested on our 
FPGA platform. The real-time processing was verified using 2 
1920×1088@60p sequences and its encoded bitstreams with 40 
Mbps bitrate. The profiling results of the processing cycles at 
each stage are described in Table 2 for the encoder and Table 3 
for the decoder. Figure 4 presents the codec configuration 
employed in the verification. According to the profiling results, 
all stages are under the target frequency cycles of 500 clock/MB 
for the real-time applications. Thus, the proposed architecture 
meets the design constraints in terms of the H.264/AVC 
HP@L4.2 codec. 

Figure 5 shows the RD performance comparison our 
hardware-like software codec with JM12.2. The encoding 
configuration of JM12.2 is as similar to that of our codec as 
possible. The RD curve shows that the encoded result of our 
design is considerably comparable with that of JM at a minor 
PSNR degradation of 0.1 to 0.3dB.  
 

5. CONCLUSION 
 
We presented the novel hardware architecture and the 
macroblock-level pipeline structure for the H.264/AVC 

HP@L4.2 codec. This design supports both encoding and 
decoding and shares commonly used hardware modules. The 
proposed pipeline structure contains a two-level slice pipeline, 
six-stage macroblock pipeline for the encoder, and four-stage 
macroblock pipeline for the decoder. The design has been 
verified on the hardware-like C model and the FPGA platform. 
According to the simulation results, the proposed pipeline 
architecture was suitable for the real-time processing. Besides, 
through the RD performance comparison, our codec is 
considerably comparable to JM12.2 at an ignorable PSNR loss.  
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 Table 4. Configuration of the proposed codec for a test 
 

Encoding Features 
 
Decoding Features 
 
 
Maximum Number  
of Reference 
Maximum SR 
 
Period I 
GOP structure 

High Profile @ Level 4.2 
(1920×1088@60p) 
Fully compliant to HP@L4.2 (up to 
1920×1088@60p for real-time 
processing) 
2 in P/B 
 
H[-2048.75,2047.75] V[-56.75,55.75]  
in quarter pel unit 
Every 30 frames (0.5sec) 
Two-level pyramid coding 

 

Table 3. Decoder profiling results of processing cycles 
 

 I-slice P-slice B-slice 
stage 1 
stage 2 
stage 3 
stage 4 

285 
2 

156 
340 

278 
50 

130 
340 

274 
168 
138 
340 

 

Table 2. Encoder profiling results of processing cycles  
 

 I-slice P-slice B-slice 
stage 1 
stage 2 
stage 3 
stage 4 
stage 5 
stage 6 

254 
280 
448 

2 
328 
448 

487 
488 
448 
442 
419 
425 

Same as P 
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