
PIPELINING ARCHITECTURE DESIGN OF THE H.264/AVC HP@L4.2
CODEC FOR HD APPLICATIONS

Kiwon Yoo1,2, Jun Ho Cho1, Chan-Sik Park1, TaeKyoung Ahn1,

Jae-Hun Lee1, and Kwanghoon Sohn2

1Digital Media R&D Center, Samsung Electronics, Suwon, Korea

2Department of Electrical Engineering, Yonsei University, Seoul, Korea
E-mail: ykiwon@samsung.com

ABSTRACT

This paper presents the macroblock/slice level pipeline
structure for an H.264/AVC HP@L4.2 codec. In H.264/AVC,
level 4.2 (L4.2) in high profile (HP) describes the
encoding/decoding capability of 1920×1088@64p sequence/
bitstream of up to 62.5 Mbps. To meet this tremendous
specification, the novel hardwired architecture of the
H.264/AVC codec is also presented. It supports both encoding
and decoding and shares commonly used hardware modules. In
our system, the video subsystem including the H.264/AVC
codec is classified into four principle functions: video coding,
memory management, reference cache-buffer control, and top
control. With regard to H.264/AVC processing, the video
coding function comprises eight modules. These modules are
arranged as a six-stage macroblock pipeline for the encoder and
a four-stage macroblock pipeline for the decoder. With the
proposed schemes adopted, a software C model and an FPGA
platform were developed for verification. The simulation results
indicate that our design approach successfully performs the
real-time encoding/decoding of the H.264/AVC HP@L4.2
sequence/bitstream at an operating frequency of 266MHz.

Index Terms: H.264/AVC, high profile, level4.2, VLSI,
pipelining structure

1. INTRODUCTION

With the efforts of the Joint Video Team (JVT), formed by both
the ITU-T Video Coding Experts Group (VCEG) and the
ISO/IEC Moving Picture Experts Group (MPEG), the present
standardization process of H.264/AVC has been finalized in
2004 and it provides the good video quality at substantially
lower bitrates than previous standards and increased flexibility
in the use of various applications [1]. H.264/AVC outperforms
other previous coding standards in coding performance;
however, this is achieved at the cost of extensive computational
complexity. Specifically, the resulting coding gain comes from
state-of-the-art coding tools such as context-adaptive entropy
coding, intra prediction, multiple reference frames, more
accurate pixel interpolation, variable block sizes, and in-loop
filter particularly for low bitrates.

In recent years, several preceding researches pertaining to
this subject have investigated the analysis, design, and
implementation of the hardware architecture of the H.264/AVC
BP/MP codec for HD application [2][3]. According to these
researches, hardware acceleration is a prerequisite for the real-
time application of H.264/AVC due to high computational

complexity, memory access requirements, data dependency, and
a long coding path. In addition, they drew the optimal design
and implementation based on target specifications. However,
adopting those designs intactly just by means of (1) raising the
operating frequency or (2) putting an additional bus/memory/
pipeline stage to suit the design, because of the lower memory
bandwidth requirement and longer processing cycles of
macroblock pipeline stage, is undesirable. In particular,
applying these designs is at best a suboptimal solution for our
design specification in resource/power aspects.

In this paper, in order to overcome the design obstacles to
achieve the efficient codec architecture and its real-time
processing, the macroblock level pipeline structures for the
H.264/AVC HP@L4.2 encoder/decoder are presented together
with bandwidth reduction schemes for external memory. The
proposed H264/AVC system comprises three principal sub-
systems: audio, TS, and video. The video sub-system is further
divided into four principal functions, namely, video coding,
memory management, reference cache-buffer control, and top
control. In consideration of data dependency, resource sharing,
and processing cycle, we divide the video coding function into
eight primitive coding modules: SDMA, IPME, SPMES,
SPMEM, MCR, RECON, ENT, and DEBLK. These modules
are rearranged as a six-stage macroblock pipeline for the
encoder and a four-stage macroblock pipeline for the decoder
according to different coding purposes and higher level of
parallel processing. With the proposed schemes adopted, the
software C model and FPGA platform were developed for
verification. The simulation results indicate that our design
approach successfully meets the real-time encoding/decoding of
the H.264/AVC HP@L4.2 sequence/bitstream at an operating
frequency of 266MHz.

The remainder of this paper is organized as follows. In
Section 2 describes our system architecture. Section 3 presents
the proposed macroblock level pipeline structures; Section 4,
the implementation results. Finally, the concluding remarks are
provided in Section 5.

2. DESIGN CONSIDERATION

In H.264/AVC, in comparison with the main profile (MP), the
high profile (HP) represents some additional coding
functionalities, which includes monochrome (4:0:0) support for
input format flexibility and nine intra8×8 modes, 4×4/8×8
transform adaptivity, quantization scaling matrices, and
separate Cb/Cr QP control in order to improve the coding
performance and codec flexibility; moreover, the HP is regarded
as 20% more complex than the MP with the target applications

remaining the same. The term of level 4.2 (L4.2) in the high
profile describes the encoding/decoding capability of 1920×
1088@64p sequence/bitstream of up to 62.5 Mbps, respectively.
The bitrate (bps) and the macroblock throughput (MBps) of
HP@L4.2 respectively need to be 3.125 and 2.125 times more
than those of MP@L4.0, which is a specification for HDTVs.

The excessive HP@L4.2 specification results in two major
problems for hardware design and its implementation. First, the
processing cycles are inversely proportional to the operating
frequency and the data rates. Subsequently, this greatly
increases the hardware cost and the design overhead. For
efficient hardware implementation, highly utilized parallel
architectures with hardware-oriented encoding algorithms are
required. Second, the bus bandwidth requirement also increases
alongside higher data rates. For example, the encoding of a
4:2:0 1920×1088 reference-B picture (1 slice/picture) with 2
references requires a minimum of about 12.5 Mbytes. Hence,
efficient memory management and bus arbitration must be
considered to reduce the bus bandwidth.

Our system supports encoder/decoder functionalities
together. Thus, the commonly employed hardware modules
must be designed such that they can share both coding paths.
This can be achieved by module interface (I/F) modification by
means of a codec controller as well as hardware register setting
by an RSIC processor.

According to the H.264/AVC HP@L4.2 specification, the
maximum macroblock processing rate is 522,240 MBps for
1920×1088@64p. According to our peak specification, the
target macroblock processing rate is 489,600 MBps for
1920×1088@60p. When the system runs at 266 MHz, the
maximum processing cycles are represented by 543 clock/MB,
that is, the value of the system operating frequency divided by
the target macroblock processing rate. However, considering the
time taken by the RISC unit to process the sequence parameter
set, picture parameter set, and slice header information of
H.264/AVC and to manage the system level control signal and
the system margin for real-time applications, the target
processing cycles of our design specification are set to 500
clock/MB with an approximate 10% margin.

3. PROPOSED PIPELINE ARCHITECTURE

3.1. System Overview

Our system is targeted for HD applications that include HDTVs
and next-generation optical discs (e.g. Blu-ray, HD-DVD). On

the other hand, one of the main aims of our research is to
achieve more data throughput with less resources/power in the
coming applications, which is scheduled to commence shortly.
Fig. 1 shows the block diagram of this system.

The system comprises three principal sub-systems: audio,
TS, and video. The audio subsystem performs the
encoding/decoding of Blu-ray/HD-DVD audio using a dedicated
audio RISC. The TS subsystem processes the packing/
unpacking of Blu-ray/HD-DVD wrapper, multiplexing/
demultiplexing of TS bitstream, and encoding/decoding of the
H.264/AVC entropy coder (CAVLC/CABAC). The video
subsystem is responsible for encoding/decoding the
functionalities of the H.264/AVC video. The video subsystem is
further divided into four principal functions, namely, video
coding, memory management, reference cache-buffer control,
and top control. Taking into account data dependency, resource
sharing, and parallel processing, and the processing cycle, the
video coding function is further separated into eight primitive
coding modules: SDMA, IPME, SPMES, SPMEM, MCR,
RECON, DBLK, and ENT. These coding modules may include
several subcoding modules. For example, IPME includes RC.
The following seven subcoding modules are in an increasing
stage order of encoder: RC, INTE, CC, MD, INTD, TNQ, and
MVP. Table 1 presents a brief description of all the coding
modules. The memory management function consists of the
following two modules: BAP (bus access port) and BAM (bus
access multiplexer). All requests from the video subsystems to
the external memory pass through BAM/BAP. According to our
analysis on bus request types, patterns, timings, and lengths
with respect to video sub-system, these modules performs bus
arbitration and choose the most adequate request among
complex request inputs.

The reference cache-buffer control (RCB) carries out pre-

Table 1. Coding modules and their operation description:
Encoder only (e), decoder only (d)

RC (e) Rate-control by a scheme that maintains constant
quality at target bitrate

INTE (e) Intra-mode derivation

CC (e) Correction of the missing color information caused
by luma ME, by properly modifying MBQP

MD (e) Mode decision

INTD Predictor generation in an intra macroblock

TNQ IDCT/DCT/Q/IQ

MVP Derivation of motion vector predictor

SDMA It performs reference data management for a given
buffer size for IPME/SPMES/SPMEM /MCR,
specifically pre-buffering of reference picture to
improve bus efficiency. It requires an amount of
reference cache-buffers to storage

IPME (e) Integer-pel motion estimation

SPMES (e) Searching part of sub-pel motion estimation

SPMEM (e) MC part of sub-pel motion estimation

MCR (d) It reads reference data from external memory for
motion compensation when SDMA doesn’t take it.

MCP Motion compensation

RECON It performs macroblock reconstruction from outputs
of TNQ, INTD, and MCP.

DEBLK In-loop filter

ENT It performs the packing/unpacking of data. In fact,
the coding is performed in a TS subsystem.

TS
Subsystem

Audio
Subsystem

Video
Subsystem

System Backbone Bus
(32-bit AXI)

Multimedia Bus
(64-bit AXI)

Bridge

Pre/
Post

DRAM
Ctrl

DRAM

HW

RISC RCB BAMBAPRISCRISC

HW

Fig. 1. Block diagram of the overall system

buffering of the reference data for inter prediction to reduce bus
bandwidth by means of reusing reference data. The proposition
for this is that the reference index and motion vector are
distributed in limited ranges over most cases of inter prediction.
According to our profiling, this proposition is more than 90%
accurate. However, this approach has an inevitable shortcoming
in that it needs a mass buffer for reference pictures.

The top control function (TOP) is responsible for overall
controls for the video subsystem with regards to the following
jobs: codec register load, coding flow control, I/F arrangements
between coding modules, and stage buffer management.

3.2. Two-level pipeline architecture

We employ the two-level pipeline architecture in this system.
First, a parsing part by a RISC processor and a coding part by a
hardwired codec together form a slice-level pipeline structure.
Subsequently, the coding part operates under the macroblock-
level pipeline structure. In the slice-level pipeline process, each
of the parsing and coding parts becomes a pipeline stage. In the
parsing stage, the parsing part processes the slice data and the
codec register setting. In the coding stage, the hardwired codec
begins processing according to codec registers set by the RISC
processor. The two-pipeline stage is executed concurrently and
stalls whenever the previous stages are not completed on time.

The second level pipelining is carried out on a macroblock
level in the coding part. The detailed description of the
macroblock-level pipelining structures is described in the
following subsection.

3.3. Macroblock-level pipeline architecture

The proposed system architecture and the macroblock-level
pipeline structure, with regard to the encoder are shown in
Figure 2. We employ the six-stage macroblock pipeline
structure, which contains seven primitive coding modules,
namely, SDMA, IPME, SPMES, SPMEM, RECON, DEBLK,
and ENT. A brief description of these has already been
presented in Table 1. According to our analysis, we design all
stages and primitive modules under the target processing cycles
with evenly distributed computation and bus requirements.

With regard to the decoder, its design is very similar to
that of the encoder system. The decoder system architecture and
its macroblock-level pipelining structure are presented in

Figure 3. The decoder system employs the four-stage
macroblock pipelining structure, containing five primitive
coding modules, namely, SDMA, ENT, MCR, RECON, and
DEBLK. The modules, which are commonly adopted by both
the encoder and decoder, are reused.

3.4. Hardware algorithm modification

To improve the codec performance, we address the four
principal issues that are adopted in our system. First, the
primitive coding modules, such as SDMA, DEBLK, ENT, and
MCR, need the external memory access. Here, to reduce
waiting cycles, these modules adopt pre/post-buffering. For
example, in the (N-1)th MB, pre-buffering prepares any
information for Nth MB. Thus, a processing in the Nth MB
begins without data waiting. Even if it requires the store buffer
of 2 Mbytes or more, it deserves to be adopted, particularly for
real-time HD applications.

Second, the typical ME process uses only luma data due to
issues pertaining to human vision and the trade-off of visual
quality and computational complexity. However, it cannot
search the accurate MV if the current region and reference
region have the same luma values but different chroma values.
According to our approach, following the application of the
conventional ME process, our color correction (CC) method is
applied to compensate for the missed color residual. This
procedure is illustrated in Figure 4. The color correction can be
regarded as a suboptimal method to compensate missing color
information with much less resource/computational complexity
than the luma/chroma ME.

SDMA IPME SPMES
SPMEM RECON

DEBLK

ENT

1st Stage 2nd Stage 3rd Stage 4th Stage 5th Stage 6th Stage

Multimedia Bus (64-bit AXI)

TOP BAM BAP RCB

BAM RCB RCB RCB RCB BAM

RISC

INTE

INTD
MD

RC

TNQ

MVP

CC

from/to BAM

btw modules

MCP

Fig. 2. Block diagram of the encoding system with the six-stage
macroblock pipelining architecture

SDMA

ENT

MCR
RECON

DEBLK

BAM RCB BAM RCB

TOP BAM BAP RCBTDMA

Multimedia Bus (64-bit AXI)

BAM

RISC

INTD

TNQ

from/to BAM

btw modules

MVP

1st Stage 2nd Stage 3rd Stage 4th Stage

MCP

Fig. 3. Block diagram of the decoding system with the four-stage
pipelining architecture

Predicted

Macroblock

Original

Macroblock

Color Space

Conversion

Color Space

Conversion

Color Difference

Measure

Color Coefficient
Adjustment

To make it easy to detect the
missing chroma information, the
color space is converted.

The color correction is arranged
in the 4th stage.

Select the suitable distance
measure.

Using color differences as a
criterion, adjust chroma
coefficients.

Fig. 4. Flow diagram of the color correction

Third, the entropy coder in H.264/AVC has a great amount

of data dependencies by means of context adaptation; hence, it
requires sequential processing by bin-wise recursive processing.
Moreover, its processing cycles are proportional to data rates
and thus, in a worst case scenario, they are far beyond the target
processing cycles to prevent real-time processing, while its
average processing cycles are definitely lower than the target
cycles. To resolve this problem, we arrange the entropy coder
into the TS subsystem, and data exchange between the TS
subsystem and the video subsystem is achieved through external
memory. Here, a hardware accelerator is for entropy
encoding/decoding by 1 clock/bin processing.

Lastly, IPME requires an accurate MVP for a search center
and an MV cost. However, IPME and MD are in a different
stage, and thus, IPME never uses final MVs to derive MVPs.
As a suitable alternative, IPME uses the intermediate MVs,
which is derived from itself as inputs for MD. It operates well
with minor quality degradation.

4. IMPLEMENTATION RESULTS

The H.264/AVC HP@L4.2 codec that adopts the proposed
pipeline architecture has been developed and tested on our
FPGA platform. The real-time processing was verified using 2
1920×1088@60p sequences and its encoded bitstreams with 40
Mbps bitrate. The profiling results of the processing cycles at
each stage are described in Table 2 for the encoder and Table 3
for the decoder. Figure 4 presents the codec configuration
employed in the verification. According to the profiling results,
all stages are under the target frequency cycles of 500 clock/MB
for the real-time applications. Thus, the proposed architecture
meets the design constraints in terms of the H.264/AVC
HP@L4.2 codec.

Figure 5 shows the RD performance comparison our
hardware-like software codec with JM12.2. The encoding
configuration of JM12.2 is as similar to that of our codec as
possible. The RD curve shows that the encoded result of our
design is considerably comparable with that of JM at a minor
PSNR degradation of 0.1 to 0.3dB.

5. CONCLUSION

We presented the novel hardware architecture and the
macroblock-level pipeline structure for the H.264/AVC

HP@L4.2 codec. This design supports both encoding and
decoding and shares commonly used hardware modules. The
proposed pipeline structure contains a two-level slice pipeline,
six-stage macroblock pipeline for the encoder, and four-stage
macroblock pipeline for the decoder. The design has been
verified on the hardware-like C model and the FPGA platform.
According to the simulation results, the proposed pipeline
architecture was suitable for the real-time processing. Besides,
through the RD performance comparison, our codec is
considerably comparable to JM12.2 at an ignorable PSNR loss.

REFERENCES

[1] J. Ostermann, J. Bormans, P. List, D. Marpe, M.
Narroschke, F. Pereira, T. Stockhammer, and T. Wedi, “Video
coding with H.264/AVC; tools, performance, and complexity,”
IEEE Circuits Syst. Mag., Vol. 4, No. 1, 1Q, 2004.
[2] Y.-W. Huang, B.-Y. Hsieh, T.-C. Chen, L.-G. Chen,
"Analysis and architecture design of an HDTV720p 30 frames/s
H.264/AVC Encoder," IEEE Trans. on CSVT, Vol.16, No.16,
Jun 2006.
[3] C.-C. Lin, J.-W. Chen, H.-C. Chang, Y.-C. Yang, Y.-H. O.
Yang, M.-C. Tsai, J.-I. Guo, J.-S. Wang, "A 160K Gates/4.5 KB
SRAM H.264 Video Decoder for HDTV Applications," IEEE
Journal of Solid-State Circuits, Vol.42, No.1, Jan 2007.
[4] FTP server from Munich Technical University. [Online]:
ftp://ftp.ldv.e-technik.tu-Menchen.de/pub/test_sequences/

Sunflower (PSNR vs Bitrate)

39.0

39.5

40.0

40.5

41.0

41.5

42.0

42.5

43.0

43.5

44.0

44.5

45.0

45.5

46.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Bitrate (Mbps)

P
S

N
R

 (
d
B

)

JM(ver12.2) Ours

Figure 5. RD performance comparison of the proposed
hardware-like software codec with JM12.2

 (Sunflower, 1920´1088@30p [4])

 Table 4. Configuration of the proposed codec for a test

Encoding Features

Decoding Features

Maximum Number
of Reference
Maximum SR

Period I
GOP structure

High Profile @ Level 4.2
(1920×1088@60p)
Fully compliant to HP@L4.2 (up to
1920×1088@60p for real-time
processing)
2 in P/B

H[-2048.75,2047.75] V[-56.75,55.75]
in quarter pel unit
Every 30 frames (0.5sec)
Two-level pyramid coding

Table 3. Decoder profiling results of processing cycles

 I-slice P-slice B-slice
stage 1
stage 2
stage 3
stage 4

285
2

156
340

278
50

130
340

274
168
138
340

Table 2. Encoder profiling results of processing cycles

 I-slice P-slice B-slice
stage 1
stage 2
stage 3
stage 4
stage 5
stage 6

254
280
448

2
328
448

487
488
448
442
419
425

Same as P

	Index
	PCS 2007 Home
	Conference Info
	Welcome from the Chairmen
	Welcome to Lisboa
	History
	Organizing Committee
	International Steering Committee
	Reviewing Committee
	Sponsors
	Registration
	Venue
	Hotel Information
	On-site Activities
	Social Activities
	General Information
	Portuguese for Dummies
	Conference Program

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Sessions
	Wednesday, 7 November 2007
	WedAM1-H.264/AVC and its Extensions: How Close is this ...
	WedAM2-Coding Standards 1
	WedAM3-Coding Standards 2
	WedAM4-Best Paper Award
	WedPM1-Scalable Video Coding
	WedPM3-Processing for Applications
	WedPM4-Scalable Coding

	Thursday, 8 November 2007
	ThursAM1-From Picture Coding to Image Understanding: Fi ...
	ThursAM2-3D and Multiview Video Coding
	ThursAM3-Multiview Video Coding
	ThursAM4-Image Coding
	ThursPM1-DCT, Wavelets and X-lets: The Quest for Image ...
	ThursPM2-Distributed Source Coding
	ThursPM4-Implementation
	ThursPM5-Distributed Video Coding

	Friday, 9 November 2007
	FriAM1-Efficient Representation of Sound Images: Recent ...
	FriAM2-Video Coding
	FriAM3-Error Resilience
	FriAM4-Quality Assessment
	FriPM1-Network Aware Coding
	FriPM3-Analysis for Coding 1
	FriPM4-Analysis for Coding 2

	Panel Sessions

	Papers
	All Papers
	Papers by Session

	Topics
	Coding of still and moving pictures
	Content-based and object-based coding
	Scalable video coding
	Coding of multiview video and 3D graphics
	Modeling and synthetic coding
	Virtual/augmented reality and telepresence
	Coding for mobile, IP and sensor networks
	High fidelity visual data processing and coding
	Analysis for coding and adaptation
	Transcoding and transmoding
	Joint audio and visual processing and coding
	Subjective and objective quality assessment metrics and ...
	Error robustness, resilience and concealment
	Coding and indexing for database applications
	Protection and integrity of visual data
	Persistent association of information to visual data
	Joint source and channel coding
	Implementation architectures and VLSI
	New applications and techniques for visual data coding
	Standards for visual data coding

	About
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configuration and Limitations

	Search
	Current paper
	Presentation session
	Abstract
	Authors
	Kiwon Yoo
	Kwanghoon Sohn

