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Abstract
In HMM-based speech synthesis using mel-cepstral parameters,
it has been observed that formant peaks tend to be flattened in
the synthetic speech. To alleviate this problem this paper in-
vestigates Mel-LSP (line Spectral Pairs) based speech synthe-
sis. First, using vowel spectra synthesized by four formants,
it is shown that the formant flattening for the centroid of mel-
LSP frequencies is mach less than that for mel-cepstra. After
overviewing the closed form of Mel-LPC analysis, a structure
of the Mel-LSP synthesis filter is presented. On the basis of
this mel-LSP parameterization, the mora HMMs are trained us-
ing the mel-LSP parameters and short sentences are synthesized
using them. The speech quality of these synthetic speech are
compared with that of speech synthesized by the mel-cepstrum
based HMMs. In A-B preference tests, Mel-LSP-based syn-
thetic speech were chosen 61% of time over Mel-cepstrum
based one.

1. Introduction
In recent years, various speech synthesis approaches based on
Hidden Markov Models (HMMs) have been proposed. These
approaches can be broadly classified into those that is based on
concatenation of natural speech segments [1], [2], [3] and those
that generate speech parameter sequence from HMMs them-
selves [4], [5]. The former approaches achieve a high quality
in naturalness and intelligibility, but require the huge amount
of storage capacity for speech data. The latter approaches do
not require such a storage, but have not yet achieved the speech
quality comparable to the former approaches.

In HMM-based speech parameter generation, the spectral
peaks tend to be wider and less significant in the synthetic
speech spectra. This ”formant flattening” which results in a
degradation in speech quality is caused by averaging feature
vectors on the cepstral domain over the wider variety of con-
textual variations. Therefore, to alleviate this phenomenon it is
effective to reduce coarticulation effects by context dependent
HMMs and also to increase number of mixture Gaussians [6].

Another approach to reduce this phenomenon is the us-
age of formant or formant-like parameters as a feature vector.
Although formant frequencies as a feature vector might com-
pletely avoid ”formant flattening”, automatic formant tracking
is very difficult problem. An alternative parameter is LSP (Line
Spectral Pair) frequency [7]. LSP frequencies have been widely
utilized in speech coding since LSP parameters exhibit good in-
terpolation properties and low distortion in quantization [8],[9].
In trainable speech synthesis based on HMMs, several studies
have attempted the LSP parameterization [10], [11].

This paper investigates a LSP-based HMM speech synthe-
sis. In particular, to realize auditory like frequency resolution,
we use the warped LSP frequencies based on the warped LPC
analysis ( hereafter the term ”warped” is referred to as ”mel”).

Unlike prevous works [10],[11], the mel-LSP trajectories are di-
rectly generated from HMMs with the static and dynamic mel-
LSP parameters [4], and then speech is synthesized using a mel-
LSP digital filter.

This paper is organized as follows. Section 2 quantitatively
compares the formant flattening between the centroids of the
mel-LSP and the mel-cepstral vectors. Section 3 first overview
the closed form of the mel-LPC analysis, and then presents the
mel-LSP synthesis filter. Section 4 evaluates the speech quality
comparing with the mel-cepstrum based HMM speech synthe-
sis. The final section presents concluding remarks and future
works.

2. Spectral Comparison of LSP and
Cepstral Centroids

First, this section compares the degree of formant flattening due
to averaging LSP and cepstral parameters. For this purpose,
synthetic vowel spectra composed of the four formant frequen-
cies xF = {F1, F2, F3, F4} are generated such that each Fi

has the independent Gaussian distribution N(µi, σ
2) in which

σ is set to the same value for the four formants. The formant
band width Bi is determined as a function of Fi,

Bi = 50{1 + F 2
i /(6 × 106)}. (1)

The 8-th order prediction coefficients are directly derived by
computing the four conjugate poles of the inverse filter from
the four formants {Fi, Bi} under the sampling frequency of
8kHz. Then, the 35-dimensional cepstral vector xC and the
8-dimensional LSP vector xL are computed from the pre-
diction coefficients. For a given standard deviation σ, the
centroid vectors x̄C and x̄L are calculated by averaging xC

and xL over 100 tokens, respectively. As an example, the
mean formant frequencies x̄F = {µ1, µ2, µ3, µ4} were set to
{780, 1240, 2720, 3350} (Hz) corresponding to the vowel /a/.
Figure 1 compares three spectra corresponding to x̄F , x̄L and
x̄C for σ = 200Hz.
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Figure 1: Comparison of the spectra corresponding to the cen-
troids of formant frequencies, LSP and cepstral coefficients.
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Figure 2: Spectral distances between centroid of formant vector
and centroids of LSP and Cepstrum vectors as a function of
standard deviation of formant frequencies.

It is clear that while the formant peaks on the spectrum of
x̄C are sevearly flattened, the spectrum of the LSP centroid x̄L

remains almost the same as that of the mean formant x̄F . Fig-
ure 2 also shows the spectral distances (dB/radian) between the
spectrum of x̄F and those of x̄C and x̄L as a function of the
standard deviation σ. From this figure, the spectral distance
between the spectra of xF and xL is much smaller than that be-
tween the spectra of xF and xC . Although some of the LSPs in
natural speech contribute to the glottal spectral shape, the for-
mant flattening effect might be decreased by the use of LSP.

3. Mel-LSP based Speech
Analysis/Synthesis

3.1. Mel-LPC analysis

This section overviews the Mel-LSP analysis. First, for fre-
quency warped speech signal x̃[n] (n = 0, ..,∞), which is bi-
linear transformed from a windowed input speech signal x[n]
(n = 0, 1, ..N − 1) [12], the following all-pole model is de-
fined [13].

H̃α(z̃) =
σ̃e

Ã(z̃)
=

σ̃e

1 +
Pp

k=1 ãkz̃−k
(2)

z̃−1 =
z̃−1 − α

1 − αz̃−1
(3)

where ãk is the k-th mel-prediction coefficient and σ̃2
e is the

residual energy.
On the basis of minimum prediction error energy for x̃[n]

over the infinite time span, ãk and σ̃e are given by Durbin’s al-
gorithm from the autocorrelation coefficients r̃[m] of x̃[n] de-
fined by

r̃[m] =

∞X
i=0

x̃[n]x̃[n − m], (4)

which is referred to as mel-autocorrelation function.
The mel-autocorrelation coefficients can be easily calcu-

lated from the input speech signal x[n] via following two steps
as shown in fig. 3 [14], [15]. First, the generalized autocorrela-
tion coefficients are calculated as

r̃α[m] =

N−1X
i=0

x[n]xm[n] (5)

where xm[n] is the output signal of an m-th order all-pass fil-
ter z̃−m excited by x0[n] = x[n]. That is, r̃α[m] is defined

x[n]�

�

Cross
Corr.

�
r̃α[m]

{W̃ (z̃)W̃ (z̃−1)}−1

r̃[m]

�

xm[n]

z̃(z)−m

�

Figure 3: Mel-autocorrelation function.

by replacing the unit delay zi with the first order all-pass filter
z̃(z)−1 in the definition of conventional autocorrelation func-
tion. Due to the frequency warping, r̃α[m] includes the fre-
quency weighting W̃ (ejω̃) given by

W̃ (z̃) =

√
1 − α2

1 + αz̃−1
. (6)

Thus, the weighting is then removed by inverse filtering
in the autocorrelation domain using {W̃ (z̃)W̃ (z̃−1)}−1. r̃[m]
(Mel-autocorrelation Coefficient) is obtained by

r̃[m] = β0r̃α[m] + β1{r̃α[m − 1] + r̃α[m + 1]} (7)

where
β0 = (1 + α2)(1 − α2)−

1
2 , (8)

β1 = α(1 − α2)−
1
2 . (9)

As in the conventional LPC, we have a symmetric polynom-
inal Q̃(z̃) and an anti-symmetric polynominal P̃ (z̃) defined by

P̃ (z̃) = Ã(z̃) + z̃−(p+q)Ã(z̃−1), (10)

Q̃(z̃) = Ã(z̃) − z̃−(p+q)Ã(z̃−1). (11)

Zeros of P̃ (z̃) and Q̃(z̃) are on the unit circle, and then their fre-
quencies ω̃s except 0 and π are called the Mel-LSP frequencies.
The even and odd numberd Mel-LSP frequencies corresponds
to zeros of P̃ (z̃) and Q̃(z̃), respectively, and these frequencies
are interlaced with each other.

3.2. Mel-LSP synthesis filter

For a given set of Mel-LSP frequencies, {ω̃1, x̃2, · · · , ω̃p} in
increasing order, the synthesis filter Ã−1(z̃(z)) is given by

Ã(z̃(z)) =
1

2
{P̃ (z̃) + Q̃(z̃)}. (12)

A direct form filter is realized as in [13] by converting Mel-LSP
frequencies into mel-prediction coefficients {ãi}. This paper
presents another form of the synthesis filter by directly using
Mel-LSP frequencies as in the conventional LSP-based filter
with some modifications.

For the even order p, the polynominals are factored as

P̃ (z̃) = (1 − z̃−1)
Y

i=2,4,··· ,p

gi · F̃i(z̃), (13)

Q̃(z̃) = (1 + z̃−1)
Y

i=1,3,··· ,(p−1)

gi · F̃i(z̃) (14)

where

gi · F̃i(z̃) = 1 − 2z̃−1cos ω̃i + z̃−2. (15)
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In order to avoid lag-free loops in the filter, F̃i(z̃) is transformed
into equation 17.

F̃i(z) = 1 + R(z) Ti(z), (16)

R(z) = α + z̃−1 =
(1 − α2)z−1

1 − αz−1
, (17)

Ti(z) =
Ci + z−1

1 − αz−1
. (18)

In the above equations, gi and Ci are defined by

gi = 1 + 2α cos ω̃i + α2, (19)

Ci = −2(α + cos ω̃i)/gi. (20)

By factoring out R(z) in Fi(z) and 1 ± z̃−1, we have

Ã(z) =
1

G

»
1 + R(z)

n

Ge

pX
i=2

even

Ti(z)
i−2Y
j=0
even

H̃i(z) − Ge

1 + α

pY
i=2

even

H̃i(z)

+Go

pX
i=1
odd

Ti(z)
i−2Y
j=1
odd

H̃i(z) +
Go

1 − α

pY
i=1
odd

H̃i(z)
o–

(21)

where

G =
2

ge + go
, (22)

Ge =
ge

ge + go
, (23)

Go =
go

ge + go
, (24)

ge = (1 + α)

pY
i=2

even

gi and go = (1 − α)

pY
i=1
odd

gi. (25)

For the odd order p, the polynominals are factored as

P̃ (z̃) = (1 − z̃−2)
Y

i=2,4,··· ,p−1

gi · F̃i(z̃), (26)

Q̃(z̃) =
Y

i=1,3,··· ,p

gi · F̃i(z̃). (27)

Then, the following form of inverse filter is obtained.

Ã(z) =
1

G

»
1 + R(z)

n
Go

pX
i=1
odd

Ti(z)

i−2Y
j=1
odd

H̃i(z)

+Ge

p−1X
i=2

even

Ti(z)

i−2Y
j=0
even

H̃i(z) − Ge

1 − α2
(α − z̃−1)

p−1Y
i=2

even

H̃i(z)
o–

. (28)

From equations 21 and 28 the filter configurations for the even
and odd order are shown in figures 4 and 5.

4. EVALUATION
4.1. Experimental conditions

In training HMMs, we used 150 sentences uttered by each of
103 male speakers, which are from database of 50 phonetically
balanced sentences (ASJ-PB) and 100 newspaper article texts

Input

-Go

-Ge

G
Output

1

1

Fp-1(z) F3(z) F1(z)

Fp(z) F4(z) F2(z)

R(z)

1−α

1+α
−

(a) The even order filter.
Input Output

R(z)

-Go

-Ge

F1(z)

F2(z)F4(z)

F3(z)

Fp-1(z)

Fp-2(z)

G

Tp(z)

α-z
∼ -11-α 2

1

(a) The odd order filter.

Figure 4: The Mel-LSP speech synthesis filter.

Output1

Output2

R(z) Ti(z)
Input

Figure 5: The i-th stage of the Mel-LSP synthesis filter.

(ASJ-JNAS). The sub-word models are 124 gender-dependent
monosyllable HMMs. The structure of HMMs is a left-to-right
model with 3 emitting states for vowels, double consonant(/q/),
syllabic nasal(/N/) and silences, and with 5 emitting states for
the other syllables. A state consists of a single Gaussian with a
diagonal covariance.

The speech data was sampled at 16kHz. A speech segment
of 25ms was weighted by Hamming window without preem-
phasis. A 12th order Mel-LPC analysis was conducted with a
frame shift of 10ms. The frequecy warping factor α was set to
0.45. In Mel-LSP based synthesis, a feature vector composed of
log-residual energy, 12 Mel-LSP frequencies, delta-log-residual
energy, and 12 delta-Mel-LSP frequencies. In Mel-cepstrum
based synthesis, the cepstral parameters are derived from the
Mel-prediction coefficients instead of the mel-cepstral analysis
in [?], and a feature vector composed of 15 mel-cepstral and 15
delta-mel-cepstral coefficients including the their 0th terms.

In this study, to compare the effect of synthesized spectral
sequences on the speech quality, the state duration and excita-
tion signal were used from natural speech. The state duration of
each HMM is determined by Viterbi alignment between the fea-
ture vector sequence of the template speech and the connected
HMMs corresponding to a given text. The excitation signal was
obtained by inverse filtering the speech using the 12-th order
Mel-prediction coefficients. In Mel-cepstrum based speech syn-
thesis, speech was synthesized by means of the MLSA (Mel
Log Spectrum Approximation) filter [16].

4.2. Subjective and spectral evaluation

Three phrases /arayuru geNjituwo/, /subete jibuNno hoohe/, and
/negimageta noda/ were synthesized by both Mel-LSP and Mel-
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Figure 6: Comparison of Spectra synthesized by Mel-LSP and
Mel-LPC cepstral based HMMs

cepsrum based HMM. Figure 6 shows an example of two spec-
tral sequences generated by both the Mel-LSP and the Mel-
cepstrum based HMMs. It is noted that the formant peaks of
Mel-LSP based spectra are clear as compared to those of the
Mel-cepstrum based spectra. The speech quality of these sen-
tences were evaluated in A-B preference tests. Ten subjects par-
ticipated in the listening test to compare preference for Mel-LSP
based synthetic speech versus Mel-cepstrum based one. The
percentage of trials for three sentences was 61% in which the
Mel-LSP based synthetic speech is preferred over each of Mel-
cepstrum based one.

5. Conclusions
In this paper we have presented the Mel-LSP based speech
analysi/synthesis for HMM-based speech synthesis. The ex-
peimental results have shown that the Mel-LSP based HMMs
slightly improve the synthetic speech quality over the Mel-
cepstrum based HMMs. However, the formant bandwidth of
the Mel-LSP based HMMs is still wider than that of the natural
speech. This seems to be caused by too simple HMM struc-
ture to deal with the contxtual as well as the speaker variation.
Therefore, further investigation will be conducted using context
dependent HMMs with many mixtures.
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