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Abstract 
In this paper, we evaluate the performance of an implicit 
approach for the automatic detection of broad phonemic class 
boundaries from continuous speech signals in different 
additive noise environments. We exploit the prior knowledge 
of glottal pulse locations for the estimation of adjacent broad 
phonemic class boundaries. The approach’s validity was tested 
on the DARPA-TIMIT American-English language corpus 
and NOISEX-92 database. Our framework’s results were very 
promising since by this method we achieved 25 msec accuracy 
of 74,9% for un-noisy environment, while the performance 
reduced about 5% for wideband distortion noise. 

1. Introduction 
Speech signals that are annotated on phoneme, diphone or 
syllable-like level are essential for tasks such as, speech 
recognition [1], construction of language identification models 
[2], prosodic database annotation, and in speech synthesis 
assignments such as formant and unit selection techniques [3]. 
Since, segmentation of speech signals is a time-consuming and 
tedious task which can be carried out only by expert 
phoneticians, several automated procedures have been 
proposed. Speech segmentation methodologies can be 
classified into two major categories depending on whether we 
possess or not knowledge of the uttered message. These 
categories are known as explicit and implicit segmentation 
methods [4], respectively.  

Regarding explicit approaches, the speech waveform is 
aligned with the corresponding phonetic transcription. On the 
other hand, in implicit approaches the phoneme boundary 
locations are detected without any textual knowledge of the 
uttered message. Although explicit approaches achieve better 
accuracy than implicit, the requirement of prior phoneme 
sequence knowledge makes them inappropriate for real life 
applications, such as language identification tasks.  

In the area of automatic speech segmentation extensive 
research has been conducted. Aversano et al. [5], proposed a 
segmentation method based on the critical-band perceptual 
analysis of preprocessed speech that fed a decision function 
and reported an accuracy of 73,58%  within a range of  ± 20 
msec on DARPA-TIMIT [6]. Suh and Lee [7], proposed a 
structure, based on multi-layer perceptron and reported a 
15msec phoneme segmentation performance of 87% with 
3,4% insertion rate in speaker dependent mode. Svendsen and 
Kvale [8], proposed a two-stage boundary detection approach 
consisted of an acoustic segmentation of speech followed by 
an HMM based phonemic segmentation, and reported an 
accuracy of 80-85% for four languages and a range of 20 

msec. Svendsen and Soong [9] presented an accuracy of 73% 
within three frames, based on a constrained-clustering vector 
quantization approach. Grayden and Scordilis [10], proposed a 
Bayesian decision surface for dividing speech into distinct 
obstruent and sonorant regions and applied to each of them 
specific rules; an 80% of accuracy was reported with an 
insertion rate of 12%. An approach similar to our method was 
proposed in [11], which was taking advantage of the visual 
clues at each pitch period for the detection of the voiced 
phoneme boundaries. In conclusion Pellom and Hansen [12] 
evaluate an HMM based explicit segmentation approach in a 
variety of additive noise environments. Since most real life 
applications operate in noise environments we focus in the 
evaluation of our implicit, pitch-synchronous method of 
detecting broad phonemic class boundaries from speech 
signals with additive noise.  

Initially, segmentation of the speech signal into voiced 
phoneme segments and unvoiced intervals is carried out. 
Subsequently voiced segments, were chunked pitch-
synchronously according to pitchmark locations into 
fragments followed by the comparison of the frame contours 
using the well established, dynamic time warping (DTW) [14] 
algorithm for the computation of the distance path between 
adjacent frames. Finally, the local maximums of the resulted 
distance path contour correspond to broad phoneme class 
boundaries.  

The outline of the paper is as follows. Section 2, describes 
the proposed method. In section 3 the utilized speech corpora 
is presented and in section 4 we discuss the results. 

2. Segmentation Methodology 
Our method builds on the theory that, voiced parts of a speech 
signal are composed of periodic fragments produced by the 
glottis during vocal-fold vibration [13]. Furthermore, since the 
articulation characteristics of voiced phonemes are almost 
constant in the middle of their region, co-articulation regions 
will be possible places for a possible phoneme boundary to 
reside. By following this observation we are led to 
segmentation of speech waveform to broad phonemic classes 
consisting of voiced phoneme segments and unvoiced 
intervals.  

As regards the unvoiced phoneme sequence, it could be 
recognized with the utilization of a language model, fed with 
the neighboring recognized voiced phoneme sequences. In the 
case which an unvoiced interval consists of one phoneme, its 
boundaries are detected from the adjacent voiced phoneme 
boundaries. 

In the framework of our approach we initially segment the 
speech signal into voiced and unvoiced intervals, using 
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Boersma’s algorithm [15]. This method uses the short-term 
autocorrelation function rx of the speech signal: 

rx(τ) ≡∫x(t)x(t+τ)dt                               (1) 

The pitch is determined as the inverted value of τ 
corresponding to the highest of  rx. Threshold values for 
silence, voiced and unvoiced detection are introduced in order 
to extract the corresponding intervals. 

After distinguishing voiced and unvoiced regions, voiced 
speech is segmented to fragments determined by the 
pitchmarks location. Subsequently, a moving average 
smoothing is applied to each fragment for the task of abrupt 
local irregularities reduction.  

Finally, we utilize an evaluation algorithm for the 
measurement of the distance between adjacent smoothed 
fragments. In that way we detect the co-articulation points, 
which correspond to the voiced phoneme boundaries.  

 
Figure 1: Block diagram of the proposed procedure. 

The above figure illustrates a general diagram of the proposed 
methodology. It clearly shows that our approach results 
boundaries for the voiced phonemes and for adjacent unvoiced 
phoneme sequences. 

2.1. Pitchmark extraction algorithm 

For the extraction of pitchmarks we have used the point 
process algorithm of Praat [16]. The voiced intervals are 
determined on the basis of the voiced/unvoiced decision 
extracted from the corresponding F0 contour. For every voiced 
interval, a number of points (glottal pulses) are found. The 
first point, t1, is the absolute extremum of the amplitude of the 
sound  

t1=max[tmid-T0/2,tmid+t0/2]                        (2) 

where tmid is the midpoint of the interval, and T0 is the period 
at tmid, as can be interpolated from the pitch contour. Starting 
from time instant t1, we recursively search for points ti to left 
until we reach the left edge of the interval. These points must 

be located between ti-1 - 1.2T0(ti -1) and ti-1-0.8T0(ti-1), and the 
cross-correlation of the amplitude of the environment of the 
existing point ti-1 must be maximal. Between the samples of 
the correlation function parabolic interpolation has been 
applied. The same procedure is followed and for the right of t1 
part of the particular voiced segment.  

Though the voiced/unvoiced decision is initially taken by 
the pitch contour, points are removed if the correlation value 
is less than 0.3. Furthermore, one extra point may be added at 
the edge of the voiced interval if its correlation value is 
greater than 0.7. An example of the detection of the first two 
pitchmarks t1 and t2 of a voiced speech interval is illustrated 
in figure 2. 

  
Figure 2: Pitch-mark extraction from speech signal 

2.2. Voiced phoneme boundary detection 

As discussed in a previous section, heavy co-articulation 
phenomena mark the transition from on phoneme to the next. 
Fragments lying in the same phoneme and away from the co-
articulation regions have similar amplitude contours. On the 
other hand, fragments that are located in co-articulation 
regions will be rendered with variations in their amplitude 
contours, resulted from the changes in the articulation. 

In calculating the difference between the amplitude 
contour of each fragment and its adjacent one, we have 
employed the dynamic time warping (DTW) [14] algorithm. 
DTW calculates the distance path between each pair of 
successive fragments of speech that are determined by the 
pitchmarks. As a consequence the outcome of a cost function 
is computed for each pair of adjacent fragments.  

Cost Function (i)=DTW(fragment(i), fragment(i+1))     (3) 

In other words, equation 3 could be described as a 
measure of similarity between adjacent fragments of a speech 
waveform. The local maxima of the function are equivalent to 
the phoneme boundaries of the utterance, since the warping 
path between the adjacent fragments is longer. An example of 
a typical contour of the computed cost function is illustrated 
in figure 3. 

As a final step in our approach is the detection of peaks in 
the cost function. In order to decide which of the peaks 
correspond to candidate segment boundaries a threshold 
operational parameter, Thr, is introduced. For each peak we 
calculate the magnitude distances from its side local 
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minimums. The minimum of the two resulted magnitude 
distances is compared to Thr. For values higher to Thr the 
corresponding fragment is considered to contain a possible 
boundary. A peak related to values that is lower to Thr, is 
ignored. Finally, each detected boundary is assumed to be 
located on the middle sample of the prior chosen fragment.  
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Figure 3: Cost function for the identification of the 
boundaries 

3. Speech corpora 
The validation of the proposed technique for implicit voiced-
phoneme segmentation was carried out with the exploitation 
of two databases: DARPA-TIMIT and NOISEX-92 [17]. 

As regards DARPA-TIMIT, it is considered as an 
acoustic-phonetic continuous speech corpus that contains 
broadband recordings of 630 speakers of 8 major dialects of 
American English, each reading 10 phonetically rich 
sentences. It includes time-aligned orthographic, phonetic and 
word transcriptions as well as a 16-bit, 16kHz speech 
waveform file for each utterance. The DARPA-TIMIT corpus 
transcriptions have been hand verified. Test and training 
subsets are balanced for phonetic and dialectal coverage. 

Concerning NOISEX-92 database, it contains recordings 
of various noises such as voice babble, factory noise, high-
frequency radio channel noise, pink noise, white noise. In 
addition, there are provided various military noises, as fighter 
jets (Buccaneer, F16), destroyer noises (engine room, 
operations room), tank noise (Leopard, M109) and machine 
gun noise. Finally, car noise (Volvo 340) is provided. 

4. Performance Evaluation 
For the task of evaluating our broad phonemic class 
segmentation framework, we conducted experiments in both 
un-noisy and noisy environments practicing different 
thresholds.  

A segmentation point is defined as correctly-detected only 
if its distance from the actual annotation point is less than t 
msec. In order to measure the performance of our method we 
introduce accuracy metric and over-segmentation. Accuracy 
is defined as the percentage of the number of the correctly-
detected segmentation points Pc to the total number of the 
real-boundary points Pt, 

Accuracy=Pc /Pt ·100%                         (4) 

where the real boundary points are the boundaries of the 
voiced phonemes and the boundaries of the unvoiced 
intervals. 

Regarding explicit approaches, the number of detected 
segmentation points is equal to the number of the true 
segmentation points. In contrast, regarding implicit 
approaches, where our method falls, detected segmentation 
points are not equal to the true ones. An effective way of 
measuring the reliability of a segmentation method regarding 
the estimated and actual number of boundary location is over-
segmentation measure. Over-segmentation is defined as the 
ratio of the number of the detected segmentation points Pd to 
the total number of the true segmentation points Pt,  

Over-Segmentation=Pd /Pt                      (5) 

It is clear from equation 5 that over-segmentation near to 
one means that the number of the estimated boundaries is 
close to the actual number of boundaries. 

4.1. Results 

In this section we present and discuss the results of the carried 
out experiments. We have focused on improving accuracy 
while keeping the over-segmentation factor close to the value 
of one. As a result, a vast variety of threshold values was 
tested for several smoothing factors. Additionally, we 
investigated the accuracy of our procedure for t=25msec. 
Results that present the achieved accuracy for the DARPA-
TIMIT American-English corpus in un-noisy environment are 
illustrated in figure 4. 
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Figure 4: Broad phonemic segmentation accuracy with 
respect to over-segmentation for different smoothing factors S 
(S1=70, S2=100, S3=140, S4=1) on DARPA-TIMIT. 

Figure 4 presents an empirical way for selecting 
practically optimal values for the free parameters such as the 
smoothing factor and the threshold. In that way, we were able 
to optimize the accuracy of our method. 

The best results were obtained through the optimization 
procedure was 74,9%, without presenting over-segmentation, 
for a smoothing factor equal to 100 and Thr=1,25·10-6, 
(Over-Segmentation<1,05). Accuracy of the method could be 
further elevated if higher values of over-segmentation are 
accepted. In previous research [18] has been demonstrated 
that over-segmentation control is a tedious task with values 
higher than 1. For over-segmentation of 1,6 our method 
achieved about 85% accuracy, as shown in figure 4. 

The next step to our experimental procedure was the 
evaluation of our segmentation schema in several additive 
noise environments. For this task we selected white noise, 
Gaussian white noise, voice babble, noise in pilot cockpit, 
tank noise, HF radio channel noise, car noise, pink noise and 
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machine gun noise. 
Sentences from the TIMIT database were corrupted by 

the various noise conditions at a global SNR of 10 dB. The 
method’s accuracy under noise conditions was tested using 
the practically optimal values of the parameters as were 
obtained from the un-noisy environment experiments (S=100, 
Thr=1,25·10-6). The achieved results are tabulated in Table 1. 

Table 1: Speech segmentation accuracy using standard 
scoring method for additive noise environments (SNR=10dB) 

ADDITIVE NOISE ACCURACY 
No noise 74,90% 

White noise 70,21% 
Gaussian white noise 70,01% 

Speech in background (voice babble) 69,53% 
Pink noise 69,50% 

Noise in pilot cockpit (F-16) 69,36% 
Tank noise (Leopard, M109) 69,24% 

HF radio channel noise 69,05% 
Car noise (Volvo 340) 68,11% 

Machine gun 57,41% 

Table 1 clearly presents that our method performs equally 
well in noise environments with high frequency, as well as 
with wideband distortion characteristics, like HF radio 
channel noise or Gaussian white noise respectively. Method’s 
accuracy reduces significantly in the case of machine gun 
noise since it is described by high colored energy distribution 
characteristics. It causes such a distortion to the speech 
waveform contour that smoothing process effort to maintain 
the articulated glottal pulse contour, of the compared 
fragments, performs poorly. 

5. Conclusions 
In this work, we have implemented and evaluated a speaker 
independent method for automatic broad phoneme class 
segmentation of speech signals using the knowledge of 
pitchmark locations in un-noisy and noisy environments. For 
the approach’s validity, experiments were conducted on 
DARPA-TIMIT American-English and NOISEX-92 
databases. Segmentation experiments without noise showed 
an accuracy of 74,9%. On the other hand, the method 
demonstrated robustness for wideband distortion noise 
characteristics. Given the fact that the textual message of the 
speech utterance in not necessary for the extraction of the 
boundary locations as well as its robustness to noisy 
environments, makes it appropriate for applications that 
require automatic broad annotation of speech in real 
environment conditions. 
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