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Abstract

Recent advances in new technologies offer a large range of in-
novative instruments to design and process sounds. Willing to
explore new ways for music creation, specialists from the fields
of brain-computer interfaces and sound synthesis worked to-
gether during the eNTERFACE05 workshop (Mons, Belgium).
The aim of their work was to design an architecture of real-time
sound synthesis driven by physiological signals. The follow-
ing description links natural human signals to sound synthesis
algorithms, thus offering rarely used pathways for music ex-
ploration. This architecture was tested during a ”bio-concert”
given at the end of the workshop where two musicians were
using their EEG and EMG to perform a musical creation.

1. Introduction

Advances in computer science and specifically in Human-
Computer Interaction (HCI) have now enabled musicians to use
sensor-based computer instruments to perform music [1]. Mu-
sicians can now use positional, cardiac, muscle and other sen-
sor data to control sound [2, 3]. Simultaneously, advances in
Brain-Computer Interface (BCI) research have shown that cere-
bral patterns can be used as a source of control [4]. Indeed,
cerebral and conventional sensors can be used together [5, 6]
with the object of producing a ’body-music’ controlled accord-
ing to the musician?s imagination and proprioception. Research
is already being done toward integrating BCI and sound syn-
thesis with two different approaches. The first approach tries
to use the sound as a way to better understand the brain ac-
tivity by mapping the data issued from physiological analysis
directly to sound synthesis parameters [7] [8] [9]. This sonifi-
cation process can be viewed as a translation of biological sig-
nals into sound. The second approach aims to build a musi-
cal interface where inference based on complex feature extrac-
tion enables the musician to intentionally control sound pro-
duction. This is easy with electromyograms (EMG) or electro-
oculogram (EOG) but very difficult with electroencephalogram
(EEG). In the following, we first present the architecture we de-
veloped to acquire, process and play music based on biological
signals. Next we go into more detail on signal acquisition part
followed by an in- depth discussion of appropriate signal pro-
cessing techniques. Details of the sound synthesis implemen-
tation are then discussed along with the instruments we built.
Finally, we conclude and present some future directions.

2. System architecture overview

Our intention was to build a robust, reusable framework for bi-
ological signals capture and processing geared towards musical
applications. To maintain flexibility and ensure real-time re-
quirement, signal acquisition, processing and sound synthesis
modules were performed on different physical machines linked
via Ethernet. Data were acquired via custom hardware linked to
a host computer running a Matlab/Simulink real-time blockset
[10]. We implemented our signal processing code as a Simulink
blockset using Level-2 M file S-functions with tuneable method
parameters. This allowed us to dynamically adapt to the in-
coming signals. For the sound processing methods, we used
Max-MSP programming environment dedicated to audio and
multimedia real-time processing [11].
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Figure 1: System architecture: measured signals from EEG and
EMG recorders are sent to simulink via UDP. Data are pro-
cessed in real-time with simulink and the parameters are sent
to the different instruments.

Data transmission between machines was implemented us-
ing UDP/IP protocol over Ethernet. We chose this for best real-
time performance. Messages were encoded thanks to the Open-
SoundControl protocol (OSC) [12], which sits on top of UDP.
OSC was conceived as a protocol for the real-time control of
computer music synthesizers over modern heterogeneous net-
works. For our project, we used OSC to transfer data from
Matlab (running on a PC with either Linux or Windows OS) to
Macintosh computers running Max/MSP. Fig. 1 outlines main
software and data exchange architecture.
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3. Data Acquisition
Two types of biological signals were considered: electroen-
cephalograms (EEG) and electromyograms (EMG)

3.1. Electroencephalograms (EEG)

Electroencephalograms data were recorded at 64 Hz on 19
channels with a DTI cap. Data were filtered between 0.5 and
30 Hz, channels were positioned following the 10-20 interna-
tional system and Cz was used as reference. The subject sat in
a comfortable chair and was asked to concentrate on the differ-
ent tasks. The recording was done in a normal working place,
e.g. a noisy room with people working, speaking and with mu-
sic. The environment was not free from electrical noise as there
are many computers, speakers, screen, microphones and lights
around.

3.2. Electromyograms (EMG)

To record the electromyograms, three amplifiers of Biopac
MP100 system were used. The amplification factor for the
EMG was 5000 and the signals were filtered between 0.05-
35 Hz. The microphone channel had 200 gain and DC-300Hz
bandwidth. For real time capabilities, these amplified signals
are fed to the National Instruments DAQPad 6052e analog-
digital converter card that uses the IEEE 1394 port. Thus, the
data can be acquired, processed and transferred to the musical
instruments using Matlab environment and the Data Acquisition
toolbox.

4. BioSignal Processing
We tested various parameter extraction techniques in search of
those which could give us the most meaningful results. We fo-
cused mostly on EEG signal processing as it is the richest and
most complex bio-signal. The untrained musician normally has
less conscious control over brain biosignals as opposed to other
biosignals and therefore sophisticated signal processing was re-
served for the EEG which needed more processing to produce
useful results. The data acquisition program samples blocks
of EMG data, measuring arm muscles contraction, in 100 ms
frames. Software then calculates the energy for EMG chan-
nels, and sends this information to the related instruments. Two
kinds of EEG analysis are done (Fig. 2). The first one attempts
to determine the user?s intent based on techniques recently de-
veloped in the BCI community [4]. A second approach looks
at the origin of the signal and at the activation of different brain
areas. The performer has less control over results in this case.
In the next sections, we present more details on both of these
EEG analysis approaches.

4.1. Detection of musician’s intent

To detect different brain states we used the spatialisation of the
activity and the different rhythms present in this activity. In-
deed, each part of the brain has a different function and each
human being presents specific rhythms at different frequencies.

For example, three main rhythms are of great interest:

1. Alpha rhythm: usually between 8-12 Hz, this rhythm de-
scribes the state of awareness. If we calculate the energy
of the signal using the occipital electrodes, we can eval-
uate the awarness state of the musician. When he closes
his eyes and relaxes the signal increases. When the eyes
are open the signal is low.

2. Mu rhythm: This rhythm is also reported to range from
8 to 12 Hz but this band can vary from one person to
another, sometimes between 12-16 Hz. The mu rhythm
corresponds to motor tasks like moving the hands or legs,
arms, etc. We use this rhythm to distinguish left hand
movements from right hand movements.

3. Beta rhythm: Ranging between 18-26 Hz, the character-
istics of this rhythm are yet to be fully understood but it
is believed that it is also linked to motor tasks and higher
cognitive function.

The wavelet transform [13] is a technique of time-frequency
analysis prefectly suited for the task detection. Each task can be
detected by looking at specific bandwidth on specific electrodes.

This operation, implemented with sub-band filters, provides
us with a filter bank tuned to the frequency ranges of interest.
We tested our algorithm on two subjects with different kinds
of wavelets: Meyer wavelet, 9-7 filters, bi-orthogonal spline
wavelet, Symlet 8 and Daubechy 6 wavelets. We finally chose
the symlet 8 which gave better overall results. Once the desired
rhythms are obtained, different forms of analysis are possible.

At the beginning we focused on eye blink detection and α
band power detection because both are easily controllable by
the musician. We then wanted to try more complex tasks such
as those used in the BCI community. These are movements and
imaginations of movements, such as hand, foot or tongue move-
ments, 3D spatial imagination or mathematical calculation. The
main problem is that each BCI user needs a lot of training to
improve his control of the task signal. Therefore we decided to
use only right and left hand movements first and not the more
complex tasks which would have been harder to detect. Since
more tasks also means more difficult detection, these are the
only tasks used in this project. Two different techniques were
used: Asymmetry ratio and spatial decomposition.

4.1.1. Eye blinking and α band

Eye blinking is detected on Fp1 and Fp2 electrodes in the 1-
8Hz frequency range by looking at increase of the band power.
We process the signals from electrodes O1 and O2 -occipital
electrodes- to extract the power of the alpha band.

4.1.2. Asymmetry ratio

Consider we want to distinguish left from right hand move-
ments. It is known that motor tasks activate the cortex area.
Since the brain is divided in two hemispheres that control the
two sides of the body it is possible to recognize when a per-
son moves on the left or right side. Let C3 and C4 be the two
electrodes positioned on the cortex, the asymmetry ratio can be
written as:

ΓF B =
PC3,F B − PC4,F B

PC3,F B + PC4,F B
(1)

where PCx,F B is the power in a specified frequency band (FB),
i.e. the mu frequency band. This ratio has values between 1 and
-1. Thus it is positive when the power in the left hemisphere
(right hand movements) is higher than the one in the right hemi-
sphere (left hand movements)and vice-versa.

The asymmetry ratio gives good results but is not very flex-
ible and cannot be used to distinguish more than two tasks. This
is why it is necessary to search for more sophisticated methods
which can process more than just two electrodes as the asym-
metry ratio does.
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Figure 2: EEG processing, from recording (left) to play (right). Frames of EEG data are processed simultaneously with the different
techniques we used. On one hand a wavelet decomposition is done and the frequency bands are sent to different sub-algorithms in order
to obtain different parameters. On the other hand, the data is spatially filtered in order to obtain the EEG generators with the inverse
solution. This allows us to visualize the brain activity and send parameters representing active regions.

4.1.3. Spatial decomposition

Two spatial methods have proven to be accurate: The Common
Spatial Patterns (CSP) and the Common Spatial Subspace De-
composition (CSSD) [14, 15]. We will shortly describe here the
second one (CSSD): This method is based on the decomposition
of the covariance matrix grouping two or more different tasks.
Only the simple case of two tasks will be discussed here. It is
important to highlight the fact that this method needs a learning
phase where the user executes the two tasks.

The first step consists in computing the autocovariance ma-
trix for each tasks. Let’s take one signal X of dimension N ×T
for N electrodes and T samples. Decomposing X in XA and
XB , A and B being two different tasks, we can obtain the au-
tocovariance matrix for each task:

RA = XAXT
B and RB = XBXT

B (2)

We now extract the eigenvectors and eigenvalues from the R
matrix that is the sum of RA and RB :

R = RA + RB = U0λUT
0 (3)

We can now calculate the spatial factors matrix W and the
whitening matrix P :

P = λ−1/2UT
0 and W = U0λ

1/2 (4)

If SA = PRAP T and SB = PRBP T , these matrices can be
factorised:

SA = UAΣAUT
A SB = UBΣBUT

B (5)

Matrix UA et UB are equals and the sum of their eigenvalue is
equal to 1, ΣA + ΣB = I . ΣA et ΣB can thus be written:

ΣA = diag[ 1...1|{z}
ma

σ1...σmc| {z }
mc

0...0|{z}
mb

] (6)

ΣB = diag[ 0...0|{z}
ma

δ1...δmc| {z }
mc

1...1|{z}
mb

] (7)

Taking the first ma eigenvector from U , we obtain Ua and we
can now compute the spatial filters F and the spatial factors G:

Fa = WUa (8)

Ga = UT
a P (9)

We proceed identically for the second task, but taking this
time the last mb eigenvectors. Specific signal components of
each task can then be extracted easily by multiplying the signal
with the corresponding spatial filters and factors. For the task A
it gives:

X̂a = FaGaX (10)

A support vector machine (SVM) with a radial basis func-
tion was used as a classifier.

4.1.4. Results

The detection of eye blinking during off-line and realtime anal-
ysis was higher than 95%, with a 0.5s time window. For hand
movement classification with spatial decomposition, we chose
to use a 2s time window. A smaller window significantly de-
creases the classification accuracy. The algorithm CSSD needs
more training data to achieve a good classification rate so we
decided to use 200 samples of both right hand and left hand
movements, each sample being a 2s time window. Thus, we
used an off-line session to train the algorithm. However each
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time we used the EEG cap for a new session, the electrode lo-
cations on the subject’s head changed. Performing a training
session one time and a test session another time gave poor re-
sults so we decided to develop new code in order to do both
training and testing in one session. This had to be done quite
quickly to ensure the user’s comfort.

We achieved an average of 90% good classifications during
off-line analysis, and 75% good classifications during real-time
recording. Real-time recording accuracy was a bit less than ex-
pected. (This was probably due to a less-than-ideal environment
- with electrical and other noises - which is not conducive to ac-
curate EEG signal capture and analysis.) The asymmetry ratio
gave somewhat poorer results.

4.2. Spatial Filters

EEG is a measure of electrical activities of the brain as mea-
sured on the external skull area. Different brain processes can
activate different areas. Thus, knowing which areas are active
can give us a helpful clue on the cerebral processes going on.
Unfortunately, discovering which areas are active is difficult as
many source configurations can lead to the same EEG record-
ing. Noise in the data further complicates the problem. The
ill-posedness of the problem leads to many different methods
based on different hypotheses to get a unique solution. In the
following, we present the methods - based on forward and in-
verse problems - and the hypothesis we propose to solve the
problem in real time.

4.2.1. Forward Problem, head model and solution space

Let X be a Nx1 vector containing the recorded potential with
N representing the number of electrodes. S is a Mx1 vector of
the true source current with M the unknown number of sources.
G is the leadfield matrix which links the source location and
orientation to the electrodes location. G depends of the head
model. n is the noise. We can write

X = G S + n (11)

X and S can be extended to more than one dimension
to take time into account. S can either represent few dipoles
(dipole model) with M ≤ N or represent the full head (image
model - one dipole per voxel) with M � N . In the following
we will use the latter model.
The forward problem consists in calculating the potentials X on
the scalp surface knowing the active brain sources S. This ap-
proach is far simpler than the inverse approach and its solution
is the basis of all inverse problem solutions.
The leadfield G is based on the Maxwell equations. A finite
element model based on the true subject head can be used as
the lead field but we prefer to use a 4-spheres approximation of
the head. It is not subject dependent and less computationally
expensive. A simple method consists of viewing the multi-shell
model as a composition of single-shells -much as Fourier uses
functions as sums of sinusoid [16]. The potential v measured at
electrode position r from a dipole q in position rq is

v(r, rq, q) ≈
v1(r, µ1rq, λ1q) + v1(r, µ2rq, λ2q) + v1(r, µ3rq, λ3q) (12)

λi and µi are called Berg’s parameters [16]. They have
been empirically computed to approximate three and four-shell
head model solution.

When we are looking for the location and orientation of the
source, a better approach consists of separating the non-linear

search for the location and the linear one for the orientation.
The EEG scalar potential can then be seen as a product v(r) =
kt(r, rq)q with k(r, rq) a 3x1 vector. Therefore each single
shell potential can be computed as [17]

v1(r) = ((c1 − c2(r.rq))rq + c2‖rq‖2r).q

with

c1 ≡ 1

4πσ‖rq‖2

„
2

d.rq

‖d‖3
+

1

‖d‖ − 1

‖r‖
«

(13)

c2 ≡ 1

4πσ‖rq‖2

„
2

‖d‖3
+

‖d‖ + ‖r‖
‖r‖F (r, rq)

«
(14)

F (r, rq) = ‖d‖(‖r‖‖d‖ + ‖r‖2 − (rq.r)) (15)

The brain source space is limited to 361 dipoles located on a
half-sphere just below the cortex in a perpendicular orientation
to the cortex. This is done because the activity we are looking at
is concentrated on the cortex, the activity recorded by the EEG
is mainly cortical activity and the limitation of the source space
considerably reduces the computation time.

4.2.2. Inverse Problem

The inverse problem can be formulated as a Bayesian inference
problem [18]

p(S|X) =
p(X|S)p(S)

p(X)
(16)

where p(x) stands for probability distribution of x. We thus
look for the sources with the maximum probability. Since p(X)
is independent of S it can be considered as a normalizing con-
stant and can be omitted. p(S) is the prior probability distribu-
tion of S and represents the prior knowledge we have about the
data. This is modified by the data through the posterior prob-
ability distribution p(X|S). This probability is linked to the
noise. If the noise is gaussian - as everybody assumed - with
zero mean and covariance matrix Cn

ln p(X|S) = (X − GS)t C−1
n (X − GS) (17)

where t stands for transpose. If the noise is white, we can
rewrite equation (17) as

ln p(X|S) = ‖X − GS‖2 (18)

In case of zero mean gaussian prior p(S) with variance CS ,
the problem becomes

argmax(lnp(S|X))

= argmax(lnp(X|S) + ln p(S))

= argmax((X − GS)t C−1
n (X − GS) + λStCSS

where the parameter λ gives the influence of the prior informa-
tion. And the solution is

Ŝ = GtC−1
n (GtC−1

n G + λC−1
S )−1X (19)

For a full review of methods for solving the Inverse Problem
see [18, 19, 20].

Methods based on different priors were tested. Priors
ranged from the simplest -no prior information- to classical
prior such as the laplacian and to a specific covariance matrix.
The well-known LORETA approach [20] showed the best
results on our test set. The LORETA looks for a maximally
smooth solution. Therefore a laplacian is used as a prior. In
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equation (19), Cs is a laplacian on the solution space and Cn is
the identity matrix.

To enable real time computation, leadfield and prior matri-
ces in equation (19) are pre-computed. Then we only multiply
the pre-computed matrix with the acquired signal. Computation
time is less than 0.01s on a typical personal computer.

5. Musical processing of biological signals
Sound synthesis is the creation, using electronic and/or com-
putational means, of complex waveforms, which, when passed
through a sound reproduction system can either mimic a real
musical instrument, or represent the virtual projection of an
imagined musical instrument. In literature of digital musical
instruments [21], the term mapping refers to the use of real-
time data received from controllers and sensors as control pa-
rameters that drive sound synthesis processes. During the eN-
TERFACE workshop 05, we worked on developing consis-
tent mapping based on physiological signals in order to cre-
ate biologically-driven musical instruments. For the musical
processing of biological signals we chose to use Max/MSP, a
widely used software programming environment optimized for
flexible real-time control of music systems.

At the end of the workshop, a musical performance was
presented with two bio-musicians and various equipment and
technicians on stage orchestrating a live bio-music performance
before a large audience. The first instrument was a midi in-
strument based on additive synthesis and controlled by the
musicians electroencephalogram along with an infrared sen-
sor. The second instrument, driven by electromyograms of
the second bio-musician, processed recorded accordion sam-
ples using granulation and filtering effects. Furthermore, elec-
troencephalograms signals managed the spatialized diffusion
over eight loudspeakers of the sound produced by two musi-
cians. During the months following the workshop, some exper-
iments were pursued at Communications and Remote Sensing
lab (UCL) and another instrument based on electroencephalo-
grams were developed. We here present details of each of these
instruments.

5.1. Two interfaces brain/sound

In these two instruments, we used three control parameters:
right/left body movement (linked to energy in the Mu band-
width), open/closed eyes and average brain activity (both linked
to energy in the Alpha bandwidth). In order to enhance the spec-
tator?s appreciation of the performance, we developed a quiet
basic visual representation of brain activity; for this, we chose
to present the signal projected on the brain cortex as explained
in section 4.2. While the musician was playing, EEG data were
processed once per second using the inverse solution approach
and then averaged. A half sphere with the interpolation of the
361 solutions was projected on the screen.

5.1.1. First Instrument

In the first instrument, the sound synthesis is done with a plug-
in from Absynth [22] which is software controlled via the MIDI
protocol. The Max/MSP patch interprets the flow of EEG data
to create MIDI events that control the synthesis. The synthe-
sis algorithm is composed of three oscillators, three Low Fre-
quency Oscillators, and three notch filters. Sequences of MIDI
notes are triggered by the opening of the eyes and permutated
according to the right/left body movement. The succession of

notes is subject to randomized variations of the notes duration
and the delta time between each note. An additional infrared
sensor gives an instantaneous control on the frequencies of the
LFO.

5.1.2. Second Instrument

In the second instrument, the synthesis is achieved by Quick
Time synthesizer driven in the Max-MSP patch. The patch
also used the scansynth object developed by Couturier [23] and
other externals provided in the Real Time Composition library
[24] allowing to generate harmonized melodies. Alpha and
Beta bandwidth are used to both modulate loudness, rhythm
and pitch range of the melody and trigger sound events when
thresholds are crossed. The opening of the eyes allows the mu-
sician to change the Quick Time instrument whereas the pan-
ning between left and right speakers is linked to the right/left
body movement by the way of the energy in the Mu bandwidth.

5.1.3. Results

The aim of this work was to create an instrument controlled by
electroencephalogram signals. While interaction between mu-
sic and musician usually rely on gestures, there is no physical
interaction here. This implies some lack of control in the syn-
thesis process for the musician, though some parameters can
be intentionally controlled, with eyes opening especially. By
this way we are here at the boundary between two approaches,
the sonification approach, where the sound is just a translation
of input data without intentional human control, and the musi-
cal instrument approach, that relies on a high level of interac-
tion between the musician and the synthesis process. Further-
more, the relationship between the musician and the music acts
in two directions: the musician interacts with sound production
by means of his EEGs but the produced sound also interacts via
a feedback influence on the mental state of the musician. Future
work will turn toward the biofeedback potential for influencing
sound.

5.2. EMG-controlled granular synthesis

In the second instrument, sound synthesis is based on the real-
time granulation and filtering of recorded accordion samples.
During the demonstration, the musician starts his performance
by playing and recording a few seconds of accordion, which he
will then process in real-time. Sound processing was controlled
by means of data extracted from electromyograms (EMG) mea-
suring muscle contractions in both arms of the musician.

5.2.1. Granulation

Granulation techniques split an original sound into very small
acoustic events called grains and reproduce them in high den-
sities of several hundred or thousand grains per second [25].
In our instrument, three granulation parameters were driven by
the performer: the grain size, the pitch shifting, and the pitch
shifting variation. In terms of mapping, the performer selected
the synthesis parameter he wanted to vary thanks to an addi-
tional midi foot controller and this parameter was then modu-
lated according to the contraction of his arm muscles, measured
as electromyograms. The contraction of left arm muscles al-
lowed choosing either to increase or decrease the selected pa-
rameter, whereas the variation of the parameters were directly
linked to right arm muscle tension.

In addition to granulation, a flanging effect was imple-
mented in our instrument. Flanging is created by mixing a sig-
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nal with a slightly delayed copy of itself, where the length of the
delay, less than 10 ms, is constantly changing. The performer
had the ability to both modulate flanging parameters and con-
trol the balance between dry and wet sounds via his arm muscle
contractions.

5.2.2. Results

Peculiar sounds, near or far from original accordion timbres,
have been created by this instrument. Granulation gave the sen-
sation of clouds of sound, whereas very strange sounds, rein-
forced by spatialisation effects on eight loudspeakers, were ob-
tained using certain filtering parameters configurations. As with
any traditional musical instrument, the first thing going forward
will be to practice the instrument in order to properly learn it.
These training sessions will aim to improve the mapping be-
tween sound parameters and gestures. However, a major im-
provement to enhance the interaction between musician and in-
strument would be to add electromyograms measuring muscles
contraction in other body parts (legs, shoulders, neck) and map
these data to new kinds of sound processing.

6. Conclusion
This paper presents the result of a collaborative work held dur-
ing the eNTERFACE 05 Summer Workshop (Mons, Belgium),
where specialists in biomedical signal processing and sound
synthesis fields shared their knowledge over four weeks. The
aim of the project was to develop an interface between these
two fields. Thus we created several digital musical instruments
driven by electroencephalograms and electromyograms signals
and a live performance was presented on stage at the end of
the workshop. For this, we built an efficient architecture for
real-time communication between data acquisition, biomedical
signal processing and sound synthesis modules. This modu-
lar architecture will enable to easily pursue such experiments
in the future : indeed, signal processing methods and mapping
strategies could be improved in order to make the system more
robust and to enhance the interaction between the musician and
the instruments. Developing an advanced visual feedback that
translates brain activity also seems to be a very interesting im-
provement. These are some of the different pathways that we
will explore during the second eNTERFACE workshop in Sum-
mer 2006 (Dubrovnik, Croatia).
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