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Foreword of the Proceedings of the 10th International Conference on Sampling
Theory and Applications

The 10th International Conference on Sampling Theory and Applications (SampTA) took place from July 1 till July 5,
2013, in Bremen, Germany. SampTA’13 brought together mathematicians and engineers interested in sampling
theory and its applications to related fields (such as signal and image processing, coding theory, control theory,
complex analysis, harmonic analysis, differential equations) to exchange recent advances and to discuss open
problems. Paper submissions were invited on any aspect of sampling theory and applications.

The renewed interest in sampling theory, in parts due to the emergence of Compressive Sensing, lead to increased
numbers of paper submissions and registrations. All in all, 230 electrical engineers and mathematicians participated
at SampTA’13 and we were happy to house them in the Guest House and in a new Residential College of Jacobs
University, a fact that greatly enhanced the community spirit that SampTA conferences are known for.

As organizers we were very pleased with the outstanding scientific quality of the conference! This was due in part to
the excellent plenary talks:

Robust subspace clustering Emmanuel Candes
How to best sample a solution manifold? Wolfgang Dahmen
Sampling theory and applications: developments in the last
20 years and future perspectives Hans-Georg Feichtinger

Fast algorithms for sparse Fourier transform Piotr Indyk
Seeing the invisible; predicting the unexpected Michal Irani
Signal recognition and filter identification Nikolai Nikolskii
Stemming the neural data deluge Jan Rabaey
Event-driven sampling and continuous-time digital signal
processing Yannis Tsividis

Sampling and high-dimensional convex geometry Roman Vershynin

The scientific quality of SampTA’13 is best illustrated through the papers that are published within these
proceedings. They represent talks given in the following special sessions (with the invited session organizer listed on
the right):

Advances in Compressive Sensing Holger Rauhut and Joel Tropp
Circuit Design For Analog to Digital Converters Yun Chiu
Finite Rate of Innovation Chandra Seelamantula
Optical and RF Systems Michael Gehm and Nathan Goodman

Sampling and Frame Theory Peter Casazza, Bernhard Bodmann, and Matthew
Fickus

Sampling and Geometry Stephen Casey and Michael Robinson
Sampling and Learning Albert Cohen
Sampling and Quantization Holger Boche, Sinan Güntürk, and Özgür Yilmaz
Sampling for Imaging Science Jalal Fadili and Gabriel Peyré
Sampling in Bio Imaging Brigitte Forster, Hagai Kirshner, and Michael Unser
Super Resolution Laurent Demanet

as well as posters and presentations that were organized into the following general sessions:

Compressed Sensing A and B
Time-Frequency Analysis
Harmonic Analysis A and B
Sampling of Bandlimited Functions A and B
Algorithms
Compressive Sensing and Applications
FFT and Related Algorithms

We would like to thank the SampTA’13 sponsors, namely, Jacobs University, DFG, IEEE Signal Processing Society,
and EURASIP, and hope that you enjoy browsing through the SampTA’13 proceedings!

On behalf of the organization committees
Götz Pfander, General Chair Peter Oswald, Finance Chair Werner Henkel, Publications Chair

http://en.wikipedia.org/wiki/SampTA
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Abstract—We introduce a mathematical framework that
bridges a substantial gap between compressed sensing theory and
its current use in applications. Although completely general, one
of the principal applications for our framework is the Magnetic
Resonance Imaging (MRI) problem. Our theory provides an ex-
planation for the abundance of numerical evidence demonstrating
the advantage of so-called variable density sampling strategies in
compressive MRI. Another important conclusion of our theory
is that the success of compressed sensing is resolution dependent.
At low resolutions, there is little advantage over classical linear
reconstruction. However, the situation changes dramatically once
the resolution is increased, in which case compressed sensing can
and will offer significant benefits.

I. INTRODUCTION

In this paper we present a new mathematical framework
for compressed sensing (CS). Our framework generalizes the
three traditional pillars of CS—namely, sparsity, incoherence

and uniform random subsampling—to three new concepts:
asymptotic sparsity, asymptotic incoherence and multilevel

random subsampling. As we explain, asymptotic sparsity
and asymptotic incoherence are more representative of real-
world problems—e.g. imaging—than the usual assumptions
of sparsity and incoherence.

Our second contribution is an analysis of an intriguing
effect that occurs in asymptotically sparse and asymptotically
incoherent problems. Namely, the success of CS is resolution

dependent. As suggested by their names, asymptotic inco-
herence and asymptotic sparsity are only truly witnessed for
reasonably large problem sizes. When the problem size is
small, there is consequently little to be gained from CS over
classical linear reconstruction techniques. However, once the
resolution of the problem is sufficiently large, CS can and will
offer a substantial advantage.

The phenomenon has two important consequences for prac-
titioners seeking to use CS in applications:

(i) Consider a CS experiment where the sampling device, the
object to be recovered, the sampling strategy and subsampling
percentage are all fixed, but the resolution is allowed to vary.
Resolution dependence means that a CS reconstruction done at
high resolutions will give much higher quality when compared
to full sampling than one done at a low resolution. Hence a
practitioner working at low resolution may well conclude that
CS imparts limited benefits. However, a markedly different
conclusion would be reached if the same experiment were to
be performed at higher resolution.

(ii) Suppose we conduct a similar experiment, but we now
use the same total number of samples (instead of the same
percentage) at low resolution as we take at high resolution.
Intriguingly, the above result still holds: namely, the higher
resolution reconstruction will give substantially better results.
This is true because the multilevel random sampling strategy
successfully exploits asymptotic sparsity and asymptotic inco-
herence. Thus, with the same total number of measurements,
CS with multilevel sampling works as a resolution enhancer:
it recovers fine details of an image in a way that is not possible
with the lower resolution reconstruction.

Such resolution dependence suggests the following advi-
sory. It is critical that simulations with CS be carried out
with a careful understanding of the influence of the problem
resolution. Naı̈ve simulations with standard, low-resolution
test images may very well lead to incorrect conclusions about
the efficacy of CS as a practical tool.

An important application of our work is the MRI problem.
This served as one of the original motivations for CS, and con-
tinues to be a topic of substantial research. Some of the earliest
work on this problem—in particular, the research of Lustig et
al. [1], [2]—demonstrated that the standard random sampling
strategies of CS theory lead to substandard reconstructions.
This is due to a phenomenon known as the coherence barrier.

On the other hand, random sampling according to some
nonuniform density was shown empirically to lead to sub-
stantially improved reconstruction quality. It is now standard
in MR applications to sample in this way [1]–[3]. However,
whilst MRI is now viewed as a successful application area
for CS, a mathematical theory addressing these sampling
strategies is largely lacking. Despite some recent work [4], a
substantial gap remains between the standard theorems of CS
and its implementation in such problems (see [5] for a detailed
discussion). Our framework bridges this gap. In particular, we
provide a mathematical foundation for CS for such problems,
and gives credence to the abundance of empirical studies
demonstrating the success of variable density sampling in
overcoming the coherence barrier.

Whilst the MRI problem will serve as our main application,
we stress that our theory is general in that it holds for almost
arbitrary sampling and sparsity systems. Moreover, standard
CS results, in particular those of Candès & Plan [6], are
specific instances of our main results.

For brevity, we shall provide only the most salient aspects
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of our framework. A substantially more detailed discussion
can be found in [5]. We shall also only consider the finite-
dimensional case. However, we remark that everything that
follows can be extended to infinite-dimensional signals in
separable Hilbert spaces [5]. This generalizes the theory of
infinite-dimensional CS introduced in [7].

II. BACKGROUND

A. Compressed sensing

A typical setup in CS is as follows. Let { j}Nj=1 and
{'j}Nj=1 be two orthonormal bases of CN , the sampling and
sparsity bases respectively, and let

U = (uij)
N
i,j=1 2 CN⇥N

, uij = h'j , ii.
Note that U is an isometry. The coherence of U is given by

µ(U) = max

i,j=1,...,N
|uij |2 2 [N

�1
, 1], (1)

and we say that U is perfectly incoherent if µ(U) = N

�1.
Let f 2 CN be s-sparse in the basis {'j}Nj=1. In other

words, f =

PN
j=1 xj'j , and the vector x = (xj)

N
j=1 2 CN

satisfies |supp(x)|  s, where

supp(x) = {j : xj 6= 0}.
Suppose now we have access to the samples

ˆ

fj = hf, ji, j = 1, . . . , N,

and let ⌦ ✓ {1, . . . , N} be of cardinality m and chosen
uniformly at random. According to a result of Candès & Plan
[6] and Adcock & Hansen [7], f can be recovered exactly with
probability exceeding 1� ✏ from the subset of measurements
{ ˆfj : j 2 ⌦}, provided

m & µ(U) ·N · s · �1 + log(✏

�1
)

� · logN. (2)

In practice, recovery is achieved by solving the convex opti-
mization problem:

min

⌘2CN
k⌘kl1 subject to P⌦U⌘ = P⌦

ˆ

f, (3)

where ˆ

f = (

ˆ

f1, . . . ,
ˆ

fN )

>, and P⌦ 2 CN⇥N is the diagonal
projection matrix with j

th entry 1 if j 2 ⌦ and zero otherwise.

B. The coherence barrier

The estimate (2) shows that the number of measurements m
is, up to a log factor, on the order of the sparsity s, provided the
coherence µ(U) = O �

N

�1
�
. This is the case, for example,

when U is the DFT matrix; a problem which was studied in
some of the first papers on CS [8].

On the other hand, when µ(U) is large, one cannot expect
to reconstruct an s-sparse vector f from highly subsampled
measurements, regardless of the recovery algorithm employed
[6]. We refer to this as the coherence barrier.

The MRI problem gives an important instance of this barrier.
If {'j}Nj=1 is a discrete wavelet basis and { j}Nj=1 corre-
sponds to the rows of the N ⇥ N discrete Fourier transform
(DFT) matrix, then the matrix U = DFT · DWT

�1 satisfies

µ(U) = O (1) for any N [4], [9]. Hence, although signals
and images are typically sparse in wavelet bases, they cannot
be recovered from highly subsampled measurements using the
standard CS algorithm.

III. NEW CONCEPTS

We now introduce our new framework that overcomes
the aforementioned coherence barrier. We first require the
following three new concepts.

A. Asymptotic incoherence

Consider the above example. It is known that, whilst the
global coherence µ(U) is O (1), the coherence decreases as
either the Fourier frequency or wavelet scale increases. We
refer to this property as asymptotic incoherence:

Definition 1. Let U 2 CN⇥N
be an isometry. Then U is

asymptotically incoherent if

lim

K,N!1
K<N

µ(P

?
KU) = lim

K,N!1
K<N

µ(UP

?
K ) = 0, (4)

where P

?
K : CN⇥N

is the projection matrix corresponding to

the index set {K + 1, . . . , N}.

Note that, for the wavelet example discussed above, one has
µ(P

?
KU), µ(UP

?
K ) = O �

K

�1
�

[9] for all large N .

B. Multilevel sampling

When U is asymptotically incoherent a different subsam-
pling strategy should be used instead of standard random
sampling. High coherence in the first few rows of U means
that we cannot subsample in this region without risking losing
important information about the signal to be recovered. Hence
we fully sample these rows. However, once outside of this
region, where the coherence is less, we are free to subsample.
Therefore, instead of sampling uniformly at random, we now
consider the following multilevel random sampling scheme:

Definition 2. Let r 2 N, N = (N1, . . . , Nr) 2 Nr
with 1 

N1 < . . . < Nr, m = (m1, . . . ,mr) 2 Nr
, with mk 

Nk �Nk�1, k = 1, . . . , r, and suppose that

⌦k ✓ {Nk�1 + 1, . . . , Nk}, |⌦k| = mk, k = 1, . . . , r,

are chosen uniformly at random, where N0 = 0. We refer to

the set ⌦ = ⌦N,m := ⌦1 [ . . . [ ⌦r as an (N,m)-multilevel

sampling scheme.

Note that similar sampling strategies are found in most
empirical studies on compressive MRI [1]–[3].

C. Asymptotic sparsity in levels

Having introduced the new sampling strategy for asymp-
totically incoherent problems, we now consider the following
question: what is an appropriate signal model for such a sam-
pling strategy? In the case of incoherence and uniform random
subsampling, sparsity is an appropriate model. However, in
this new setting we require a somewhat different notion.

To explain this, let x = (xj)
N
j=1 be vector of coefficients of a

signal f in the basis {'j}Nj=1. Suppose that x was very sparse
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Fig. 1. The GPLU phantom.

in its entries j = 1, . . . ,M1. Since the matrix U is highly
coherent in its corresponding rows, there is no way we can
exploit this sparsity to achieve subsampling. High coherence
forces us to sample fully the first M1 rows of U , otherwise
we risk missing critical information about x.

This means that there is nothing to be gained from high
sparsity of x in its first few entries. However, we can expect
to achieve subsampling if the sparsity patten of x matches the
incoherence pattern of the matrix U . We therefore consider:

Definition 3. For r 2 N let M = (M1, . . . ,Mr) 2 Nr
with

1  M1 < . . . < Mr and s = (s1, . . . , sr) 2 Nr
, with

sk  Mk �Mk�1, k = 1, . . . , r, where M0 = 0. We say that

x 2 CN
, where N = Mr, is (s,M)-sparse if, for each k =

1, . . . , r, the quantity �k := supp(x)\ {Mk�1 + 1, . . . ,Mk}
satisfies |�k|  sk.

In other words, we allow x to be split up into r levels,
each with a different amount of sparsity. If the sparsity ratios
sk/(Mk�Mk�1) decrease with k, then we refer to x as being
asymptotically sparse in levels.

As we shall see, signals possessing this sparsity pattern
are ideally suited to multilevel sampling schemes. Roughly
speaking, the concomitance of asymptotic sparsity and asymp-
totic incoherence means that the number of measurements
mk required in each band ⌦k is determined primarily by the
sparsity of f in the corresponding band �k times by a small
asymptotic coherence factor.

This leads to the question: is asymptotic sparsity in levels
a realistic signal model? The answer is emphatically yes.
Most images possess exactly this type of sparsity structure.
To illustrate, in Fig. 2 we plot the percentage of significant
wavelet coefficients at each scale for the image given in Fig.
1. Note that this image is the analytic phantom introduced by
Guerquin–Kern, Lejeune, Pruessmann and Unser in [10]. As
is evident, there is little sparsity at coarse scales, but sparsity
rapidly increases with refinement.

IV. MAIN RESULT

For brevity, we shall only address the two-level case (the
multilevel case is described in [5]). Thus, we consider signals

1 2 3 4 5 6 7 8 9

20

40

60

80

100

Fig. 2. The percentage of Haar wavelet coefficients at each scale for the
image in Fig. 1 which are greater than 10�3 in magnitude.

with a two-level sparsity structure, with the first part being
nonsparse, and the second part sparse, and a two-level sam-
pling strategy that corresponds to full sampling in the first
rows, and uniform random subsampling in the remaining rows.

Write µK = µ(P

?
KU). We now have:

Theorem 4. Let U 2 CN⇥N
be an isometry and x 2 CN

be

(s,M)-sparse, where r = 2, s = (s1, s2) and M = (M1,M2)

with s1 = M1 and M2 = N . Suppose that

kP?
N1

UPM1k  �/

p
M1, (5)

for some 1  N1  N and � 2 (0, 2/5], and that � 
s2
p
µN1 . For ✏ > 0, let m 2 N satisfy

m & (N �N1) · (log((s1 + s2)✏
�1

) + 1) · µN1 · s2 · log (N) .

Let ⌦ = ⌦N,m be a two-level sampling scheme, where N =

(N1, N2) and m = (m1,m2) with N2 = N , m1 = N1 and

m2 = m, and suppose that ⇠ 2 CN
is a minimizer of (3),

where

ˆ

f = Ux. Then, with probability exceeding 1 � ✏, ⇠ is

unique and ⇠ = x.

Note that if f is not exactly (s,M)-sparse, and if the
measurements ˆ

f = Ux+z are corrupted by noise z satisfying
kzk  �, then one can also prove that under essentially the
same conditions the minimization

inf

⌘2H
k⌘kl1 subject to kP⌦U⌘ � yk  �. (6)

recovers f exactly, up to an error depending only on � and the
error �s,M(f) of the best approximation of x by an (s,M)-
sparse vector. We refer to [5] for details.

A. Discussion

Theorem 4 shows that asymptotic incoherence and two-level
sampling overcomes the coherence barrier for two-level sparse
signals. To see this, we note:
(i) The condition kP?

N1
UPM1k  2/(5

p
M1) (which is

always satisfied for some N1, since U is an isometry)
implies that fully sampling the first N1 measurements
allows one to recover the first M1 coefficients of f .

(ii) To recover the remaining s2 coefficients we require, up
to log factors, an additional m2 & (N � N1) · µN1 · s2
measurements, taken randomly.

Let us explain how this relates to the MRI problem. With
Fourier samples and wavelets as the sparsity system, (i) gives
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Fig. 3. The minimum subsampling percentage p.

that we recover the nonsparse part of the signal with N1 ⇡ M1

measurements. The fact that N1 ⇡ M1 in this case was shown
in [11]. Since µN1 = O �

N

�1
1

�
, (ii) gives that an additional

m2 & s2 measurements are required to recover the sparse part
of the signal. Hence this result is nearly optimal for signals
with two-level asymptotic sparsity. Namely, the full and the
sparse parts of the signal are recovered using (up to constants
and log factors) optimal numbers of measurements.

We remark that it is not necessary to know the sparsity
structure, i.e. the values s and M, of the image f in order
to implement the multilevel sampling technique. Given a
multilevel scheme ⌦ = ⌦N,m, the result of [5] governing
(s,M)-compressible signals shows that f will be recovered
exactly up to an error on the order of �s,M(f), where s and
M are determined implicitly by N, m and the conditions of
the theorem. Of course, some a priori knowledge of s and M
will greatly assist in selecting the parameters N and m so as
to get the best recovery results. However, this is not strictly
necessary for implementing the method.

V. RESOLUTION DEPENDENCE AND NUMERICAL RESULTS

As explained, natural images are not sparse at coarse
wavelet scales, nor is there substantial asymptotic incoherence.
Hence, regardless of how we choose to recover f , there is little
possibility for substantial subsampling when the problem res-
olution is low. On the other hand, asymptotic incoherence and
asymptotic sparsity both kick in when the resolution increases.
Multilevel sampling allows us to exploit these properties, and
by doing so we achieve far greater subsampling.

To illustrate this, consider the reconstruction of the 1D
function f(t) = e

�t
�[0.2,0.8](t), t 2 [0, 1], from its Fourier

samples using Haar wavelets. We use a two-level scheme with
p/2% fixed samples and p/2% random samples, where p is
the total subsampling percentage, and search for the smallest
value of p such that the two-level sampling scheme succeeds:
namely, it gives an error smaller than that obtained by taking
all possible samples of f .

In Fig. 3 we plot p against the resolution N . The difference
between low resolution (N = 128) and high resolution (N =

4096) is clear and dramatic. We conclude that the success of
the reconstruction is highly resolution dependent.

Now consider a different experiment, where the total num-
ber of measurements is fixed and equal to 512

2
= 262144,

Fig. 4. The reconstruction of the 2048 ⇥ 2048 GPLU phantom (Fig. 1)
from 5122 Fourier samples. Top: linear reconstruction using the first 5122

Fourier samples and zero padding elsewhere. Bottom: multilevel random CS
reconstruction. Note that standard uniform random sampling CS would give an
extremely poor reconstruction in this case, due to the O (1) global coherence.

but the sampling pattern is allowed to vary. In Fig. 4 we
display a segment of the reconstruction. For the purposes of
comparison, artificial fine details were added to the image
to be recovered. As is clear, CS with multilevel sampling
acts a resolution enhancer. By sampling higher in the Fourier
spectrum, one recovers fine details of the image whilst taking
the same number of measurements.

For further numerical examples and discussion, see [5].
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Abstract—We revisit the probabilistic construction of sparse

random matrices where each column has a fixed number of

nonzeros whose row indices are drawn uniformly at random.

These matrices have a one-to-one correspondence with the

adjacency matrices of lossless expander graphs. We present tail

bounds on the probability that the cardinality of the set of

neighbors for these graphs will be less than the expected value.

The bounds are derived through the analysis of collisions in

unions of sets using a dyadic splitting technique. This analysis led

to the derivation of better constants that allow for quantitative

theorems on existence of lossless expander graphs and hence

the sparse random matrices we consider and also quantitative

compressed sensing sampling theorems when using sparse non

mean-zero measurement matrices.

I. INTRODUCTION

Sparse matrices are particularly useful in applied and com-
putational mathematics because of their low storage complex-
ity and fast implementation as compared to dense matrices. Of
late, significant progress has been made to incorporate sparse
matrices in compressed sensing, with [1], [2], [3], [4] giving
both theoretical performance guarantees and also exhibiting
numerical results that shows sparse matrices coming from
expander graphs can be as good sensing matrices as their
dense counterparts. In fact, Blanchard and Tanner [5] recently
demonstrated in a GPU implementation how well these type of
matrices do compared to dense Gaussian and Discrete Cosine
Transform matrices even with very small fixed number of
nonzeros per column (as considered here).

In this manuscript we consider random sparse matrices that
are adjacency matrices of lossless expander graphs. Expander
graphs are highly connected graphs with very sparse adjacency
matrices, a precise definition of a lossless expander graph is
given in Definition 1.

Definition 1: G (U, V,E) is a lossless (k, d, ✏)-expander if
it is a bipartite graph with |U | = N left vertices, |V | = n

right vertices and has a regular left degree d, such that any
X ⇢ U with |X|  k has a set of neighbors �(X) ⇢ V with
|�(X)| � (1� ✏) d|X| neighbors.

Note that these graphs are lossless because ✏ ⌧ 1, they
are also referred to as unbalanced expanders in the literature

because n ⌧ N and a (k, d, ✏)-lossless expander graph has an
expansion of (1� ✏) d. Such graphs have been well studied in
theoretical computer science and mathematics and have many
applications. Probabilistic constructions of such graphs using
random left-regular bipartite graphs with optimal parameters
exist but deterministic constructions only achieve sub-optimal
parameters, see [6] or [7] for a more detailed survey.

Using a novel technique of dyadic splitting of sets, this
work derives quantitative guarantees on the probabilistic con-
struction of these graphs in the form of a bound on the tail
probability of the size of the set of neighbors, �(X) for a given
X ⇢ U , of a randomly generated left-degree bipartite graph.
Moreover, this tail bound proves a bound on the tail probability
of the expansion of the graph, |�(X)|/|X|. In addition, we
derive the first phase transitions showing regions in parameter
space that depicting when a left-regular bipartite graph with a
given set of parameters is guaranteed to be a lossless expander
with high probability. Similar results in terms of the adjacency
matrices of these graphs is also presented. Another contri-
bution of this work is the derivation of sampling theorems
comparing performance guarantees for some of the algorithms
proposed for compressed sensing using such sparse matrices
as well as the more traditional `1 minimization compressed
sensing formulation. It also provides phase transitions of `1

minimization performance guarantees for such sparse matrices
compared to what `2 restricted isometry constants (RIC2)
analysis yields for Gaussian matrices.

II. TAIL BOUND

Our main result is the presentation of formulae for the
expected cardinality of the set of neighbors of (k, d, ✏)-lossless
expander graphs and the sparse non-mean zero matrices from
these graphs. Based on this, we present a tail bound on the
probability that this cardinality will be less than the expected
value. We start by defining the class of matrices we consider
and a key concept of a set of neighbors used in our derivation.

Definition 2: Let A be an n⇥N matrix with d nonzeros in
each column. We refer to A as a random a) sparse expander
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(SE) if every nonzero has value 1 and b) sparse signed
expander (SSE) if every nonzero has value from {�1, 1}.

The support set of the d nonzeros per column of these
matrices are drawn uniformly at random and independently
for each column. An SE matrix is an adjacency matrix of
(k, d, ✏)-lossless expander graph while an SSE matrix have
random sign patterns in the nonzeros of an adjacency matrix
of a (k, d, ✏)-lossless expander graph. If A is either an SE or
SSE it will have only d nonzeros per column and since we fix
d ⌧ n, A is therefore extremely sparse.

We formally define the set of neighbors in both graph
theory and linear algebra notation to aid translation between
the terminology of the two communities. Denote A

S

as a
submatrix of A composed of columns of A indexed by the
set S with |S| = s.

Definition 3: Consider a bipartite graph G(U, V,E) where
E is the set of edges and e

ij

= (x

i

, y

j

) is the edge that
connects vertex x

i

to vertex y

j

. For a given subset of left
vertices S ⇢ U its set of neighbors �(S) ⇢ V is defined as
�(S) := {y

j

|x
i

2 S and e

ij

2 E}. In terms of the adjacency
matrix, A, of G(U, V,E) the set of neighbors of A

S

denoted
by A

s

, is the set of rows with at least one nonzero.
Henceforth, we will only use the linear algebra notation

A

s

which is equivalent to �(S). Note that |A
s

| is a random
variable depending on the draw of the set of columns, S, for
each fixed A. Therefore, we can ask what is the probability
that |A

s

| is not greater than a

s

, in particular where a

s

is
smaller than the expected value of |A

s

|. This is the question
that Theorem 4 attempts to answers.

Theorem 4 (Theorem 1.6, [8]): For fixed s, n,N, d and
d  a

s

< 1, let an n⇥N matrix, A be drawn from either of
the classes of matrices defined in Definition 2, then

Prob (|A
s

|  a

s

) < p

max

(s, d) · e[n· (as,...,a1)] (1)

where p

max

(s, d) =

2
25

p
2⇡s3d3

, and for random variables
a

s

, . . . , a2 and a1 := d,  (a

s

, . . . , a1) is given by

1

n


3s log (5d) +

ds/2eX

i=1

s

2i

✓
(n� a

i

) · H
✓
a2i � a

i

n� a

i

◆

+a

i

· H
✓
a2i � a

i

a

i

◆
� n · H

⇣
a

i

n

⌘◆�
,

where H(·) is the Shannon entropy function of base e loga-
rithm. Consequently:

1) if no restriction is imposed on a

s

then the a

i

for i > 1

take on the expected values of |A
s

|, which are given by
â2i = â

i

�
2� âi

n

�
for i = 1, 2, 4, . . . , ds/2e;

2) else if a

s

is restricted to be less than â

s

, then the a

i

for i > 1 are the unique solutions to the following
polynomial system a

3
2i � 2a

i

a

2
2i + 2a

2
i

a2i � a

2
i

a4i = 0

for i = 1, 2, . . . , ds/4e with a2i � a

i

for each i.
Theorem 4 gives a bound on the probability that the

cardinality of a union of k sets each with d elements is less
than a

k

. Figure 1 shows plots of values of |A
k

| (size of set of
neighbors) for different k taken over 500 realizations (in blue),

superimposed on these plots is the empirical mean values of
|A

k

| over the 500 runs (in red) and the â

k

in green.
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0

200

400

600

800

1000

1200

k /n
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k
|

d =8, n =1024 and k = 2,3,4, . . . ,512

Fig. 1. For fixed d = 8 and n = 210, over 500 realizations, plots (in
blue) of the cardinalities of the index sets of nonzeros in a given number of
set sizes, k. The dotted red curve is mean of the simulations and the green
squares are the â

k

.

Furthermore, simulations illustrate that the â

k

are the ex-
pected values of the cardinalities of the union of k sets, |A

k

|, as
shown in Figure 2, where we show the relative error between
â

k

and the empirical mean values of the |A
k

|, denoted by ā

k

,
realized over 500 runs, to be less than 10

�3.
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d =8, n =1024 and k = 2,4,8, ...,512

Fig. 2. For fixed d = 8 and n = 210, over 500 realizations, plots of the
relative error between the mean values of a

k

(referred to as ā
k

) and the â
k

.

III. SAMPLING THEOREMS

We now use Theorem 4 with the `1-norm restricted isometry
property (RIP-1), introduced by Berinde et. al. in [1], to deduce
the corollaries that follow which are about the probabilistic
construction of expander graphs, the matrices we consider,
and sampling theorems of some selected compressed sensing
algorithms. Firstly, using only the expansion property of these
graphs we can draw the following corollary from Theorem 4.

Corollary 5: For fixed s, n,N, d and 0 < ✏ < 1/2, let an
n⇥N matrix, A be drawn from the class of matrices defined
in Definition 2, then

Prob (kA
S

xk1  (1� 2✏)dkxk1) < p

max

(s, d) · e[n· (s,d,✏)]
,
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where  (s, d, ✏) =  (a

s

, . . . , a1) with a

s

= (1� ✏)ds.
Theorem 4 and Corollary 5 allow us to calculate s, n,N, d, ✏

where the probability of the probabilistic constructions in Def-
inition 2 not being a (s, d, ✏)-lossless expander is exponentially
small. Using Corollary 5 and the RIP-1 results in [1] we
derived a bound for the probability that a random draw of
a matrix with d 1s or ±1s in each column fails to satisfy the
lower bound of the RIP-1 constant (RIC1) and hence fails to
come from the class of matrices given in Definition 2, for
details see [8]. From this bound we deduce the following
corollary which is a sampling theorem on the existence of
lossless expander graphs.

Corollary 6: Consider 0 < ✏ < 1/2 and d fixed. If A is
drawn from the class of matrices in Definition 2 and any k-
sparse x with (k, n,N) ! 1 while k/n ! ⇢ 2 (0, 1) and
n/N ! � 2 (0, 1) then for ⇢ < (1��)⇢

exp

(�; d, ✏) and � > 0

Prob (kAxk1 � (1� 2✏)dkxk1) ! 1 (2)

exponentially in n, where ⇢

exp

(�; d, ✏) is the largest limiting
value of k/n for which H

�
k

N

�
+

n

N

 (k, d, ✏) = 0.

For each fixed 0 < ✏ < 1/2 and each fixed d, ⇢exp(�; d, ✏)
in Corollary 6 is a function of � and a phase transition
function in the (�, ⇢) plane. Below the curve of ⇢

exp

(�; d, ✏)

the probability in (2) goes to one exponentially in n as the
problem size grows. That is if A is drawn at random with d 1s
or d ± 1s in each column and having parameters (k, n,N)

that fall below the curve of ⇢

exp

(�; d, ✏) then we say it is
from the class of matrices in Definition 2 with probability
approaching one exponentially in n. In terms of |�(X)| for
X ⇢ U and |X|  k, Corollary 6 say that the probability
|�(X)| � (1 � ✏)dk goes to one exponentially in n if the
parameters of our graph lies in the region below ⇢

exp

(�; d, ✏).
This implies that if we draw a random bipartite graphs that
has parameters in the region below the curve of ⇢

exp

(�; d, ✏)

then with probability approaching one exponentially in n that
graph is a (k, d, ✏)-lossless expander.
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Fig. 3. Phase transition plots of ⇢exp(�; d, ✏) for fixed ✏ = 1/6 and n = 210

with d varied.

Figure 3 shows a plot of what ⇢

exp

(�; d, ✏) converge to
for different values of d with ✏ and n fixed. It is interesting
to note how increasing d increases the phase transition up

to a point then it decreases the phase transition. Essentially
beyond d = 16 there is inconsequential gain in increasing d.
This vindicates the use of small d in most of the numerical
simulations involving the class of matrices considered here.
Note the vanishing sparsity as the problem size (k, n,N)

grows while d is fixed to a small value of 8.
Corollary 6 can also be arrived at based on similar prob-

abilistic constructions of expander graphs first proven by
Pinsker in [9] with more recent proofs in [10], [6]. To put
our results in perspective, we compare them to the phase
transitions derived from the constants from the construction
in [10], shown in Figure 4.
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Fig. 4. A comparison of ⇢exp in Corollary 6 to ⇢exp
bi

derived from the
alternative construction proven in [10].

Furthermore, for moderate values of ✏ this allows us to make
quantitative sampling theorems for some compressed sensing
reconstruction algorithms. As usual in compressed sensing, in
addition to `1-minimization quite a few combinatorial greedy
algorithms have been proposed for these sparse non-mean zero
matrices. These algorithms iteratively locates and eliminate
large (in magnitude) components of the vector, [1]. They
include Sequential Sparse Matching Pursuit (SSMP), see [11];
and Expander Recovery (ER), see [3]. Besides, theoretical
guarantees have been given for `1 recovery and some of the
greedy algorithms including SSMP and ER. Base on these
theoretical guarantees, we derived sampling theorems and
present here phase transition curves which are plots of phase
transition functions ⇢

alg

(�; d, ✏) of algorithms such that for
k/n ! ⇢ < (1 � �)⇢

alg

(�; d, ✏), � > 0, a given algorithm is
guaranteed to recovery all k-sparse signals with overwhelming
probability approaching one exponentially in n.

Figure 5 compares the phase transition of thee above men-
tioned algorithms. Remarkably, for ER recovery is guaranteed
for a larger portion of the (�, ⇢) plane than is guaranteed by
the theory for `1-minimization using sparse matrices; however,
`1-minimization has a larger recovery region than does SSMP.
Figure 6 shows a comparison of the phase transition of `1-
minimization as presented by Blanchard et. al. in [12] for
dense Gaussian matrices based on RIC2 analysis and the
phase transition we derived here for the sparse binary matrices
coming from lossless expander based on RIC1 analysis. This
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Fig. 5. Phase transition curves ⇢alg (�; d, ✏) computed over finite values of
� 2 (0, 1) with d fixed and the different ✏ values for each algorithm - 1/4,
1/6 and 1/16 for ER, `1 and SSMP respectively.

shows a significant difference between the two with sparse
matrices having better performance guarantees. However, these
improved recovery guarantees are likely more due to the closer
match of the method of analysis than to the efficacy of sparse
matrices over dense matrices.
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Fig. 6. Phase transition plots of `1, ⇢`1
G

(�), for Gaussian matrices derived
using RIC2 and ⇢`1

E

(�; d, ✏) for adjacency matrices of expander graphs with
n = 1024, d = 8, and ✏ = 1/6.

IV. SKETCH OF MAIN PROOF

Due to space constraints the details of the proofs are
skipped and the interested reader is referred to [8]. It is
however important to briefly describe the key innovations in
the derivation of the main result, Theorem 4.

For one fixed set of columns of A, denoted A

S

, the
probability in (1) can be understood as the cardinality of
the unions of nonzeros in the columns. Our analysis of this
probability follows from a nested unions of subsets using a
dyadic splitting technique. Given a starting set of columns
we recursively split the number of columns from this set and
the resulting sets into two sets of cardinality of the ceiling
and floor of the cardinality of their union until a level when
the cardinalities are at most two. Resulting from this type of

splitting is a regular binary tree where the size of each child is
either the ceiling or the floor of the size of it’s parent set. The
probability of interest becomes a product of the probabilities
involving all the children from the dyadic splitting of A

s

. The
proof therefore reduces to upper bounding this product.

Furthermore, in the binary tree resulting from our dyadic
splitting scheme the number of columns in the two children
of a parent node is the ceiling and the floor of half of the
number of columns of the parent node. At each level of the
split the number of columns of the children of that level differ
by one. The enumeration of these two quantities at each level
of the splitting process is necessary in the computation of the
bound in (1). This led to another novel technical result in our
derivation, i.e. dyadic splitting lemma (Lemma 2.5 in [8]).

V. CONCLUSIONS

This work derived bounds on the tail probability of the
cardinality of the set of neighbours of expander graphs result-
ing into better order constants than the standard probabilistic
construction. Using this bound and RIC1 analysis, we deduce
sampling theorems for the existence of expander graphs and
their adjacency matrices. The derivation of the tail bound used
a novel technique of dyadic set splitting. We also compared
quantitatively, performance guarantees of compressed sens-
ing algorithms which show greater phase transitions for ER
than `1-minimization which in turn is greater than SSMP. A
comparison of `1-minimization for dense and sparse matrices
shows a higher phase transition for sparse matrices.
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Abstract—Recovering signals that has a sparse representation
from a given set of linear measurements has been a major topic
of research in recent years. Most of the work dealing with this
subject focus on the reconstruction of the signal’s representation
as the means to recover the signal itself. This approach forces the
dictionary to be of low-coherence and with no linear dependencies
between its columns. Recently, a series of contributions show that
such dependencies can be allowed by aiming at recovering the
signal itself. However, most of these recent works consider the
analysis framework, and only few discuss the synthesis model.
This paper studies the synthesis and introduces a new mutual
coherence definition for signal recovery, showing that a modified
version of OMP can recover sparsely represented signals of a
dictionary with very high correlations between pairs of columns.
We show how the derived results apply to the plain OMP.

I. INTRODUCTION

Much attention has been given to the problem of recovering
a sparse signal from a given set of linear measurements in the
recent decade. In the basic setup, an unknown signal x ∈ Rd

passes through a given linear transformation M ∈ Rm×d

(including m < d) with an additive noise e ∈ Rm, providing
y = Mx + e. The signal x is assumed to have a k-sparse
representation α ∈ Rn under a given dictionary D ∈ Rd×n,
i.e. x = Dα and α has at most k non-zero entries. Most
existing work dealing with the problem of estimating x from
y focuses on the recovery of the signal’s representation,
assuming that this would lead to the desired signal recovery.
This approach forces D to be incoherent, and in particular,
with no linear dependencies between small groups of its atoms.

Recently, a series of papers have shown that such dependen-
cies can be permitted by aiming at estimating the signal itself
[1], [2], [3], [4], [5]. Indeed, in [3], [4], [5] it is even suggested
that such linear dependencies should be encouraged. However,
these contributions consider the ”analysis” framework. A first
clue that this is not unique to the analysis model but rather
applicable also to the ”synthesis” appears in [1]. Though its
results are for signals from the analysis model, the recovery
conditions rely on the D-RIP, a synthesis model property.

The work reported in [6] is different and daring, as it
addresses the synthesis model, presenting a variation of
CoSaMP that targets the recovery of the signal directly. In
their theoretical study, they use the D-RIP to analyze the
algorithm’s performance assuming the existence of an efficient
near-optimal projection scheme, like in [4]. However, the
availability of such a projection is questionable in the general
case. Another recent work that exploits the D-RIP in the
context of the synthesis is [7], proposing stable signal recovery

conditions for the basic synthesis !0-minimization problem.
It is interesting to note that in [6] it is observed that

orthogonal matching pursuit (OMP) [8], though not backed
up theoretically, achieves some success in recovering signals
in the presence of high coherence in the dictionary. In this
work we make the first steps to explain this behaviour. We
propose a slightly modified version of OMP, OMPε,2, and
analyze its performance in the noiseless case (e = 0). Instead
of using the D-RIP, we rely on a new property of M and
D: The ε-coherence µε, which generalizes the definition of
the regular coherence µ. Using this definition we show that if
k ≤ 1

2 (1+
1
µε
)−O(ε) then the OMPε,2 signal recovery error is

O(ε). This result implies that OMPε,2 achieves an almost exact
reconstruction in the case of very high correlations within pairs
of dictionary columns. We draw also the connection between
OMP and OMPε,2. Note that our conditions do not include the
need for an efficient projection, as needed in [6] .

The organization of this paper is as follows. Section II
introduces the ε-coherence along with other new definitions. In
Section III a modified version of OMP is introduced to support
high correlation between pairs of columns. In Section IV the
algorithm is analyzed using the ε-coherence providing some
performance guarantees for the noiseless case. In Section V
the derived results are demonstrated empirically.

II. NEW COHERENCE DEFINITION

We start with some notation. The largest singular value
of a matrix M is denoted by σM. The i-th column/element
of a matrix/vector D/x is denoted by di/xi, and the sub-
matrix/vector with the entries of the support set T by DT /αT .
By abuse of notation, αT corresponds both to the sub-vector
with these entries alone and to the zero padded one. We denote
by WD a diagonal matrix that contains the norms of the
columns of D on its diagonal, i.e, Wi,i = ‖di‖2.

We turn to introduce some definitions which serve as build-
ing blocks in our proposed algorithm and theoretical study.
As in [9] the columns of MD are assumed to be normalized,
since if this is not the case a simple scaling can be applied.

Definition 2.1 (ε-coherence): Let 0 ≤ ε < 1, M be a
fixed measurement matrix and D be a fixed dictionary. The
ε-coherence µε(M,D) is defined as

µε(M,D) = max
1≤i<j≤n

|〈Mdi,Mdj〉| (1)

s.t.
|〈di,dj〉|2

‖di‖22 ‖dj‖22
< 1− ε2.
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For calculating µε(M,D), one may compute the Gram ma-
trices GMD = D∗M∗MD and GD = W−1

D D∗DW−1
D . The

ε-coherence is simply the value of the largest off-diagonal
element in absolute value in GMD, corresponding to an entry
in GD that is smaller in its absolute value than

√
1− ε2. Note

that for D = I, the ε-coherence coincides with the regular
coherence µ(M) and we have µε(M, I) = µ(M). When it is
clear to which M and D we refer, we use simply µε.

Definition 2.2 (ε-independent support set): Let 0 ≤ ε < 1,
D be a fixed dictionary. A support set T is ε-independent with
respect to a dictionary D if ∀i )= j ∈ T, |〈di,dj〉|2

‖di‖2
2‖dj‖2

2
< 1− ε2.

Definition 2.3 (ε-closure): Let 0 ≤ ε < 1 and D be a fixed
dictionary. The ε-closure of a given support T is defined as
closε,2(T ) = {i|∃j ∈ T, |〈di,dj〉|2

‖di‖2
2‖dj‖2

2
≥ 1− ε2}.

The ε-closure of a support T extends it to include each
column in D which is ”ε-correlated” with elements included
in T . Obviously, T ⊆ closε,2(T ). Note that the last two
definitions are related to a given dictionary D. If D is clear
from the context, it is omitted.

III. ε-ORTHOGONAL MATCHING PURSUIT

In order to treat the ε dependencies in a dictionary we
propose the ε-orthogonal matching pursuit (OMPε,2) presented
in Algorithm 1, which is a modification of OMP [8]. OMPε,2

is the same as the regular OMP but with the addition of the
ε-closure step. The methods coincide if ε = 0 as OMP’s or-
thogonality property guarantees not selecting the same vector
twice and thus the ε-closure step in OMPε,2 has no effect.

IV. ALGORITHM RECOVERY GUARANTEES

We start with the following Lemma.
Lemma 4.1: Let x = Dα, T be the support of α, T̃ be a

support set such that T ⊆ closε,2(T̃ ), βi =
〈di,dF (i,DT )〉

‖dF (i,DT )‖2

2

and

ĩ = F (i,DT ) is a function of i such that |〈di,dĩ〉|2
‖di‖2

2‖dĩ‖2

2

≥ 1−ε2.

If there are several possible ĩ for a given i, choose any one of
those and proceed. For the construction

x̃ =
∑

i∈T∩T̃

diαi +
∑

i∈T\T̃

βidF (i,DT )αi, (2)

we have

‖x− x̃‖22 ≤
∥∥∥WDTαT\T̃

∥∥∥
2

1
ε2. (3)

Proof: Note that x− x̃ =
∑

i∈T\T̃
(
di − βidF (i,DT )

)
αi and

∥∥di − βidF (i,DT )

∥∥2
2
= ‖di‖22

(
1− |〈di,dĩ〉|2

‖di‖2
2‖dĩ‖2

2

)
≤ ‖di‖22 ε2.

The Cauchy-Schwartz inequality with some arithmetics gives

‖x− x̃‖22 =

∥∥∥∥∥∥

∑

i∈T\T̃

(
di − βidF (i,DT )

)
αi

∥∥∥∥∥∥

2

2

(4)

=
∑

i,j∈T\T̃

(
di − βidF (i,DT )

)∗ (
dj − βjdF (j,DT )

)
αiαj

≤
∑

i∈T\T̃

ε2 ‖di‖22 α
2
i +

∑

i *=j∈T\T̃

ε2 ‖di‖2 ‖dj‖2 αiαj .

Algorithm 1 ε-Orthogonal Matching Pursuit
Require: k,M,D,y where y = Mx+ e, x = Dα, ‖α‖0 ≤
k and e is an additive noise.

Ensure: x̂OMPε,2 : k-sparse approximation of x.
Initialize estimate x̂0 = 0, residual r0 = y, support T̂ 0 =
Ť 0 = ∅ and set t = 0.
while t ≤ k do
t = t+ 1.
New support element: it = argmaxi *∈Ť t−1 |d∗

iM
∗(rt−1)|.

Extend support: T̂ t = T̂ t−1 ∪ {it}.
Calculate a new estimate: x̂t

OMPε,2
= DT̂ t(MDT̂ t)†y.

Calculate a new residual: rt = y −Mx̂t
OMPε,2

.
Support ε-closure: Ť t = closε,2(T̂ t).

end while
Form the final solution x̂OMPε,2 = x̂k

OMPε,2
.

By the definitions of the !1-norm and WDT we have that the
rhs (right-hand-side) of (4) is equal to the rhs of (3). !

Theorem 4.2: Let 0 ≤ ε < 1, M be a fixed measurement
matrix, D be a fixed dictionary with ε-coherence µε =
µε(M,D) and y = Mx be a set of measurements of x = Dα
where α is supported on T and |T | = k. Let T̃ ⊆ T be an
ε-independent set such that T ⊆ closε,2(T̃ ) and x̃ = Dα̃ is
constructed according to (2) such that α̃ is supported on T̃ . If

k <
1

2
(1 +

1

µε
)−

2 ‖WDα̃‖1 +
∥∥∥WDαT\T̃

∥∥∥
1

|α̃min|µε
σMε, (5)

where α̃min is the minimal non-zero entry in absolute value of
α̃ , then after k iterations at most, x̂OMPε,2 satisfies
∥∥x̂OMPε,2 − x

∥∥2
2
≤

∥∥∥WDT\T̃
αT\T̃

∥∥∥
2

1
ε2 + ‖WDα̃‖21 ε

2. (6)

In particular, if T is an ε-independent set then α = α̃ and
∥∥x̂OMPε,2 − x

∥∥2
2
≤ ‖WDα‖21 ε

2. (7)

Before proceeding we comment on the role of ε and T̃ in the
theorem. If two columns are ε-correlated and we use the reg-
ular coherence µ, the condition in (5) cannot be met. The use
of ε-coherence allows us to ignore these correlations and have
a reduced coherence value. Thus, the value of ε determines
the level of correlations the algorithm can handle. Condition
(5) bounds this level by

1
2 (µε+1)−kµε

2‖WDα̃‖1+‖WDαT\T̃‖1

|α̃min|
σM

. Remark
that as ε approaches zero the value of µε approaches µ0, a
mutual coherence of D that ignores the dependent columns.

The set T̃ is needed in the theorem because the columns of
DT , which span x, might be ε-correlated or even dependent.
To avoid that, we select the maximal subset of T which
is ε-independent and still includes T in its ε-closure. The
construction of such a maximal subset is easy. We start by
initializing T̃ = T , and then sequentially for each index
i ∈ T̃ update T̃ = T̃ \ closε,2({i}). The resulting subset T̃ is
guaranteed to be ε-independent and have T ⊆ closε,2(T̃ ).

The following key Lemma is used in the Theorem’s proof.
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Lemma 4.3: Under the same setup of Theorem 4.2, we have

T̃ ⊆ Ť k = closε,2(T̂
k). (8)

Proof: We prove by induction on the iteration t ≤ |T̃ | = k̃ that
either T̃ ⊆ Ť t or ∃i ∈ T̃ such that i ∈ Ť t and i )∈ Ť t−1. Since
the induction guarantees that in each iteration a new element
from T̃ is included in Ť t, after k ≥ k̃ iterations (8) holds.

The basis of the induction is t = 1. Define T̄ = closε,2(T̃ ).
The basis holds if in the first iteration we select an ele-
ment from T̄ . This is true due to the fact that ∀i, j ∈ T ,
i ∈ closε,2({j}) iff j ∈ closε,2({i}). Thus, we need to require

max
i∈T̄

|d∗
iM

∗y| > max
i∈T̄C

|d∗
iM

∗y| . (9)

First note that y = Mx̃+M(x− x̃). Thus, using the triangle
inequality, the Cauchy-Shwartz inequality and the facts that
the !2-norm is multiplicative and ‖Mdi‖2 = 1, (9) holds if

max
i∈T̄

|d∗
iM

∗Mx̃| > max
i∈T̄C

|d∗
iM

∗Mx̃|+ 2 ‖M(x− x̃)‖2 . (10)

In order to check when the last happens we shall bound its
lhs (left-hand-side) from below and its rhs from above.

Assuming w.l.o.g that the index of the largest entry in α̃ is
1, we have for the lhs of (10)

max
i∈T̄

|d∗
iM

∗Mx̃| ≥ |d∗
1M

∗Mx̃| = |
∑

l∈T̃

d∗
1M

∗Mdlα̃l| (11)

≥ |d∗
1M

∗Md1α̃1|−
∑

l∈T̃ ,l *=1

|d∗
1M

∗Mdlα̃l|

≥ α̃1 − µε

∑

l∈T̃ ,l *=1

|α̃l| = (1− (k̃ − 1)µ) |α̃1| ,

where the first inequality is due to the triangle inequality; the
second is due to the fact that ‖Mdi‖2 = 1, the definition of µε

and the Cauchy-Schwartz inequality; and the last is because
α̃1 is the largest element in α̃ and |T̃ | = k̃.

We turn now to bound the rhs of (10) from above. Using
the same considerations, we have

max
i∈T̄C

|d∗
iM

∗Mx| = max
i∈T̄C

|
∑

l∈T̃

d∗
iM

∗Mdlα̃l| (12)

≤ max
i∈T̄C

∑

l∈T̃

|d∗
iM

∗Mdlα̃l| ≤
∑

l∈T̃

µε |α̃l| ≤ |α̃1| k̃µε.

Plugging (11) and (12) into (10) and then using Lemma 4.1
with the fact that ‖M‖2 = σM gives us the condition

k̃ <
1

2
(1 +

1

µε
)− σM

µεα̃1

∥∥∥WDTαT\T̃

∥∥∥
1
ε, (13)

for selecting an element from T̄ in the first iteration.
Having the induction basis proven, we turn to the induction

step. Assume that the induction assumption holds till iteration
t− 1. We need to prove that it holds also in the t-th iteration.
Let T̄ t = closε,2(T̃ \ Ť t−1)). This set includes the ε-closure
of elements in T̃ for which an element was not selected in the
previous iterations. For proving the induction step it is enough
to show that in the t-th iteration we select an index from T̄ t:

max
i∈T̄ t

∣∣d∗
iM

∗rt−1
∣∣ > max

i∈(T̄ t)C\Ť t−1

∣∣d∗
iM

∗rt−1
∣∣ . (14)

On the rhs we do not check the maximum over elements in
Ť t−1 because OMPε,2 excludes these indices in the step of
selecting a new element. As in the basis of the induction, in
order to check when (14) holds we shall bound its lhs from
below and its rhs from above. Let x̃t−1 =

∑
i∈T̃\Ť t−1 diα̃i+∑

i∈Ť t−1 βidF (i,DT̃ )α̃i be constructed as in (2) where we use
the fact that α̃ is supported on T̃ . Denoting r̃t−1 = (I −
MDT̂ t−1(MDT̂ t−1)†)Mx̃t−1 and using a similar argument
like in (10) we have that (14) holds if

max
i∈T̄ t

|d∗
iM

∗r̃t−1| > max
i∈(T̄ t)C\Ť t−1

|d∗
iM

∗r̃t−1| (15)

+2
∥∥r̃t−1 − rt−1

∥∥
2
.

Notice that r̃t−1 is supported on T̂ t−1∪(T̃ \Ť t−1), i.e., r̃t−1 =
MDT̂ t−1∪(T̃\Ť t−1)α̃

rt−1

, and α̃rt−1

T̃\Ť t−1 = α̃T̃\Ť t−1 .
We want to show that the index of the maximal coeffi-

cient (in absolute value) of r̃t−1 belongs to T̃ \ Ť t−1 and
hence we will be able to use almost the same derivation
of the basis of the induction. We prove it by contradiction.
Assume that the maximum is achieved for i ∈ T̂ t−1. By the
orthogonality property of the residual it is easy to see that
d∗
iM

∗r̃t−1 = 0. Using similar considerations as in (11) we
have 0 =

∣∣d∗
iM

∗r̃t−1
∣∣ ≥ (1−(k̃−1)µε)

∣∣∣α̃rt−1

i

∣∣∣ which implies
k̃ ≥ 1 + 1

µε
and we get a contradiction to (5).

Let w.l.o.g. t be the maximal coefficient in α̃rt−1

it . By the
above observations t ∈ T̃ \ Ť t−1 and α̃rt−1

t = α̃t. Applying
the same steps as in (11) and (12), we have

max
i∈T̄ t

∣∣d∗
iM

∗r̃t−1
∣∣ ≥ (1− µε(k̃ − 1)) |α̃t| , (16)

max
i∈(T̄ t)C\Ť t−1

∣∣d∗
iM

∗r̃t−1
∣∣ ≤ µεk̃ |α̃t| .

Using norm inequalities and the projection property that
implies

∥∥I−MDT̂ t−1(MDT̂ t−1)†
∥∥
2
≤ 1, we have

∥∥r̃t−1 − rt−1
∥∥
2
≤

∥∥M(x̃t−1 − x)
∥∥
2
≤ σM

∥∥x̃t−1 − x
∥∥
2

(17)
≤ σM

∥∥x̃t−1 − x̃
∥∥
2
+ σM ‖x̃− x‖2

Using Lemma 4.1 with (17) and then combining it with (15)
and (16) results with the condition

k̃ <
1

2
+

1

2µε
− σMε

|α̃t|µε
(‖WDα̃Ť t−1‖1 +

∥∥∥WDαT\T̃

∥∥∥
1
). (18)

The proof ends by noticing that (18) is implied by (5). !
Proof of Theorem 4.2: Note that x̂OMPε,2 = DT̂k(MDT̂k)†y

and y = Mx. Using some basic algebraic steps we have
∥∥x̂OMPε,2 − x

∥∥
2
=

∥∥DT̂k(MDT̂k)†Mx− x
∥∥
2

(19)

=
∥∥∥(DT̂k(MDT̂k)†M− I)(I−DT̂kD

†
T̂k

)x
∥∥∥
2

≤
∥∥∥(I−DT̂kD

†
T̂k

)x
∥∥∥
2
,

where the last inequality is due to the fact that
DT̂k(MDT̂k)†M − I is a projection operator and thus
its operator norm is smaller or equal to 1. Splitting x into x̃

Proceedings of the 10th International Conference on Sampling Theory and Applications

11



and x− x̃, and then using the triangle inequality and the fact
that I−DT̂kD

†
T̂k

is a projection with (19) give

‖x̂OMP − x‖2 ≤
∥∥∥(I−DT̂kD

†
T̂k

)x̃
∥∥∥
2
+ ‖x− x̃‖2 . (20)

By Lemma 4.3, after k iterations (8) holds. Thus, Lemma 4.1
implies the existence of a vector ẑk, with a representation
supported on T̂ k, satisfying

∥∥x̃− ẑk
∥∥
2
≤

∥∥WDT̃
α̃
∥∥
1
ε. This

and projection properties yield for the first element in the rhs
∥∥∥(I−DT̂kD

†
T̂k

)x̃
∥∥∥
2
≤

∥∥x̃− ẑk
∥∥
2
≤

∥∥WDT̃
α̃
∥∥
1
ε. (21)

For the second element we have using Lemma 4.1

‖x− x̃‖2 ≤
∥∥∥WDT\T̃

αT\T̃

∥∥∥
1
ε. (22)

Plugging (22) and (21) in (20) results with (6). Notice that
if T is an ε-independent set then T = T̃ and (7) follows
immediately from (6) because the first term in its rhs vanishes
and in the second one WDTαT = WDα since αTC = 0. !

Remark 4.4: Theorem 4.2 can be easily extended to the
noisy case using the proof technique in [9].

Remark 4.5: If for a certain vector x supported on T , we
get

∣∣Ť k
∣∣ ≤ d then the condition in (5) in Theorem 4.2

implies a perfect recovery by using a simple twist in OMPε,2,
setting x̌OMPε,2 = DŤk(MDŤk)†y. Due to uniqueness condi-
tions, in this case x̌OMPε,2 = x. It can be easily shown that
|clos2ε,2(T )| ≤ d is a sufficient condition for this to happen.

Remark 4.6: From the previous remark we conclude that if
for any T such that |T | ≤ k we have |clos2ε,2(T )| ≤ d then
the algorithm provides us always with a perfect recovery.

Remark 4.7: Theorem 4.2 applies also to the regular OMP
if |〈di,dj〉|2

‖di‖2
2‖dj‖2

2
< 1− ε2 implies |〈Mdi,Mdj〉|2 < 1− ε2. The

latter property guarantees that in the step of selecting a new
element, OMP does not choose an index from Ť t. For a formal
proof, the induction step in Lemma 4.3 needs to be modified
showing that an element from Ť t is not chosen.

V. NUMERICAL SIMULATION

We turn to check numerically the recovery performance of
OMP and OMPε,2 for sparse signals under a dictionary that
contains pairs of correlated columns. We generate a dictionary
D = [D1,D2] where D1,D2 ∈ Rd×d, d = 1000, D1 contains
sparse columns with 2 non-zero entries which are ±1 with
probability 0.5 like in [7] and D2 is constructed such that each
of its columns d2

i is ε-correlated to the corresponding column
d1
i . Each entry of the measurement matrix M ∈ Rm×d is

distributed according to a normal Gaussian distribution, where
m=/γd0 and γ is the sampling rate – a value in the range (0, 1].
We set k to be /ρm0 (ρ 1 1) and measure the recovery rate
of the representation α and the signal x for various values of
γ ∈ {0.1, 0.2, . . . , 0.9} and ρ ∈ {0.02, 0.04, . . . , 0.2}.

Figure 1 presents the recovery performance over 100 real-
izations per each parameter setting. We use the observation
in Remark 4.5 and present the recovery rate of OMPε,2 for
both x̂OMPε,2 and x̌OMPε,2 . As expected from Theorem 4.2, for
the first we do not get a perfect recovery but only an error

Sampling ratio m/d

S
p

a
rs

ity
 r

a
tio

 k
/m

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

0.2

0.4

0.6

0.8

1

S
p

a
rs

ity
 r

a
tio

 k
/m

Sampling ratio m/d

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. OMPε,2 recovery rate for x̂OMPε,2 (left) and x̌OMPε,2 (right) for
the synthetic experiment described in Section V. Color attribute: fraction of
realizations in which a perfect recovery is achieved.

of an order of ε (due to lack of space we do not present the
recovery error). However, as observed in Remark 4.5 when we
take an ε-closure on the achieved support we get an almost
perfect recovery. As high correlations between columns in D,
indeed imply high correlations between columns in MD in
the common case, the recovery performance we present for
OMPε,2 are the same as for OMP as predicted in Remark 4.7.
This provides a partial explanation for the reason that OMP
achieves recovery in the experiments in [6].

VI. CONCLUSION

In this paper we have proposed a variant of the OMP
algorithm – the ε-OMP (OMPε,2) – for recovering signals with
sparse representations under dictionaries with pairs of highly
correlated columns. We have shown, both theoretically and
empirically, that OMPε,2 succeeds in recovering such signals
and that the same holds for OMP. These results are a first step
for explaining its success for coherent dictionaries.
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Abstract—This paper provides theoretical guarantees for the

recovery of signals from undersampled measurements based

on `1-analysis regularization. We provide both nonuniform and

stable uniform recovery guarantees for Gaussian random mea-

surement matrices when the rows of the analysis operator form

a frame. The nonuniform result relies on a recovery condition

via tangent cones and the case of uniform recovery is based on

an analysis version of the null space property.

I. INTRODUCTION

Compressed sensing is a recent field of mathematical signal
processing that exploits the sparsity of a signal in order to
reconstruct it from incomplete and possibly corrupted mea-
surements. A signal x 2 Rd is sparse, if the number of non-
zero entries of x, denoted by kxk0, is relatively small. The
information about x 2 Rd is provided by m ⌧ d linear
measurements

y = Mx+ ", (1)

where M 2 Rm⇥d is a measurement matrix and " corresponds
to noise. Since this system is underdetermined it is impossible
to recover x from y without additional information.

The most common approach for recovering x is to use
regularization. This leads to an optimization problem of the
form

min

z2Rd
kMz � yk22 + �R(z).

The second term penalizes large values of R(z) and reflects
our prior knowledge on the signal to be recovered. In case of
noiseless observations " = 0 we rather use

min

z2Rd
R(z) subject to Mz = y.

The analysis sparsity prior assumes that x is sparse in some
transform domain, that is, given an analysis operator ⌦ 2
Rp⇥d, the vector ⌦x is sparse. Such operators can be generated
by the discrete Fourier transform, the finite difference operator
(related to total variation), wavelet [11], [17], [19] or curvelet
transforms [3]. Then the signal is reconstructed by solving

min

z2Rd
k⌦zk1 subject to Mz = y. (P1)

Problem (P1) often appears in image processing [2], [5].
Theoretical guarantees for the successful recovery of x via
(P1) were studied in [4], [7], [10], [13], [14], [20]. In the

present paper we assume that the analysis operator is given
by a frame. Put formally, let {!

i

}p
i=1, !

i

2 Rd, be a frame,
i.e., there exist positive constants A, B > 0 such that for all
x 2 Rd

Akxk22 
pX

i=1

|h!
i

, xi|2  Bkxk22.

Its elements are collected as rows of the matrix ⌦ 2 Rp⇥d.
The analysis representation of a signal x is given by the
vector ⌦x = {h!

i

, xi}p
i=1 2 Rp. Cosparsity is then defined

as follows.
Definition 1: Let x 2 Rd, ⌦ 2 Rp⇥d and s = k⌦xk0. The

cosparsity of x with respect to ⌦ is defined as

l := p� s. (2)

The index set of the zero entries of ⌦x is called the cosupport
of x. If x is l-cosparse, then ⌦x is s-sparse with l = p� s.
From Definition 1 it follows, that if ⇤ is the cosupport of x,
then

h!
j

, xi = 0, 8j 2 ⇤.

Hence, the set of l-cosparse signals can be written as
[#⇤=l

W⇤, where W⇤ is the orthogonal complement of the
linear span of {!

j

: j 2 ⇤}.
We formulate theoretical guarantees for recovery of

cosparse signals (P1) via tangent cones that are similar to
the conditions stated in [6], [12]. Based on this, we are able
to provide the following bound on the number of Gaussian
measurements required for nonuniform recovery.

Theorem 1: Let x be l-cosparse with l = p� s, that is, ⌦x
is s-sparse. Let M 2 Rm⇥d be a Gaussian random matrix and
0 < " < 1. If

m

2

m+ 1

� 2Bs

A

 r
ln

ep

s

+

r
A ln("

�1
)

Bs

!2

, (3)

then with probability at least 1 � ", vector x is the unique
minimizer of k⌦zk1 subject to Mz = Mx.
Roughly speaking, a fixed l-cosparse vector is recovered
with high probability from m > 2(B/A)s ln(ep/s) Gaussian
measurements. For ⌦ = Id, this bound strengthens a result in
[6]. We can also incorporate the case of noisy measurements
(1). But for the ease of presentation, we omit it here.
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Usually, the signals to be recovered are only approximately
cosparse. The quantity

�

s

(⌦x)1 := inf {k⌦x� zk1 : z is s-sparse}

describes the `1-best approximation error to ⌦x by s-sparse
vectors. The ⌦-null space property of M to be defined below
ensures stability of reconstruction. Analyzing it for Gaussian
random matrices leads to the following stable and uniform
recovery result.

Theorem 2: Let M 2 Rm⇥d be a Gaussian random matrix,
0 < ⇢ < 1 and 0 < " < 1. If

m

2

m+ 1

�
2Bs

�
1 + ⇢

�1
�2

A

 r
ln

ep

s

+

1p
2

+

r
A ln("

�1
)

Bs

!2
,

(4)
then with probability at least 1� " for every vector x 2 Rd a
minimizer x̂ of k⌦zk1 subject to Mz = Mx approximates x

with `2-error

kx� x̂k2  2(1 + ⇢)

2

p
A(1� ⇢)

�

s

(⌦x)1p
s

.

For the standard case ⌦ = Id, this theorem improves the main
result in [18] with respect to the constant and adds stability
in `2.

We will give proof sketches here. Detailed arguments will
be contained in [15].

We use the notation ⌦⇤ to refer to a submatrix of ⌦ with
the rows indexed by ⇤. (⌦x)

S

stands for the vector in Rp

whose entries indexed by S coincide with the entries of ⌦x

and the rest are filled by 0. Let Bp

2 denote a unit ball in Rp

with respect to the `2-norm.

II. NONUNIFORM RECOVERY FROM GAUSSIAN
MEASUREMENTS

In the present section we provide bounds on the number
of measurements required for exact recovery of x by (P1),
where M 2 Rm⇥d is a Gaussian random matrix. We use the
idea presented in [6], that requires to calculate the Gaussian
widths of tangent cones.

For fixed x 2 Rd, we define the convex cone

T (x) = cone{z � x : z 2 Rd

, k⌦zk1  k⌦xk1}.

Theorem 3: Let M 2 Rm⇥d. A vector x 2 Rd is the unique
minimizer of k⌦zk1 subject to Mz = Mx if and only if
kerM \ T (x) = {0}.

Proof: First assume that kerM\T (x) = {0}. Let z 2 Rd

be a vector that satisfies

k⌦zk1  k⌦xk1 subject to Mz = Mx.

This means that z� x 2 T (x) and z� x 2 kerM . According
to our assumption we conclude that z � x = 0, so that x is
the unique minimizer.

On the other hand, if x is the unique minimizer of (P1),
then k⌦(x + v)k1 > k⌦xk1 for all v 2 kerM \ {0}, which
implies that v /2 T (x). This means that

(kerM \ {0}) \ T (x) = ;

or equivalently kerM \ T (x) = {0}.
To prove Theorem 1 we rely on Theorem 3, which requires

that the null space of the measurement matrix M misses the
set T (x). The next ingredient of the proof is a variation of
Gordon’s escape through the mesh theorem [9], which was
first used in the context of compressed sensing in [18]. To
formulate this theorem whose proof will be present in a journal
paper in preparation, we introduce some notation.

Let g 2 Rm be a standard Gaussian random vector. Then
for

E

m

:= E kgk2 =

p
2

� ((m+ 1)/2)

� (m/2)

we have
mp
m+ 1

 E

m


p
m.

For a set T ⇢ Rd we define its Gaussian width by

`(T ) := E sup

x2T

hx, gi,

where g 2 Rd is a standard Gaussian random vector.
Theorem 4: Let ⌦ 2 Rp⇥d be a frame with constants A,

B > 0. Let M 2 Rm⇥d be a Gaussian random matrix and T

be a subset of the unit sphere S

d�1
= {x 2 Rd

: kxk2 = 1}.
Then, for t > 0, it holds

P
✓
inf

x2T

kMxk2 > E

m

� 1p
A

` (⌦(T ))� t

◆
� 1�e

� t2

2
, (5)

where ⌦(T ) corresponds to the set of elements produced by
applying ⌦ on elements from T .
With T := T (x)\Sd�1 the number of Gaussian measurements
required to guarantee the exact reconstruction of x with
probability 1� e

�t

2
/2 is determined by

E

m

� 1p
A

`(⌦(T )) + t.

If ⌦ is a frame, then

⌦(T ) ⇢ ⌦(T (x)) \ ⌦(S

d�1
) ⇢ K(⌦x) \

⇣p
BB

p

2

⌘
,

where

K(⌦x) = cone {y � ⌦x : y 2 Rp

, kyk1  k⌦xk1} .

The supremum over a larger set can only increase, hence

`(⌦(T )) 
p
B` (K(⌦x) \B

p

2) . (6)

We next give an upper bound for ` (K(⌦x) \B

p

2) involving
the polar cone N (⌦x) = K(⌦x)

� defined by

N (⌦x) = {z 2 Rp

: hz, y � ⌦xi  0 for all y 2 Rp

such that kyk1  k⌦xk1} .

Proposition 1: Let g 2 Rp be a standard Gaussian random
vector. Then

` (K(⌦x) \B

p

2)  E min

z2N (⌦x)
kg � zk2. (7)

The proof is an application of convex analysis, see [1],
[6]. Now the problem of estimating `(⌦(T )) is reduced to
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bounding E min

z2N(⌦(x))
kg�zk2, where ⌦x is an s-sparse vector.

By Hölder’s inequality

✓
E min

z2N (⌦x)
kg � zk2

◆2

 E min

z2N (⌦x)
kg � zk22 (8)

and with some extra calculation (improving slightly over a
bound in [6]) we can show that

E min

z2N (⌦x)
kg � zk22  2s ln

ep

s

.

Together with inequalities (6) and (7) this gives

`(⌦(T ))

2  2Bs ln

ep

s

.

Proof of Theorem 1: Set t =
p
2 ln("

�1
). The fact that

E

m

� m/

p
m+ 1 along with condition (3) yields

E

m

� 1p
A

`(⌦(T )) + t.

Theorem 4 implies

P
✓
inf

x2T

kMxk2 > 0

◆
� 1� e

� t2

2
= 1� ",

which guarantees that kerM \ T (x) = {0} with probability
at least 1� ". As a final step we apply Theorem 3.

III. ⌦-NULL SPACE PROPERTY

The proof of Theorem 2 is based on the following concept.
Definition 2: A matrix M 2 Rm⇥d is said to satisfy the

`2-stable ⌦-null space property of order s with 0 < ⇢ < 1, if
for any set ⇤ ⇢ [p] with #⇤ � p� s it holds

k⌦⇤c
vk2 <

⇢p
s

k⌦⇤vk1 for all v 2 kerM \ {0}. (9)

This is the strengthened version of the recovery condition
stated in [13]. If ⌦ is the identity map Id : Rd ! Rd,
then condition (9) becomes the standard `2-stable null space
property [8].

Theorem 5: Let ⌦ 2 Rp⇥d be a frame and M 2 Rm⇥d

satisfy the `2-stable ⌦-null space property of order s with
constant 0 < ⇢ < 1. Then for any x 2 Rd the solution x̂ of
(P1) with y = Mx approximates the vector x with `2-error

kx� x̂k2  2(1 + ⇢)

2

p
A(1� ⇢)

�

s

(⌦x)1p
s

. (10)

Inequality (10) means that l-cosparse vectors are exactly
recovered by (P1) and vectors x 2 Rd, such that ⌦x is close
to an s-sparse vector in `1, can be well approximated in `2 by
a solution of (P1). The proof goes along the same lines as in
the standard case. For the sake of brevity we omit it here.

IV. UNIFORM RECOVERY FROM GAUSSIAN
MEASUREMENTS

The `2-stable ⌦-null space property of order s of the
measurement matrix M 2 Rm⇥d ensures the exact recovery
of any l-cosparse vector by solving (P1). The same strategy as
in the Section II allows us to give the bound on the number
of Gaussian measurements required for the `2-stable ⌦-null
space property to hold.

To prove Theorem 2 let us introduce the set

W

⇢,s

:=

�
w 2 Rd

: k⌦⇤c
wk2 � ⇢/

p
sk⌦⇤wk1

for some ⇤ ⇢ [p], #⇤ = p� s} .
If

min

�
kMwk2 : w 2 W

⇢,s

\ S

d�1
 
> 0, (11)

then for all w 2 kerM \{0} and any ⇤ ⇢ [p] with #⇤ = p�s

we have
k⌦⇤c

wk2 <

⇢p
s

k⌦⇤wk1,

which implies that M satisfies the `2-stable ⌦-null space
property of order s. To show (11) we apply Theorem 4,
according to which we have to study the Gaussian width of
the set ⌦

�
W

⇢,s

\ S

d�1
�
. Since ⌦ is a frame, we have

⌦

�
W

⇢,s

\ S

d�1
�
⇢ ⌦ (W

⇢,s

)\
⇣p

BB

p

2

⌘
⇢ T

⇢,s

\
⇣p

BB

p

2

⌘
,

with
T

⇢,s

=

�
w 2 Rp

: kw
S

k2 � ⇢/

p
skw

S

ck1
for some S ⇢ [p], #S = s} .

Then

T

⇢,s

\
⇣p

BB

p

2

⌘
=

[

#S=s

n
w 2 Rp

: kwk2 
p
B,

kw
S

k2 � ⇢p
s

kw
S

ck1
�
.

Lemma 1: Let the set D be defined by

D := conv

�
x 2 S

p�1
: # suppx  s

 
.

Then
T

⇢,s

\
⇣p

BB

p

2

⌘
⇢
�
1 + ⇢

�1
� ⇣p

BD

⌘
. (12)

A similar result was stated as Lemma 4.5 in [18], so we omit
the proof.

Lemma 1 implies that

`

⇣
T

⇢,s

\
⇣p

BB

p

2

⌘⌘


p
B

�
1 + ⇢

�1
�
`(D).

Lemma 2: The Gaussian width of D satisfies

`(D) 
r

2s ln

ep

s

+

p
s.

Proof: Due to the definition of the Gaussian width

`(D) = E sup

x2D

hg, xi = E sup

kxk2=1,
#supp xs

hg, xi, (13)

where g 2 Rp is a standard Gaussian random vector. Hölder’s
inequality applied to (13) and an estimate on the maximum
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squared `2-norm of a sequence of standard Gaussian random
vectors (see e.g. [16, Lemma 3.2]) give

`(D)  E max

S⇢[p],#S=s

kg
S

k2 
r
E max

S⇢[p],#S=s

kg
S

k22



s

2 ln

✓
p

s

◆
+

p
s 

r
2s ln

ep

s

+

p
s.

The last inequality follows from the fact that
✓
p

s

◆

⇣
ep

s

⌘
s

.

Proof of Theorem 2: The reasoning above shows that

`

�
⌦

�
W

⇢,s

\ S

d�1
��


p
B

�
1 + ⇢

�1
�
`(D)


p
B

�
1 + ⇢

�1
�✓r

2s ln

ep

s

+

p
s

◆
.

Set t =
p
2 ln("

�1
). The fact that E

m

� m/

p
m+ 1 along

with condition (4) yields

E

m

� 1p
A

l

�
⌦

�
W

⇢,s

\ S

d�1
��

+ t.

Theorem 4 implies

P
�
inf kMwk2 > 0 : w 2 W

⇢,s

\ S

d�1
�

� 1� e

� t2

2
= 1� ",

which guarantees

k⌦⇤c
wk2 <

⇢p
s

k⌦⇤wk1

for all w 2 kerM\{0} and any ⇤ ⇢ [p] with #⇤ = p�s. This
means that M satisfies the `2-stable ⌦-null space property of
order s. Finally, apply Theorem 5.

V. UNIFORM RECOVERY FROM GAUSSIAN
MEASUREMENTS

In this work we provided conditions that guarantee the
uniqueness of the solution of the optimization problem (P1),
when the analysis operator is given by a frame. The mod-
ification of the Gordon’s escape through the mesh theorem
allowed to derive a bound on the number of Gaussian random
measurements needed to satisfy these conditions.
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Abstract—We introduce q-ary compressive
sensing, an extension of 1-bit compressive sensing.
We propose a novel sensing mechanism and a
corresponding recovery procedure. The recovery
properties of the proposed approach are analyzed
both theoretically and empirically. Results in 1-
bit compressive sensing are recovered as a special
case. Our theoretical results suggest a tradeoff
between the quantization parameter q and the
number of measurements m, in controlling the
error and robustness to noise of the resulting
recovery algorithm.

I. INTRODUCTION

Reconstructing signals from discrete mea-
surements is a classic problem in signal pro-
cessing. Properties of the signal allow the recon-
struction from a minimal set of measurements.
The classical Shannon sampling result ensures
that band limited signals can be reconstructed
by a linear procedure, as long as a number of
linear measurements, at least twice the maxi-
mum frequency, is available. Modern data anal-
ysis typically requires recovering high dimen-
sional signals from few inaccurate measure-
ments. Indeed, the development of Compressed
Sensing (CS) and Sparse Approximation [1]
shows that this is possible for signals with
further structure. For example, d-dimensional,
s-sparse signals1 can be reconstructed with high
probability through convex programming, given
m ⇠ s log(d/s) random linear measurements.

Non-linear measurements have been re-
cently considered in the context of 1-bit
compressive sensing [2], [3], [4], [5], [6]
(http://dsp.rice.edu/1bitCS/). Here, bi-
nary (one-bit) measurements are obtained by
applying, for example, the “sign” function2

to linear measurements. More precisely, given
x 2 Rd, a measurement vector is given by
y = (y

1

, . . . , ym), where yi = sign(hwi, xi)
with wi ⇠ N (0, Id) independent Gaussian ran-
dom vectors, for i = 1, . . . ,m. It is possible to
prove [4] that, for a signal x 2 K \ Bd (Bd

1A d-dimensional signal, that is a vector in Rd, is s-
sparse if only s of its components are different from zero.

2More generally, any function ✓ : R ! [�1, 1], such
that E(g✓(g) > 0) can be used.

is the unit ball in Rd), the solution x̂m to the
problem

max

x2K

mX

i=1

yi hwi, xi , (1)

satisfies kx̂m � xk2  �p
2
⇡

, with probability

1 � 8 exp (�c�2m), � > 0, as long as m �
C��2!(K)

2 [4]. Here, C denotes a univer-
sal constant and !(K) = E supx2K�K hw, xi
the Gaussian mean width of K, which can
be interpreted as a complexity measure. If K
is a convex set, problem (1) can be solved
efficiently.

In this paper, borrowing ideas from signal
classification and machine learning, we discuss
a novel sensing strategy, based on q-ary non-
linear measurements, and a corresponding re-
covery procedure.

II. Q-ARY COMPRESSIVE SENSING

A. Sensing and Recovery
The sensing procedure we consider is given

by a map C from K \ Bd to F = {0, . . . , q �
1}m, where K ⇢ Rd. To define C we need the
following definitions.

Definition 1 (Simplex Coding [7]). The simplex
coding map is S : {0, . . . , q � 1} ! Rq�1,
S(j) = sj , where
1) ksjk2 = 1,
2)hsj , sii = � 1

q�1

, for i 6= j,
3)

Pq�1

j=0

sj = 0.

Definition 2 (q-ary Quantized Measurements).
Let W 2 Rq�1,d be a Gaussian random matrix,
i.e. Wij ⇠ N (0, 1) for all i, j. Then, Q : K \
Bd ! {0, . . . , q � 1},

Q(x) = QW (x) = argmax

j=0...q�1

hsj ,Wxi ,

is called a q-ary quantized measurement.

Then, we can define the q-ary sensing strategy
induced by non-linear quantized measurements.

Definition 3 (q-ary Sensing). Let W
1

, . . . ,Wm,
be independent Gaussian random matrices in
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Rq�1,d and QWi(x), i = 1, . . . ,m as in Def. 2.
The q-ary sensing is C : K \Bd ! {0, . . . , q�
1}m,

C(x) = (QW1(x), . . . QWm(x)),

8x 2 K \ Bd.

Before describing the recovery strategy we con-
sider, we discuss the connection to 1-bit CS and
binary embeddings [8] [6] .

Remark 1 (Connection to 1-bit CS). If q = 2,
W reduces to a Gaussian random vector, and
2Q(x) � 1 = sign(Wx), so that the q-ary
quantized measurements become equivalent to
those considered in 1-bit CS.

Remark 2 (Sensing and Embeddings). It can be
shown that C defines an ✏-isometric embedding
of (K, k·k) into (F , dH) – up-to a bias term.
Here dH is the (normalized) Hamming distance,
dH(u, v) =

1

m

Pm
i=1

ui 6=vi ,u, v 2 F . This
analysis is deferred to the long version of this
paper.

In this paper, we are interested in provably
(and efficiently) recovering a signal x from its
q-ary measurements y = (y

1

, . . . , ym) = C(x).
Following [4], we consider the recovery strategy
D : {0, . . . , q � 1}m ! K \ Bd defined by,

D(y) = argmax

u2K\Bd

1

m

mX

i=1

hsyi ,Wiui . (2)

The above problem is convex if K is convex
and can be solved efficiently, see Section III-A.
In the next section, we prove that the solution to
Problem (2) has good recovery guarantees both
in noiseless and noisy settings.

Remark 3 (Connection to Classification). The
inspiration for considering q-ary CS stems from
an analogy between 1-bit compressed sensing
and binary classification in machine learning.
In this view, Definition (3) is related to the
approach proposed for multi category classi-
fication in [7]. Following these ideas, we can
extend the recovery strategy (2) by considering

DV (y) = argmin

u2K\Bd

1

m

mX

i=1

V (�hsyi ,Wiui),

(3)
where V is a convex, Lipschitz, non-decreasing
loss function V : R ! R+. Problem (2)
corresponds to the choice V (x) = x. Other
possible choices include V (x) = max(1+x, 0),
V (x) = log(1 + ex), and V (x) = ex. Each
of these loss functions can be seen as convex
relaxations of the 0-1 loss function, defined as

V (x) = 0 if x  0, and 1 otherwise. The
0 � 1 loss defines the misclassification risk,
which corresponds to Hamming distance in CS,
and is a natural measure of performance while
learning classification rules.

Remark 4 (Recovery of Distorted Signals). We
note that the q-ary approach could be of par-
ticular interest in situations where the signals
can undergo unknown non-linear distortions,
because of the robustness of the maximum in
the definition of the q-ary measurements.

B. Recovery guarantees: Noiseless Case
The following theorem describes the recovery

guarantees for the proposed procedure for sig-
nals in a set K of Gaussian mean width w(K).
We first consider a noiseless scenario.

Theorem 1. Let � > 0, m � C��2w(K)

2.
Then with probability at least
1� 8 exp(�c�2m), the solution x̂m = D(y) of
problem (2) satisfies,

kx̂m � xk2  �p
log(q)

. (4)

A proof sketch of the above result is given
in Section II-D, while the complete proof is
deferred to the long version of the paper. Here,
we add four comments. First, it can be shown
the the above result bound is derived from an
error bound,

||x̂m � x||2  C(

w(K)p
log(q)m

+ t), (5)

with probability at least, 1�4 exp(�2t2), t > 0.
Second, Inequalities (4), (5) can be compared

to results in 1-bit CS. For the same number
of measurements, m � C��2w(K)

2, the error
for q-ary CS is �p

log(q)
, in contrast with �p

2
⇡

in the 1-bit CS [4], at the expense of a more
demanding sensing procedure. Also note that,
for q = 2, we recover the result in 1-bit CS
as a special case. Third, we see that for a
given accuracy our results highlight a trade-off
between the number of q-ary measurements m
and the quantization parameter q. To achieve an
error ✏ with a memory budget of ` bits, one can
choose m and q so that ✏ = O(

1p
m log(q)

), and

m log

2

(q) = ` (see also section III-B). Finally,
in the following we will be interested in K be-
ing the set of s-sparse signals. Following again
[4], it is interesting to consider in Problem (2)
the relaxation

K
1

= {u 2 Rd
: kuk

1


p
s, kuk

2

 1}.
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With this choice, it it possible to prove that
w(K

1

)  C
q

s log( 2ds ), and that for m �
C��2s log( 2ds ), the solution of the convex
program (2) on K

1

satisfies, kx̂m � xk2 
�p

log(q)
. We end noting that other choices of

K are possible, for example in [9] the set of
group sparse signals (and its Gaussian width) is
studied.

C. Recovery Guarantees: Noisy Case
Next we discuss the q-ary approach in two

noisy settings, related to those considered in [4].
Noise before quantization. For i = 1, . . . ,m,
let

yi = arg max

j=0...q�1

{hsj ,Wixi+ gj}, (6)

with gj independent Gaussian random variables
of variance �2. In this case, it is possible to
prove that, for m � C��2w(K)

2,

kx̂m � xk2  �
p
1 + �2

p
log(q)

,

with probability at least 1�8 exp (�c�2m). The
quantization level q can be chosen to adjust to
the noise level � for a more robust recovery
of x. This result can be viewed in the perspec-
tive of the bit-depth versus measurement-rates
perspective studied in [10], where it is shown
that 1-bit CS outperforms conventional scalar
quantization. In this view, q�ary CS provides
a new way to adjust the quantization parameter
to the noise level.
Inexact maximum. For i = 1, . . . ,m, let
yi = QWi(x), with probability p, and yi = r
with probability 1� p, with r drawn uniformly
at random from {0, . . . , q � 1}. In this case, it
is possible to prove that, for m � C��2w(K)

2,

kx̂m � xk2  �p
log(q)(2p� 1)

.

with probability at least 1�8 exp (�c�2m). The
signal x can be recovered even if nearly half of
the q-ary bits are flipped.

D. Elements of the proofs
We sketch the main steps in proving our

results. The proof of Theorem 1 is based on:
1) deriving a bound in expectation, and 2)
deriving a concentration result. The proof of the
last step uses Gaussian concentration inequality
extending the proof strategy in [4]. Step 1) gives
the bound

E
�
||x̂m � x||2

�
 w(K)

C
p
log(q)m

,

the proof of which is based on the following
proposition.

Proposition 1. Let Ex(u) = EW (hs� ,Wui),
where � = QW (x). Then, 8u 2 Bd, we have,

1

2

ku� xk2  1

�(q)
(Ex(x)� Ex(u)) ,

where �(q) = E�̄,g(hs�̄ , gi), and g ⇠
N (0, Iq�1

), and �̄ = argmaxj=0...q�1

hsj , gi.

Using results in empirical process theory it
possible to show that

|Ex(x)� Ex(x̂m)|  C
w(K)p

m
.

The bound on the expected recovery follows
combining the above inequality and Proposi-
tion 1 with the inequality,

�(q) � C
p

log(q),

which is proved using Slepian’s inequality and
Sudakov minoration.

Results in the noisy settings follow from
suitable estimates of �(q). Indeed, for the noise
before quantization case it can be proved that
�(q) � C

q
log(q)
1+�2 . For the inexact maximum

case one has

�(q) = Ey,g(hsy, gi) =
pE( max

j=1...q
hsj , gi) + (1� p)E(hsr, gi) �

Cp
p
log(q) + (1� p)E( min

j=1...q
hsj , gi) �

(2p� 1)C
p
log(q).

III. EXPERIMENTAL VALIDATION

A. An Algorithm for Sparse recovery
In our experiments, we considered the follow-

ing variation of problem (2), Let ⇠i = s>yi
Wi 2

Rd, i = 1 . . .m.

max

u,kuk21

1

m

mX

i=1

h⇠i, ui � ⌘ kuk
1

, (7)

where ⌘ > 0. The above problem can be
solved efficiently using Proximal Methods [11].
Indeed, a solution can be computed via the
iteration,

ut+1

= ut +
⌫t
m

mX

i=1

⇠i,

ut+1

= Prox⌘(ut+1

),

ut+1

= ut+1

min(

1

kut+1

k
2

, 1).

Where ⌫t is the gradient step size, and Prox⌘

acts component-wise as max(1� ⌘
|ui| , 0)ui. The

iteration is initialized randomly to a unit vector.
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Remark 5. The computational complexity of
the sensing process depends on both m and q,
while, once computed ⇠i, that of the recovery
algorithm depends only on m, and is the same
as in 1-bit CS. In this sense, given a bit rate, the
same precision can achieved by 1-bit CS and q-
ary CS, with a better computational complexity
for the decoding in the q-ary case.

B. Sparse Recovery
We tested our approach for recovering a sig-

nal from from its q-ary measurements. We con-
sidered sparse signals of dimension d generated
via a Gauss-Bernoulli model. In Figure 1.(a), we
see that the reconstruction error x̂m (in blue),
for varying m and q fixed, follows the theoreti-
cal bound 1p

m
(in red). In Figure 1.(b), we see

that the reconstruction error of x̂m (in blue), for
varying q and m fixed, follows the theoretical
bound 1p

log(q)
(in red). Figures 1.(c), and 1.(d)

highlight the tradeoff between the number of
measurements and the quantization parameter.
For a precision ✏, and a memory budget 2B , one
can choose an operating point (m, q), according
to the theoretical bound 1p

m log(q)
.

Fig. 1. q-ary Compressive Sensing: Quantization/Number
of measurements tradeoff.

C. Image Reconstruction
We considered the problem of recovering

an image from q-ary measurements. We used
the 8�bit grayscale boat image of size 64 ⇥
64 pixels shown in Figure 2(a). We extracted
and thresholded the wavelet coefficients to get
a sparse signal. We normalized the resulting
vector of wavelets coefficients of dimension
d = 3840 to obtain a unit vector. Then, we
performed sensing and recovery with q = 2

5 (5-
bit compressive sensing ) and q = 2 (1-bit com-
pressive sensing) for the same m = 2048 < d.

We compared the SNR of the corresponding
reconstructed images in noiseless (Figures 2(b)-
(c)), and noisy settings (noise before quantiza-
tion model (6), with � = 0.8), Figures 2(d)-(e).
Note that in this setting we are comparing 1-bit
CS and q-ary CS, for the same decoding time
(same m). The results confirm our theoretical
findings: higher quantization improves the SNR,
as well as robustness to noise of q-ary CS.

Fig. 2. Image recovery with q-ary CS. (a) Original image.
(b) Reconstruction with no-noise: q = 25, SNR = 20.2
dB. (c) Reconstruction with no-noise: q = 2, SNR = 16.2
dB. (d) Reconstruction with noise: q = 25, SNR = 18.3
dB. (e) Reconstruction with noise: q = 2, SNR = 15 dB.
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Abstract—We study recovery of low-rank tensors from a
small number of measurements. A version of the iterative hard
thresholding algorithm (TIHT) for the higher order singular
value decomposition (HOSVD) is introduced. As a first step
towards the analysis of the algorithm, we define a corresponding
tensor restricted isometry property (HOSVD-TRIP) and show
that Gaussian and Bernoulli random measurement ensembles
satisfy it with high probability.

I. INTRODUCTION AND MOTIVATION

Low-rank recovery builds on ideas from the theory of
compressive sensing which predicts that sparse vectors can
be recovered efficiently from incomplete measurements via
efficient algorithms including `1-minimization. Given a matrix
X 2 Rn1⇥n2 of rank at most r ⌧ min{n1, n2}, the goal of
the low-rank matrix recovery is to reconstruct X from linear
measurements y = A(X), where A : Rn1⇥n2 ! Rm with
m ⌧ n1n2. Unfortunately, the natural approach of finding the
solution of the optimization problem

min

Z2Rn1⇥n2
rank (Z) s.t. A (Z) = y, (1)

is NP-hard. Nevertheless, it has been shown that solving the
convex optimization problem

min

Z2Rn1⇥n2
kZk⇤ s.t. A (Z) = y, (2)

reconstructs X exactly under suitable conditions on A.
The required number of measurements scales as m �
Crmax{n1, n2} for Gaussian measurement ensembles [11],
[2].

In this note, we go one step further and consider the
recovery of low-rank tensors X 2 Rn1⇥n2⇥···⇥nd from a
small number of linear measurements y = A (X), where
A : Rn1⇥n2⇥···⇥nd ! Rm and m ⌧ n1n2 · · ·nd. Again,
we are led to consider the rank-minimization problem

min

Z2Rn1⇥n2⇥···⇥nd

rank (Z) s.t. y = A (Z) . (3)

Different notions of the tensor rank have been introduced,
which correspond to different decompositions. One possibility
is to define the rank of an arbitrary tensor X 2 Rn1⇥n2⇥···⇥nd ,
analogously to the matrix rank, as the smallest number of
rank one tensors that sum up to X, where a rank one tensor
is of the form A = u1 ⌦ u2 ⌦ · · · ⌦ ud or elementwise

A (i1, i2, . . . , id) = u1 (i1)u2 (i2) · · ·ud (id). Expectedly, the
problem (3) is NP hard [8]. Although it is possible to define
an analog of the nuclear norm k·k⇤ for tensors and consider
the minimization problem

min

Z2Rn1⇥n2⇥···⇥nd

kZk⇤ s.t. y = A (Z) ,

the computation of k·k⇤ and thereby this problem is NP hard
[8] as well for tensors of order d � 3.

The previous approaches to low-rank tensor recovery and
tensor completion [3] and [9] are based on the sum of nuclear
norms of matrices obtained as unfoldings of the tensor (see
below for the notion of unfolding). Only numerical experi-
ments have been performed in these papers and at least from
a theoretical point of view, we do not believe this to be the
right approach since the tensor structure is lost.

We consider a generalization of the singular value decom-
position, called HOSVD (higher order singular value decom-
position). This decomposition is used in e.g. data mining for
handwritten digit classification [12], in signal processing to
extend Wiener filters [10], in computer vision [13] and in other
applications.

As a proxy for (3) we propose an extension of the IHT
algorithm already used for recovery of sparse signals [1] and
low-rank matrices [5]. The tensor iterative hard thresholding
algorithm (TIHT algorithm) is presented in Section IV. In
the last section, we introduce the tensor restricted isometry
property (HOSVD-TRIP) and also show that random linear
mappings satisfy the HOSVD-TRIP with high probability,
under suitable conditions.

The version for the tensor train decomposition (TT decom-
position) and hierarchical tucker format (HT decomposition)
will be treated in a journal paper in preparation.

II. NOTATION

We work with tensors X 2 Rn1⇥n2⇥···⇥nd of order d.
With Xik=p, for all p 2 [nk], where [nk] = {1, 2, . . . , nk},
we denote the (d� 1)-dimensional tensor (called subten-
sor) that is obtained by fixing the k-th component of a
tensor X to p i.e., Xik=p (i1, . . . , ik�1, ik+1, . . . , id) =

X (i1, . . . , ik�1, p, ik+1, . . . , id), for all il 2 [nl] and for
all l 2 [d] \ {k}. A matrix obtained by taking the first rk
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columns of the matrix U is denoted by U (:, [rk]). Similary,
S ([r1] , [r2] , . . . , [rd]) 2 Rr1⇥r2⇥···⇥rd is defined elementwise
as S ([r1] , [r2] , . . . , [rd]) (i1, i2, . . . , id) = S (i1, i2, . . . , id),
for all ik 2 [rk] and for all k 2 [d].

Matrices will be denoted with capital bold letters, linear
mappings with caligraphic capital letters and vectors with
small bold letters.

The inner product of two tensors X,Y 2 Rn1⇥n2⇥···⇥nd is
defined as

hX,Yi =
n1X

i1=1

n2X

i2=1

. . .
ndX

id=1

X (i1, i2, . . . , id)Y (i1, i2, . . . , id) .

The (Frobenius) norm of a tensor X 2 Rn1⇥n2⇥···⇥nd ,
kXkF , induced by this inner product, is

kXkF =

vuut
n1X

i1=1

n2X

i2=1

. . .
ndX

id=1

X

2
(i1, i2, . . . , id).

Matricization (unfolding) is the operation that transforms
a tensor into a matrix. The mode-k matricization of a
tensor X 2 Rn1⇥n2⇥···⇥nd is denoted by X(k), X(k) 2
Rnk⇥n1···nk�1nk+1···nd . The rows of the matrix X(k) are
determined by the k-th component of the tensor X, whereas
all the remaining components determine its column, i.e.,

X(k) (ik; (i1, . . . , ik�1, ik+1, . . . , id)) = X (i1, . . . , id) .

For X 2 Rn1⇥n2⇥···⇥nd , A 2 RJ⇥nk and k 2 [d], the k-
mode multiplication, X⇥k A 2 Rn1⇥···⇥nk�1⇥J⇥nk+1⇥···⇥nd

is defined elementwise as

(X⇥k A) (i1, . . . , ik�1, j, ik+1, . . . , id) =

=

nkX

ik=1

X (i1, . . . , id)A (j, ik) .

Remark 1: Notice that the SVD decomposition of a matrix
X 2 Rn1⇥n2 can be written using the above notation as X =

U⌃V

T
= ⌃⇥1 U⇥2 V.

III. HOSVD DECOMPOSITION

The Tucker decomposition, and in particular the HOSVD
decomposition [7], decomposes a tensor into a set of matrices
and one tensor.

Definition 1 (Tucker decomposition): Given a tensor X 2
Rn1⇥n2⇥···⇥nd the decomposition

X = S⇥1 U1 ⇥2 U2 ⇥ · · ·⇥d Ud,

or elementwise

X (i1, i2, . . . , id) =
n1X

j1=1

n2X

j2=1

. . .
ndX

jd=1

S (j1, . . . , jd) ·

·U1 (i1, j1)U2 (i2, j2) · · ·Ud (id, jd)

is called Tucker decomposition. The tensor S 2
Rr1⇥r2⇥···⇥rd is called the core tensor and Ui 2 Rni⇥ni ,
for all i 2 [d], are matrices.

Remark 2: Given invertible matrices Ui 2 Rni⇥ni , the
Tucker decomposition of a tensor X always exists since

S = X⇥1 U
�1
1 ⇥2 U

�1
2 ⇥ · · ·⇥U

�1
d

defines the core tensor.
Definition 2 (HOSVD decomposition): The HOSVD is a

special case of the Tucker decomposition where
• the Uk are unitary nk ⇥ nk-matrices, for all k 2 [d],
• any two subtensors of the core tensor S are orthogonal,

i.e., hSik=p, Sik=qi = 0, for all k 2 [d] and for all p 6= q,
• the subtensors of the core tensor S are ordered according

to their Frobenius norm, i.e., kSik=1kF � kSik=2kF �
. . . � kSik=nkkF � 0, for all k 2 [d].

Definition 3 (HOSVD-rank): Let X 2 Rn1⇥n2⇥···⇥nd . The
k-rank of X, denoted by Rk = rankk (X), is the rank of the
k-th unfolding, i.e.,

rankk (X) = rank

�
X(k)

�
.

The HOSVD-rank of a tensor X is the vector rHOSVD (X) =

(R1, R2, . . . , Rd).
Remark 3 ( [7]): Let the HOSVD of a tensor X 2

Rn1⇥n2⇥···⇥nd be given as in Definition 1 and let rk be equal
to the highest index for which kSik=rkkF > 0. Then

rk = rankk (X) = Rk.

Remark 4: Let X 2 Rn1⇥n2⇥···⇥nd be a tensor of HOSVD-
rank (r1, r2, . . . , rd) and let X = S⇥1U1⇥2U2⇥ · · ·⇥dUd

be its HOSVD decomposition. Then X can be written as

X = S⇥1 U1 ⇥2 U2 ⇥ · · ·⇥d Ud,

where S = S ([r1] , [r2] , . . . , [rd]) 2 Rr1⇥r2⇥···⇥rd , Uk =

Uk (:, [rk]) 2 Rnk⇥rk , for all k 2 [d]. From now on, we will
assume that the HOSVD decomposition of an arbitrary tensor
is of this form.

IV. TENSOR ITERATIVE HARD THRESHOLDING
ALGORITHM

In this section we present the tensor iterative hard threshold-
ing algorithm (TIHT) and the corresponding numerical results.

In the TIHT algorithm, Hr (X) denotes the rank-r approx-
imation of the tensor X obtained by restricting the compo-
nents of its HOSVD decomposition. To be more precise, if
X = S⇥1U1⇥ · · ·⇥dUd is its HOSVD decomposition, then
Hr (X) = S⇥1U1⇥· · ·⇥dUd where S = S ([r1] , . . . , [rd]) 2
Rr1⇥r2⇥···⇥rd and Uk = Uk (:, [rk]) 2 Rnk⇥rk for all k 2 [d].

Remark 5: In the case of sparse vector recovery and of
low-rank matrix recovery, the operator Hr returns the best r-
sparse approximation [1] and best rank-r approximation [5],
respectively. This fact is often used in the analysis of the
algorithm. However, the rank-r approximation Hr (X) of an
arbitrary d-th order tensor X is not necessarily its best rank-r
approximation XBEST [4]. To be more precise,

kX�Hr (X)kF 
p
d kX�XBESTkF .
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Tensor iterative hard thresholding algorithm (TIHT algorithm)

Input: measurement ensemble A, measurement vector y = A (X), rank
level r
X0 = Hr (A⇤ (y)), j = 0.
repeat

Compute µj =
kA⇤(y�A(Xj))k2F

kA(A⇤(y�A(Xj)))k22
.

Set Xj+1 = Hr
�
Xj + µjA⇤ �

y �A �
Xj

���
.

j=j+1
until a stopping criterion is met at j = j.

Output: the r-rank tensor X# = Xj

This fact causes significant obstacles in the theoretical anaysis
of the TIHT. Nevertheless, as we present in the following, the
algorithm still works quite well in practice.

We present the numerical results only for 3rd order tensors
X 2 Rn1⇥n2⇥n3 . In the first two experiments we consider
a cubic tensor, i.e., n1 = n2 = n3 = 10, with equal and
unequal ranks of its unfoldings, respectively. In the last case
we consider a non-cubic tensor X 2 R6⇥10⇥15 with equal
ranks of the unfoldings, i.e., r1 = r2 = r3 = r.

For fixed tensor dimensions n1 ⇥ n2 ⇥ n3, fixed HOSVD-
rank r = (r1, r2, r3) and a fixed number of measurements m
we performed 200 simulations.

We consider an algorithm to successfully recover the sensed
tensor X0 if it returns a tensor X# s.t.

��
X0 �X

#
��
F
< 10

�3.
The algorithm stops if

��
X

j �X

j�1
��
F

< 10

�4 in which
case we say that the algorithm converged, or it stops if it
reached 5000 iterations.

A linear mapping A : Rn1⇥n2⇥n3 ! Rm is defined
by tensors Ak 2 Rn1⇥n2⇥n3 via [A (X)] (k) = hX,Aki,
for all k 2 [m]. The entries of the tensors Ak are i.i.d.
Gaussian N �

0, 1
m

�
. We generate tensors X

0 2 Rn1⇥n2⇥n3

of rank r = (r1, r2, r3) via its Tucker decomposition. If
X

0
= S ⇥1 U1 ⇥2 U2 ⇥3 U3 is its Tucker decomposition,

each of the elements of the tensor S is taken independently
from the normal distribution, N (0, 1), and the components
Uk 2 Rnk⇥rk are the first rk left singular vectors of a matrix
Mk 2 Rnk⇥nk whose elements are also drawn independently
from the normal distribution N (0, 1).

In Figure 1 and Figure 2 we present the recovery results
for low-rank tensors of size 10⇥ 10⇥ 10. The horizontal axis
represents the number of measurements taken with respect to
the number of degrees of freedom of an arbitrary tensor of this
size. To be more precise, for a tensor of size n1⇥n2⇥n3, the
number n̄ on the horizontal axis represents m =

⌃
n1n2n2

n̄
100

⌥

measurements. The vertical axis represents the percentage of
the successful recovery. The numerical results for tensors of
rank r = (1, 1, 1), r = (2, 2, 2), r = (5, 5, 5) and r = (7, 7, 7)
are presented in Figure 1. Notice that only for the rank r =

(7, 7, 7), 33% of measurements were not enough for a full
recovery. In this case 54% of the measurements and on average
1107 iterations were needed. For tensors of rank r = (1, 1, 1)
already with 9% of measurements we obtain a full recovery
in 321 iterations on average. The algorithm ended on average
in 185, 337 and 547 iterations for 20%, 21% and 33% of
measurements for ranks r = (2, 2, 2), r = (3, 3, 3) and r =
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Fig. 1. Recovery of low rank 10 x 10 x 10 tensors of the same rank
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Fig. 2. Recovery of low rank 10⇥ 10⇥ 10 tensors of a different rank

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

percentage of measurements

p
e
rc

e
n
ta

g
e
 o

f 
s
u
c
c
e
s
s

Recovery of low!rank tensors of size 6 x 10 x 15

 

 

r=(1,1,1)

r=(2,2,2)

r=(5,5,5)

Fig. 3. Recovery of low rank 6⇥ 10⇥ 15 tensors of a different rank

(5, 5, 5), respectively.
In Figure 2 we present the results for tensors of rank

r = (1, 2, 2), r = (1, 5, 5), r = (2, 5, 7) and r = (3, 4, 5).
Only 26% of measurements were enough for a full recovery.
For 10%, 12%, 22% and 26% of measurements, the algorithm
converged on average in 588, 1912, 696, 384 iterations, for
the various ranks respectively.

We obtained similar results for recovery of low-rank tensors
of size 6⇥ 10⇥ 15 and ranks r = (1, 1, 1), r = (2, 2, 2) and
r = (5, 5, 5) - see Figure 3. We managed to get a full recovery
from 8% of measurements for the rank r = (1, 1, 1), and
20% and 37% of measurements for the remaining ranks. The
algorithm ended on average in 511, 214 and 501 iterations, for
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the various ranks and number of measurements, respectively.

V. HOSVD TENSOR RIP

The analysis of the IHT algorithm for recovery of sparse
vectors [1] and low-rank matrices [5] is based on the corre-
sponding notion of restricted isometry property (RIP). There-
fore, we start by introducing an analog for tensors, which we
call the tensor restricted isometry property (HOSVD-TRIP).

Definition 4 (HOSVD-TRIP): Let A : Rn1⇥n2⇥···⇥nd !
Rm be a measurement ensemble. Then for each d-tuple of
the integers r, r = (r1, r2, . . . , rd), where ri 2 [ni], for all
i 2 [d], the tensor restricted isometry constant �r of A is the
smallest quantity such that

(1� �r) kXk2F  kA (X)k22  (1 + �r) kXk2F (4)

holds for all tensors of HOSVD-rank at most r.
We say that A satisfies the HOSVD-TRIP at rank r if �r is

bounded by a sufficiently small constant between 0 and 1.
A random variable X is called L-subgaussian if there exists

a constant L > 0 s.t. E [exp (tX)]  exp

�
L2t2/2

�
holds

for all t 2 R. We call A : Rn1⇥n2⇥···⇥nd ! Rm an
L-subgaussian measurement ensemble if all elements of A,
interpreted as a tensor in Rn1⇥n2⇥···⇥nd⇥m, are independent
mean-zero, variance one, L-subgaussian variables. Gaussian
and Bernoulli random measurement ensembles where the
entries are standard normal distributed random variables and
Rademacher ±1 variables, respectedly, are special cases of
1-subgaussian measurement ensembles.

Theorem 1: Let �, " 2 (0, 1). A random draw of an L-
subgaussian measurement ensemble A : Rn1⇥n2⇥···⇥nd !
Rm satisfies �r  � with probability at least 1� " provided

m � C��2
max

��
rd + dnr

�
log (d) , log

�
"�1

� 
,

where n = max {ni : i 2 [d]} and r = max {ri : i 2 [d]}. The
constant C > 0 depends only on subgaussian parameter L.

The proof of Theorem 1 uses "-nets.
Definition 5: A set N" ⇢ X is called an "-net of X with

respect to the norm k·k if for each v 2 X , there exists v0 2 N"

with kv0 � vk  ". The minimal cardinality of an "-net of X
with respect to the norm k·k, if finite, is denoted N (X, k·k , ")
and is called the covering number of X (at scale ").

Lemma 1 (Covering number of low-HOSVD-rank tensors):
Let

Sr =
�
X 2 Rn1⇥n2⇥···⇥nd

: rankHOSVD (X)  r, kXkF = 1

 
.

Then there exists an "-net N" of Sr with respect to the
Frobenius norm obeying

N (Sr, k·kF , ")  (3 (d+ 1) /")r1r2···rd+
Pd

i=1 niri . (5)

The proof of the above lemma follows a similar strategy as
in [2] and will be presented in a forthcoming journal paper.

Sketch of the proof of the Theorem 1: We use a tool
developed in [6]. We write

A (X) = VX⇠,

where ⇠ is an L-subgaussian random vector of length
n1n2 · · ·ndm and VX is the m⇥n1n2 · · ·ndm block-diagonal
matrix

VX =

1p
m

2

6664

x

T
0 · · · 0

0 x

T · · · 0

...
...

. . .
...

0 · · · 0 x

T

3

7775
,

where x is the vectorized version of the tensor X. With this
notation the restricted isometry constant is given by

�r = sup

X2Sr

��kVX⇠k22 � EkVX⇠k22
�� .

Theorem 3.1 in [6] provides a general probabilistic bound
for expressions in the form of the right hand side above
in terms of the diameters dF (B) and d2!2(B) of the set
B := {VX : X 2 Sr} with respect to the Frobenius norm and
the operator norm, as well as in terms of Talagrand’s functional
�2(B, k·k2!2). It is straightforward to see that dF (B) = 1 and
d2!2(B) = 1p

m
. The bound of the �2-functional via a Dudley

type integral [6] yields

�2 (B, k·k2!2)  C
1p
m

Z 1

0

q
log (N (Sr, k·k2 , u))du.

Using (5) for N (Sr, k·kF , u) we reach

�2 (B, k·k2!2)  ˜C

vuut
⇣
r1r2 · · · rd +

Pd
i=1 niri

⌘
log (d)

m
.

The claim follows then from Theorem 3.1 in [6].
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Abstract—This paper is concerned with the possibility of ap-
proximating arbitrary operators by multipliers for Gabor frames
or more general Bessel sequences. It addresses the question of
whether sets of multipliers (whose symbols come from prescribed
function classes such as `2) constitute dense subsets of various
spaces of operators (such as Hilbert-Schmidt class). We prove a
number of negative results that show that in the discrete setting
subspaces of multipliers are usually not dense and thus too small
to guarantee arbitrary good approximation. This is in contrast
to the continuous case.

I. PRELIMINARIES

All Hilbert spaces are assumed to be separable and infinite-
dimensional.

A. Bessel sequences

Let H be a Hilbert space with inner product, linear in the
first argument, denoted by h·, ·i. A sequence (fn), n 2 N,
of elements of H is called a Bessel sequence if there exists
a constant B > 0 such that

P
n2N |hh, fni|2  Bkhk2 for

all h 2 H . Any such number B is called a Bessel bound of
the Bessel sequence, the smallest such constant the optimal
Bessel bound. If a Bessel sequence satisfies additionally the
analogous inequality from below, i.e. there exists a constant
A > 0 such that

P
n2N |hh, fni|2 � Akhk2 for all h 2 H , then

the sequence is called a frame for H . Prominent examples of
Bessel sequences are orthonormal systems, which are Bessel
sequences with Bessel bound 1. For a Bessel sequence (fn),
the analysis operator C : H ! `2, h 7! Ch := (hh, fni)n2N,
and the synthesis operator D : `2 ! H , c = (cn) 7! Dc :=P

n2N cnfn (the series converges in the norm topology of H),
are well-defined and adjoint to each other: C = D⇤.

A useful characterization of Bessel sequences is the follow-
ing (cf. [4]):

Lemma I.1. Let (fn) be a sequence in H and (en) be an
arbitrary orthonormal basis. Then (fn) is a Bessel sequence
if and only if there exists a bounded operator T 2 B(H) with
fn = Ten for all n 2 N. The optimal Bessel bound B is given
by B = kTk2B(H).

We will often use the following basic fact about Bessel
sequences (see e.g. [4]):

Lemma I.2. Let (fn) be a Bessel sequence with Bessel bound
B. Then, for all n 2 N,

kfnk 
p
B.

B. Time-frequency analysis

In the Hilbert space L2(R), define the translation operator
Txf(t) = f(t � x) and the modulation operator M!f(t) =
e�2⇡i!tf(t) (for f 2 L2 and x,! 2 R). These are unitary
operators on L2. They combine to form the time-frequency
shift ⇡(x,!) = M!Tx. The short-time Fourier transform
(STFT) of f with window g is defined as the bilinear time-
frequency distribution

Vgf(x,!) =

Z

R
f(t)g(t� x)e�2⇡i!t dt = hf,⇡(x,!)gi.

If (xn,!n), n 2 N, is a discrete subset of R2 and h 2 L2, then
the family of functions (⇡(xn,!n)h) is called a Gabor system.
If a Gabor system constitutes a Bessel sequence or a frame
for L2, we speak of a Bessel Gabor system or Gabor frame,
respectively. Another important time-frequency distribution is
the (cross) Wigner distribution of f and g:

W (f, g)(x,!) =

Z

R
f(x+

t

2
)g(x� t

2
)e�2⇡i!t dt.

It is related to the STFT via the formula W (f, g)(x,!) =
2e4⇡i!xVg̃f(2x, 2!) with g̃(t) = g(�t). Both STFT and
Wigner distribution are in L2(R2) if f and g are in L2(R).
Both can be defined for larger classes of functions or even
distributions for f and g. The Wigner distribution is associated
to the Weyl calculus: every continuous operator T : S !
S 0 from Schwartz class S to the tempered distributions S 0

can be described in the form hTf, gi = h�,W (g, f)i for
f, g 2 S , with a suitable unique (distributional) Weyl symbol
� 2 S 0(R2). If T is a Hilbert-Schmidt operator, then one has
� 2 L2(R2). For all of these facts and many more we refer
to [6].

C. Compact and Schatten class operators

A bounded operator T : H ! H is compact if the
image of any bounded sequence under T contains a conver-
gent subsequence. A compact operator always has a spectral
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representation T (·) =
P

k sk(T ) h·,�ki k with suitably cho-
sen orthonormal systems (�k), ( k) and a unique sequence
(sk(T )) with s1(T ) � s2(T ) � . . . � 0, k 2 N. The
sequence (sk(T )) is the sequence of singular values of T .
The operator belongs to Schatten p-class Sp(H), 1  p < 1,
if
P

k |sk(T )|p < 1. These are Banach spaces with norm
kTkSp = k(sk(T ))kp = (

P
k |sk(T )|p)

1/p. S2(H) is also
called Hilbert-Schmidt class, S1(H) trace class. We use the
notation S1(H) to denote the set B(H) of all bounded
operators on H , and S0(H) = K(H) to denote the set of
all compact operators on H . For more information, refer to
e.g. [5] or [7].

II. BESSEL MULTIPLIERS

Definition II.1. Let (fn) and (gn) be Bessel sequences in H
and m = (mn) 2 `1. The Bessel multiplier with symbol m
(associated to the sequences (fn) and (gn)) is defined as the
linear operator on H given by

A(fn),(gn)(m)(h) :=
X

n

mnhh, fnign, h 2 H.

In order to simplify notation, we will usually suppress the
dependence on the Bessel sequences (fn) and (gn) and simply
write A(m) instead of A(fn),(gn)(m).

We cite without proof several results from [1].

Lemma II.2. Let (fn) and (gn) be Bessel sequences with
Bessel bounds BF and BG, respectively. If (mn) 2 `1, then
A(m) is a well-defined bounded operator on H with norm
kA(m)kB(H) 

p
BFBG kmk1.

Lemma II.3. Let (fn) and (gn) be Bessel sequences with
Bessel bounds BF and BG, respectively. If (mn) 2 `1, then
A(m) is a trace class operator on H with norm kA(m)kS1 p
BFBG kmk1.

Lemma II.4. Let (fn) and (gn) be Bessel sequences with
Bessel bounds BF and BG, respectively. If limn!1 mn = 0,
i.e. m 2 c0(N), then A(m) is a compact operator.

From Lemma II.2 and Lemma II.3, the following is easily
proved by interpolation:

Lemma II.5. Let (fn) and (gn) be Bessel sequences with
Bessel bounds BF and BG, repsectively. If m 2 `p(N),
1  p < 1, then A(m) is a Schatten p-class operator, and
kA(m)kSp 

p
BFBG kmkp.

Table I summarizes these results.

Symbol Bessel Multiplier

`1(N) B(H) = S1(H)

c0(N) = `0(N) K(H) = S0(H), compact operator
`p(N), 1  p < 1 Sp(H), Schatten class operator

TABLE I
BESSEL MULTIPLIERS WITH DIFFERENT SYMBOLS

See also the paper [3], which contains somewhat related
results for Gabor multipliers.

III. BEREZIN TRANSFORM

Definition III.1. Let (fn) and (gn) be Bessel sequences in H
and T 2 B(H). The Berezin transform of T (associated to
the sequences (fn) and (gn)) is defined as the function on N
given by

B(fn),(gn)(T )(n) := hTfn, gni, n 2 N.

In order to simplify notation we will usually suppress the
dependence on the Bessel sequences (fn) and (gn) and simply
write B(T ) instead of B(fn),(gn)(T ).

Lemma III.2. Let (fn) and (gn) be Bessel sequences with
Bessel bounds BF and BG, respectively. Then the Berezin
transform B(T ) is bounded, hence in `1(N), and

kB(T )k1 
p
BFBG kTkB(H).

Proof: We have

|B(T )(n)|  kTkB(H)kfnkkgnk  kTkB(H)

p
BF

p
BG

by Lemma I.2, for all n 2 N.
For later use, we calculate the Berezin transform of a rank-

one operator.

Corollary III.3. Let �, 2 H and T : H ! H , h 7! hh,�i 
a rank-one operator. Then

B(T )(n) = hfn,�ih , gni.

We collect further mapping properties of the Berezin trans-
form.

Lemma III.4. Suppose T 2 B(H) is a compact op-
erator and (fn) and (gn) are Bessel sequences. Then
limn!1 |B(T )(n)| = 0, i.e. B(T ) 2 c0(N).

Proof: Since fn
w�* 0 for n ! 1, we have kTfnk ! 0

for n ! 1. Together with Lemma I.2 this yields

|hTfn, gni|  kTfnkkgnk ! 0, for n ! 1.

Lemma III.5. Let (fn) and (gn) be Bessel sequences with
Bessel bounds BF and BG, respectively. Let T be a Schatten
class operator, with 1  p < 1. Then the Berezin transform
B(T ) is in `p(N), and

kB(T )kp 
p
BFBG kTkSp .

Proof: Let (en) be an arbitrary orthonormal basis for H .
By Lemma I.1, there are bounded operators R and S in B(H)
such that fn = Ren and gn = Sen for all n and kRkB(H) p
BF and kSkB(H) 

p
BG. Hence

hTfn, gni = hTRen, Seni = hS⇤TRen, eni

for all n. The operator T̃ = S⇤TR is again in Sp, so
 
X

n

|B(T )(n)|p
! 1

p

=

 
X

n

|hT̃ en, eni|p
! 1

p

 kT̃kSp .
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Since

kT̃kSp  kS⇤kB(H)kTkSpkRkB(H)  kTkSp

p
BFBG,

the proof is finished.
Table II summarizes these results.

Operator Berezin transform

B(H) = S1(H) `1(N)
K(H) = S0(H), compact operator c0(N) = `0(N)
Sp(H), 1  p < 1, Schatten class `p(N)

TABLE II
BEREZIN TRANSFORM OF DIFFERENT OPERATORS

Suggested by the results given above, it becomes obvious
that the concept of Bessel multiplier and the Berezin transform
are dual to each other.

The following theorem gives the connection between the
Berezin transform and Bessel multipliers.

Theorem III.6. Let m = (mn) 2 `p(N), 1  p  1, and
T 2 Sq , with q the conjugate exponent to p, i.e. 1

p + 1
q = 1.

Then
hA(m), T iSp,Sq = hm,B(T )i`p,`q .

Proof: For the moment, let (ek) be an arbitrary orthonor-
mal basis of H . Then the left hand side can be written as

hA(m), T i =
X

k

hA(m)(ek), T eki.

Inserting A(m) =
P

n mnh·, fnign yields

hA(m), T i =
X

k

X

n

mnhek, fnihgn, T eki. (⇤)

The right hand side gives

hm,B(T )i =
X

n

mnhgn, T fni

=
X

n

mn

X

k

hT ⇤gn, ekihek, fni

by Parseval’s equality. Thus

hm,B(T )i =
X

n

X

k

mnhek, fnihgn, T eki. (⇤⇤)

Comparing (⇤) and (⇤⇤), we see that the claimed equality is
proved, if we can justify the change of order of summation
in the double sum. In order to do so, we examine the
corresponding double sum of the absolute values

S :=
X

n

X

k

|mn||hek, fni||hgn, T eki|.

Consider the case p = 1 (i.e. m 2 `1 and T 2 S1 = B(H)).
Then

S 
X

n

|mn|
⇣X

k

|hek, fni|2
⌘ 1

2
⇣X

k

|hT ⇤gn, eki|2
⌘ 1

2


X

n

|mn|kfnkkT ⇤gnk


p
BFBG kmk1kTkB(H) < 1.

If 1 < p  1, then 1  q < 1 and T is a compact operator
in Sq . As such, it has a spectral representation

T =
X

k

�kh·,�ki⌧k

with orthonormal bases (�k) and (⌧k), and �k � 0 withP
k �

q
k = kTkqSq . Choose the particular orthonormal basis

(ek) = (�k). Then Tek = T�k = �k⌧k for all k, and thus

S =
X

n,k

|mn||�k||h�k, fni||hgn, ⌧ki|


⇣X

n,k

|mn|p|h�k, fni||hgn, ⌧ki|
⌘ 1

p⇥

⇣X

n,k

|�k|q|h�k, fni||hgn, ⌧ki|
⌘ 1

q
.

These two sums can be estimated, the first as
X

n,k

|mn|p|h�k, fni||hgn, ⌧ki|


X

n

|mn|p
⇣X

k

|h�k, fni|2
⌘ 1

2
⇣X

k

|hgn, ⌧ki|2
⌘ 1

2


p
BFBG kmkpp

and the second similarly as
X

n,k

|�k|q|h�k, fni||hgn, ⌧ki|


⇣X

k

�qk

⌘p
BF k�kk

p
BGk⌧kk

=
p

BFBG kTkqSq .

So, finally, we have for 1 < p  1

S 
p
BFBG kmkpkTkSq < 1.

Since in every case S < 1, Fubini’s theorem yields the
desired conclusion, the equality of (⇤) and (⇤⇤).

Corollary III.7. (1) Let A : `1 ! B(H) and B : S1 ! `1.
Then A = B⇤ is the Banach space adjoint.

(2) Let A : c0 ! K(H) and B : S1 ! `1. Then B = A⇤.
(3) Let A : `p ! Sp, 1  p < 1, and B : Sq ! `q , with

1 < q  1 the conjugate exponent. Then B = A⇤.

Proof: Observe that B(H) = (S1)⇤ and `1 = (`1)⇤ in
case (1), S1 = (K(H))⇤ and c0 ✓ `1 with `1 = (c0)⇤ in
case (2), and Sq = (Sp)⇤ and `q = (`p)⇤ in case (3). The
statements then follow immediately from Theorem III.6.

IV. (NON-)DENSITY RESULTS

In this section we investigate whether a given operator on
H can be approximated by a Gabor multiplier with respect
to various norms. In particular, we would like to understand
when the set of Gabor multipliers (associated to a fixed pair
of Gabor systems) is dense in B(H) or in Sp(H) (if ever).

In order to examine such density properties, we employ
some well known results from functional analysis. Precisely,
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we use the following facts ([5]):
Let X,Y be Banach spaces, T : X ! Y be a bounded
operator and let T ⇤ : Y ⇤ ! X⇤ be the (Banach space) adjoint
operator.

• T ⇤ is one-to-one on Y ⇤, if and only if the range of T is
dense in Y with respect to the norm topology on Y .

• T is one-to-one on X , if and only if the range of T ⇤ is
dense in X⇤ with respect to the weak* topology on X⇤.

To understand when the mapping a ! A(a) has dense
range, it suffices, in view of Theorem III.6 and its corollary,
to check when the Berezin transform B is one-to-one.

Lemma IV.1. Let a, b > 0 and assume that (fn,m) =
(⇡(an, bm)f) and (gn,m) = (⇡(an, bm)g) are Gabor systems,
f, g 2 L2(R). Let (z, ⌫) 2 R2 and T = ⇡(z, ⌫) be the
corresponding time-frequency shift. Then

B(T )(n,m) = e2⇡i(an⌫�bmz)V (g, f)(z, ⌫)

for all n,m 2 Z.

Corollary IV.2. Let (fn,m) = (⇡(an, bm)f) and (gn,m) =
(⇡(an, bm)g) be Bessel Gabor systems. If there exists a point
(z, ⌫) 2 R2 such that V (g, f)(z, ⌫) = 0, then the Berezin
transform B : B(L2) ! `1 is not one-to-one.

Proof: We have T = ⇡(z, ⌫) 6= 0 in B(L2), but B(T ) = 0
by the preceding lemma.

For the particular case of Hilbert-Schmidt operators, we
have the following negative result:

Theorem IV.3. Let (fn,m) and (gn,m) be Bessel Gabor
systems. Then the range of A : `2 ! S2 is not a norm-dense
subspace of Hilbert-Schmidt class. There are thus Hilbert-
Schmidt operators on L2(R) that cannot be approximated in
Hilbert-Schmidt norm by Gabor multipliers (with a given fixed
pair of Gabor systems).

Proof: In view of Corollary III.7, it suffices to show that
B : S2 ! `2 is not one-to-one. Let T 2 S2. Now note that
there is a bijective correspondence between Hilbert-Schmidt
operators and Weyl symbols in L2(R2). Thus there exists a
unique Weyl symbol � 2 L2(R2) such that

hT�, i = h�,W ( ,�)i

for all �, 2 L2(R). Thus

B(T )(n,m) = h�,W (gn,m, fn,m)i
= h�,W (⇡(an, bm)g,⇡(an, bm)f)i
= h�, T(an,bm)W (g, f)i.

Observe that W (g, f) 2 L2(R2). As is well-known, a discrete
countable family of translates of a function F 2 L2(R2) is
never complete, thus

U := span{T(an,bm)W (g, f) | n,m 2 Z}

is a proper closed subspace of L2(R2). Choose 0 6= � 2 U?.
Then the corresponding Hilbert-Schmidt operator T satisfies
B(T )(n,m) = h�,W (gn,m, fn,m)i = 0 for all n,m 2 Z, thus

B(T ) = 0, but T 6= 0. Hence B : S2 ! `2 is not one-to-one.

We can extend this result to the cases 1  p < 2.

Theorem IV.4. Let (fn,m) and (gn,m) be Bessel Gabor
systems and 1  p < 2. Then the range of A : `p ! Sp

is not a norm-dense subspace of the Schatten class Sp.

Proof: Let 2 < q  1 be the conjugate exponent to p.
Observe that S2 ✓ Sq ✓ S1. By Theorem IV.3, the Berezin
transform B : S2 ! `2 is not one-to-one, hence, a fortiori, the
Berezin transform B : Sq ! `q is not one-to-one, either. By
Corollary III.7, this is equivalent to the range of A : `p ! Sp

not being norm-dense.
For the cases 2 < p < 1, we conjecture analogous results.
For the case p = 1, we have the following result (whose

proof we omit for lack of space):

Theorem IV.5. Let (fn,m) and (gn,m) be Bessel Gabor
systems. Then there exists an operator R 2 B(L2) and a
constant � > 0 such that

kR�A(m)kB(L2) � �

for all m 2 `1. In particular, the range of A : `1 ! B(L2)
is not a norm-dense subspace of B(L2).

One can take for R the Fourier transform, fractional Fourier
transforms or any other operator that incorporates time-
frequency shifts of arbitrarily large size.

V. CONCLUSION

Our results show that subsets of Gabor multipliers with
symbols in `p-spaces are not dense in the respective Schatten
classes, but span proper subspaces. There exist thus operators
in these Schatten classes that cannot be approximated arbitrar-
ily well by multipliers in the respective Schatten norm. This is
in sharp contrast to the case of continuous (STFT) multipliers,
as shown in [2]. For approximation of bounded operators in
operator norm, however, the negative result shown in this paper
also holds analogously in the continuous case.
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Abstract—The problem of joint estimation of power spectrum

and modulation from realizations of frequency modulated station-

ary wideband signals is considered. The study is motivated by

some specific signal classes from which departures to stationarity

can carry relevant information and has to be estimated.

The estimation procedure is based upon explicit modeling of

the signal as a wideband stationary Gaussian signal, transformed

by time-dependent, smooth frequency modulation. Under such

assumptions, an approximate expression for the second order

statistics of the transformed signal’s Gabor transform is obtained,

which leads to an approximate maximum likelihood estimation

procedure.

The proposed approach is validated on numerical simulations.

I. INTRODUCTION

Usual time-frequency models for audio signals often rest
upon expansions with respect to dictionaries of time-frequency
waveforms, such as Gabor frames, wavelet frames, or more
general families. Such descriptions are generally adequate for
signal classes such as (voiced) speech, music,... where specific
time-frequency localisation properties can be exploited. They
are less effective for less structured signals, such as wideband
sound signals.

We are concerned here with an alternative description of
audio signals, aiming at describing different sound classes such
as environmental noise, engine sound,... which are in addition
non-stationary, in the sense that they carry information related
to dynamics. As an example, think of an accelerating engine
sound, where the acceleration can generally be perceived. This
example suggests to study sound models, which we will term
timbre⇥dynamics, in which a reference (stochastic) stationary
signal, characterized by its timbre, is modulated by some
dynamic deformation. Given such signals, a problem is to
estimate the modulation (and possibly the underlying power
spectrum). While many techniques have been developed for
frequency modulation estimation for narrow band signals (see
e.g. [1], the wideband case is more complex and has apparently
received less attention.

A class of models based upon deformations of stationary
processes has been proposed and studied in [2], motivated
by the famous shape from texture image processing problem.
A main aspect of the approach is based on the remark that
a generic class of transformations can be represented by
transport equations in a suitable representation space.

We adopt here a more explicit point of view, and limit to sta-
tionary Gaussian processes, transformed by a time-dependent

modulation. We characterize the distribution of fixed time
slices of a Gabor transform of such signals, and formulate
the corresponding maximum likelihood estimation problem.
As a result, we provide an estimation algorithm which is
demonstrated on a small number of numerical examples.

II. FREQUENCY MODULATION OF STATIONARY RANDOM
SIGNALS

A. Notations and background

1) Random signals: We shall be concerned with complex
Gaussian random signal models X of finite length L, which
we shall assume zero-mean for the sake of simplicity. As is
customary in finite-dimensional Gabor analysis, we shall also
assume periodic boundary conditions, i.e. Xt+L = Xt. Given
such a signal X , we shall denote by C

X

its covariance matrix,
and by R

X

its relation matrix (see [3] for details), defined as

C

X

(t, s) = E
�
XtXs

 
, R

X

(t, s) = E {XtXs} , (1)

and we will write X ⇠ CN (0, C

X

, R

X

). X is said to be
circular if R

X

= 0.
2) Time-frequency representation: We shall use the follow-

ing notations. Given a window function g, the corresponding
short time Fourier transform of a signal (STFT) x 2 CL is
defined by

V
g

x(m, n) =
L�1X

t=0

x[t]g[t� n]e�2i⇡m(t�n)/L
. (2)

Given lattice constants a and b (divisors of the signal length
L) the corresponding Gabor transform reads

G
x

[m, n] = V
g

x(mb, na) m = 0, . . . M�1, n = 0 . . . N�1 ,

(3)
with M = L/b and N = L/a. G

X

is an M ⇥ N array. For
suitably chosen g, and a and b small enough, the Gabor trans-
form is invertible (see [4], [5]); in finite dimensional situations,
efficient algorithms have been developed and implemented
(see [6]).

Remark 1 (Notations): As usual, summation bounds in the
frequency domain depend of the parity of the signal length L.
For the sake of simplicity, we introduce some notations and
denote by IL the integer interval IL = [1� L/2, L/2] if L is
even, and the integer interval IL = [�(L�1)/2, (L�1)/2] if L

is odd. The corresponding positive frequencies interval will be
denoted by I

+
L = [0, L/2] if L is even, and I

+
L = [0, (L�1)/2]

if L is odd.
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B. The model: definition and main estimates

We are concerned here in a simple model of signal trans-
formation, which may be written as follows. We denote
by X a zero-mean, wide sense stationary Gaussian random
process, with covariance matrix C

X

, and by Z the associated
analytic signal. We denote by S

X

the power spectrum of
X , and assume that S

X

(0) = 0, and if L is even, that
S

X

(L/2) = 0. Under such an assumption, it is easy to show
that Z is a circular complex Gaussian random vector (by a
finite dimensional version of a standard argument, see e.g. [7]).

The observation is assumed to be the real part Y r = Re(Y )
of a complex valued signal Y ; for the sake of simplicity we
shall only work with the latter, assumed to be an USB (upper
sideband) modulated version Y of a reference stationary signal
X , of the form

Yt = Zte
2i⇡�(t)/L + Nt , (4)

where � 2 C

2 is an unknown smooth, slowly varying
modulation function, and N = {Nt, t = 0, . . . L�1} is a real
Gaussian white noise, with variance �

2
0 . Obviously, when � is

not a constant function, Y is not a wide sense stationary signal
any more. The problem at hand is to estimate the unknown
modulation � and the original power spectrum S

X

from a
single realization of Y .

Clearly, Z ⇠ CN (0, C

Z

, 0) is a circular complex Gaussian
random signal, with covariance matrix

C

Z

(t, s) =
X

⌫2I+
L

S
X

(⌫)e2i⇡⌫(t�s)/L
, (5)

and is therefore wide-sense stationary.
In the proposed approach, we will base the estimation on a

Gabor representation of the observed signal, and deliberately
disregard correlations across time of the Gabor transform
(hence focusing on time slices of the Gabor transform of the
observation). The distribution of time slices of the analytic
signal Z of the original signal is characterized in the following
two results, which result from direct calculations.

Proposition 1: For fixed n, the Gabor transform G
N

[., n]
of the gaussian white noise is a stationary Gaussian random
vector, with circular covariance matrix

CGN [m, m

0] = �

2
0

L�1X

k=0

ĝ[k]ĝ[k � (m0 �m)b] (6)

Proposition 2: For fixed time index n, the Gabor transform
G

Z

[., n] of the analytic signal is a circular complex Gaussian
random vector, with covariance matrix

CGZ [m, m

0] =
X

k2I+
L

S
X

[k]ĝ[k �mb]ĝ[k �m

0
b] (7)

The estimation of the modulation will be based upon an
approximation of the covariance matrix of the observed signal.
In a few words, the Gabor transform of the frequency mod-
ulated signal can be approximated by a deformed version of
the Gabor transform of the original signal. The deformation

takes the form of a time-varying frequency shift. A more
precise argument, based upon first order approximation of the
modulation function �, leads to the following result.

Theorem 1: 1) For fixed time, the Gabor transform G
Y

may be approximated as

G
Y

[m, n] = G(n;�0(na)/b)[m] + R[m] , (8)

where G(n;�) is a frequency-shifted Gabor transform

G(n;�)[m] =
L�1X

t=0

Ztg[t� na]e�2i⇡[m��][t�an]/M

+ G
N

[m, n] , (9)

and the remainder is bounded as follows: for all m, m

0,
��E
�
R[m]R[m0]

 ��  �

2
Z

⇣
⇡e

L

k�00k1µ2 + 2µ1

⌘2
, (10)

where �

2
Z is the variance of Z and with

µ1 =
X

t2Ic
T

|g(t)| , µ2 =
X

t2IT

t

2|g(t)| , T =

s
L

⇡k�00k1
(11)

where IT = [�T, T ] and I

c
T = IL\IT

2) Given �, and for fixed n, G(n;�) is distributed follow-
ing a circular multivariate complex Gaussian law, with
covariance matrix

CG(n;�) [m, m

0] = CGZ [m� �,m

0 � �] + CGN [m, m

0] .

(12)
The estimation procedure described below is a maximum
likelihood approach, which requires inverting the covariance
matrix of vectors G(n;�). The latter is positive semi-definite
by construction, but not necessarily definite. The result below
provides a sufficient condition on g and the noise for invert-
ibility.

Proposition 3: Assume that the window g is such that

K

g

:= min
t=0...L�1

 
b�1X

k=0

|g[t + kM ]|2
!

> 0 . (13)

Then for all x 2 CM ,

x

⇤
CGx � �

2
0K

g

, (14)

and the covariance matrix is therefore boundedly invertible.
Remark 2: The condition may seem at first sight unnatural

to Gabor frame experts. However, it simply expresses that
the number M of frequency bins shouldn’t be too large if
one wants the covariance matrix to be invertible. However,
reducing M also reduces the precision of the estimate, and a
trade-off has to be found, as discussed in the next section.

C. Improving the frequency resolution

We propose here a method to improve the frequency res-
olution of our estimations. We have already seen that the
invertibility of the covariance matrix requires that the number
of frequency bins of the Gabor transform shouldn’t be too
large. As a result however, it may be convenient, as we shall
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see later, to have access to the information contained in all the
frequency frames of the short time Fourier transform defined
in equation (2). For this purpose, we also consider alternative
versions of the Gabor transform, associated with frequency-
shifted sampling lattices:

Gc
x

[m, n] = V
g

x(mb + c, na) , m 2 ZM , n 2 ZN , (15)

where c 2 [0, b � 1] . We now have at our disposal a
collection of b Gabor transforms, which are all different
subsampled versions of the STFT. The previous results and
proofs remain valid with this new definition of the Gabor
transform. Equations (8) and (9) now become

Gc
Y

[m, n] = G(n;�0(na)/b+c/b)[m] + R , (16)

where

G(n;�c)[m] =
L�1X

t=0

Ztg[t� na]e�2i⇡[m��c][t�an]/M

+ Gc
N

[m, n] , (17)

and the associated Equation (12) now reads:

CG(n;�c) [m, m

0] = CGZ [m��

c
, m

0��

c]+ CGN [m, m

0] . (18)

The rationale will be that a frequency shift �

c can be
estimated from each one of these thansforms, and the optimal
one will be retained.

III. ESTIMATION PROCEDURE

We now describe in some details the estimation procedure
corresponding to our problem. The estimation problem is the
following: from a single realization of the signal model (4),
estimate the modulation function � and the original power
spectrum S

X

. We first notice the indeterminacy in the prob-
lem, namely the fact that adding an affine function to � is
equivalent to shifting S

X

. This has to be fixed by adding an
extra constraint in the estimation procedure.

A. Maximum likelihood modulation estimation

We now turn to the estimation procedure, that exploits the
above results. With the same notations as before, we fix a value
of the time index n, and denote for simplicity by G = G(n) the
corresponding fixed time slice of Gc

Z

. Due to the multivariate
complex Gaussian distribution of the signal and the fixed time
Gabor transform slices, the log-likelihood of a slice takes the
form

L�(G) = G⇤ (CG(n;�c))�1 G +ln
�
⇡

M det(CG(n;�c))
�

. (19)

Therefore, the maximum likelihood estimate for the frequency
shift assumes the form

�̂

c =arg min
�c

h
G⇤(CG(n;�c))�1G + ln

�
⇡

Mdet(CG(n;�c))
�i

.

(20)
However, we notice that det(CG(n;�c)) actually does not de-
pend on the modulation parameter �

c. Therefore the maximum
likelihood estimate reduces to

�̂

c = arg min
�c

h
G⇤ (CG(n;�c))�1 G

i
, (21)

a problem to be solved numerically. Notice that this requires
the knowledge of the covariance matrix CG(n;0) corresponding
to the Gabor transform of the noisy stationary signal. The latter
is generally not available, and has to be estimated as well.

As �

c(n) ⇡ (�0(an)� c) /b, the estimates of � for each n

lead to an estimate of �

0. Since we solve the minimisation
problem by an exhaustive search on the �

c, the estimate of
�

0 is coarsely quantized (see Remark 2), as b is large and
�̂

0(an) 2 [c, b + c, 2b + c, .., (M � 1)b + c]. This problem is
solved by using the family of frequency-shifted versions of
Gabor transform described in subsection II-C and making a
new exhaustive search on the �̂

c

�̂ = arg min
c

h
G⇤ �

CG(n;�̂c)

��1 G
i

. (22)

The quantization effect on the final estimation of the modula-
tion function is therefore attenuated, i.e. �̂

0(an) 2 [0, L � 1].
Obtaining from this estimation a smoother estimate for the
modulation function � requires extra interpolation techniques.

Remark 3: As an alternative, one may also avoid exhaustive
searches and seek minimizers in (21) using more elaborate
numerical techniques, that would avoid quantization effects.
This question is currently under study.

B. Estimation of the underlying covariance matrix

We now describe a method for estimating the covariance
matrix CG(n;0) . Suppose that an estimate �̂ of the modulation
function � is available. Then the signal Y can be demodulated
by setting

U = Y e

�2i⇡�̂/L
, (23)

Clearly, U is an estimator of Z + Ne

�2i⇡�/L, the noisy
stationary signal. We can now compute the covariance matrix
CGU of the Gabor transform of U , which is an estimator of
CGZ + CGN . Comparing with equation (9) we finally obtain
an estimator for the covariance matrix

CGU ⇡ CG(n;0) (24)

Remark 4: The power spectrum S
X

of the stationary signal
can be estimated from U using a standard Welch periodogram
estimator, or by marginalizing the square modulus of the
Gabor transform of the demodulated signal, as described in [4].

C. Summary of the estimation procedure

We now summarize an iterative algorithm to jointly estimate
the covariance matrix CG(n;0) and the modulation function
�, that exploits alternatively the two procedures described
above. The procedure is as follows, given a first estimation
of the modulation function, we can perform a first estimation
of the covariance matrix, which in turn allows us obtain a
new estimation of the modulation function. The operation is
repeated until the stopping criterion is satisfied.

For the initialization, we need a first modulation frequency
estimate, for which we use the center of mass of the modulated
signal Gabor transform

�̂

(0)(n) =
PM�1

m=0 m|G(n;�)|2[m]
PM�1

m=0 |G(n;�)|2[m]
. (25)
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Fig. 1. Gabor transform of a frequency modulated synthetic stationary
random signal, superimposed with the frequency modulation: estimate (red)
and original (yellow).

The stopping criterion is based upon the evolution of the
frequency modulation along the iterations. More precisely, we
use the empirical criterion

||�̂(k) � �̂

(k+1)||2
||�̂(k+1)||2

< ✏ (26)

The pseudo-code of the algorithm can be found below

Algorithm 1 Joint covariance and modulation estimation
Initialize as in (25)
while criterion (26) is false do

• Compute �̂

(k) by interpolation from �

(k).
• Demodulate Y using �̂

(k) following (23)
• Compute the Gabor transform of the demodulated
signal Ĝ(k;n)[m] = G

U

(k) [m, n]
• Estimate �̂

(k+1) using the covariance matrix of Ĝ(k;n)

from (21) and (22)
• k := k + 1

end while

IV. NUMERICAL RESULTS

The proposed estimation procedure has been implemented
using MATLAB/OCTAVE, and relies on the LTFAT toolbox [8]
for the time-frequency transforms.

We display in Fig. 1 an example of estimation result. The
original signal was generated as pseudo-random stationary
Gaussian signal with a smooth, wideband power spectrum,
that was further modulated by a smooth frequency modulation
function. Fig. 1 displays the Gabor transform of the modulated
signal (positive frequencies only), together with the original
and the estimate for the frequency modulation. For the sake
of clarity, the frequency estimate has been displayed below
the relevant part of the Gabor transform (remember that it is
defined up to an additive constant). As can be seen, the result
is fairly satisfactory, the estimated modulation follows closely
the ground truth.

Fig. 2. Log-log plot of the evolution of the criterion proposed in (26)
according on the number of iterations.

To asses the convergence properties of the proposed ap-
proach, the same experiment was run several times with the
same modulation law and different seeds for the underlying
stationary noise. We display in Fig. 2 the evolution of the
criterion as a function of the iteration index, averaged over 20
realizations. Convergence appears to be fast, with power-law
like decay speed.

V. CONCLUSION

We have presented in this paper a new approach for modula-
tion frequency and power spectrum estimation from wideband
signals, based upon explicit modeling. A main point that is
exploited in our approach is the fact that modulations can be
locally approximated by frequency shifts in the Gabor domain.
The algorithm has been validated using numerical simulations,
that show that when signals are generated according to the
model of interest, very accurate results can be obtained.

Further developments include numerical tests on real sig-
nals, such as natural sounds generated by rolling bodies
with variable speed,... We shall also consider extending this
approach to other transformation models, such as time warping
or more general transformations.
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Abstract—Redundant Gabor frames admit an infinite number

of dual frames, yet only the canonical dual Gabor system, con-

structed from the minimal `

2
-norm dual window, is widely used.

This window function however, might lack desirable properties,

such as good time-frequency concentration, small support or

smoothness. We employ convex optimization methods to design

dual windows satisfying the Wexler-Raz equations and optimizing

various constraints. Numerical experiments show that alternate

dual windows with considerably improved features can be found.

I. INTRODUCTION

Time-frequency representations, in particular Gabor trans-
forms [9], i.e. sampled Short-Time Fourier transforms, are
ubiquitous in signal processing. Gabor transforms represent
a signal as linear combination of translates and modulations
of a single window function, which for best results should be
chosen to be well-concentrated in time and frequency.

A signal can be reconstructed from its Gabor transform
using a dual system with the same modulation and translation
structure. Moreover, infinitely many such systems exist if the
Gabor transform is redundant. Finding a dual system with
desirable properties given a prescribed analysis window is the
topic of this paper.

More explicitly, for g 2 `

2
(Z), and a,M 2 Z, we define

the Gabor system

G(g, a,M) :=

⇣
g

m,n

= g[·� na]e

2⇡im·/M
⌘

n2Z, m=0,...,M�1
.

(1)
If G is also a frame [5], we refer to the system as a Gabor
frame. For f 2 `

2
(Z), the corresponding Gabor transform is

given by

(Gf)[m+ nM ] = hf, g
m,n

i =
X

l2Z
f [l]g

m,n

[l], (2)

with the analysis operator G as given by the infinite matrix
G[m+ nM, l] := G

g,a,M

[m+ nM, l] := g

m,n

[l].
Gabor synthesis is performed by applying the adjoint of G

to a coefficient sequence c 2 `

2
(Z). The action of the synthesis

operator can be equivalently described as

f

syn

[l] = (G⇤
c)[l] =

X

m,n

c[m+ nM ]g[l� na]e

2⇡iml/M

. (3)

The concatenation S = G⇤G of the analysis and synthesis
operators is called the frame operator.

Reconstruction can be realized using the so-called canonical
dual system, obtained by inverting S and defined as

g̃

m,n

= S�1
g

m,n

. (4)

In the particular case of Gabor frames, the canonical dual
system is again a Gabor frame, i.e. it equals G(g̃0,0, a,M).
Therefore we refer to g̃ = g̃0,0 = S�1

g as the canonical dual
window.

The synthesis operator of g̃ coincides with the pseudo-
inverse of the original analysis operator, i.e. G⇤

g̃,a,M

= G†.
So the inversion formula reads

f [l] =

X

m,n

hf, g
m,n

ig̃
m,n

[l] = G†Gf [l]. (5)

There are several approaches for finding the canonical dual
in an efficient way, e.g. [4], [11]. Only if the length of the
window L

g

is less than or equal to the number of channels M ,
is the canonical dual guaranteed to have the same length. This
so-called painless case construction is omnipresent in signal
processing, to the point where M and L

g

are not distinguished.
Redundant Gabor frames possess infinitely many dual Ga-

bor frames of the form G(h, a,M), any of which facilitates
perfect reconstruction from unmodified coefficients. On the
other hand, whenever the coefficient representation is pro-
cessed, varying dual systems provide different reconstructions
and the features of the chosen system suddenly play an
important role. Some of the ’alternate duals’ might possess
properties preferable to those of the canonical dual, e.g. shorter
support, better localization or smoothness.

For a Gabor frame G(h, a,M), the Wexler-Raz equations
[17], [20] provide a necessary and sufficient condition to con-
stitute a dual frame for G(g, a,M). Using this hard constraint,
a convex optimization problem can be defined by adding
functionals to be minimized that provide desired properties.

Recently, convex optimization in the context of audio signal
processing has grown into a active field of research and in
particular proximal splitting methods [6], [7], [8] have been
used to great effect, e.g. in audio inpainting [2], [1] and
sparse representation [12]. In those cases, optimization tech-
niques are applied directly to the signal or its time-frequency
representation. In this contribution, we apply optimization
techniques to shape the building blocks of the time-frequency
representation instead. Since a systematic evaluation of the
available optimization techniques is beyond the scope of this
contribution, we only present an exemplary realization.

Our method is a much more general approach than the
construction of non-canonical dual windows found in [19] and
optimizes several criteria at once. One particular application
of the proposed approach is the construction of smooth dual
windows satisfying a support constraint. To illustrate the
viability of our method, we choose a Gabor frame G(g, a,M)
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with g being an FIR window, i.e. a window function supported
on a finite interval I

g

, and construct a smooth dual window h

supported on an interval I
h

.

II. GABOR FRAMES

In this contribution, we consider Gabor systems G(g, a,M)

in `

2
(Z). Such a system constitutes a frame if constants 0 <

A  B < 1 exist, such that

Akfk22  kGfk22  Bkfk22, for all f 2 `

2
(Z). (6)

In that case, the closed linear span of its elements equals `2(Z)
and every sequence f 2 `

2
(Z) can be written as

f = G⇤
c, (7)

for some coefficient sequence c 2 `

2
(Z). In particular, if

G(h, a,M) is a dual Gabor frame, c = G
h,a,M

f is one
possible choice. Note that frames are “mutually dual”, i.e. the
role of G(g, a,M) and G(h, a,M) in the considerations above
can be switched at will.

The Wexler-Raz equations [20], [17] for `

2
(Z) provide a

necessary and sufficient condition for a function h 2 `

2
(Z) to

be a dual Gabor window for G(g, a,M). They are given by

M

a

D
h, g[·� nM ]e

2⇡im·/a
E
= �[n]�[m], (8)

for m = 0, ..., a�1, n 2 Z. In the equation above, �[l] denotes
the Kronecker delta at position l. In terms of the analysis
matrix G�

= G
g,M,a

, i.e. switching the role of a and M ,
they can be stated as

G�
h =

a

M

�. (9)

III. PROXIMAL SPLITTING METHODS

The convex optimization problems we consider are of the
form

minimize
x2RL

KX

i=1

f

i

(x), (10)

where the f

i

are convex functions. Note that if at least one
function f

i

is not differentiable, it is not possible to ap-
ply smooth optimization techniques. Proximal splitting meth-
ods [7], on the other hand may still apply. The term proximal
splitting originates from the fact that each function f

i

is
minimized iteratively with the help of their corresponding
proximity operator, a generalization of convex projection op-
erators, defined as follows.

Definition 1. The proximity operator of a function f 2
�0(RL

) is defined by

prox

f

(y) := argmin

x2RL

⇢
1

2

ky � xk22 + f(x)

�
. (11)

Since f is convex, the minimization problem in (11) has a
unique solution for every y 2 RL and consequently prox

f

:

RL ! RL is well-defined.

More information on the properties of proximity operators
can be found in [16], [13].

From now on, we will denote by i

C

the indicator func-
tion [7], of a non-empty, closed and convex set C ⇢ RL by

i

C

: RL ! {0,+1} : x 7!

8
<

:
0, if x 2 C

+1 otherwise
(12)

and by �0(RL

) the class of functions

�0(RL

) =

�
f : RL 7! R : f lower semi-continuous,

convex and proper
 
.

Indicator functions can be used to add hard constraints, e.g.
a set of linear equations that the solution must satisfy, to an
optimization problem of the form (10). More explicitly,

argmin

x2C

KX

i=1

�

i

f

i

(x) = argmin

x2RL

KX

i=1

�

i

f

i

(x) + i

C

, (13)

where C = {x 2 RL

: x satisfies the hard constraints } is
the set of admissible points. If C is non-empty and convex,
Equation (13) has a solution for any given choice of regular-
ization parameters �

i

, uniquely determined if at least one f

i

is strictly convex.
Table I presents a list of commonly used regularizer func-

tions f

i

that can be combined to tune the solution x.

Table I
SOME REGULARIZATION FUNCTIONS

Function Effect on the signal

kxk1 sparse representation in time

kFxk1 sparse representation in frequency

krxk22 smooth representation in time / concentrated in frequency

krFxk22 smooth representation in frequency / concentrated in time

kxk22 spread values more evenly

iC(x) force x 2 C

We decided to present a solution of (10) using the paral-
lel proximal algorithm (PPXA, Algorithm 1). However, this
contribution does not intend to propose the best method to
solve (10), and other algorithms, e.g. generalized forward
backward [15], might prove more efficient. Instead, we focus
on a new formulation of the problem of finding dual Gabor
windows.

In the next section we present one of the possible ways to
solve (10). Optimality studies are beyond the scope of this
paper and planned as future work.

IV. METHODS

Utilizing the theory established in the previous sections,
we can now describe our method in detail. We intend to
compute non-canonical dual windows for a given Gabor frame
G(g, a,M), where g is an analysis windows supported on some
finite interval I

g

. Furthermore, we want the dual window to
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Algorithm 1 Parallel proximal algorithm (PPXA)
Initialize ✏ 2]0, 1[, ¯g̃ > 0, (!i)1iK 2]0, 1]K with

PK
i=1 !i =

1, y1,0 2 RL
, ..., yK,0 2 RL

Fix ✓ 2 [✏, 2� ✏[

x0  
PK

i=1 !iyi,0

for n = 1, 2, ... do

for i = 1, ...,K do

pi,n  prox¯̃gfi/!i
(yi,n)

end for

pn  
PK

i=1 !ipi,n

for i = 1, ...,K do

yi,n+1  yi,n + ✓ (2pn � xn � pi,n)

end for

xn+1  xn + ✓ (pn � xn)

end for

be supported on an interval I
h

and denote the convex set of
all signals satisfying this constraint by Csupp.

Considering the support constraint, we see that all but a
small subset of the Wexler-Raz equations are trivially satisfied.
Without loss of generality we assume I

g

and I

h

to be centered
around 0. Noting that I

g

\ (I

h

+ nM) = ; for |n| � Lg+Lh

2M ,

only the equations for

|n| < L

g

+ L

h

2M

, (14)

can possibly be non-zero. This makes a total of 2a(dLg+Lh

2M e+
1) equations in L

h

unknowns. As a consequence, we are not
required to consider sequences of infinite length to compute
the dual window, but we can equivalently work with signals
in CL, where L is some multiple of a and M satisfying L �
L

g

+ L

h

+ 1.
The solutions of the non-trivial equations from the Wexler-

Raz equation system (8), numbered as in (14) form a convex
set written Cdual, providing the second hard constraint after the
support condition.

Then, C = Cdual \ Csupp is also convex and if non-empty1

forms a legal set of admissible points for a problem of the form
(13). To shape the resulting dual window towards some useful
properties, we select suitable regularization functions (Table I)
and parameters, employing PPXA to solve the resulting convex
optimization problem, converging to the unique solution. The
indicator functions iCdual and iCsupp are used to realize the duality
and support constraints.

Experience shows that PPXA needs a large number of
iterations to perfectly satisfy the hard constraints. To speed up
this process, a final projection is performed once the algorithm
converges to a certain accuracy. If there is more than one reg-
ularization function to be minimized, the projection is realized
by a POCS (Projection Onto Convex Set) algorithm [10], [21],
governed by the updating rule

x

n+1 = PCsupp
⇣
PCdual (xn

)

⌘
.

1To determine whether C is non-empty is a nontrivial task and investigating
this set is planned for future work. In the experiments conducted so far, the
support constraints and redundancy were determined heuristically.

A. Compactly supported duals by truncation

In [19], Strohmer proposed a simple algorithm for the
computation of compactly supported dual windows, which we
will call the truncation method. Strohmer proposed to truncate
the Wexler-Raz equations as described in the previous section
and then solve the resulting equation system by computing the
Moore- Penrose inverse, obtaining the least-squares solution.
While the resulting windows satisfy the duality conditions,
they are not very smooth and indeed show some discontinuity-
like behavior, see also Figure 1(e,f). One of the goals of this
contribution is the improvement of these undesirable effects.

V. NUMERICAL RESULTS

We present the construction of a smooth dual Gabor window
with short support. Our setup considers G(g, 30, 60), i.e. a
system with redundancy 2, where g is a “Nuttall” window
[14] of length L

g

= 120 samples, see Figure 1(a,b).
We aim at computing a dual that is supported on

the same interval as the analysis prototype, yielding
Csupp = {x 2 RL

: supp(x) ✓ supp(g)}. To further provide
reasonable localization and smoothness, we select the regular-
ization functions f1 = k · k1, f2 = kF(·)k1, f3 = kr(·)k22
and f4 = krF(·)k22. The result shown in Figure 1(c,d) shows
the optimal dual window with regards to the regularization
parameters �1 = �2 = 0.001 and �3 = �4 = 1. Those
values are choosen experimentally by considering that they are
balancing the effect of the regularization functions as described
in Table I. As reference, we included the least-squares solution
provided by the truncation method, see Figure 1(e,f).

Minimizing the selected regularization functions improves
upon the desired features, in particular smoothness (or fre-
quency localization) with f3 and time localization with f4.
The functions f1 and f2 avoid the solution to have a “M-
shape”, i.e. multiple peaks. This is unwanted as the temporal or
frequency positions becomes ambiguous. Indeed, minimizing
the l

1-norm will push all big coefficients to similar values.
The solution provided is assumed to perform perfect recon-

struction on any signal with admissible length greater or equal
to L. More precisely, by [11, Eq. (60)], the maximum relative
reconstruction error can be shown to be of the order of the
precision of the machine, more precisely at 4.5e�14.

Simulations were performed using the LTFAT [18] and the
UNLocBoX matlab toolbox. A reproducible research adden-
dum is available in http://unlocbox.sourceforge.net/rr/gdwuco.

In the experiment above, we constructed a smooth, well
localized dual window, compactly supported with L

h

= 120.
Considering the painless case, to guarantee the canonical

dual window to be supported on L

g̃

= L

g

, enforces M �
120 therefore increasing the redundancy twofold, an unwanted
side effect. Alternatively, in this setting, we could decide to
keep the parameters a = 30, M = 60 fixed, but decrease the
window size to L

g

 60. However, this construction provides
a system with a more than 8 times larger frame bound ratio.
Consequently, the resulting canonical dual window g̃, shown in
Figure 2, shows bad frequency behavior and an undesirable,
M-like shape in time. In contrast, the method proposed in
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Figure 1. Experiments. (a) Analysis window in time. (b) Analysis window in
frequency. (c) Synthesis window in time. (d) Synthesis window in frequency.
(e) Truncation method in time. (f) Truncation method in frequency.

this manuscript allows the use of nicely shaped, compactly
supported dual Gabor windows at low redundancies, without
the strong restrictions of the painless case.

Figure 2. Half-overlap painless case construction (G(g, 30, 60), Lg = 60):
Canonical dual window in time (a) and in frequency (b).

VI. CONCLUSION

We have proposed an algorithm for the design of non-
canonical dual Gabor windows based on methods from convex
optimization. Contrary to earlier methods, the algorithm dis-
cussed in this manuscript allows users to tune the dual window
with regards to different desirable criteria. To illustrate the
usefulness of the algorithm, we provided an example using a
hard support constraint and shaped the window into a smooth
shape using `

1 priors on the window and its Fourier transform,
as well as an `

2 prior on its gradient. The result obtained
considerably outperforms the result of an older method [19]
that does not employ any smoothness constraints.

Our method can be applied in various situations to construct
dual frames with properties more important for application
than minimal `2-norm. Future work will further be concerned
with applying the findings herein to frames with a different
structure, e.g. nonstationary Gabor frames [3].
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Abstract—We derive some interesting properties of finite Ga-
bor frames and apply them to the sampling or identification

of operators with bandlimited Kohn-Nirenberg symbols, or
equivalently those with compactly supported spreading functions.
Specifically we use the fact that finite Gabor matrices are
full Spark for an open, dense set of window vectors to show
the existence of periodically weighted delta trains that identify
simultaneously large operator classes. We also show that sparse
delta trains exist that identify operator classes for which the
spreading support has small measure.

I. INTRODUCTION

A. Operator Sampling

The goal in operator identification is to determine an
operator completely from its action on a single input function
or distribution. If the operator models a linear (time-varying)
communication channel, then the problem is one of channel
identification and can be thought of as a generalization of
the fact that the impulse response of a time-invariant com-
munication channel modeled as a convolution operator can
be determined from the response of the channel to a unit
impulse. The question of determining which operators can
be identified was addressed in foundational and pioneering
work of T. Kailath ([3], [4], [5]) and P. Bello ([1]) who
determined that the identifiability of a communication channel
is characterized by the area of the support of its so-called
spreading function. This work has been extended and placed
on a firm mathematical footing in [6] and [8].

To be specific and to fix ideas for this paper, we restrict
our attention to the class of Hilbert-Schmidt operators H on
L2(R). Any such operator can be represented as a pseudod-
ifferential operator as

Hf(x) =

Z
�H(x, ⇠) bf(⇠) e2⇡ix⇠ d⇠.

�H(x, ⇠) 2 L2(R2) is the Kohn-Nirenberg (KN) symbol of
H . The spreading function ⌘H(t, ⌫) of the operator H is the
symplectic Fourier transform of the KN symbol, viz.

⌘H(t, ⌫) =

ZZ
�H(x, ⇠) e�2⇡i(⌫x�⇠t) dx d⇠

and we have the representation

Hf(x) =

ZZ
⌘H(t, ⌫)Tt M⌫f(x) d⌫ dt

where Ttf(x) = f(x � t) is the time-shift operator and
M⌫f(x) = e2⇡i⌫x f(x) is the frequency-shift operator. In this
sense, an operator H whose spreading function has compact
support can be said to have a bandlimited symbol. This moti-
vates the following definition. Given a compact set S ✓ R2,
we define the operator Paley-Wiener space OPW (S) to be
the set of all Hilbert-Schmidt operators H on L2(R) with
supp ⌘H ✓ S. Identifiability of an operator H therefore means
informally that there exists a distribution g such that H is
completely determined by Hg. To be more precise, suppose
that H is some class of linear operators with common domain.
We say that g identifies H if whenever H1, H2 2 H and
H1g = H2g (or equivalently (H1�H2)g = 0) then H1 = H2.
If H is a linear space, then g identifies H if and only if H 2 H
and Hg = 0 implies H = 0. However, these notions are not
equivalent if H is not a linear space.

The following theorem was proved in [8] following Bello’s
work.
Theorem 1. If |S| < 1 then OPW (S) is identifiable, and if
|S| > 1 then OPW (S) is not identifiable. In the former case
an identifier has the form g =

P
n cn �nT for some T > 0

and periodic sequence c = (cn).
Since in this case, the operator is being “sampled” by a suc-

cession of evenly-spaced weighted impulses, and because the
theory bears many formal analogies to the classical sampling
of bandlimited functions, this procedure is called operator
sampling. Indeed, it is shown in [9] that classical sampling
is in fact a special case of operator sampling.

B. Gabor Matrices

Definition 2. Given L 2 N, let ! = e2⇡i/L and define the
translation operator T on (x0, . . . , xL�1) 2 CL by

Tx = (xL�1, x0, x1, . . . , xL�2),

and the modulation operator M on CL by

Mx = (!0x0,!
1x1, . . . , !

L�1xL�1).

Define the full Gabor system matrix G(c) to be the L ⇥ L2

matrix given by

G(c) = [ D0 WL D1 WL · · · DL�1 WL ]

where Dk is the diagonal matrix with diagonal T kc, and where
WL is the L ⇥ L Fourier matrix WL = (e2⇡inm/L)L�1

n,m=0.
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The finite Gabor system with window c is the collection
{MpT qc}L�1

q,p=0.
For generic vectors c 2 CL, the finite Gabor system with

window c is a tight frame for CL, and in fact is a so-called
full Spark frame. In particular the following holds.
Theorem 3. [7] Suppose that L is prime. Then there is an
open, dense set of c 2 CL with the property that every square
submatrix of G(c) has nonzero determinant. In particular, this
implies that every collection of columns in G(c) has full rank.

Outline of Proof: Given any N ⇥N submatrix, M , of G(c),
det(M) is a homogeneous polynomial of degree L in the
variables c0, c1, . . . , cL�1, and it is sufficient to show that this
polynomial does not vanish identically, and for that it suffices
to show that there is a monomial in det(M) with a nonzero
coefficient. In the proof such a monomial, pM , is constructed
recursively as follows.

If N = 1 then M is simply a multiple of a single variable
cj and we define pM = cj . If N > 1, let cj be the variable of
lowest index appearing in M . Choose any entry of M in which
cj appears, eliminate from M the row and column containing
that entry, and call the remaining matrix M 0. Define pM =
cj pM 0 . The coefficient of pM in detM is a product of minors
of WL. Since L is prime, by Chebotarëv’s Theorem, such
minors never vanish.

C. Operator Sampling and Gabor Matrices

To illustrate the connection between operator sampling
and Gabor matrices, we outline the proof of the sufficiency
direction of Theorem 1 ([8], [9]).

Suppose that |S| < 1 is compact, and assume without loss
of generality that S is contained in the first quadrant. Choose
L prime so large that S ✓ [0,

p
L]2 and S meets no more than

L rectangles of the form

Rq,m = [0, 1/
p
L]2 + (q/

p
L,m/

p
L).

In the sequel, let T⌦ = 1/
p
L. For any sequence c = (cn)

with period L, a straightforward calculation ([9], [8]) yields

Z(t, ⌫) = G(c) ⌘(t, ⌫) (1)

where

Z(t, ⌫) = [e�2⇡ipq/L e�2⇡i⌫Tp (Z1/⌦ �H)g(t+ Tp, ⌫)]L�1
p=0 ,

Z1/⌦f(t, ⌫) =
P

n2Z f(t � n/⌦) e2⇡in⌫/⌦ is the Zak trans-
form, and

⌘(t, ⌫) = [e�2⇡iqm/L e�2⇡i⌫Tq ⌘H(t+ Tq, ⌫ + ⌦m)]L�1
q,m=0.

Note that (1) is a linear system of L equations in L2 unknowns,
the coefficients of which are a discrete Gabor system. Because
S meets no more than L rectangles Rq,m, (1) reduces to
a system of L equations in L unknowns, with the reduced
matrix G0(c) an L ⇥ L submatrix of G(c). We now invoke
Theorem 3 to assert that there is a choice of c 2 CL making
G0(c) invertible.

II. OPERATORS WITH UNKNOWN SPREADING SUPPORT

Theorem 3 says that the set of vectors c for which every
square submatrix of G(c) is invertible is dense and open. Since
there are only finitely many such submatrices, there exists a
dense, open set of c 2 CL such that all square submatrices of
G(c) are invertible. Hence c can be chosen independently of
S, depending only on L.
Definition 4. Given ⌃ > 0 and 0  �  1, define the
operator class H⌃(�) to be the collection of operators H in
OPW ([�⌃,⌃]2) such that supp ⌘H is contained in no more
than ⌃ Jordan regions (that is, Jordan curves together with
their interiors) with total area no more than � � 1/⌃, and
whose boundaries have total length no more than ⌃.

Note that H⌃(�) is not a linear space, but has the property
that the spreading supports admit uniformly good coverings
by squares. A more general version of the following theorem
appears in [9] (see [2] for a characterization in the case of
fixed L.).
Theorem 5. Let ⌃ > 0 be given. Then for every suffi-
ciently large prime L, there is a c 2 CL such that with
g =

P
n cn �n/

p
L, if H 2 H⌃(1) and Hg = 0, then

H = 0. It follows immediately that if �  1/2, then whenever
H1, H2 2 H⌃(�), and H1g = H2g then H1 = H2.
Proof: An argument in [9] shows that if H 2 H⌃(1), then
the conditions in Definition 6 on supp ⌘H imply that as long
as 1/

p
L + 1/L < 1/(4⌃2), then supp ⌘H is guaranteed to

meet at most L rectangles Rq,m. Since L is now fixed, we can
choose c 2 CL with the property that all square submatrices
of G(c) are invertible. This combined with (1) implies the
result.

The conclusion of Theorem 5 is not sufficient by itself to
allow the recovery from Hg of the spreading function of H .
However, it is shown in [9] and in [2] that if �  1/2, and
H 2 H⌃(�), the support set of H can be determined and H
can be stably recovered from Hg. Heckel and Boelcskei go
further in [2] and show that for almost every operator H 2
H⌃(�) with �  1, the support set of H can be determined
and H can be stably recovered from Hg. Once the support set
is known, explicit formulas for reconstructing the spreading
function and impulse response of H from Hg are given in
[9].

III. EFFICIENT OPERATOR SAMPLING

It is easy to see that any c satisfying the conclusion of
Theorem 3 must have full support, that is, kck0 = L where
kck0 is the number of nonzero entries in c. However, for
a given operator class, there is an advantage to choosing a
c that has minimal support. First, having some or most of
the ck vanish would mean that the matrix G(c) in (1) would
be sparse, and hence the reduced matrix G0(c) that must be
inverted to recover the spreading function would be sparse as
well. In fact, the quantity kck0/L is the fraction of nonzero
entries in G(c). Second, a vector c with small support would
mean that the identifier g would require fewer deltas to be
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transmitted per unit time. This is analogous to reducing the
“sampling rate” in operator sampling. Third, note that

suppHg(x) ✓
[

y2supp(g)

supp(x, y)

and hence that if kck0 is small, in particular if in each period
c vanishes but for a few contiguous indices, then in each time
interval of length TL, Hg would have small support thereby
reducing the amount of time spent measuring the channel.

A. Invertibility of Gabor Submatrices.

Definition 6. Let G(c) be an L ⇥ L2 Gabor system matrix,
and let G0(c) be an L⇥N submatrix of G(c) corresponding
to a collection of N  L columns of G(c). Define

µ = min{kck0 : G0(c) has full rank}.
We associate to G0(c) the L-tuple ⌧ = (⌧0, ⌧1, . . . , ⌧L�1),

where ⌧k is the number of columns of G0(c) chosen from
the submatrix Dk WL. The total number of columns chosen is
given by k⌧k1, the number of submatrices Dk WL from which
any columns are chosen by k⌧k0, and the largest number of
columns chosen from any submatrix Dk WL by k⌧k1.

Part (1) of the following theorem is proved in [9].
Theorem 7 Suppose that the L-vector ⌧ describes a collection
of columns chosen from a full Gabor matrix.
(1) If L is prime then µ  (k⌧k1 � k⌧k0) + 1.
(2) For any L 2 N, µ � k⌧k1.

Proof: (1) Let L be prime, and assume that columns are
chosen from G(c) according to the vector ⌧ . By definition,
there will be at least one column chosen from k⌧k0 distinct
submatrices Dk WL of G(c). This means that there are exactly
k⌧k0 distinct rows in which the variable c0 formally appears.
Choose those rows and the remaining k⌧k1 � k⌧k0 rows
arbitrarily, and let M be the resulting k⌧k1⇥k⌧k1 submatrix.
Proceeding now with the construction of the monomial pM
defined above, it follows that pM will contain exactly k⌧k0
factors of c0 plus at most k⌧k1 � k⌧k0 other distinct factors.
Hence pM will be a monomial with at most k⌧k1 �k⌧k0 +1
distinct variables appearing. Hence the variables not chosen
can be set to zero and the polynomial detM will still
not vanish identically. Hence there is a choice of c with
kck0  k⌧k1 �k⌧k0 +1 for which detM 6= 0, and the result
follows.
(2) Let L 2 N be given and suppose that columns are chosen
from G(c) according to the vector ⌧ . Let k⌧k1 rows be chosen
from the submatrix G0(c), and call the resulting k⌧k1 ⇥k⌧k1
matrix M . Any diagonal of M must have ⌧k entries chosen
from ⌧k distinct rows of each submatrix Dk WL. Hence every
term in the expansion of det(M) is a multiple of a monomial
with at least ⌧k distinct variables appearing in it. Therefore,
if more than k⌧k1 of the ck are zero, then the polynomial
det(M) will vanish identically. Hence µ � k⌧k1.
Remark (a) The bounds on µ in Theorem 7 cannot be
improved. For example, if one column is chosen from distinct

submatrices Dk WL, then the vector ⌧ will have k⌧k1 non-
zero entries each of which is 1 and . Hence k⌧k1 = k⌧k0, and
k⌧k1 = 1. Letting c0 = 1, c1 = c2 = · · · = cL�1 = 0, and
letting the rows of M be those of G0(c) in which c0 appears
gives

µ = k⌧k1 = (k⌧k1 � k⌧k0) + 1.

If all k⌧k1 columns are chosen from one submatrix Dk WL,
then k⌧k0 = 1 and k⌧k1 = k⌧k1. If fewer than k⌧k1 of the
ck are nonzero, then any choice of k⌧k1 rows of G0(c) will
contain at least one identically zero row. This means that

µ � (k⌧k1 � k⌧k0) + 1 = k⌧k1 = k⌧k1.

Moreover, if L is prime we once again have equality ([7]).
(b) The following example will show that for arbitrarily large
L there are vectors ⌧ that avoid both extremes, that is, for any
choice of submatrix G0(c), k⌧k1 < µ < k⌧k1 � k⌧k0 + 1.
More specifically, the following theorem holds.
Theorem 8 For every L 2 N large enough, there is an L-
vector ⌧ describing a choice of columns of a full Gabor matrix
G(c) such that k⌧k1 < µ. Moreover, if L is prime, then also
µ < k⌧k1 � k⌧k0 + 1.
Proof: In order to construct this vector ⌧ , first choose P, R 2
N such that P  R and

R+ P � 1

RP
<

1

2
.

Note that these imply that at least R � P � 3. Given L 2 N
with L � 9, we can write L = PR + j uniquely for some
0  j  R� 1. Define the L-vector ⌧ as follows. Let ⌧k = 2
for 0  k  R� 1, and for k = mR� 1, 2  m  P , and let
⌧k = 0 otherwise. Then k⌧k0 = R + P � 1, k⌧k1 = 2, and
k⌧k1 = 2(R+P � 1). We will show that k⌧k1 = 2 < 3  µ
and that in case L is also prime, µ  R < R + P = k⌧k1 �
k⌧k0 + 1. We describe the matrix G0(c) pictorially in the
figure below. Each column in the figure that starts with N �k
represents two columns chosen from the submatrix DkWL. A
generalized diagonal of the matrix G0(c) corresponds to the
choice of two indices from each column and one from each
row.

0 N�1 . . . N�R+1 N�2R+1 . . . N�PR+1
1 0 . . . N�R+2 N�2R+2 . . . N�PR+2
2 1 . . . N�R+3 N�2R+3 . . . N�PR+3
3 2 . . . N�R+4 N�2R+4 . . . N�PR+4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
R�2 R�3 . . . N�1 N�R�1 . . . N�(P�1)R�1
R�1 R�2 . . . 0 N�1 . . . N�(P�2)R�1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
2R�1 2R�2 . . . R 0 . . . N�(P�3)R�1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
3R�1 3R�2 . . . 2R R . . . N�(P�4)R�1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
PR�1 PR�2 . . . (P�1)R (P�2)R . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
N�1 N�2 . . . N�R N�2R . . . N�PR

,

In order to see the first inequality, let G0(c) be an L ⇥
2(R+ P � 1) matrix described by ⌧ . Specifically, we choose
2 columns from each submatrix DkWL of G(c) for all those
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k for which ⌧k = 2. Now suppose that kck0 = 2 and assume
without loss of generality that c0 and ck0 are the only non-zero
entries of c. We will show that any choice of 2(R + P � 1)
rows of G0(c) will contain a zero row, which will imply that
µ � 3.

Note that each of the variables c0 and ck0 appears in at most
R+P�1 rows of G0(c). Therefore, if a choice of 2(R+P�1)
rows of G0(c) were not to contain a zero row, then we must be
able to choose R+P �1 rows containing c0 and an additional
R+P � 1 rows containing ck0 . We will show that this is not
possible by showing that there must be at least one row of
G0(c) in which both c0 and ck0 appear. Specifically, we will
show that all of the variables c1, c2, . . . , cL�1 appear at least
once in the first R rows of G0(c). Clearly, c0 also appears in
each of these rows.

In the pair of columns of G0(c) chosen from the matrix
D0WL, the variables c1, . . . , cR�1 appear in the first R
rows. Given 1  m  P , consider the pair of columns
of G0(c) chosen from the matrix DmR�1WL. It is not
hard to see that in the first R rows of these columns, the
variables c(P�m)R+j+1, . . . , cP�(m�1))R+j appear. Conse-
quently, as m runs from 1 through P , all of the variables
cj+1, . . . , cPR+j will appear in the first R rows of G0(c).
This completes the first part of the proof.

Now suppose that L is prime. We will show that µ  R
by showing that we can choose 2(R+ P � 1) rows of G0(c)
in such a way that the monomial pM of the resulting square
matrix M , as described in the proof of Theorem 3, will have
no more than R distinct variables cj appearing in it.

First, choose the R + P � 1 rows of G0(c) in which c0
appears. For all 1  m  P � 1, note that c1 appears in row
mR+1, c2 appears in row mR+2 and in general, ck appears in
row mR+k for k = 1, 2, . . . , R�1. Note also that c0 does not
appear in these rows. Therefore, choose those (P � 1)(R� 1)
rows of G0(c). Note that (R+P�1)+(P�1)(R�1) = RP >
2(R+P �1) by our assumption at the beginning of the proof.
This means that by choosing rows in this way, and eliminating
some if necessary, we arrive at a square sub-matrix M of
G0(c). The corresponding monomial pM will have R+P �1
factors of c0 and at most P � 1 factors of c1, c2, . . . , cR�1,
resulting in no more than R distinct variables appearing in
pM . Hence µ  R < R+ P = k⌧k1 � k⌧k0 + 1.

Theorem 9. Let L prime be fixed, and let N  L. There
exists a c 2 CL with kck0  N such that for any vector ⌧
with k⌧k1 = N and every L⇥N matrix G0(c) with associated
distribution vector ⌧ has full rank. In fact, the collection of all
such c considered as vectors in CN constitutes a dense, open
subset of CN .

Proof: By Theorem 7, for every vector ⌧ with k⌧k1 = N , there
is a c 2 CL with the property that kck0  N and that G0(c)
has full rank. We will first show that such a c can always be
chosen such that cN = cN+1 = · · · = cL�1 = 0. To see this,
consider a matrix G0(c), and set cN through cL�1 to zero. In
this case, every column of G0(c) will have N nonvanishing
entries. We can therefore follow the algorithm outlined in

the proof of Theorem 3 and observe that at each step in the
algorithm, there will always be a row of the remaining matrix
in which a variable cj with 0  j  N � 1 appears, for if
not, this would imply that one of the columns of G0(c) had
fewer than N nonvanishing entries. Choosing now these N
rows, and letting M denote the resulting N ⇥N submatrix of
G0(c), it follows that in the monomial pM , only variables cj
with 0  j  N � 1 will appear and hence the polynomial
detM will be a homogeneous polynomial of degree N in the
variables c0, c1, . . . , cN�1.

Therefore, any choice of c0, c1, . . . , cN�1 that avoids the
zero set of the polynomial detM will ensure that G0(c) has
full rank. The set of such choices constitutes a dense open
set in CN . Since there are only finitely many vectors ⌧ with
k⌧k1 = N and only finitely many associated L⇥N matrices
G0(c), the collection of such c is the intersection of finitely
many dense open subsets of CN . Since this is also a dense
open set, the result follows.

IV. IMPLICATIONS FOR OPERATOR SAMPLING

Theorem 10. Let ⌃ > 0, 0  � < 1 be given. Then for every
sufficiently large prime L, there is a c 2 CL with kck0/L  �
such that the operator class H⌃(�) is identifiable by g =P

n cn �n/
p
L.

Proof. As in the proof of Theorem 5, we can choose a prime
L sufficiently large that for any H 2 H⌃(�), supp ⌘H meets
at most �L rectangles Rq,m. For this L, we have seen that it
is possible to choose c 2 CL such that kck0  �L and such
that any collection of no more than �L columns of the Gabor
matrix G(c) is linearly independent. Hence the operator H is
completely determined by Hg where g =

P
n cn�n/

p
L and

kck0/L  �.
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Abstract—We consider the problem of computing wavelet coefficients
of compactly supported functions from their Fourier samples. For this,
we use the recently introduced framework of generalized sampling in
the context of compactly supported orthonormal wavelet bases. Our first
result demonstrates that using generalized sampling one obtains a stable
and accurate reconstruction, provided the number of Fourier samples
grows linearly in the number of wavelet coefficients recovered. We also
present the exact constant of proportionality for the class of Daubechies
wavelets.

Our second result concerns the optimality of generalized sampling
for this problem. Under some mild assumptions generalized sampling
cannot be outperformed in terms of approximation quality by more
than a constant factor. Moreover, for the class of so-called perfect
methods, any attempt to lower the sampling ratio below a certain
critical threshold necessarily results in exponential ill-conditioning. Thus
generalized sampling provides a nearly-optimal solution to this problem.

I. GENERALIZED SAMPLING

A fundamental problem of signal processing is the reconstruction

of signals from a discrete set of measurements. This can be formu-

lated in a Hilbert Space H with inner product 〈·, ·〉, where one seeks

to reconstruct a function f ∈ H from measurements of the form

〈f, sj〉 for some {sj}j∈N
⊆ S ⊆ H. A key development is the

Shannon-Nyquist Sampling Theorem, which stated that bandlimited

or compactly supported signals to be fully described via measure-

ments
〈

f, e2πiεj·
〉

, j ∈ Z, for some appropriate ε > 0. In particular, f
and its Fourier transform f̂(·) =

∫

f(x)e−ix·dx can be approximated

respectively as follows:

fN (t) = ε
∑

|k|≤N

f̂(2πkε)e2πiεkt, fN
L2

−→ f,

f̂N (t) =
∑

|k|≤N

f̂(2πkε)sinc

(

t+ 2πkε
2ε

)

, f̂N
L2,L∞

−→ f̂ .

However, in many cases, such approximations are not used because

the bases generated by the sinc-function or complex exponentials

are generally considered inappropriate representation systems for the

underlying signals [1]. In fact, many images and signals can be better

represented in terms of a different basis (e.g. splines or wavelets)

than the basis in which they are sampled (e.g. the Fourier basis).

Consequently, there is much interest in generalising the Shannon-

Nyquist Sampling Theorem to recover the coefficients of a signal or

image in a particular basis from samples taken with respect to another

basis[1], this problem is often referred to as generalized sampling.

The goal now is to reconstruct in an arbitrary space W ⊆ H
without placing any constraints on the type of input vectors. In

practice, we seek an approximation of f in the finite dimensional

space WN = span {wj : 1 ≤ j ≤ N} such that
⋃

j∈N
Wj = W

from some finite set of measurements f̂M = (〈f, sj〉)Mj=1.

A. Desirable qualities of the reconstruction algorithm

We will be primarily be concerned with perfect reconstruction

algorithms, where the underlying signals can be perfectly recon-

structed from our discrete measurement sets. So, if f ∈ W , then the

algorithm should be able to recover f exactly from its measurements.

Note that if W ∩ S⊥ )= {0}, then there will exist some non-zero

vector g ∈ W ∩ S⊥ such that 〈g, sj〉 = 0 for all j. So g is

indistinguishable from 0, regardless of the reconstruction algorithm.

Thus, when considering the reconstruction problem, we will require

that W and S satisfy the following condition:

W ∩ S⊥ = {0} , W + S⊥ is closed in H (1)

and will refer to this as the subspace condition. Let us now consider

the desirable qualities of a ‘good’ reconstruction method: Any

reconstruction method should be such that the approximation will

converge to the true signal as the number of samples increases and

the method should be robust to small perturbations in the input data.

With this in mind, we consider the following two definitions :

Definition I.1. [2] Let FN,M : H → WN . The quasi-optimality

constant µ = µ(FN,M ) is the least constant such that

‖f − FN,M (f)‖ ≤ µ‖f − PWN f‖, ∀f ∈ H,

If no such constant exists, we write µ = ∞. We say that FN,M is

quasi-optimal if µ(FN,M ) is small.

Note that PWN f is the best approximation in norm to f from WN .

So quasi-optimality means that the difference in norm between f and

FN,M (f) is at most a constant factor µ of the difference between f
and its best approximation in the subspace WN .

We also define the condition number of a reconstruction:

Definition I.2. [2] Let FN,M : H → WN be a mapping such that,

for each f ∈ H, FN,M (f) depends only on the samples {f̂j}Mj=1.

The condition number of κ(FN,M ) is given by

κ(FN,M ) = sup
f∈H

lim
ε→0+

sup
g∈H

0<‖ĝ‖≤ε

‖FN,M (f + g)− FN,M (f)‖
‖ĝ‖ ,

where ĝ = {ĝj}Mj=1 ∈ C
M . The mapping FN,M is well-conditioned

if κ(FN,M ) is small and ill-conditioned otherwise.

We say that the reconstruction FN,M is ‘good’ if it is stable and

quasi-optimal. In other words, if the reconstruction constant

C(FN,M ) = max{κ(FN,M ), µ(FN,M )},

is small.
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II. REDUCED CONSISTENCY SAMPLING

This problem of generalized sampling is not new and has been

extensively studied - important contributions include the consistent

sampling scheme introduced by Aldroubi and Unser [3], [4], [5] and

significantly extended by Eldar [6], [7].

For f ∈ H, one seeks an approximation FN (f) ∈ WN which

agrees with the given measurements, so it is such that

〈FN (f), sj〉 = 〈f, sj〉 , j = 1, . . . , N. (2)

This involves solving a linear system of N equations and FN (f)
exists uniquely when WN ⊕ S⊥

N = H. However, this condition need

not hold even if W⊕S⊥ = H and there are important cases for which

(2) has no solution, or the method FN is unstable or nonconvergent,

i.e. κ(FN ) → ∞ or FN (f) )→ f as N → ∞ [8], [5].

To circumvent these problems, various authors have considered

overdetermined systems, where the number of measurements exceeds

the number of reconstruction coefficients to be recovered. We in

particular mention the work of Pruessmann et al [9] in the recovery

of voxel coefficients (which may be considered as Haar wavelet

coefficients) from Fourier samples and [10] by Hrycak and Gröchenig

for the recovery of polynomial coefficients from Fourier samples.

To formalise these approaches, Adcock and Hansen introduced the

reduced consistency sampling scheme [8], [11]. The task is then

as follows: Given N ∈ N, for some appropriate M ∈ N, find

FN,M (f) ∈ WN such that

〈PSMFN,M (f), wj〉 = 〈PSM f, wj〉 , j = 1, . . . , N. (3)

So, FN,M (f) coincides with f on PSM (WN ) rather than on SM .

Under this framework, a stable and convergent scheme can always

be devised. Indeed, for all N ∈ N, there exists m0 such that for all

M ≥ m0, there exists a unique FN,M (f) satisfying (3), and such

a solution is quasi-optimal in WN and stable with reconstruction

constant at most

DN,M =

(

inf
g∈WN

‖PSM g‖
)−1

.

As both convergence and numerical stability are governed by the

quantity DN,M , the notion of a stable sampling rate was introduced:

Definition II.1. [2] For N ∈ N and θ ∈ (1,∞), the stable sampling

rate is given by

Θ(N ; θ) = min {M ∈ N : DN,M ≤ θ} .

As demonstrated in [2], for any N ∈ N, Θ(N ; θ) can be numer-

ically calculated and determines the number of samples required to

obtain a convergent and stable reconstructions in WN as N → ∞.

III. OPTIMALITY OF GENERALIZED SAMPLING

In [2], the reduced consistency scheme is shown to be optimal

amongst all perfect methods, in that it is not possible improve upon

its stability. The following result shows that the stable sampling rate

is a universal property amongst perfect methods, since any perfect

method must sample at a rate at least that of the stable sampling rate

to achieve the same stability.

Theorem III.1. [2] For M ≥ N let GN,M : H → WN be a

perfect reconstruction method such that, for each f ∈ H, GN,M (f)
depends only on the samples {f̂j}Mj=1. Then the condition number

is such that κ(GN,M ) ≥ κ(FN,M ), where FN,M is the generalized

sampling reconstruction.

For nonperfect methods, the following result holds:

Theorem III.2. [2] Suppose that the stable sampling rate Θ(N ; θ)
is linear in N for a particular sampling and reconstruction problem.

Let f ∈ H be fixed, and suppose that there exists a sequence of

mappings

GM : {f̂j}Mj=1 /→ GM (f) ∈ WΨf (M),

where Ψf : N → N with Ψf (M) ≤ cM . Suppose also that there

exist constants c1(f), c2(f),αf > 0 such that

c1(f)N
−αf ≤ ‖f − PWN f‖ ≤ c2(f)N

−αf , ∀N ∈ N. (4)

Then, given θ ∈ (1,∞), there exist constants c(θ) ∈ (0, 1) and

cf (θ) > 0 such that

‖f − Fc(θ)M,M (f)‖ ≤ cf (θ)‖f −GM (f)‖, ∀M ∈ N, (5)

where FN,M is the generalized sampling reconstruction.

Thus, for problems with linear stable sampling rates, even if one

is allowed to design a method that depends on f in a completely

non-trivial way, it is still not possible to obtain a faster asymptotic

rate of convergence than that of generalized sampling. In fact, we

will show that the stable sampling rate is linear for wavelets, making

this theorem directly applicable.

IV. WAVELET RECONSTRUCTIONS FROM FOURIER SAMPLES

Any implementation of the reduced consistency sampling scheme

requires an understanding of the corresponding stable sampling

rate. The case where the reconstruction space W is generated by

compactly supported wavelets and the sampling space is the space

of complex exponentials S = span
{

e2πiεj· : j ∈ Z
}

for some

appropriate ε > 0 is particularly important, with applications in

medical imaging. In this section, we present some results which show

that the stable sampling rate is linear in this setting. We first describe

the construction of the reconstruction and sampling spaces.

For the reconstruction space, we aim to create orthonormal subsets

{ϕk}k∈N ⊆ L2(R) with the property that L2[0, a] ⊆ span{ϕk}k∈N

for some a > 0. Suppose that we are given an orthonormal

mother wavelet ψ and an orthonormal scaling function φ such that

supp(ψ) = supp(φ) = [0, a] for some a ≥ 1.

The standard approach is to consider the following collection of

functions

Ωa = {φk,ψj,k : supp(φk)
o ∩ [0, a] )= ∅,

supp(ψj,k)
o ∩ [0, a] )= ∅, j ∈ Z+, k ∈ Z, },

where

φk = φ(·− k), ψj,k = 2
j
2ψ(2j ·−k).

(the notation Ko denotes the interior of a set K ⊆ R). This now

gives

L2[0, a] ⊆ cl(span{ϕ : ϕ ∈ Ωa}) = W ⊆ L2[−T1, T2],

where T1 = 1a2 − 1 and T2 = 21a2 − 1 are such that [−T1, T2]
contains the support of all functions in Ωa.

For the Fourier sampling space, we let ε ≤ 1/(T1 + T2) be the

sampling density. Note that 1/(T1+T2) is the corresponding Nyquist

criterion for functions supported on [−T1, T2]. We now define the

sampling vectors by

sl =
√
εe2πilε·χ[−T1/(ε(T1+T2)),T2/(ε(T1+T2))],
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and the sampling space by

S = span{sl : l ∈ Z}

=

{

f ∈ L2(R) : supp(f) ⊆
[

− T1

ε(T1 + T2)
,

T2

ε(T1 + T2)

]}

and the space spanned by the first M sampling vectors by

SM = span

{

sl : −
⌊

M
2

⌋

≤ l ≤
⌈

M
2

⌉

− 1

}

.

Our main result on the stable sampling rate is as follows.

Theorem IV.1. [12] For R ∈ N, let NR denote the number of

elements in Ωa of the form φj,k or ψj,k with j < R, in particular,

NR = 2R1a2 + (R + 1)(1a2 − 1). Then for N ≤ NR and all

θ ∈ (1,∞), there exists Sθ ∈ N, independent of R, such that for

M =

⌈

Sθ2
R+1

ε

⌉

, we have DNM ≤ θ. Hence, Θ(N, θ) = O(N)

for any θ ∈ (1,∞).

So, the stable sampling rate is linear and in other words, given

any f ∈ H, for any N ∈ N and θ ∈ (1,∞), there exists a constant

r such that r · N samples will up to a factor of θ, yield the best

possible approximation in the space WN and the condition number

of the method is no worse than θ as N → ∞.

One may ask, how small can the ratio r be? The next result shows

that there is a critical ratio, below which, the reconstruction will

become exponentially ill posed.

Theorem IV.2. [12] Let FN,M denote the reduced consistency

sampling method and NR be as in Theorem IV.1. Let N = NR

and M = c · 2R, with c < ε−1. Then κ(FN,M ) → ∞ exponentially

as N → ∞.

The first consequence of this with regards to optimality is that

this critical ratio is universal amongst perfect methods. It is not the

case that a perfect method could reconstruct in WNR from less than

2R/ε samples and still only experience mild growth in its condition

number - this method will inherently become exponentially ill posed.

The second consequence for optimality is as explained at the end

of Section III, any non-perfect method which has a lower sampling

ratio for a particular function f satisfying (4) can only outperform

generalized sampling by a constant factor.

A. Daubechies wavelets

Our next result examines the special case of Daubechies wavelets

and asymptotically, the stable sampling ratio can be determined

exactly.

Theorem IV.3. [12] Let W be generated by a Daubechies wavelet,

and recall NR from Theorem IV.1. Then, there exists θ ∈ (1,∞) and

R0 ∈ N such that for all R ≥ R0, Θ(NR, θ) =
⌈

2R/ε
⌉

. In par-

ticular, when 1/ε ∈ Z it suffices to let θ >
(

infξ∈[−π,π]

∣

∣

∣
φ̂(ξ)

∣

∣

∣

)−1
.

Moreover, in addition to this, for Haar wavelets, where a = 1, we

have that Θ(NR, θ) ≤
⌈

2R/ε
⌉

for all R ∈ N.

V. NUMERICAL EXAMPLES

In this section, we provide numerical simulations of three key ideas

for generalized sampling in the context of wavelet reconstructions

from Fourier samples. Firstly, generalized sampling can offer sub-

stantial improvements. Secondly, the stable sampling rate is linear for

wavelet reconstructions from Fourier samples, moreover, our result

for the Daubechies wavelet case is sharp. Finally, understanding of

the stable sampling rate is crucial to the implementation of reduced
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Fig. 1. The top row shows fM (left) and f [N,M ] (right). The bottom row
shows fM (left) and f [N,M ] (right) on the interval [0.58, 0.68].
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Fig. 2. The figure displays the stable sampling rate Θ(N, θ1) and Θ(N, θ2)
in blue for the Daubechies-4 wavelet (left) and the Daubechies-6 wavelet
(right) with Fourier samples at a sampling distance ε = 1/7 and ε = 1/13
respectively.

consistency sampling and violation of it could lead to disastrous

results.

A. Signal recovery via generalized sampling

We consider the reconstruction of the following function

f =
1
2
χ[1/3,2/3] +

1
2
χ[2/5,2/5+1/300] + χ[3/5,3/5+1/300],

from M = 1024 Fourier samples of sampling density ε = 1/2.

Figure 1 shows the truncated Fourier series representation fM as

presented in the S-N Sampling Theorem as well as the reconstruction

f [N,M ] from implementing generalized sampling for a Haar wavelet

reconstruction space. In this case, N is chosen to be 512. It is clear

that f [N,M ] is visually preferable to fM with less oscillations at

discontinuities. We remark that similar figures were generated in [13]

to justify the use of wavelet encoding for MRI, which modifies an

MR scanner to direct acquire wavelet coefficients rather than Fourier

samples. In proving that the stable sampling rate is linear, we show

that that wavelet coefficients can be accurately approximated via

a post-processing and there is little to be gained in modifying the

sampling process.

B. Sharpness of Theorem IV.3

To demonstrate the sharpness of this result, we consider the

Daubechies-4 wavelet (supported in [0, 3]), and the Daubechies-

6 wavelet (supported in [0, 5]). The graphs of Figure 2 plots

the stable sampling rate Θ(N, θ) against N , the number of re-

construction vectors to be recovered. In each case, we set θ >
(

infξ∈[−π,π]

∣

∣

∣
φ̂(ξ)

∣

∣

∣

)−1
. Note that at the points NR, Θ(NR, θ) =

2R/ε as predicted by Theorem IV.3.
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M ‖f − f̃M/c,M‖L2 ‖f − f̃M/c1,M‖L2 Noise Level

482 7.3× 10−7 2.8× 10−2 0
934 1.4× 10−7 5.4× 10−2 0
1834 2.6× 10−8 1.4× 10−2 0

482) 9.6× 10−6 6.1 1.0× 10−5

934 9.5× 10−6 77.2 1.0× 10−5

1834 9.7× 10−6 85.9 1.0× 10−5

TABLE I
THE TABLE SHOWS THE ERROR OF THE GENERALIZED SAMPLING

RECONSTRUCTIONS f̃N,M WITH N = M/c AND N = M/c1 , WITH

NOISELESS AND NOISY DATA.

Observe also from Theorem IV.3 that

Θ(NR, θ) < Θ(N, θ) ≤ Θ(NR+1, θ), NR < N ≤ NR+1.

The staircase effect witnessed in the figure suggests that the upper

bound is in fact an equality. Hence, although the stable sampling rate

is linear for all N , from the point of view of the stable sampling rate

at least, there is nothing to be gained from allowing N )= NR.

C. Importance of the stable sampling rate

We demonstrate, as predicted by Theorem IV.2, that failure of

satisfying the stable sampling rate gives a completely unstable and

non-convergent reconstruction. We compare the choices

M = cN, c =
1

ε 1a2 , M = c1N, c1 = 0.95c.

for the recovery of the function f =
∑3×103

j=1 j−3ϕj , where ϕj are

Daubechies−4 wavelets. We will consider Fourier samples 〈f, sj〉 for

|j| ≤ M/2 which are contaminated with noise and thus we observe

ξ = {〈f, s1〉, . . . , 〈f, sM 〉} + v with ‖v‖ = ε for some noise level

ε ≥ 0. As verified in Table I the latter choice of M = c1N gives

disastrous results as an incorrect choice of the sampling ratio causes

the condition number of the algorithm to blow up exponentially.

VI. EXTENSION TO OTHER MRA WAVELET BASES

Although the theorems presented in the previous sections have been

for orthonormal systems of MRA wavelets, the key property required

for the proofs is the existence of an increasing sequence

0 < N1 < · · · < NR < NR+1 < · · ·

such that NR = O(2R),
⋃

R∈N
WNR = W and

WNR ⊆ span {φR,j : AR,1 ≤ j ≤ AR,2} ,
AR,2 −AR,1 = O(2R).

(6)

Consequently, the results of this paper can be readily extended

to other compactly supported MRA wavelets such as the Semi-

orthogonal spline wavelets of [14], [15] or the bi-orthogonal Cohen-

Daubechies-Feauveau wavelets of [16]. We also remark that the

construction of the wavelet reconstruction space in Section IV is the

standard construction of wavelets on an interval with zero-padding

which can lead to large wavelet coefficients at the end points of

the interval. However, there are more sophisticated constructions of

wavelets on the intervals to reduce this effect, such as the basis

of Daubechies wavelets with special boundary wavelet and scaling

functions as described in [17]. Their construction is such that the

number of vanishing moments is preserved and the boundary scaling

function can be written as a linear combination of finitely many

elements in {φ(·− k) : k ∈ Z}. Such a wavelet basis will also satisfy

the requirements of (6) and the associated stable sampling rate

is also linear. In combination with known results [18] about the

characterization of the Sobolev space W s[0, 1], s > 0 via the decay

of wavelet coefficients from interval wavelets with q > s vanishing

moments, we have the following result.

Theorem VI.1. Let W be the reconstructed space constructed from

the Daubechies wavelet of q vanishing moments on the unit interval

and let S be the Fourier sampling space with sampling density ε ≤ 1.

Then, for any θ ∈ (1,∞), the stable sampling rate Θ(N, θ) is linear

in N . Furthermore, given any f ∈ W s[0, 1] with s ∈ (0, q), the

generalized sampling solution F [N,M ](f) implemented with M =
Θ(N, θ) samples satisfies

∥

∥

∥
f − F [N,M ](f)

∥

∥

∥
= O(M−s).

Thus, another consequence of a linear stable sampling rate is as

follows: given M Fourier samples of any f ∈ W s[0, 1], it is well

known that the Fourier representation cannot yield a convergence

rate of O(M−s). However, this convergence rate can be attained

from exactly these M Fourier measurements by reconstructing in an

appropriate wavelet basis via generalized sampling.
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Abstract—We propose a new analysis tool for signals, called
signature, that is based on complex wavelet signs. The complex-
valued signature of a signal at some spatial location is defined
as the fine-scale limit of the signs of its complex wavelet
coefficients. We show that the signature equals zero at sufficiently
regular points of a signal whereas at salient features, such
as jumps or cusps, it is non-zero. We establish that signature
is invariant under fractional differentiation and rotates in the
complex plane under fractional Hilbert transforms. We derive an
appropriate discretization, which shows that wavelet signatures
can be computed explicitly. This allows an immediate application
to signal analysis.

I. INTRODUCTION

The determination and classification of salient features, such
as jumps or cusps, is an important task in signal processing.
Classical approaches assume the interesting features of a signal
to be points of low regularity. In this context, local regularity
is measured in terms of the (fractional) differentiability order,
e.g., in the sense of local Hölder, Sobolev or Besov regularity.
Since such measures of smoothness only rely on the modulus

of wavelet coefficients [5], [9], they do not take into account
wavelet sign (or phase) information.

We may observe the shortcomings of a purely modulus
based approach by considering the two functions f(x) = sgnx

and g(x) = 2 log |x|. Since f and g are related by the Hilbert
transform, their wavelet coefficients are equal with respect
to the order of magnitude. Hence, the locally symmetric
singularity of f and the locally antisymmetric singularity of g
at the origin cannot be distinguished using a purely modulus-
based signal analysis.

We present a new signal analysis tool, which exclusively
uses the (complex) sign of the wavelet coefficients. To this
end, we investigate the fine scale limits of the signs of the
wavelet coefficients

�f(b) := lim

a!0
sgn hf,

a,b

i := lim

a!0

hf,
a,b

i
| hf,

a,b

i | , (1)

where  is a complex-valued wavelet, a > 0 the scale, and
b 2 R the location. The complex-valued quantity �f(b) is
called the signature of f at location b. We shall see that the
signature allows the local analysis of isolated salient features.
Hereby, the orientation of the signature within the complex
plane may be interpreted as an indicator of local symmetry
or antisymmetry. In particular, we show that the signature
is purely imaginary at a jump, whereas it is purely real at
a cusp. Moreover, the signature is invariant under fractional
Laplacians, i.e.,

�((��)

r
2
f) = �f,

and it serves as a multiplier when acting on the fractional
Hilbert transform, in the sense that

�(H↵

f) = e

i↵

⇡
2
�f.

Therefore, the signature may be interpreted as being “dual”
to the local Sobolev regularity index, which is invariant
under fractional Hilbert transforms but shifts under fractional
Laplacians. We also establish that

sing supp f 6⇢ supp�f and supp�f 6⇢ sing supp f. (2)

Thus, a singularity in the classical sense need not coincide
with a signature-type singularity.

We further introduce a method to numerically compute
the signature of digital or sampled signals and validate the
theoretically developed concepts by numerical experiments.
There are some connections between our discretization and
phase congruency [6]. However, the approach undertaken in
[6] tends to favor unwanted large coefficients, which our
method avoids.

In this short communication, we omit the proofs which the
interested reader may find in [11].

II. DEFINITIONS AND BASIC PROPERTIES

We define the Fourier transform of a Schwartz function f 2
S (R;C) by

F (f)(!) :=

b
f(!) :=

Z

R
e

�i!x

f(x)dx.

Likewise, we use the above notation for the usual extension
to the space of tempered distributions S 0

(R;C). Furthermore,
F�1

(f) and f

_ denote the corresponding inverse Fourier
transform of f . Let us introduce the class of complex wavelets
we need for the definition of signature.
Definition 1. We call a complex-valued non-zero function  2
S (R;C) a signature wavelet if  has a one-sided compactly

supported Fourier transform, i.e.,

supp b ✓ [c, d], 0 < c < d < 1, (3)

and a non-negative frequency spectrum, i.e.,

b(!) � 0, for all ! 2 R. (4)

The wavelet system associated with a signature wavelet 
is defined as the family of functions



a,b

(x) :=

1p
a



✓
x� b

a

◆
, where a > 0 and b 2 R.
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Fig. 1. The Meyer-type signature wavelet  (left) and its Fourier transform
b (right).

An example of a signature wavelet is given by the inverse
Fourier transform of the (one-sided) Meyer window W, i.e.,

(x) = F�1
(W )(x), (5)

where W is a Meyer window function (see Figure 1). We refer
to [11] for the definition of W .

Recall that the sign of a complex number z 2 C is given
by

sgn z =

(
z

|z| , if z 6= 0,

0, if z = 0.

The signature of a signal is then defined as follows.
Definition 2. Let f 2 S 0

(R;R). If there exists a z 2 C, such

that for all signature wavelets ,

lim

a!0
sgn hf,

a,b

i = z,

then we define the signature, �f , of f at b 2 R by �f(b) := z;

otherwise, we set �f(b) := 0.

Note that the signature �f(b) is either equal to zero or is
a complex number of modulus 1. It follows directly from the
definition that the signature is invariant under translations, i.e.,

�(T

r

f)(b) = (�f)(b� r) (6)

and under dilations, i.e.,

�(D

⌫

f)(b) = (�f)(⌫b). (7)

Here, the operator of translation by r 2 R, T
r

, and dilation
by ⌫ 2 R \ {0}, D

⌫

, are defined by

T

r

f(x) := f(x� r) and D

⌫

f(x) :=

1p
⌫

f

⇣
x

⌫

⌘
,

respectively.

Since the Fourier transform of a signature wavelet  van-
ishes in a neighborhood of the origin, we have that

hp,i = 0, for any polynomial p. (8)

Therefore, the signature is well defined on the space of
tempered distributions modulo polynomials S 0

/P, where P
denotes the space of all polynomials.

Our first result shows that a signal of polynomial growth
has signature equal to zero at a point where all derivatives are
equal to zero.
Theorem 3. Let f be a real-valued, locally integrable function

of polynomial growth. Further assume that f is smooth in a

neighborhood of b 2 R. If f

(k)
(b) = 0, for all k 2 N0, then

�f(b) = 0. In particular, supp�f ✓ supp f.

An interesting consequence of Theorem 3 is the case when
f is locally a polynomial.
Corollary 4. Let f be a real-valued, locally integrable func-

tion of polynomial growth which is smooth in a neighborhood

of b 2 R. If for some k0 2 N0, f
(k)

(b) = 0, for all k � k0,

then �f(b) = 0. In particular, if f coincides on an open set

U ⇢ R with a polynomial then �f(b) = 0, for every b 2 U.

In the following example, we consider the unit step function.
Here, we can compute the signature at b = 0 explicitly. For
b 6= 0, we can apply Corollary 4.
Example 5. Let U be the unit step function defined by

U(x) :=

(
1, if x � 0,

0, else.

For any signature wavelet , we have that

hU,
a,0i =

D
b
U, (

a,0)
_
E
=

i

p
a

⇡

Z

R

b(a⇠)
⇠

d⇠. (9)

Hence, since b � 0 and supp b ⇢ [0,1), we obtain that
sgn hU,

a,0i = i, for all a > 0. For b 6= 0, we apply Corollary
4 yielding

�U(b) =

(
i, if b = 0,

0, else.

In our next example, we turn our attention to the signature
of a pure cusp-type singularity.
Example 6. For a fixed x0, consider the function

f(x) = |x� x0|� , where � > 0.

In [11] we proved that the wavelet signs are given by

� f(x0) =

8
><

>:

0, if � 2 2N0,

�1, if � 2 ]0, 2[ [ ]4, 6[ [ . . . ,

+1, if � 2 ]2, 4[ [ ]6, 8[ [ . . . .

and �f(b) = 0, for b 6= x0.
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Next we show that, in general, a jump discontinuity induces
a purely imaginary signature at the jump location. A function
f has a jump (or step) discontinuity at b if the left-hand and
the right-hand limits f(b+) and f(b�) exist but are not equal.
Theorem 7. Let f be a real-valued, locally integrable function

of polynomial growth and let b 2 R. If there exists a

neighborhood U of b such that f is continuous on U \ {b}
and has a jump discontinuity at b, then

�f(b) =

(
+i, if f(b�) < f(b+),

�i, if f(b�) > f(b+).

(10)

III. FRACTIONAL LAPLACIANS AND FRACTIONAL
HILBERT TRANSFORMS

We now investigate the behavior of signature under the
action of fractional powers of the Laplacian and the fractional
Hilbert transform. We shall see that the former leaves the
signature invariant whereas the latter acts on the signature by
a rotation in the complex plane.

We recall that fractional powers of the Laplacian (��)

r
2
,

acting on f 2 S 0
(R)/P , are defined by

\
(��)

r
2
f := | • |r · bf, for r 2 R. (11)

We show that the signature is invariant under (��)

r
2
. Again,

note that the signature is well defined for f 2 S 0
(R)/P.

Theorem 8. Let f 2 S 0
(R)/P and r 2 R. Then,

�

�
(��)

r
2
f

�
(b) = �f(b), for all b 2 R.

Now we turn to the fractional Hilbert transform, which was
first introduced in [7]. We follow the definition given in [8].
For ↵ 2 R, the fractional Hilbert transform H↵ is defined on
S 0

(R)/P by

[H↵

f := e

�i↵

⇡
2 ·sgn(•) · bf. (12)

The following theorem shows that the fractional Hilbert trans-
form H↵ acts on the signature as multiplication by e

i↵

⇡
2
, i.e.,

as a rotation in the complex plane.
Theorem 9. Let f 2 S 0

(R)/P and b 2 R. Then

� (H↵

f) (b) = e

i↵

⇡
2 · �f(b). (13)

See Table I for a comparison between local Sobolev regular-
ity index of f, denoted by s

f

(cf. e.g. [4]), and the signature
under action of fractional Laplacians and fractional Hilbert
transforms.

The next two examples show that the points of non-zero
signature in general do not coincide with the singular support,
cf. (2).
Example 10. Consider the Weierstraß function (see e.g. [2])

f(x) =

1X

n=0

r

n

cos(t

n

x), where 0 < r < 1 and rt � 1;

Sobolev regularity index Signature

Fractional s

(��)
r
2 f

= sf � r �((��)
r
2
f) = �(f)

differentiation

Fractional sH↵f = sf �(H↵
f) = e

i↵⇡
2
�(f)

Hilbert transform

TABLE I
THE ACTION OF FRACTIONAL LAPLACIANS AND FRACTIONAL HILBERT

TRANSFORMS TO THE SOBOLEV REGULARITY INDEX sf AND THE
SIGNATURE �f.

As f is nowhere differentiable, it follows that sing supp f =

R. In [11], we have proved that �f(b) = 0, for all b 2 R.
Therefore, we see that in general sing supp f 6✓ supp�f.

Example 11. Let f = e

��x

2

be a Gaussian function with
� > 0, and let  be any signature wavelet. The singular support
of f is empty because f is smooth. On the other hand, as the
support of b is not empty,

hf,
a,0i =

D
b
f, (

a,0)
_
E
=

p
⇡

Z

R
e

�!2

4�
(

a,0)
_
(!) d! > 0,

for all a > 0, implying that the signature equals 1 at b = 0.

Thus, in general, supp�f 6✓ sing supp f. This shows that the
converse inclusion does not hold either.

IV. DISCRETIZATION AND NUMERICAL EXPERIMENTS

Now we turn our attention to the practical computation of
wavelet signs for sampled signals. In practice, only a finite
number of wavelet scales {a

j

}N
j=1 is available. Furthermore,

since we cannot test for convergence in (1) using every
signature wavelet, we have to choose a suitable signature
wavelet . Thus, we have to estimate the signature from the
finite set of samples {sgn ⌦f,

aj ,b

↵}N
j=1.

To motivate our numerical approach, we begin by consid-
ering the following elementary convergence result for discrete
samples.
Proposition 12. Let f be a tempered distribution, {a

j

}
j2N a

sequence such that a

j

! 0, and b 2 R. If �f(b) 6= 0, then

lim

N!1

1

N

NX

j=1

sgn

⌦
f,

aj ,b

↵
= �f(b) (14)

for all signature wavelets .

Proposition 12 suggests the Cesàro limit (14) as an alterna-
tive to computing a non-zero signature �f(b). Note that �f(b)
is of modulus 1 and so is the Cesàro limit (14). Furthermore,
the elements of the Cesàro sequence

1

N

NX

j=1

sgn

⌦
f,

aj ,b

↵
, N 2 N,
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Fig. 2. The discrete signature of a sample signal (top) taken from Wavelab [1]. We observe that the absolute value of the mean |wb| is large at the feature
points and much lower at the other points (center). The bottom plot depicts the discrete signature in phase angle representation. We see that the signature
clusters around the angles ±⇡

2 at the step-like points, and around ⇡ and 0 at cusp-like points. The threshold ⌧ is set equal to 0.7 in this experiment. If we
choose a lower threshold parameter, say ⌧ = 0.4, then the discrete signature would also catch the subtle feature points, like the small jump at x = 512.
However, in that case, we would require a non-maximum suppression to maintain the sharp localization of the pronounced feature points.

are not necessarily of modulus one, but their moduli converge
to 1 as N goes to infinity. This observation motivates the fol-
lowing procedure for the numerical estimation of the signature.

Given a finite number of scale samples {a
j

}N
j=1, we inter-

pret the mean of the sequence of discrete signs, given by

w

b

:=

1

N

NX

j=1

sgn

⌦
f,

aj ,b

↵
, (15)

as the N -th element of a Cesàro sequence. If the absolute
value |w

b

| is close to 1, we consider the Cesàro sequence as
being convergent, with sgnw

b

giving an estimate of �f(b).
On the other hand, a small value of |w

b

| suggests a vanishing
signature. More precisely, we consider |w

b

| to be non zero if
it exceeds some empirical threshold parameter ⌧ between 0

and 1. Hence, we propose a discrete estimate �f(b) of the
signature of the form

�f(b) :=

(
sgnw

b

, if |w
b

| � ⌧,

0, elsewhere.
(16)

In Figure 2, we see a numerical experiment based on
the above procedure. We observe that the modulus of the
mean |w

b

| is large at the salient points. Furthermore, we see
that the discrete signature is oriented towards the imaginary
axis for jump discontinuities and oriented to the real axis
for cusp singularities. This experiment illustrates that the
procedure proposed above yields a reasonable way to compute
the signature numerically. We used the Meyer-type signature

wavelet (5) and scale samples of the form a

j

= 2

� j
3
,

with j = 0, 1, . . . , 15. The threshold parameter was set to
⌧ =

1
2

p
2 ⇡ 0.7.

In [10], a generalization of the discrete signature to higher
dimensions is proposed, which can be applied directly for sign
based edge detection and edge analysis. That generalization
bases on monogenic wavelets similar to those of [3].
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Abstract—Using his formulation of the potential theoretic

notion of balayage and his deep results about this idea, Beurling

gave sufficient conditions for Fourier frames in terms of balayage.

The analysis makes use of spectral synthesis, due to Wiener and

Beurling, as well as properties of strict multiplicity, whose origins

go back to Riemann. In this setting and with this technology,

we formulate and prove non-uniform sampling formulas in the

context of the short time Fourier transform (STFT).

I. INTRODUCTION

A. Background and theme
Frames provide a natural tool for dealing with signal recon-

struction in the presence of noise in the setting of overcomplete
sets of atoms, and with the goals of numerical stability and
robust signal representation. Fourier frames were originally
studied in the context of non-harmonic Fourier series by Duffin
and Schaeffer [1], with a history going back to Paley and
Wiener [2] (1934) and farther, and with significant activity in
the 1930s and 1940s, e.g., see [3]. Since [1], there have been
significant contributions by Beurling (unpublished 1959-1960
lectures), [4], [5], Beurling and Malliavin [6], [7], Kahane [8],
Landau [9], Jaffard [10], and Seip [11], [12].

Definition I.1. (Frame) Let H be a separable Hilbert space. A
sequence {x

n

}
n2Z ✓ H is a frame for H if there are positive

constants A and B such that

8 f 2 H, Akfk2 
X

n2Z

|hf, x
n

i|2  Bkfk2.

The constants A and B are lower and upper frame bounds,
respectively.

Our overall goal is to formulate a general theory of Fourier
frames and non-uniform sampling formulas parametrized by
the space M

b

(Rd

) of bounded Radon measures, see [13]. This
formulation provides a natural way to generalize non-uniform
sampling to the setting of short time Fourier transforms
(STFTs) [14], Gabor theory [15], [16], [17], and pseudo-
differential operators [14], [18], The techniques are based on
Beurling’s methods from 1959-1960, [5], [4], which incorpo-
rate balayage, spectral synthesis, and strict multiplicity. In this
short paper, we show how to achieve this goal for STFTs.

B. Definitions
We define the Fourier transform F(f) of f 2 L2

(Rd

) and
its inverse Fourier transform F�1

(f) by

F(f)(�) = bf(�) =
Z

Rd

f(x)e�2⇡ix·� dx,

and
F�1

(

bf)(�) = f(x) =

Z

bRd

bf(�)e2⇡ix·� d�.

bRd denotes Rd considered as the spectral domain. We write
F_

(x) =

R
bRd F (�)e2⇡ix·� d�. The notation “

R
”’ designates

integration over Rd or bRd. When f is a bounded continuous
function, its Fourier transform is defined in the sense of
distributions. If X ✓ Rd, where X is closed, then M

b

(X)

is the space of bounded Radon measures µ with the support
of µ contained in X . C

b

(Rd

) denotes the space of complex-
valued bounded continuous functions on Rd.

Definition I.2. (Fourier frame) Let E ✓ Rd be a sequence and
let ⇤ ✓ bRd be a compact set. Notationally, let e

x

(�) = e2⇡ix·� .
The sequence E(E) = {e�x

: x 2 E} is a Fourier frame for
L2

(⇤) if there are positive constants A and B such that

8 F 2 L2
(⇤),

AkFk2
L

2(⇤) 
X

x2E

|hF, e�x

i|2  BkFk2
L

2(⇤).

Define the Paley-Wiener space,

PW⇤ = {f 2 L2
(Rd

) : supp( bf) ✓ ⇤}.

Clearly, E(E) is a Fourier frame for L2
(⇤) if and only if the

sequence,
{(e�x

1⇤)
_
: x 2 E} ✓ PW⇤,

is a frame for PW⇤, in which case it is called a Fourier frame
for PW⇤. Note that hF, e�x

i = f(x) for f 2 PW⇤, where
bf = F 2 L2

(

bRd

) can be considered an element of L2
(⇤).

Beurling introduced the following definition in his 1959-
1960 lectures.

Definition I.3. (Balayage) Let E ✓ Rd and ⇤ ✓ bRd be closed
sets. Balayage is possible for (E,⇤) ✓ Rd ⇥ bRd if

8µ 2 M
b

(Rd

), 9⌫ 2 M
b

(E) such that bµ = b⌫ on ⇤.

Balayage originated in potential theory, where it was intro-
duced by Christoffel (early 1870s) and by Poincaré (1890).
Kahane formulated balayage for the harmonic analysis of
restriction algebras. The set, ⇤, of group characters (in this
case Rd) is the analogue of the original role of ⇤ in balayage
as a set of potential theoretic kernels.

Let C(⇤) = {f 2 C
b

(Rd

) : supp( bf) ✓ ⇤}.
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Definition I.4. (Spectral synthesis) A closed set ⇤ ✓ bRd is a
set of spectral synthesis (S-set) if

8f 2 C(⇤) and 8µ 2 M
b

(Rd

),

bµ = 0 on ⇤ )
Z

f dµ = 0,

see [19].

Closely related to spectral synthesis is the ideal structure of
L1, which can be thought of as the Nullstellensatz of harmonic
analysis. As examples of sets of spectral synthesis, polyhedra
are S-sets, and the middle-third Cantor set is an S-set which
contains non-S-sets. Laurent Schwartz (1947) showed that
S2 ✓ bR3 is not an S-set; and, more generally, Malliavin (1959)
proved that every non-discrete locally compact abelian group
contains non-S sets. See [19] for a unified treatment of this
material.

Definition I.5. (Strict multiplicity) A closed set � ✓ bRd is a
set of strict multiplicity if

9µ 2 M
b

(�) \ {0} such that lim

kxk!1
|µ_

(x)| = 0.

The notion of strict multiplicity was motivated by Rie-
mann’s study of sets of uniqueness for trigonometric se-
ries. Menchov (1906) showed that there exists a closed set
� ✓ bR/Z and µ 2 M(�) \ {0}, such that |�| = 0

and µ_
(n) = O((log |n|)�1/2

), |n| ! 1. There have been
intricate refinements of Menchov’s result by Bary (1927),
Littlewood (1936), Beurling, et al., see [19].

The above concepts are used in the deep proof of the
following theorem.

Theorem I.6. Assume that ⇤ is an S-set of strict multiplicity,
and that balayage is possible for (E,⇤). Let ⇤

✏

= {� 2 bRd

:

dist (�,⇤)  ✏}. There is ✏0 > 0 such that if 0 < ✏ < ✏0, then
balayage is possible for (E,⇤

✏

).

Definition I.7. A sequence E ✓ Rd is separated if

9 r > 0 such that inf{kx� yk : x, y 2 E and x 6= y} � r.

The following theorem, due to Beurling, gives a sufficient
condition for Fourier frames in terms of balayage. Its history
and structure are analyzed in [13] as part of a more general
program. Theorem I.6 is used in its proof.

Theorem I.8. Assume that ⇤ ✓ bRd is an S-set of strict
multiplicity and that E ✓ Rd is a separated sequence. If
balayage is possible for (E,⇤), then E(E) is a Fourier frame
for L2

(⇤), i.e., {(e�x

1⇤)
_
: x 2 E} is a Fourier frame for

PW⇤.

See [9], [20], [21] (SampTA 1999), and [22].

II. SHORT TIME FOURIER TRANSFORM (STFT) FRAME
INEQUALITIES

Definition II.1. Let f, g 2 L2
(Rd

). The short time Fourier
transform (STFT) of f with respect to g is the function V

g

f

on R2d defined as

V
g

f(x,!) =

Z
f(t)g(t� x) e�2⇡it·! dt,

see [14], [18] (chapter 8).
The STFT is uniformly continuous on R2d. Further, for a

fixed “window” g 2 L2
(Rd

) with kgk2 = 1, we can recover
the original function f 2 L2

(Rd

) from its STFT V
g

f by means
of the vector-valued integral inversion formula,

f =

Z Z
V
g

f(x,!) e
!

⌧
x

g d! dx,

where (⌧
x

g)(t) = g(t� x).

Theorem II.2. Let E = {x
n

} ✓ Rd be a separated sequence,
that is symmetric about 0 2 Rd; and let ⇤ ✓ Rd be an S-set of
strict multiplicity that is compact, convex, and symmetric about
0 2 bRd. Assume balayage is possible for (E,⇤.) Further, let
g 2 L2

(Rd

), bg = G, have the property that kgk2 = 1.
a. We have that

9 A > 0, such that 8f 2 PW⇤\{0}, bf = F,

Akfk22 
X

x2E

Z
|V

G

F (!, x)|2 d!

=

X

x2E

Z
|V

g

f(x,!)|2 d!.

b. Let G0(�) = 2

d/4e�⇡k�k2

so that kG0k2 = 1; and
assume kV

G0Gk1 < 1. We have that

9 B > 0, such that 8f 2 PW⇤\{0}, bf = F,

X

x2E

Z
|V

g

f(x,!)|2 d! =

X

x2E

Z
|V

G

F (!,�x)|2 d!

 Bkfk22,

where B can be taken as CkV
G0Gk1 and where

C = sup

y,�

(
X

x2E

Z
|V

G0G0(� + !, y + x)| d!

)
.

The technique of using G0 goes back to Feichtinger and
Zimmermann [23] (Lemma 3.2.15) for a related type of
problem, see also [16] (Lemma 3.2).

We next consider balayage being possible for (E,⇤), where
E = {(s

m

, t
n

)} ✓ R2d and ⇤ ✓ bR2d. This allows us to express
the STFT V

g

f of f as

V
g

f(y,!) =
X

m

X

n

a
mn

(y,!)h(s
m

�y, t
n

�!)V
g

f(s
m

, t
n

),

where X

m

X

n

|a
mn

(y,!)| < 1.

The following result and others like it, including Theorem II.2,
can be formulated in terms of (X,µ) frames, [24], [25]. [26].

Theorem II.3. Assume balayage is possible for (E,⇤), where
E = {(s

m

, t
n

)} ✓ R2d is separated, and ⇤ ✓ bR2d is an S-set
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that is compact, convex, and symmetric about 0 2 bR2d. Fix
a window function g 2 L2

(Rd

) such that kgk2 = 1. There
are constants A,B > 0, such that if f 2 L2

(Rd

) satisfies the
conditions,
(1) V

g

f 2 L1
(R2d

) and
(2) F(V

g

f)(⇣1, ⇣2) has support ✓ ⇤ ✓ bR2d,
then

A

Z
|f(x)|2 dx 

X

m

X

n

|V
g

f(s
m

, t
n

)|2

 B

Z
|f(x)|2 dx.

The hypothesis that V
g

f 2 L1
(R2d

) means that f belongs to
the Feichtinger algebra S0(Rd

). It is the smallest Banach space
that is invariant under translations and modulations. There are
other equivalent characterizations of S0(Rd

), see [27], [23].
Fix a function S0(Rd

) and define the vector space M1
1 of all

non-uniform Gabor expansions

f =

1X

n=1

c
n

⌧
xne!ng,

where {(x
n

,!
n

) 2 R2d, n 2 N} is an arbitrary countable set
of numbers and

P1
n=1 |cn| < 1. For this space, the norm is

taken to be inf

P1
n=1 |cn|, where the infimum is taken over all

possible representations. Then the vector space M1
1 coincides

with S0(Rd

). For functions in S0(Rd

), Theorem II.3 should
be compared to the following theorem of Gröchenig [15], [14]
(Chapter 12):

Theorem II.4. Given any g 2 S0(Rd

). There is r = r(g) > 0

such that if E = {(s
n

,�
n

)} ✓ Rd⇥bRd is a separated sequence
with the property that

1[

n=1

B((s
n

,�
n

), r(g)) = Rd ⇥ bRd,

then the frame operator, S = S
g,E

, defined by

S
g,E

f =

X1

n=1
hf, ⌧

sne�ngi ⌧sne�ng,

is invertible on S0(Rd

).
Moreover, every f 2 S0(Rd

) has a non-uniform Gabor
expansion,

f =

X1

n=1
hf, ⌧

xne!ngiS�1
g,E

(⌧
xne!ng),

where the series converges unconditionally in S0(Rd

).
(E depends on g.)

A critical, thorough comparison of Theorems II.3 and II.4
is given in [13].
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Abstract—Recent advances in convex optimization have led to
new strides in the phase retrieval problem over finite-dimensional
vector spaces. However, certain fundamental questions remain:
What sorts of measurement vectors uniquely determine every
signal up to a global phase factor, and how many are needed
to do so? This paper presents several results that address
these questions, specifically in the less-understood complex case.
In particular, we characterize injectivity, we identify that the
complement property is indeed necessary, we pose a conjecture
that 4M � 4 generic measurement vectors are necessary and
sufficient for injectivity in M dimensions, and we describe how
to prove this conjecture in the special cases where M = 2, 3.
To prove the M = 3 case, we leverage a new test for injectivity,
which can be used to determine whether any 3-dimensional
measurement ensemble is injective.

I. INTRODUCTION

Phase retrieval is the problem of recovering a signal from
absolute values (squared) of linear measurements, called in-
tensity measurements. However, non-injectivity is inherent to
many measurement processes. For instance, intensity measure-
ments with the identity basis effectively discard all phase
information contained in the signal’s entries. As a result,
many researchers invoke a priori knowledge of the desired
signal in order to restrict to a smaller signal class over which
the intensity measurements might be injective. To avoid the
various ad hoc methods that invariably follow, an alternative
approach to phase retrieval, as introduced in 2006 by Balan,
Casazza and Edidin [3], seeks injectivity by designing a
larger ensemble of intensity measurements. Using this ap-
proach, Balan et al. [3] characterized injectivity in the real
case and further leveraged algebraic geometry to show that
4M�2 intensity measurements suffice for injectivity over M -
dimensional complex signals. This has since sparked a search
for practical phase retrieval guarantees. For example, viewing
intensity measurements as Hilbert-Schmidt inner products
between rank-1 operators, Candès, Strohmer and Voroninski
[7] applied certain intuition from convex optimization to re-
construct the desired M -dimensional signal with semidefinite
programming using only O(M logM) random measurements.
Another approach uses the polarization identity to discern
relative phases between certain intensity measurements using
O(M logM) random measurements in concert with an ex-
pander graph [1].

Despite these recent advances in phase retrieval algorithms,

there remains a lack of understanding about the fundamen-
tal requirements for intensity measurements to be injective.
For example, it was widely believed that 3M � 2 intensity
measurements sufficed for injectivity, until recently disproved
by Heinosaari, Mazzarella and Wolf [10] using embedding
theorems from differential geometry. Heinosaari et al. were
able to establish the necessity of (4 + o(1))M measurements
for injectivity, but the following problem still remains:

Problem 1. What are the necessary and sufficient conditions
for measurement vectors to lend injective intensity measure-
ments?

This paper addresses this problem by first providing the
only known characterization of injectivity in the complex case
(Theorem 4). Next, we make a rather surprising identification:
that intensity measurements are injective in the complex case
precisely when the corresponding phase-only measurements
are injective in some sense (Theorem 5). We then use this
identification to establish the necessity of the complement
property for injectivity (Theorem 7). Later, we conjecture that
4M � 4 intensity measurements are necessary and sufficient
for injectivity in the complex case, which we validate in
the cases where M = 2, 3 (Theorems 10 and 12). We also
introduce a new test for injectivity, which we then use to
verify the injectivity of a certain quantum-mechanics-inspired
measurement ensemble; with this ensemble, we conclude by
suggesting a refinement of Wright’s conjecture from [12]
(see Conjecture 13). The proofs of the presented results are
provided in [4].

Before we begin, let � = {'n}Nn=1 in V = RM or CM be
a given collection of measurement vectors and consider the
intensity measurement process defined by

(A(x))(n) := |hx,'ni|2.
Note that A(x) = A(y) whenever y = cx for some scalar c of
unit modulus. Thus, the mapping A : V ! RN is necessarily
not injective. To resolve this issue, we consider sets of the
form V/S, where S is a multiplicative subgroup of the field
of scalars. This notation means to identify vectors x, y 2 V
which satisfy y = cx for some scalar c 2 S, and we write
y ⌘ x mod S to convey this identification. Most of the time,
V/S is either RM/{±1} or CM/T (here, T is the complex
unit circle), and the intensity measurement process is viewed
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as a mapping A : V/S ! RN . Injectivity of the measurement
process is considered with respect to this mapping.

II. INJECTIVITY AND THE COMPLEMENT PROPERTY

Phase retrieval is impossible without injective intensity
measurements. Balan, Casazza and Edidin [3] first analyzed
injectivity by introducing the complement property, which we
define in the following:

Definition 2. We say � = {'n}Nn=1 in RM (CM ) satisfies the
complement property (CP) if for every S ✓ {1, . . . , N}, either
{'n}n2S or {'n}n2Sc spans RM (CM ).

The complement property is characteristic of injectivity in
the real case:

Theorem 3. Consider � = {'n}Nn=1 ✓ RM and the mapping
A : RM/{±1} ! RN defined by (A(x))(n) := |hx,'ni|2.
Then A is injective if and only if � satisfies the complement
property.

This result was demonstrated in [3]. However, it was also
erroneously used as justification for the necessity of CP for
injectivity in the complex case. Although this statement is
indeed true, the proof of Theorem 3 overlooks the peculiarity
of equivalence modulo T and so cannot be used in the complex
setting. We will address this issue, but first we characterize
injectivity in the complex case:

Theorem 4. Consider � = {'n}Nn=1 ✓ CM and the mapping
A : CM/T ! RN defined by (A(x))(n) := |hx,'ni|2.
Viewing {'n'

⇤
nu}Nn=1 as vectors in R2M , denote S(u) :=

spanR{'n'
⇤
nu}Nn=1. Then the following are equivalent:

(a) A is injective.
(b) dimS(u) � 2M � 1 for every u 2 CM \ {0}.
(c) S(u) = spanR{iu}? for every u 2 CM \ {0}.

Note that unlike in the real case, it is not clear whether this
characterization can be tested in finite time; instead of being
a statement about all (finitely many) partitions of {1, . . . , N},
it is a statement about all nonzero vectors u 2 CM . We
can, however, view this characterization as an analog to the
real case, in which the complement property is equivalent to
having span{'n'

⇤
nu}Nn=1 = RM for all nonzero u 2 RM .

The fact that more information is lost with phase in the
complex case is what causes {'n'

⇤
nu}Nn=1 to fail to span all

of R2M . As a result, it is still not intuitively apparent what
it takes for an ensemble of complex vectors to yield injective
intensity measurements. The following bizarre characterization
was established while working toward a clearer understanding:

Theorem 5. Consider � = {'n}Nn=1 ✓ CM and the mapping
A : CM/T ! RN defined by (A(x))(n) := |hx,'ni|2. Then
A is injective if and only if the following statement holds: If
for every n = 1, . . . , N , either arg(hx,'ni2) = arg(hy,'ni2)
or one of the sides is not well-defined, then x = 0, y = 0, or
y ⌘ x mod R \ {0}.

Theorem 5 is a consequence of a more general statement
about the geometric properties of complex numbers: For

a, b 2 C, Im ab = 0 if and only if arg(a2) = arg(b2), a = 0,
or b = 0. The proof leverages this fact within a restatement
of part (c) of Theorem 4. This seemingly unrelated result is
actually useful in correctly establishing the necessity of CP
for injectivity in the complex case. Specifically, Theorem 5,
leads to the following lemma, which in turn is used to prove
necessity (Theorem 7).

Lemma 6. Consider � = {'n}Nn=1 ✓ CM and the mapping
A : CM/T ! RN defined by (A(x))(n) := |hx,'ni|2. If A is
injective, then the mapping B : CM/{±1} ! RN defined by
(B(x))(n) := hx,'ni2 is also injective.

Theorem 7. Consider � = {'n}Nn=1 ✓ CM and the mapping
A : CM/T ! RN defined by (A(x))(n) := |hx,'ni|2. If A
is injective, then � satisfies the complement property.

The problem alluded to earlier concerning the proof of
Theorem 3 is the reason that Theorem 7 is stated separately.
This issue is resolved by using the injectivity of B modulo
{±1}. The proof is eerily similar to that of the necessity of
CP for injectivity in Theorem 3, only using B in place of A.

We emphasize here that the complement property is nec-
essary but not sufficient for injectivity in the complex
case. To see this, consider the ensemble (1, 0), (0, 1) and
(1, 1). These certainly satisfy the complement property, but
A((1, i)) = (1, 1, 2) = A((1,�i)), despite the fact that
(1, i) 6⌘ (1,�i) mod T; in general, real frames fail to lend
injective intensity measurements for the complex case. Indeed,
a sufficient condition for injectivity in the complex case has yet
to be found. As an analogy for what we really want, consider
the notion of full spark: An ensemble {'n}Nn=1 ✓ RM is said
to be full spark if every subcollection of M vectors spans RM .
Full spark ensembles with N � 2M�1 necessarily satisfy the
complement property, and the notion of full spark is simple
enough to admit deterministic constructions [2], [11]. Because
such constructions are particularly desirable for the complex
case, finding a good sufficient condition for injectivity is an
important problem that remains open.

III. INTRODUCING THE 4M � 4 CONJECTURE

Thinking of a matrix � as being built one column at a time,
the rank-nullity theorem states that each column contributes to
either the column space or the null space. If these columns are
then used as linear measurement vectors, then the subspace
that is actually sampled is described by the column space
of �, while the null space captures the algebraic nature of
redundancy in the measurements. An efficient sampling of an
entire vector space would therefore apply a matrix � having
a small null space and large column space. Although we are
not dealing with linear measurements in our case, we would
like to build our ensemble of intensity measurements so as to
sample as much of the space as possible. More precisely, we
are faced with the following question:

Problem 8. For any dimension M , what is the smallest
number N⇤

(M) of injective intensity measurements, and how
do we design such measurement vectors?
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To be clear, this problem was completely solved in the real
case by Balan, Casazza and Edidin [3]. Indeed, Theorem 3
immediately implies that 2M � 2 intensity measurements
are necessarily not injective, and furthermore that 2M � 1

measurements are injective if and only if the measurement
vectors are full spark.

In the complex case, Problem 8 has some history in the
quantum mechanics literature. For example, [12] presents
Wright’s conjecture that any pure state is uniquely determined
by three observables. In other words, the conjecture states that
there exist unitary matrices U1, U2 and U3 such that � =

[U1 U2 U3] lends injective intensity measurements. Note that
Wright’s conjecture actually implies that N⇤

(M)  3M � 2,
since U1 determines the norm of the signal, rendering the last
column of both U2 and U3 unnecessary. Finkelstein [8] later
proved that N⇤

(M) � 3M�2 which, combined with Wright’s
conjecture, has led many to believe that N⇤

(M) = 3M � 2.
However, this was recently disproved by Heinosaari, Maz-
zarella and Wolf [10], who used embedding theorems from
differential geometry to prove that N⇤

(M) � 4M � 2↵(M �
1) � 3, where ↵(M � 1)  log2(M) is the number of 1’s
in the binary representation of M � 1. Combined with Balan,
Casazza and Edidin’s result that N⇤

(M)  4M � 2, we at
least have the asymptotic expression N⇤

(M) = (4+ o(1))M .
The lemma that follows will help to refine our intuition

for N⇤
(M). Before stating the result, however, we must first

define the super analysis operator A : HM⇥M ! RN . Given
an ensemble of measurement vectors {'n}Nn=1 ✓ CM , this
operator acts on the real M2-dimensional vector space of
self-adjoint M ⇥ M matrices, HM⇥M , and is defined by
(AH)(n) = hH,'n'

⇤
niHS, where h·, ·iHS denotes the Hilbert-

Schmidt inner product. Note that the super analysis operator
is a linear operator which satisfies

(Axx⇤
)(n) = hxx⇤,'n'

⇤
niHS = |hx,'ni|2 = (A(x))(n).

To clarify, x mod T can be “lifted” to xx⇤, a process which
linearizes the intensity measurement process at the price of
squaring the dimension of the vector space. This identification
is not new, and as the following lemma shows, it can also be
used to characterize injectivity:

Lemma 9. A is not injective if and only if there exists a matrix
of rank 1 or 2 in the null space of A.

Lemma 9 indicates that we want the null space of A to
avoid nonzero matrices of rank  2. This is easier when the
“dimension” of this set of matrices is small. As an exercise in
intuition, we count real degrees of freedom to get an idea of
this dimension: By the spectral theorem, almost every matrix
in HM⇥M of rank  2 can be uniquely expressed in the form
�1u1u

⇤
1+�2u2u

⇤
2. The pair of coefficients (�1,�2) introduces

two degrees of freedom, while the vector u1, which can be
any vector in CM of unit norm and is unique up to global
phase, has a total of 2M � 2 real degrees of freedom. Finally,
u2 has the same norm and phase constraints as u1, with the
additional requirement that it must be orthogonal to u1, (i.e.,
Rehu2, u1i = Imhu2, u1i = 0). Thus, u2 has 2M � 4 real

degrees of freedom. In this way we expect the set of matrices
in question to have 2+ (2M � 2)+ (2M � 4) = 4M � 4 real
dimensions.

If the set S of matrices of rank  2 formed a subspace
of HM⇥M , then we could expect it to have a nontrivial
intersection with the null space of A whenever

dimnull(A) + (4M � 4) > dim(HM⇥M
) = M2.

By the rank-nullity theorem, this would indicate that injectivity
requires

N � rank(A) = M2 � dimnull(A) � 4M � 4.

Of course, this logic is not valid since S is not a subspace
of HM⇥M . It is, however, a special kind of set: a real
projective variety (a real algebraic variety which is closed
under scalar multiplication). If S were a projective variety
over an algebraically closed field, then the projective di-
mension theorem (Theorem 7.2 of [9]) would imply that it
intersects null(A) nontrivially whenever the dimensions are
large enough: dimnull(A) + dimS > dimHM⇥M , and so
injectivity would require N � 4M � 4. Unfortunately, this
theorem is not valid when the field is R; for example, the
cone defined by x2

+y2�z2 = 0 in R3 is a projective variety
of dimension 2, but its intersection with the 2-dimensional
xy-plane is trivial, despite the fact that 2 + 2 > 3.

In the absence of a proof, we pose the natural conjecture:

The 4M � 4 Conjecture. Consider � = {'n}Nn=1 ✓ CM

and the mapping A : CM/T ! RN defined by (A(x))(n) :=
|hx,'ni|2. If M � 2, then the following statements hold:
(a) If N < 4M � 4, then A is not injective.
(b) If N � 4M � 4, then A is injective for generic �.

For the sake of clarity, we state what is meant by the word
“generic.” A real algebraic variety is the set of common zeros
of a finite set of polynomials with real coefficients. Taking all
such varieties in Rn to be closed sets then defines the Zariski
topology on Rn. If we view � as a member of R2MN , we then
say a generic � is any member of some nonempty Zariski-
open subset of R2MN . Since Zariski-open sets are either empty
or dense with full measure, genericity is a particularly strong
property. As such, another way to state part (b) of the 4M �4

conjecture is “If N � 4M�4, then there exists a real algebraic
variety V ✓ R2MN such that A is injective for every � 62 V .”
The work of Balan, Casazza and Edidin [3] already proves this
for N � 4M � 2. Furthermore, Bodmann and Hammen [5]
establish that whenever N � 4M �4, there exists � such that
A is injective, so for (b), it only remains to show that generic
� make A injective.

The following results are given in the interest of resolving
the 4M � 4 conjecture:

Theorem 10. The 4M � 4 Conjecture is true when M = 2.

Since in this case injectivity is equivalent to having a full-
rank super analysis operator (see Lemma 9), Theorem 10
can be established by defining the real algebraic variety
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Algorithm 1 The HMW test for injectivity when M = 3

Input: Measurement vectors {'n}Nn=1 ✓ C3

Output: Whether A is injective
Define A : H3⇥3 ! RN such that AH = {hH,'n'

⇤
niHS}Nn=1 {assemble the super analysis operator}

if dimnull(A) = 0 then
“INJECTIVE” {if A is injective, then A is injective}

else
Pick H 2 null(A), H 6= 0

if dimnull(A) = 1 and det(H) 6= 0 then
“INJECTIVE” {if A only maps nonsingular matrices to zero, then A is injective}

else
“NOT INJECTIVE” {in the remaining case, A maps differences of rank-1 matrices to zero}

end if
end if

V = {A : Re detA = ImdetA = 0} and showing that V c

is nonempty, and therefore dense with full measure. Before
stating the analogous result for M = 3, we introduce the
HMW test for injectivity (see Algorithm 1); we name it after
Heinosaari, Mazarell and Wolf, who implicitly introduce this
algorithm in their paper [10].

Theorem 11. When M = 3, the HMW test correctly deter-
mines whether A is injective.

The proof of Theorem 11 relies heavily on Lemma 9. For the
case of dimnull(A) = 2, an application of the intermediate
value theorem shows that a singular matrix of rank 1 or 2 can
always be constructed from matrices in the null space of A.

Theorem 12. The 4M � 4 Conjecture is true when M = 3.

The proof of Theorem 12 first constructs the real algebraic
variety V of matrices U , each gotten by a generalized cross
product of a basis for the range of the adjoint of some A, and
further satisfying detU = 0; the first part ensures that U spans
the null space of A, while at the same time being defined using
polynomials of the entries of the matrix representation of A.
The HMW test is then used to show that V c is nonempty.

Note that the HMW test can be used to test for injectivity
in three dimensions regardless of the number of measurement
vectors. Thus, it can be used to evaluate ensembles of 3 ⇥ 3

unitary matrices for quantum mechanics. For example, con-
sider the 3 ⇥ 3 fractional discrete Fourier transform, defined
in [6] using discrete Hermite-Gaussian functions:
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It can be shown by the HMW test that � = [I F 1/2 F F 3/2
]

lends injective intensity measurements. This leads to the
following refinement of Wright’s conjecture:

Conjecture 13. Let F denote the M ⇥M discrete fractional
Fourier transform defined in [6]. Then for every M � 3, � =

[I F 1/2 F F 3/2
] lends injective intensity measurements.
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Abstract—We describe a procedure that enables us
to construct dual pairs of wavelet frames from certain
dual pairs of Gabor frames. Applying the construction
to Gabor frames generated by appropriate exponential B-
splines gives wavelet frames generated by functions whose
Fourier transforms are compactly supported splines with
geometrically distributed knot sequences. There is also a
reverse transform, which yields pairs of dual Gabor frames
when applied to certain wavelet frames.

I. INTRODUCTION

In this note we will discuss a procedure that allows us
to construct dual pairs of wavelet frames based on certain
dual pairs of Gabor frames, and vice versa. Applying
this to Gabor frames generated by exponential B-splines
produces a class of attractive dual wavelet frame pairs
generated by functions whose Fourier transform are com-
pactly supported splines with geometrically distributed
knots. Our main purpose here is to demonstrate the
usefulness of the method; the proofs of the theoretical
results are given in [2].

Let H be a separable Hilbert space. A sequence
{fi}i∈I in H is called a frame if there exist constants
A,B > 0 such that

A ||f ||2 ≤
∑

i∈I

|〈f, fi〉|2 ≤ B ||f ||2, ∀f ∈ H. (I.1)

The constants A and B are frame bounds. The sequence
{fi}i∈I is a Bessel sequence if at least the upper bound
in (I.1) is satisfied. A frame is tight if we can choose
A = B in (I.1). For any frame {fi}i∈I there exists at
least one dual frame, i.e., a frame {f̃i}i∈I for which

f =
∑

i∈I

〈f, fi〉f̃i, ∀f ∈ H.

We will consider Gabor frames and wavelet frames in
the Hilbert space L2(R). A Gabor system in L2(R) has
the form {e2πimbxg(x−na)}m,n∈Z for some parameters
a, b > 0 and a given function g ∈ L2(R). Using the
translation operators Taf(x) := f(x − a), a ∈ R, and
the modulation operators Ebf(x) := e2πibxf(x), b ∈ R,
both acting on L2(R), we will denote a Gabor system by
{EmbTnag}m,n∈Z. On the other hand, a wavelet system
in L2(R) has the form {aj/2ψ(ajx−kb)}j,k∈Z for some
parameters a > 1, b > 0 and a given function ψ ∈
L2(R). Introducing the scaling operators (Daf)(x) :=

a1/2f(ax), a > 0, acting on L2(R), the wavelet system
can be written as {DajTkbψ}j,k∈Z.

The duality conditions for a pair of Gabor systems
were obtained by Ron & Shen [9], [10]. We state the
formulation due to Janssen [8]:

Theorem 1.1: Given b,α > 0, two Bessel sequences
{EmbTnαg}m,n∈Z and {EmbTnαg̃}m,n∈Z, where g, g̃ ∈
L2(R), form dual Gabor frames for L2(R) if and only
if for all n ∈ Z,
∑

j∈Z
g(x+ jα)g̃(x+ jα+ n/b) = bδn,0, a.e. x ∈ R.

There are also characterizing equations for dual
wavelet frames; see [5]. They are formulated in terms
of the Fourier transform, for f ∈ L1(R) defined by
f̂(γ) :=

∫∞
−∞ f(x)e−2πiγxdx, and extended to L2(R)

in the usual way.
Theorem 1.2: Given a > 1, b > 0, two Bessel

sequences {DajTkbψ}j,k∈Z and {DajTkbψ̃}j,k∈Z, where
ψ, ψ̃ ∈ L2(R), form dual wavelet frames for L2(R) if
and only if the following two conditions hold:
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(i)
∑

j∈Z ψ̂(a
jγ)

̂̃
ψ(ajγ) = b for a.e. γ ∈ R.

(ii) For any number α '= 0 of the form α = m/aj ,
m, j ∈ Z,
∑

(j,m)∈Iα

ψ̂(ajγ)
̂̃
ψ(ajγ +m/b) = 0, a.e. γ ∈ R,

where Iα := {(j,m) ∈ Z2 | α = m/aj}.
For more information on fundamental results of Gabor

frames and wavelet frames, see, e.g., [1], [7], and [6].

II. FROM GABOR FRAMES TO WAVELET FRAMES

The goal of this section is to show how we can
construct dual wavelet frame pairs based on certain dual
Gabor frame pairs. The key is the following transform
that allows us to move the Gabor structure into the
wavelet structure.

Let θ > 1 be given. Associated with a function
g ∈ L2(R) for which g(logθ | · |) ∈ L2(R), we define a
function ψ ∈ L2(R) by

ψ̂(γ) =





g(logθ(|γ|)), if γ '= 0,

0, if γ = 0.
(II.1)

Note that by (II.1), for any a > 0, j ∈ Z and γ ∈ R\{0},

ψ̂(ajγ) = g(j logθ(a) + logθ(|γ|)). (II.2)

Also, if g ∈ L2(R) is a bounded function with support
in the interval [M,N ] for some M,N ∈ R, then

supp ψ̂ ⊆ [−θN ,−θM ] ∪ [θM , θN ].

Note that (II.2) gives a convenient way to obtain
functions ψ with the partition of unity property

∑

j∈Z
ψ̂(ajγ) = 1, γ ∈ R. (II.3)

Indeed, just take any function g satisfying the partition
of unity condition

∑

j∈Z
g(x+ j) = 1, x ∈ R, (II.4)

and apply the construction in (II.1) with θ := a. Com-
paring the corresponding conditions in Theorem 1.2(i)
and Theorem 1.1, (II.3) provides a possible starting point
for constructing dual wavelet frames, similar to (II.4) for
dual Gabor frames, see, e.g., [3].

If g has compact support and is smooth, then the
function ψ̂ in (II.1) is also smooth. Thus, by taking
smooth functions g we obtain functions ψ with fast decay
in the time domain.

A. Construction of dual pairs of wavelet frames

For fixed parameters b,α > 0 we will consider two
bounded compactly supported functions g, g̃ ∈ L2(R)
and the associated Gabor systems {EmbTnαg}m,n∈Z
and {EmbTnαg̃}m,n∈Z. For a fixed θ > 1, define the
functions ψ, ψ̃ ∈ L2(R) by (II.1) from g, g̃ respectively.

Theorem 2.1: Let b > 0, α > 0, and θ > 1 be given.
Assume that g, g̃ ∈ L2(R) are bounded functions with
support in the interval [M,N ] for some M,N ∈ R and
that {EmbTnαg}m,n∈Z and {EmbTnαg̃}m,n∈Z form dual
frames for L2(R). With a := θα, if b ≤ 1

2θN , then
{DajTkbψ}j,k∈Z and {DajTkbψ̃}j,k∈Z are dual frames
for L2(R).

The proof follows from (II.2) and the characterizations
of duality for Gabor frames and wavelet frames in
Theorem 1.1 and Theorem 1.2.

If g = g̃ in Theorem 2.1, then ψ = ψ̃, i.e., the result
enables a tight wavelet frame to be constructed from a
tight Gabor frame.

B. Explicit constructions

Based on Theorem 2.1, the rich theory for construction
of dual pairs of Gabor frames enables us to provide
explicit constructions of wavelet frame pairs.

Proposition 2.2: Let g ∈ L2(R) be a bounded real-
valued function with support in the interval [M,N ]

for some M,N ∈ Z. Suppose that g satisfies the
partition of unity condition (II.4). Let a > 1 and
b ∈ (0,min( 1

2(N−M)−1 , 2
−1a−N )] be given, and take

any real sequence {cn}N−M−1
n=−N+M+1 such that

c0 = b, cn + c−n = 2b, n = 1, . . . , N −M − 1.

Then the functions ψ, ψ̃ ∈ L2(R) defined by (II.1) and

̂̃
ψ(γ) =

N−M−1∑

n=−N+M+1

cng(loga(|γ|) + n), γ '= 0, (II.5)

generate dual wavelet frames {DajTkbψ}j,k∈Z and
{DajTkbψ̃}j,k∈Z for L2(R).
Proof. It follows from Theorem 3.1 in [3] that
{EmbTng}m,n∈Z and the Gabor system generated by
g̃(x) =

∑N−M−1
n=−N+M+1 cng(x + n) form dual Gabor

frames for L2(R) (the condition b ≤ 1
2(N−M)−1 is

assumed in that result). Now the result follows from
Theorem 2.1 with θ := a. !
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We will now consider a class of exponential B-splines
that yields attractive dual pairs of wavelet frames, for
which the Fourier transform of the generators are com-
pactly supported splines with geometrically distributed
knots and desired smoothness. These exponential splines
are of the form

EN (·) := eβ1(·)χ[0,1](·) ∗ · · · ∗ eβN (·)χ[0,1](·),

where βk = (k − 1)β, k = 1, . . . , N , for some β > 0.

Similar to the classical B-splines given by the choice
βk = 0, k = 1, . . . , N, the exponential B-spline EN is
N−2 times differentiable (for N ≥ 2) and its support is
[0, N ]. An explicit formula for EN is given by Theorem
2.2 in [4] (note that there is a typo in the expression
for EN (x) for x ∈ [k − 1, k] on page 304 of [4]: the
expression eaj1 + · · ·+eajk−1 should be eaj1+···+ajk−1 ).
In Theorem 3.1 in the same paper, it is shown that for
N ≥ 2,

∑

k∈Z
EN (x− k) =

∏N−1
m=1

(
eβm − 1

)

βN−1(N − 1)!
. (II.6)

For the partition of unity constraint (II.4) to hold, we
apply (II.6) and consider the function

g(x) :=
βN−1(N − 1)!

∏N−1
m=1 (e

βm − 1)
EN (x).

Furthermore, let a := eβ . For γ '= 0, using that
eβk logeβ (|γ|) = |γ|k, we obtain from (II.1) an expression
that identifies ψ̂ explicitly as a geometric spline, i.e., as
a spline with geometrically distributed knots. Now the
formula (II.5) yields a dual wavelet frame generator ψ̃.
Note that ̂̃

ψ is also a geometric spline.
Example 2.3: Consider the exponential B-spline E3

with N = 3 and β = 1. Then

E3(x) =




1−2ex+e2x

2 , x ∈ [0, 1],
−(e+e2)+2(e−1+e)ex−(e−2+e−1)e2x

2 , x ∈ [1, 2],

e3−2ex+e−3e2x

2 , x ∈ [2, 3],

0, x /∈ [0, 3].

By (II.6) we have
∑

k∈Z
E3(x− k) =

1

2
(e− 1)(e2 − 1), x ∈ R,

so we consider g(x) := 2(e− 1)−1(e2 − 1)−1E3(x).

Fig. 1. Plot of the geometric spline ψ̂ in Example 2.3.

Fig. 2. Plot of the geometric spline ̂̃
ψ in Example 2.3.

Let a := eβ = e, and define the function ψ by

ψ̂(γ) =





1−2|γ|+γ2

(e−1)(e2−1) , |γ| ∈ [1, e],
−(e+e2)+2(e−1+e)|γ|−(e−2+e−1)γ2

(e−1)(e2−1) , |γ| ∈ [e, e2],
e3−2|γ|+e−3γ2

(e−1)(e2−1) , |γ| ∈ [e2, e3],

0, |γ| /∈ [1, e3].

The function ψ̂ is a geometric spline with knots at the
points ±1,±e,±e2,±e3.

The construction in Proposition 2.2 works for b ≤
2−1e−3. Taking b = 41−1 and cn = 41−1 for n =

−2, . . . , 2, it follows from (II.2) and (II.5) that the
resulting dual frame generator ψ̃ satisfies

̂̃
ψ(γ) =

1

41

2∑

n=−2

ψ̂(enγ), γ ∈ R.

The function ̂̃
ψ is a geometric spline with knots at the

points ±e−2,±e−1,±1,±e3,±e4,±e5.

Figures 1–3 show the graphs of the functions ψ̂ and
̂̃
ψ, where Figure 3 re-plots part of the graph in Figure
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Fig. 3. Plot of the geometric spline ̂̃
ψ in Example 2.3 on the interval

[−1.3, 1.3].

2 on a smaller interval to better depict the behavior of
̂̃
ψ around 0. Note that ̂̃

ψ is constant on the support of
ψ̂ and decays to zero outside this set. This is due to
(II.6) and the special structure of ̂̃

ψ in (II.5). In fact,
the same will occur when the construction is applied to
any function whose integer-translates form a partition of
unity. If higher order smoothness in ψ̂ and ̂̃

ψ is desired,
this can be achieved if we use higher order exponential
B-splines in the construction. !

III. FROM WAVELET FRAMES TO GABOR FRAMES

It is possible to reverse the process discussed so far,
and obtain a way to obtain Gabor frames based on certain
wavelet frames. Assume the functions ψ, ψ̃ ∈ L2(R) to
be given. For a parameter θ > 1 we define the functions
g, g̃ by

g(x) := ψ̂(θx), g̃(x) :=
̂̃
ψ(θx), x ∈ R. (III.1)

The conditions below imply that g, g̃ ∈ L2(R).
Theorem 3.1: Let a > 1 and b > 0. Assume that

{DajTkbψ}j,k∈Z and {DajTkbψ̃}j,k∈Z are dual frames
for L2(R) and that the functions ψ̂ and ̂̃

ψ are supported
in [−L,−K] ∪ [K,L] for some K,L > 0. Take θ > 1

and α > 0 such that a = θα. If b ≤ 1
logθ(L/K) , then

{EmbTnαg}m,n∈Z and {EmbTnαg̃}m,n∈Z form dual
frames for L2(R).

Theorem 3.1 is proved using the characterizations
of dual pairs of Gabor frames and wavelet frames in
Theorem 1.1 and Theorem 1.2. Again, the result has an
immediate consequence for construction of tight Gabor
frames via tight wavelet frames.

The result can, e.g., be applied to the Meyer wavelet,
which yields a construction of a tight Gabor frame
generated by a C∞(R), compactly supported function.
Details of this are provided in [2].

Let us end this note with a short explanation of why
we speak about (III.1) being a reverse transform of (II.1).
If we start with a sufficiently well behaving function
ψ and use the transform (III.1), we obtain the function
g(x) = ψ̂(θx). Going “back” with the procedure in (II.1)
applied on the function g, we arrive at the function

φ̂(γ) = g(logθ(|γ|)) = ψ̂(θlogθ(|γ|)) = ψ̂(|γ|), γ '= 0.

So, if the function ψ̂ is symmetric, we have that φ = ψ.

On the other hand, starting with a function g and
using (II.1), we obtain the function ψ, given by ψ̂(γ) =
g(logθ(|γ|)), γ '= 0; applying the approach in (III.1) on
ψ̂ leads to the function

h(x) = ψ̂(θx) = g(logθ(|θx|)) = g(x), x ∈ R.

Thus, we get the original function back.
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1998, pp. 33–84.

[9] A. Ron, Z. Shen, Frames and stable bases for shift-invariant
subspaces of L2(Rd), Can. J. Math. 47 (1995) 1051–1094.

[10] A. Ron, Z. Shen, Weyl-Heisenberg frames and Riesz bases in
L2(Rd), Duke Math. J. 89 (1997) 237–282.

Proceedings of the 10th International Conference on Sampling Theory and Applications

84



Perfect Preconditioning of Frames
by a Diagonal Operator

Gitta Kutyniok
Technische Universität Berlin

Institut für Mathematik
10623 Berlin, Germany

Email: kutyniok@math.tu-berlin.de

Kasso A. Okoudjou
University of Maryland

Department of Mathematics
College Park, MD 20742, USA

Email: kasso@math.umd.edu

Friedrich Philipp
Technische Universität Berlin

Institut für Mathematik
10623 Berlin, Germany

Email: philipp@math.tu-berlin.de

Abstract—Frames which are tight might be considered op-

timally conditioned in the sense of their numerical stability.

This leads to the question of perfect preconditioning of frames,

i.e., modification of a given frame to generate a tight frame.

In this paper, we analyze prefect preconditioning of frames

by a diagonal operator. We derive various characterizations of

functional analytic and geometric type of the class of frames

which allow such a perfect preconditioning.

I. INTRODUCTION

Frames are nowadays a common methodology in applied
mathematics, computer science, and engineering, see [7],
when non-unique, but stable decompositions and expansions
are required. They are utilized in various applications which
can roughly be subdivided into two categories. One type of
applications utilize frames for decomposing data. In this case,
typical goals are erasure-resilient transmission, data analysis
or processing, and compression, with the advantage of frames
being their robustness as well as their flexibility in design. The
other type of applications requires frames for expanding data.
This approach is extensively used in sparsity methodologies
such as Compressed Sensing (see [9]), but also, for instance,
as systems generating trial spaces for PDE solvers. Again,
it relies on non-uniqueness of the expansion which promotes
sparse expansions and on the flexibility in design.

A crucial requirement for all such applications is the numer-
ical stability of the associated algorithms, which is optimally
ensured by the subclass of tight frames. Thus, urgent questions
are: When can a given frame be modified to become a tight
frame? Obviously, the most careful modification – which also
retains properties such as providing sparse representations for
a class of data – is to rescale each frame vector. Thus, in this
paper, we consider the question: When can the vectors of a
given frame be rescaled to obtain a tight frame?

A. Tight Frames

Before continuing, let us first fix the notions we will use
throughout. Letting H be a real or complex separable Hilbert
space and letting J be a subset of N, a set of vectors � =

{'j}j2J ⇢ H is called a frame for H, if there exist positive
constants A,B > 0 (the lower and upper frame bound) such

that

Akxk2 
X

j2J

|hx,'ji|2  Bkxk2 for all x 2 H. (1)

A frame � is referred to as A-tight or just tight, if A = B

is possible in (1), and Parseval, if A = B = 1 is possible.
Moreover, if |J | < 1 (which implies that H = KN with
K = R or K = C), the frame � is called finite.

Let � = {'j}j2J ⇢ H now be a frame for H. Signals
are analyzed using a frame by application of the associated
analysis operator T� : H ! `

2
(J) defined by T�x :=�hx,'ji

�
j2J

. Its adjoint T ⇤
�, the synthesis operator of �, maps

then `2(J) surjectively onto H. Concatenating both operators
leads to the frame operator S� := T

⇤
�T� of �, given by

S�x =

X

j2J

hx,'ji'j , x 2 H,

which is a bounded and strictly positive selfadjoint operator
in H. These properties imply that � admits the reconstruction
formula

x =

X

j2J

hx,'jiS�1
� 'j for all x 2 H.

To avoid numerical stability issues, it seems desirable to have
S� = const · IH (IH denoting the identity on H, for H =

KN we will use IN ). And in fact, this equation characterizes
tight frames. Thus an A-tight frame admits the numerically
optimally stable reconstruction given by

x = A

�1 ·
X

j2J

hx,'ji'j for all x 2 H.

B. Generating Parseval Frames

Since applications typically require specific frames, which
might not automatically form a tight frame, an important
problem is to introduce approaches for modifying a given
frame in order to generate a tight frame. We might restrict our
attention to generating Parseval frames, since this just requires
a renormalization once we derived a tight frame. One key issue
in this whole process is to modify the frame as careful as
possible to not disturb its frame properties – which might be
crucial for the application at hand – too much. As an example,
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think for instance of a frame which sparsifies a given test data
set; a property one might want to keep.

A very common approach to generate a tight frame is to
apply S

�1/2
� to each frame vector of a frame �, which in

fact even yields a Parseval frame. However, this modification
also changes the frame properties significantly, and to date it
is still entirely unclear in which way. In particular, a sparse
representation property would be completely destroyed.

The most careful modification of a frame is scaling its frame
vectors. For instance, this procedure even preserves any sparse
representation properties of the frame. In [12], a frame was
coined scalable, if a scaling exists which leads to a Parseval
frame. Notice that this notion is weakly related to the notion of
signed frames, weighted frames as well as controlled frames
(see, e.g., [13], [1], [14]).

Evidently, not every frame is scalable. For instance, a
basis in R2 which is not an orthogonal basis is not scalable,
since a frame with two elements in R2 is a Parseval frame
if and only if it is an orthonormal basis. The relation to
preconditioning is revealed by analyzing the finite-dimensional
version of Proposition II.3 which shows that a frame � in
KN with analysis operator T� is scalable if and only if
there exists a diagonal matrix D such that DT� is isometric.
Since the condition number of such a matrix equals one, the
scaling question is a particular instance of the problem of
preconditioning of matrices.

The results in [12] were the leadoff results on this problem,
which we present a survey about in this paper. The derived
characterizations can be subdivided into the following two
classes:

• Various characterizations of (strict) scalability of a frame
for a general separable Hilbert space (see, e.g., Theorem
II.5).

• Geometric characterization of scalability of finite frames
(see Theorems III.1 and III.4).

We wish to note that recently, new results on this question
from a slightly different angle have been derived in [6].

C. An Excursion to Numerical Linear Algebra

The problem of preconditioning is extensively studied in
the numerical linear algebra community, see, e.g., [8], [10].
Preconditioners which are constructed by scaling appears in
various forms in the numerical linear algebra literature. The
most common approach is to minimize the condition number
of the matrix multiplied by a preconditioning matrix – in
our case of DT�, where D runs through the set of diagonal
matrices. It was for instance shown in [4], that this minimiza-
tion problem can be reformulated as a convex problem. A
major problem is however (see also [4]) that all algorithms
solving this convex problem perform slowly, and, even worse,
there exist situations in which the infimum is not attained.
As additional references to this complex problem, we wish to
mention [5], [2], [8], [11] and [15].

D. Outline
This paper is organized as follows. In Section II we focus

on the situation of general separable Hilbert spaces and derive
characterization of scalability and strict scalability. In Section
III we then restrict to the situation of finite frames, and derive
a yet different characterization of scalability as well as a
geometric interpretation of scalable frames.

II. STRICT SCALABILITY OF GENERAL FRAMES

This section is devoted to a very general characterization of
(strictly) scalable frames.

A. Scalability and Frame Properties
The following definition makes the notion of scalability

mathematically precise.

Definition II.1. A frame � = {'j}j2J for H is called
scalable if there exist scalars cj � 0, j 2 J , such that
{cj'j}j2J is a Parseval frame. If, in addition, cj > 0 for
all j 2 J , then � is called positively scalable. If there exists
� > 0, such that cj � � for all j 2 J , then � is called strictly
scalable.

For finite frames, it is immediate that positive and strict
scalability coincide and that each scaling {cj'j}j2J of a finite
frame {'j}j2J with positive scalars cj forms again a frame.

For infinite frames, the situation is significantly more in-
volved. A partial answer was given in [1, Lemma 4.3], which
proves that if there exist K1,K2 > 0 such that K1  cj  K2

holds for all j 2 J , then also {cj'j}j2J is a frame. Our
next result provides a complete characterization of when a
scaling preserves the frame property. A crucial ingredient for
this result is the diagonal operator Dc in `2(J) corresponding
to a sequence c = (cj)j2J ⇢ K, which is defined by

Dc(vj)j2J :=

�
cjvj

�
j2J

, (vj)j2J 2 domDc,

where

domDc :=
�
(vj)j2J 2 `

2
(J) : (cjvj)j2J 2 `

2
(J)

 
.

It is a well-known fact that Dc is a (possibly unbounded)
selfadjoint operator in `2(J) if and only if cj 2 R for all j 2 J .
If even cj � 0 (cj > 0, cj � � > 0) for each j 2 J , then
the selfadjoint operator Dc is non-negative (positive, strictly
positive, respectively).

The following result indeed provides a complete charac-
terization of when a scaled frame constitutes again a frame.
For stating this, as usual, we denote the domain, the kernel
and the range of a linear operator T by domT , kerT and
ranT , respectively. Also, a closed linear operator T between
two Hilbert spaces H and K will be called ICR (or an ICR-
operator), if it is injective and has a closed range, i.e., if there
exists � > 0 such that kTxk � �kxk for all x 2 domT .

Proposition II.2 ([12]). Let � = {'j}j2J be a frame for H
with analysis operator T� and let c = (cj)j2J be a sequence
of non-negative scalars. Then the following conditions are
equivalent.
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(i) The scaled sequence of vectors  := {cj'j}j2J is a
frame for H.

(ii) We have ranT� ⇢ domDc and Dc| ranT� is ICR.
Moreover, in this case, the frame operator of the frame  is
given by

S = (DcT�)
⇤
(DcT�) = T

⇤
�DcDcT�,

where T

⇤
�Dc denotes the closure of the operator T

⇤
�Dc.

B. General Equivalent Condition

The following result seems to be quite obvious. However,
in the general setting of an arbitrary separable Hilbert space,
it is not straightforward at all.

Proposition II.3 ([12]). Let � = {'j}j2J be a frame for H.
Then the following conditions are equivalent.
(i) � is (positively, strictly) scalable.

(ii) There exists a non-negative (positive, strictly positive,
respectively) diagonal operator D in `2(J) such that

T

⇤
�DDT� = IH. (2)

We can now easily draw the conclusion that scalability is
invariant under unitary transformations.

Corollary II.4. Let U be a unitary operator in H. Then a
frame � = {'j}j2J for H is scalable if and only if the frame
U� = {U'j}j2J is scalable.

C. Main Result

Our main result provides several equivalent conditions for a
frame � to be strictly scalable. For this, recall that a sequence
{vk}k of non-zero vectors in a Hilbert space K is called an
orthogonal basis of K, if infk kvkk > 0 and (vk/kvkk)k is an
orthonormal basis of K.

Theorem II.5 ([12]). Let � = {'j}j2J be a frame for H such
that lim infj2J k'jk > 0, and let T = T� denote its analysis
operator. Then the following statements are equivalent.

(i) The frame � is strictly scalable.
(ii) There exists a strictly positive bounded diagonal oper-

ator D in `

2
(J) such that DT is isometric (that is,

T

⇤
D

2
T = IH).

(iii) There exist a Hilbert space K and a bounded ICR
operator L : K ! `

2
(J) such that TT

⇤
+ LL

⇤ is a
strictly positive bounded diagonal operator.

(iv) There exist a Hilbert space K and a frame  = { j}j2J

for K such that the vectors

'j �  j 2 H�K, j 2 J,

form an orthogonal basis of H�K.
If one of the above conditions holds, then the frame  from
(iv) is strictly scalable, its analysis operator is given by an
operator L from (iii), and with a diagonal operator D from
(ii) we have

L

⇤
D

2
L = IK, and L

⇤
D

2
T = 0. (3)

We next analyze this result in the special case of finite
frames. Although this restriction seems trivial, in fact restrict-
ing conditions (iii) and (iv) in Theorem II.5 to the situation of
finite frames is not immediate.

Corollary II.6. Let � = {'j}Mj=1 be a frame for KN and
let T = T� 2 KM⇥N denote the matrix representation
of its analysis operator. Then the following statements are
equivalent.

(i) The frame � is strictly scalable.
(ii) There exists a positive definite diagonal matrix D 2

KM⇥M such that DT is isometric.
(iii) There exists L 2 KM⇥(M�N) such that TT ⇤

+ LL

⇤ is
a positive definite diagonal matrix.

(iv) There exists a frame  = { j}Mj=1 for KM�N such that
{'j � j}Mj=1 2 KM forms an orthogonal basis of KM .

III. SCALABILITY OF REAL FINITE FRAMES

Finally, we take a geometric viewpoint with respect to
scalability. For this, we will focus on frames for RN due to
the fact that the proof of Theorem III.1 requires the utilization
of Farkas’ Lemma which only exists for real vector spaces.

A. Characterization Result
The following theorem provides a characterization of non-

scalability of a finite frame specifically tailored to the finite-
dimensional case. Condition (iii) of this result will be reinter-
preted in Subsection III-B as a geometric condition for non-
scalability.

Theorem III.1 ([12]). Let � = {'j}Mj=1 ⇢ RN \ {0} be a
frame for RN . Then the following statements are equivalent.

(i) � is not scalable.
(ii) There exists a symmetric matrix Y 2 RN⇥N with

tr(Y ) < 0 such that 'T
j Y 'j � 0 for all j = 1, . . . ,M .

(iii) There exists a symmetric matrix Y 2 RN⇥N with
tr(Y ) = 0 such that 'T

j Y 'j > 0 for all j = 1, . . . ,M .

The following corollary, for whose proof we refer to [12],
can be easily drawn from the previous result, showing that the
set of non-scalable frames for RN is open in the following
sense.

Corollary III.2. Let � = {'j}Mj=1 ⇢ RN \ {0} be a frame
for RN which is not scalable. Then there exists " > 0 such
that each set of vectors { j}Mj=1 ⇢ RN with

k'j �  jk < " for all j = 1, . . . ,M (4)

is a frame for RN which is not scalable.

B. Geometric Interpretation
We now derive a geometric interpretation of the characteri-

zation result Theorem III.1, in particular of condition (iii). For
this, first notice that each of the sets

C(Y ) := {x 2 RN
: x

T
Y x > 0}, Y 2 RN⇥N symmetric,

considered in Theorem III.1 (iii) forms an open cone with
the additional property that x 2 C(Y ) implies �x 2 C(Y ).
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Hence, from now on, we will analyze the impact of the
condition tr(Y ) = 0 on the shape of these cones.

We will require the following particular class of conical
surfaces. Their special relation to quadrics inspired us to coin
those ‘conical zero-trace quadrics’.

Definition III.3. Let the class of conical zero-trace quadrics
CN be defined as the family of sets

(
x 2 RN

:

N�1X

k=1

akhx, eki2 = hx, eN i2
)
, (5)

where {ek}Nk=1 runs through all orthonormal bases of RN and
(ak)

N�1
k=1 runs through all tuples of elements in R \ {0} withPN�1

k=1 ak = 1.

Utilizing this notion, we can state the following result on a
geometric characterization of non-scalability.

Theorem III.4 ([12]). Let � ⇢ RN \ {0} be a frame for RN .
Then the following conditions are equivalent.
(i) � is not scalable.

(ii) All frame vectors of � are contained in the interior of a
conical zero-trace quadric of CN .

(iii) All frame vectors of � are contained in the exterior of a
conical zero-trace quadric of CN .

By C⇤
N we denote the subclass of CN consisting of all

conical zero-trace quadrics in which the orthonormal basis is
the standard basis of RN . Thus, the elements of C⇤

N are in fact
quadrics of the form

(
x 2 RN

:

N�1X

k=1

akx
2
k = x

2
N

)
.

with non-zero ak’s satisfying
PN�1

k=1 ak = 1.
This allows us to draw the following corollary from Theo-

rem III.4 and Corollary II.4.

Corollary III.5. Let � ⇢ RN \ {0} be a frame for RN . Then
the following conditions are equivalent.
(i) � is not scalable.

(ii) There exists an orthogonal matrix U 2 RN⇥N such
that all vectors of U� are contained in the interior of
a conical zero-trace quadric of C⇤

N .
(iii) There exists an orthogonal matrix U 2 RN⇥N such that

all vectors of U� are contained in the exterior of a
conical zero-trace quadric of C⇤

N .

Finally, in the 2- and 3-dimensional case Theorem III.4
reduces to the following results.

Corollary III.6. (i) A frame � ⇢ R2 \ {0} for R2 is not
scalable if and only if there exists an open quadrant cone
which contains all frame vectors of �.

(ii) A frame � ⇢ R3\{0} for R3 is not scalable if and only if
all frame vectors of � are contained in the interior of an
elliptical conical surface with vertex 0 and intersecting
the corners of a rotated unit cube.
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Abstract—Finite frames are possibly-overcomplete generaliza-

tions of orthonormal bases. We consider the “frame completion”

problem, that is, the problem of how to add vectors to an existing

frame in order to make it better conditioned. In particular,

we discuss a new, complete characterization of the spectra of

the frame operators that arise from those completions whose

newly-added vectors have given prescribed lengths. To do this,

we build on recent work involving a frame’s eigensteps, namely

the interlacing sequence of spectra of its partial frame operators.

We discuss how such eigensteps exist if and only if our prescribed

lengths are majorized by another sequence which is obtained by

comparing our completed frame’s spectrum to our initial one.

I. INTRODUCTION

Let M and N be positive integers, and let {'n}Nn=1 be a
finite sequence of vectors in CM . The corresponding synthesis

operator is the M ⇥N matrix � = ['1 · · · 'N ] obtained by
stacking these vectors as columns. Multiplying this matrix by
its adjoint (conjugate-transpose) �

⇤ yields the N ⇥ N Gram

matrix �

⇤
� as well as the M ⇥M frame operator ��

⇤:

��

⇤
x =

✓ NX

n=1

'n'
⇤
n

◆
x =

NX

n=1

hx,'ni'n.

Note that when {'n}Nn=1 is an orthonormal basis for CM , we
have M = N and �

⇤
� = I = ��

⇤. In this case, the above
expression gives the traditional orthonormal expansion of x.

Frame theory generalizes the notion of an orthonormal basis
in order to provide possibly-overcomplete (nonorthogonal)
expansions of x. It does this by relaxing Parseval’s identity.
To be precise, {'n}Nn=1 is a frame for CM if there exist lower

and upper frame bounds 0 < A  B < 1 such that

Akxk2 
NX

n=1

|hx,'ni|2  Bkxk2, 8x 2 CM
. (1)

In this finite-dimensional setting, one can show that the opti-
mal frame bounds A and B of any {'n}Nn=1 are the least and
greatest eigenvalues of ��⇤, respectively. In particular, when
{'n}Nn=1 is a frame for CM , we have that ��⇤ is invertible,
having condition number at most B/A. This enables us to
define the canonical dual frame {'̃n}Nn=1, '̃n := (��

⇤
)

�1
'n.

Together, a frame and its dual provide the decompositions:

x =

NX

n=1

hx, '̃ni'n =

NX

n=1

hx,'ni'̃n, 8x 2 CM
.

In recent years, these “painless nonorthogonal expansions”
have been exploited in a variety of finite-dimensional signal
processing applications in which redundancy is useful [5].

Much of the recent research on finite frames has focused
on constructing frames that satisfy a given list of desired,
application-motivated constraints. Sometimes these constraints
are nonlinear. For example, we often want our frames to be
tight, namely have A = B in (1), which happens precisely
when ��

⇤
= AI. Tightness ensures that � is as well-

conditioned as possible, and makes it easy to compute the
canonical dual: '̃n =

1
A'n. Moreover, finite tight frames

are easy to construct: we simply need the rows of � to be
orthogonal and have constant norm. In short, tight frames
behave much more like orthonormal bases than frames do in
general, while still permitting overcompleteness.

In order to find overcomplete frames which are even more
faithful to the concept of an orthonormal basis, we can further
restrict ourselves to unit norm tight frames (UNTFs), that is,
tight frames {'n}Nn=1 for CM that have the additional property
that k'nk = 1 for all n. Whereas the synthesis operator � of
an orthonormal basis satisfies ��

⇤
= I = �

⇤
�, a UNTF

instead has that ��

⇤
= AI and that the diagonal entries of

�

⇤
� are 1; the fact that these two matrices have the same

trace implies A is necessarily N
M .

UNTFs are known to exist for every N � M . For example,
one may form � by extracting M rows from an N ⇥ N

discrete Fourier transform matrix. However, the problem of
constructing every UNTF was open for many years, due to
the fact that the entries of � must satisfy a large system of
intertwined quadratic equations. This problem was recently
solved in [1] and [3]. In fact, as detailed in the next section, [1]
and [3] give an explicit, closed-form algorithm for constructing
every sequence of vectors {'n}Nn=1 ✓ CM whose frame
operator ��

⇤ has a given spectrum {�m}Mm=1 and whose
Gram matrix �

⇤
� has diagonal entries {µn}Nn=1.

In this paper, we outline recent results from [4] and [7] that
generalize the techniques of [1] and [3] to address the prob-
lem of frame completions. To be precise, given some initial
sequence of vectors {'n}Nn=1 ✓ CM and some desired lengths
{µN+p}Pp=1, we consider the problem of completing {'n}Nn=1

by adding P new vectors {'N+p}Pp=1 to this collection with
the property that k'N+pk2 = µN+p for all p.

We, like several other teams of researchers, are interested
in the best (tightest) possible completions. Several cases of
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the optimal frame completion problem have already been
solved, such as the case where the lengths permit a tight
completion [2], and the case where all the added vectors have
equal length [6]. To our knowledge, the general case of this
problem (arbitrary lengths, tightness unobtainable) remains
open. Our work here serves to characterize every possible
completion that can be formed using a given sequence of
lengths. Our longer-term goal is to use this characterization
in order to find the optimal completion in the general case.

II. EIGENSTEPS

Let M and N be any positive integers and let {�m}Mm=1 and
{µn}Nn=1 be any nonnegative nonincreasing sequences. Recent
work given in [1] and [3] provides a method for explicitly
constructing every finite sequence of vectors {'n}Nn=1 in CM

whose frame operator ��⇤ has spectrum {�m}Mm=1 and whose
vectors have lengths k'nk2 = µn for all n. This method is
based on the concept of eigensteps. To be precise, given any
such frame and any k = 0, . . . , N , let {�k;m}Mm=1 denote the
spectrum of its kth partial frame operator

�k�
⇤
k =

kX

n=1

'n'
⇤
n. (2)

In practice, we arrange these values in an M ⇥ (N +1) table:
2

64
�0;M �1;1 · · · �N ;M

...
...

. . .
...

�0;1 �1;M · · · �N ;1

3

75 . (3)

In order to arise from a sequence {'n}Nn=1 whose frame
operator has spectrum {�m}Mm=1 and whose elements have
lengths k'nk2 = µn, the values in this table necessarily satisfy
four rules. First, for k = N , we have �N�

⇤
N = ��

⇤ and so
�N ;m = �m for all m. This means the last column of (3)
corresponds to our final desired spectrum. Our second rule
comes from the fact that when k = 0, we regard the empty
sum defining �0�

⇤
0 to be a matrix of zeros, and so �0;m = 0

for all m. This means the first column of (3) is all zeros.
The third rule is that for any k, the sum of the entries in

the kth column of (3) is necessarily the sum of the first k of
our µn’s; this follows from the fact that

MX

m=1

�k;m = Tr(�k�
⇤
k) = Tr(�

⇤
k�k) =

kX

n=1

µn.

The fourth rule is the least obvious. For any k = 1, . . . , N ,
note that the kth partial frame operator is the sum of the pre-
vious one with an outer product: �k�

⇤
k = �k�1�

⇤
k�1+'k'

⇤
k.

As such, a classical result from matrix analysis tells us that the
spectrum of �k�

⇤
k necessarily interlaces on that of �k�1�

⇤
k�1.

To be precise, we say that a finite sequence of real numbers
{�m}Mm=1 interlaces on another such sequence {�m}Mm=1,
denoted {�m}Mm=1 v {�m}Mm=1, provided

�M  �M  �M�1  �M�1  · · ·  �2  �2  �1  �1.

That is, {�m}Mm=1 v {�m}Mm=1 when �m+1  �m  �m

for all m = 1, . . . ,M , provided we adopt the convention that

�M+1 := 0. As mentioned above, a classical result from matrix
analysis gives that the spectra of the partial frame operators
necessarily satisfy {�k�1;m}Mm=1 v {�k,m}Mm=1 for all k =

1, . . . , N . This means that each pair of neighboring columns
in (3) necessarily satisfy a zigzag of inequalities, each entry
being no more than its neighbor to its right, which in turn is
no more than its neighbor to its lower left. Gathering these
four rules together, we arrive at the definition of a sequence
of eigensteps:

Definition 1: A sequence {�k;m}Nk=1,
M
m=1 is a sequence

of eigensteps for given nonnegative nonincreasing sequences
{�m}Mm=1 and {µn}Nn=1 if:

(i) �0;m = 0 for all m = 1, . . . ,M ,
(ii) �N ;m = �m for all m = 1, . . . ,M ,

(iii)
PM

m=1 �k;m =

Pk
n=1 µn for all k = 1, . . . , N

(iv) {�k�1;m}Mm=1 v {�k;m}Mm=1 for all k = 1, . . . , N .
To summarize, if {'n}Nn=1 is any sequence of vectors in CM

whose frame operator has spectrum {�m}Mm=1 and for which
k'nk = µn for all n, then the spectra of its partial frame
operators (2) necessarily form a corresponding sequence of
eigensteps.

Remarkably, these relatively-simple necessary conditions
on the existence of such frames are also sufficient. Indeed,
as shown in [1], given a valid sequence of eigensteps, one
can explicitly construct a sequence of vectors {'n}Nn=1 with
the desired spectrum and lengths. The approach is iterative:
given {'n}kn=1 such that �k�

⇤
k has the desired spectrum

{�k;m}Mm=1, such that k'nk = µn for all n = 1, . . . , k, and
such that the eigenvectors of �k�

⇤
k are explicitly known, the

algorithm shows how to choose 'k+1 as a linear combina-
tion of these eigenvectors so that �k+1�

⇤
k+1 has spectrum

{�k+1;m}Mm=1 and such that k'k+1k2 = µk+1; the algorithm
then goes on to explicitly update the eigenvectors of �k�

⇤
k into

those of �k+1�
⇤
k+1, as needed for the next iteration. Apart

from possible rotations and reflections during each step of the
process, the vectors constructed by the algorithm are unique.
As such, eigensteps corresponding to a given {�m}Mm=1 and
{µn}Nn=1 can be viewed as the truly meaningful “parameters”
of all vector sequences whose frame operator has that spectrum
and whose elements have those lengths.

For example, in order to use these ideas to construct a UNTF
of N = 5 elements for M = 3-dimensional space, we want a
3 ⇥ 6 table of eigensteps whose last column has the desired
spectrum �1 = �2 = �3 =

N
M =

5
3 and whose zeroth column

is zero; we also want the entries in the kth column to sum to
k =

Pk
n=1 µn, and for the values in any column to interlace

on those in the preceding one. An example of such a table is
2

64
0 0 0 0

2
3

5
3

0 0

1
3

4
3

5
3

5
3

0 1

5
3

5
3

5
3

5
3

3

75 . (4)

We emphasize that this table does not contain the frame
vectors themselves, but rather the spectra of the partial frame
operators. The process of transforming this table into the actual
frame elements is nontrivial [1]. For example, to define '2,
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we need to find a vector that makes the correct angle with '1

in order for '1'
⇤
1 + '2'

⇤
2 to have spectrum { 5

3 ,
1
3 , 0}.

Moreover, we also note that the above table corresponds to
just one way of constructing a 3⇥5 UNTF. There are infinitely
many others, meaning there are infinitely many UNTFs of five
elements in three-dimensional space, even modulo rotations.
In fact, one can show in this case that every sequence of
eigensteps is of the form

2

64
0 0 0 x

2
3

5
3

0 0 y

4
3�x

5
3

5
3

0 1 2�y

5
3

5
3

5
3

3

75 , (5)

where, in order to satisfy the interlacing requirements, we need
to take our parameters (x, y) from the convex set

0  x  2
3 , max{x, 1

3}  y  min{ 4
3 � x,

2
3 + x}.

This problem of constructing every sequence of eigensteps
for a given {�m}Mm=1 and {µn}Nn=1—thereby in effect con-
structing every sequence of vectors with this spectrum and set
of lengths—is addressed in [3]. Here, it is important to note
that there does not exist a set of eigensteps for every possible
choice of {�m}Mm=1 and {µn}Nn=1. Indeed, at a bare minimum,
the second and third conditions of eigensteps require the �m’s
and the µn’s to have the same sum; this corresponds to our
final frame operator and Gram matrix having the same trace.
Moreover, as evidenced in (4), the first and fourth conditions
of eigensteps require us to have a “triangle of zeros” at the
beginning of our table (3). That is, we necessarily have that
�k;m = 0 for all m > k. When combined with our third and
fourth conditions of eigensteps, this implies that the partial
sums of our µn’s are less than those of our �m’s; for any
k = 1, . . . ,min{M,N}, we necessarily have

kX

n=1

µn =

MX

m=1

�k;m =

kX

m=1

�k;m 
kX

m=1

�m.

Together, these facts state that in order for eigensteps to exist,
our desired spectrum {�m}Mm=1 must necessarily majorize our
desired lengths {µn}Nn=1.

To be precise, we say that a nonnegative nonincreasing se-
quence {�m}Mm=1 majorizes another such sequence {µn}Nn=1,
denoted {µn}Nn=1 � {�m}Mm=1, if

NX

n=1

µn =

MX

m=1

�m,

kX

n=1

µn 
kX

m=1

�m, 8k = 1, . . . ,min{M,N}.

As we have just discussed, in order for a table of eigensteps
to exist for a given {�m}Mm=1 and {µn}Nn=1—that is, in order
for there to exist a sequence of vectors whose frame operator
has spectrum {�m}Mm=1 and whose elements have lengths
{µn}Nn=1—we necessarily have {µn}Nn=1 � {�m}Mm=1. Re-
markably, the converse of this statement is also true; this
fact has been known for a long time, being a straightforward
application of the classical Schur-Horn Theorem to the Gram

matrix �

⇤
�. However, the traditional proof of the converse is

nonconstructive. The main contribution of [3] is to give a con-
structive proof of this converse and moreover, generalize the
idea behind that construction so as to explicitly parameterize
the convex polytope of every possible sequence of eigensteps.

To elaborate, the main idea of [3] is a new algorithm, dubbed
Top Kill, for producing a valid sequence of eigensteps from a
given {�m}Mm=1 and {µn}Nn=1. The algorithm is iterative, start-
ing with the final desired spectrum {�N ;m}Mm=1 = {�m}Mm=1

and working backwards from it to produce {�N�1;m}Mm=1,
then {�N�2;m}Mm=1, etc., until finally arriving at {�1;m}Mm=1.
This algorithm has an intuitive, geometric motivation behind
it (see [3]) that we do not have the space to discuss here.

In brief, however, note that looking at eigenstep tables such
as (4), one quickly realizes that it is harder to get positive
numbers in higher rows than it is in lower ones. This is because
interlacing requires us to first build a suitable “foundation.”
That is, a number in a given column can only be a big as the
one to its lower left, which, in turn, can only be as big as the
one to its lower left, and so on. This can make it difficult to
build the upper levels of our spectrum, especially if we do not
plan ahead.

The Top Kill algorithm handles this issue by (i) working
backwards from right to left, so that you are always explicitly
using the final spectrum {�m}Mm=1 you are trying to build and
(ii) recognizing the higher rows are the most difficult to fill,
and as such, making them the first thing we want to “kill” off.
Indeed, the example table given in (4) is the result of applying
Top Kill for �m =

5
3 for all m and µn = 1 for all n: to build

each column from its neighbor to the right, we remove µn = 1

units of “area,” removing as much as possible from the highest
row before removing from the second highest, and so on. Put
another way, Top Kill’s goal is to take x and y in (5) to be as
small as possible, namely (x, y) = (0,

1
3 ).

As detailed in [3], it turns out that the Top Kill algorithm
will produce a valid sequence of eigensteps if and only our
�m’s majorize our µn’s. In particular, if, for a given {�m}Mm=1

and {µn}Nn=1, there is any way to produce a sequence of
eigensteps, then Top Kill will produce such a sequence. That
is, if anything works, then Top Kill does. This surprising fact
led us to look for ways of generalizing Top Kill so that it
could be applied to the frame completion problem.

III. FRAME COMPLETIONS

Recall the frame completion problem: given {'n}Nn=1 in
CM and a set of desired lengths {µN+p}Pp=1, we want to add
P new measurement vectors to {'n}Nn=1 so that the frame
operator of {'n}N+P

n=1 has spectrum {�m}Mm=1 and such that
k'N+pk2 = µN+p for all p = 1, . . . , P . Letting µn := k'nk2
for all n, note that in accordance with the theory of eigensteps
in [1], any such frame completion necessarily corresponds to
an M ⇥ (N + P + 1) table of eigensteps. Moreover, letting
{↵m}Mm=1 denote the spectrum of the frame operator of the
“initial frame” {'n}Nn=1, we necessarily have that the values
{↵m}Mm=1 lie in the k = N column of this table. We thus see
that each of our desired frame completions corresponds to a
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way of extending an existing M ⇥ (N +1) table of eigensteps
by adding P new interlacing columns with the appropriate
column sums.

As detailed in [4] and [7] it turns out that the existence of
such “continued eigensteps” can be characterized in terms of
majorization. However, it is not as simple as requiring that the
final �m’s majorize the µn’s. Indeed, any such characterization
must take into account the initial spectrum {↵m}Mm=1. At this
point, we recall the motivation behind the Top Kill algorithm:
when building eigensteps from a spectrum of zeros, we are
faced with an “upper triangle” of zeros that makes it difficult
to get large numbers in the higher rows of our table. However,
this may not be the case when building eigensteps on top of
an initial spectrum {↵m}Mm=1. Rather, it turns out that in this
setting, what truly matters is how high the desired spectrum
is relative to the initial spectrum.

A nonobvious concept such as this is best explained in
pictures. In Figure 1(a), we see a given initial spectrum
{↵1,↵2,↵3} = { 7

4 ,
3
4 ,

1
2}. In (b), this spectrum is overlaid

with a desired completion {�1,�2,�3} = { 13
4 ,

9
4 , 1}. Suppose

we want to know whether or not our initial frame can be
completed to one with spectrum {�m}3m=1 by adding four new
frame vectors having lengths {µN+1, µN+2, µN+3, µN+4} =

{2, 1, 1
4 ,

1
4}. To answer this question, we “chop” up the �m’s

according to m and the ↵m’s; see (c). In (d), we then label the
area in each chopped region according to its height above the
initial spectrum. The total “amount” of {�m}3m=1 that lies one
unit above the existing spectrum is our first “diagonal sum”:

DS1 := (

13
4 � 7

4 ) + (

7
4 � 3

4 ) + (

3
4 � 1

2 ) =
11
4 .

Meanwhile, our second diagonal sum represents the total
amount that lies two units above the existing spectrum:

DS2 := (

9
4 � 7

4 ) + (

5
4 � 1) =

3
4 .

Finally, as there is no component of the �m’s that lies three
units above the existing spectrum, we take DS3 = 0.

The main result of our forthcoming paper [4] states that a
given sequence {�m}Mm=1 is realizable as the spectrum of a
completion of a frame with initial spectrum {↵m}Mm=1 via the
addition of P new measurements of lengths {µN+p}Pp=1 if and
only if {DSm}Mm=1 majorizes {µN+p}Pp=1. In particular, our
example is constructible since DS1 � µN+1, DS1 + DS2 �
µN+1 + µN+2, DS1 +DS2 +DS3 � µN+1 + µN+2 + µN+3,
and DS1+DS2+DS3 =

14
4 = µN+1+µN+2+µN+3+µN+4.

The necessity of this majorization follows from the fact that
for any k  min{M,P}, interlacing forces all of the “area” of
{�N+k;m}Mm=1 to lie at most k units above the initial spectrum
{↵m}Mm=1. The part of the �N+k;m’s that lies outside of the
↵m’s envelope has a total area of

PN+k
n=N+1 µn. The amount of

area in these diagonals will only grow as more frame vectors
are added, meaning

N+kX

n=N+1

µn =

kX

m=1

DSm;k 
kX

m=1

DSm;P =

kX

m=1

DSm.

When all P vectors are added, the above inequalities become
equalities.
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Fig. 1. Determining the relative height of a desired completion’s spectrum
above an existing one.

The sufficiency of this majorization condition follows from
a variation of the Top Kill algorithm, called “Chop Kill.” Here,
we can build a valid sequence of eigensteps, provided we once
again start with the desired spectrum and work backwards.
However, rather than removing as much of the “top” of the
spectrum as quickly as possible, we instead remove as much as
possible from the outermost diagonals. This is consistent with
the original motivation behind Top Kill: once we identify the
hardest parts of our spectrum to construct, we work backwards,
taking care of those parts as soon as possible.
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Abstract—We study the problem of determining whether a

given frame is scalable, and when it is, understanding the set

of all possible scalings. We show that for most frames this is a

relatively simple task in that the frame is either not scalable or is

scalable in a unique way, and to find this scaling we just have to

solve a linear system. We also provide some insight into the set of

all scalings when there is not a unique scaling. In particular, we

show that this set is a convex polytope whose vertices correspond

to minimal scalings.

I. INTRODUCTION

A collection of vectors {'i}ni=1 ✓ Cd is called a frame if
there are positive numbers A  B < 1 such that

Akxk2 
nX

i=1

|hx,'ii|2  Bkxk2

for every x in Cd. If we have A = B we say the frame is
tight, and if A = B = 1 we say it is a Parseval frame. Given
a frame {'i}ni=1 we define the frame operator S : Cd ! Cd

by

Sx =

nX

i=1

hx,'ii'i. (1)

It is easy to see that S is always positive, invertible, and
Hermitian. Furthermore, {'i}ni=1 is a Parseval frame if and
only if S = Id (the identity operator on Cd). By a slight
abuse of notation, given any set of vectors {'i}ni=1 ✓ Cd we
will refer to the operator defined in (1) as their frame operator,
even if they do not form a frame (in this case S will not be
invertible, but it will still be positive). If we have that k'ik = 1

for every i = 1, ..., n we say it is a unit norm frame. For more
background on finite frames we refer to the book [4].

A frame {'i}ni=1 is said to be scalable if there exists a col-
lection of scalars {vi}ni=1 ✓ C so that {vi'i}ni=1 is a Parseval
frame. In this case, we call the vector (|v1|2, ..., |vn|2) 2 Rn

+

a scaling of {'i}ni=1. Scalable frames have been studied
previously in [5].

We will work in the space Hd⇥d of all d ⇥ d Hermitian
matrices. Note that this is a real vector space of dimension
d

2 (it is not a space over the complex numbers since a
Hermitian matrix multiplied by a complex scalar is no longer
Hermitian). The inner product on this space is given by
hS, T i = Trace(ST ) and the norm induced by this inner
product is the Froebenius norm, i.e., hS, Si = kSk2F .

In what follows we will always consider frames in the
complex space Cd, however all of our results hold in the real

space Rd as well. The only difference is in this case we must
replace the space Hd⇥d with its subspace Sd⇥d consisting of
all d⇥d real symmetric matrices, which is a real vector space
of dimension d(d + 1)/2. Thus, if one replaces Hd⇥d with
Sd⇥d and d

2 with d(d + 1)/2 all of our results will hold for
frames {'i}ni=1 ✓ Rd and the same proofs will work.

II. SCALING GENERIC FRAMES

Consider the mapping from Cd to Hd⇥d given by

x 7! xx

⇤
.

Note that xx⇤ is the rank one projection onto span{x} scaled
by kxk2. xx⇤ is called the outer product of x with itself. Also
note that if x = �y for � 2 C then xx

⇤
= (�y)(�y)

⇤
=

|�|2yy⇤.
Given a frame {'i}ni=1, in this setting we have that the

frame operator is given by

S =

nX

i=1

'i'
⇤
i ,

so {'i}ni=1 is scalable if and only if there exists a collection
of positive scalars {wi}ni=1 so that

nX

i=1

wi'i'
⇤
i = Id,

in this case {pwi'i}ni=1 is a Parseval frame, and the vector
(w1, ..., wn) 2 Rn

+ is the scaling.
Before stating our first theorem we need one more defi-

nition. A subset Q ✓ Rn is called generic if there exists a
polynomial p(x1, ..., xn) such that Qc

= {(x1, ..., xn) 2 Rn
:

p(x1, ..., xn) = 0}. It is a standard fact that generic sets are
open, dense, and full measure. When we talk about a generic
set in Cd we mean that it is generic when we identify Cd with
R2d.

Theorem 1. For a generic choice of vectors {'i}d
2

i=1 ✓ Cd

we have that span{'i'
⇤
i }d

2

i=1 = Hd⇥d.

Proof: First let {Ti}d
2

i=1 be any basis for Hd⇥d. Since
each Ti is Hermitian we can use the spectral theorem to get
a decomposition Ti =

Pn
j=1 �ijPij where each Pij is rank 1.

So it follows that span{Pij} = Hd⇥d and therefore this set
contains a basis of Hd⇥d. Thus, we have constructed a basis
of Hd⇥d consisting only of rank 1 matrices.
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Now observe that for a given choice of vectors {'i}d
2

i=1 we
have that span{'i'

⇤
i } = Hd⇥d if and only if the determinant

of the frame operator is nonzero (note that we are refering to
the frame operator of {'i'

⇤
i }d

2

i=1 as an operator on Hd⇥d, not
the frame operator of {'i}ni=1 as an operator on Cd). But the
determinant of the frame operator is a polynomial in the (real
and imaginary parts) of the entries of the 'i’s, and by the first
paragraph we know that there is at least one choice for which
this does not vanish, so we can conclude that for a generic
choice it does not vanish.

Corollary 1. If n  d

2 then for a generic choice of vectors
{'i}ni=1 ✓ Cd we have that {'i'

⇤
i }ni=1 is linearly indepen-

dent.

Given a frame {'i}ni=1 ✓ Cd define the operator A : Rn !
Hd⇥d by

Aw =

nX

i=1

wi'i'
⇤
i

where w = (w1, ..., wn)
T . To determine whether {'i}ni=1 is

scalable boils down to finding a nonnegative solution to

Aw = Id.

In the generic case when {'i'
⇤
i }ni=1 is linearly independent,

this system is guaranteed to have either no solution, or one
unique solution. So if it either has a solution with a negative
entry or has no solution we can conclude that this frame is
not scalable, and if it has a nonnegative solution then it is
scalable and this solution tells us the unique scalars to use.
We summarize this in the following corollary:

Corollary 2. Given frame {'i}ni=1 ✓ Cd such that {'i'
⇤
i }ni=1

is linearly independent in Hd⇥d, we can determine its scala-
bility by solving the linear system

Aw = Id. (2)

Furthermore, in this case if it is scalable then it is scalable in
a unique way.

In particular, if n  d

2 then with probability 1, determining
the scalability of {'i}ni=1 is equivalent to solving the linear
system given in (2).

III. LINEARLY DEPENDENT OUTER PRODUCTS

In this section we will address the situation when {'i'
⇤
i }ni=1

is linearly dependent. The main problem here is that the system
Aw = Id may have many solutions, and possibly none of them
are nonnegative. In this section we will find it convenient to
assume that k'ik = 1 for every i = 1, ..., n, note that we lose
no generality by making this assumption.

Given a collection of vectors {xi}ni=1 ✓ Rd we define their
affine span as

a↵{xi}ni=1 := {
nX

i=1

cixi :

nX

i=1

ci = 1}

and we say that {xi}ni=1 is affinely independent if

xj 62 a↵{xi}i 6=j

for every j = 1, ..., n. We also define their convex hull as

conv{xi}ni=1 := {
nX

i=1

cixi : ci � 0,

nX

i=1

ci = 1}.

We say a set P ✓ Rd is called a polytope if it is the convex
hull of finitely many points.

Proposition 1. Given a collection of unit norm vectors
{'i}ni=1 ✓ Cd we have that {'i'

⇤
i }ni=1 is linearly independent

if and only if it is affinely independent.

Proof: Clearly linear independence always implies affine
independence. So suppose that {'i'

⇤
i }ni=1 is not linearly

independent. Then we have an equation of the form

'j'
⇤
j =

X

i 6=j

ci'i'
⇤
i

for some j. Also note that since k'ik = 1 it follows that
h'i'

⇤
i , Idi = 1 for every i = 1, ..., n. Therefore, we have

1 = h'j'
⇤
j , Idi = h

X

i 6=j

ci'i'
⇤
i , Idi

=

X

i 6=j

cih'i'
⇤
i , Idi =

X

i 6=j

ci.

Therefore {'i'
⇤
i }ni=1 is not affinity independent.

Proposition 2. A unit norm frame {'i}ni=1 ✓ Cd is scalable
if and only if 1

dId 2 conv{'i'
⇤
i }ni=1. Furthermore, if �Id 2

conv{'i'
⇤
i }ni=1 then � =

1
d and if

Pn
i=1 wi'i'

⇤
i =

1
dId thenPn

i=1 wi = 1.

Proof: Suppose we have a scaling w so that

Id =

nX

i=1

wi'i'
⇤
i .

Then

d = hId, Idi = h
nX

i=1

wi'i'
⇤
i , Idi

=

nX

i=1

wih'i'
⇤
i , Idi =

nX

i=1

wi.

Thus,
Pn

i=1
wi
d = 1 and since wi � 0 for every i = 1, ..., n

it follows that 1
dId =

Pn
i=1

wi
d 'i'

⇤
i 2 conv{'i'

⇤
i }ni=1. The

converse is obvious.
The furthermore part follows from a similar argument.

Suppose �Id =

Pn
i=1 wi'i'

⇤
i with

Pn
i=1 wi = 1. Then

d� = h�Id, Idi =
nX

i=1

wi = 1.

Now suppose 1
dId =

Pn
i=1 wi'i'

⇤
i . Then

1 = h
nX

i=1

wi'i'
⇤
i , Idi =

nX

i=1

wi.

The following theorem is known as Carathéodory’s theorem:
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Theorem 2. Given a set of points {xi}ni=1 ✓ Rd suppose y 2
conv{xi}ni=1. Then there exists a subset I ✓ {1, ..., n} such
that y 2 conv{xi}i2I and {xi}i2I is affinely independent.

Corollary 3. Suppose {'i}ni=1 ✓ Cd is a scalable frame.
Then there is a subset {'i}i2I which is also scalable and
{'i'

⇤
i }i2I is linearly independent.

Given a unit norm frame {'i}ni=1 ✓ Cd we define the set

P({'i}ni=1) := {(w1, ..., wn) : wi � 0,

nX

i=1

wi'i'
⇤
i =

1

d

Id}.

Proposition 2 tells us two things about this set: first we have
that w 2 P({'i}ni=1) if and only if d · w is a scaling of
{'i}ni=1, and second, that P({'i}ni=1) is a (possibly empty)
polytope (see, for example, Theorem 1.1 in [6]).

Suppose {'i}ni=1 ✓ Cd is a scalable frame, and we are
given a scaling w = (w1, ..., wn). We say the scaling is
minimal if {'i : wi > 0} has no proper subset which is
scalable.

Theorem 3. Suppose {'i}ni=1 ✓ Cd is a scalable, unit norm
frame. If w = (w1, ..., wn) is a minmal scaling then {'i'

⇤
i :

wi > 0} is linearly independent. Furthermore, P({'i}ni=1) is
the convex hull of the minimal scalings, i.e., every scaling is
a convex combination of minimal scalings.

Proof: The first statement follows directly from Corollary
3.

We now show that every vertex of P({'i}ni=1) is indeed a
minimal scaling. Let u 2 P({'i}ni=1) be a vertex and assume
to the contrary that u is not minimal, then there exists a v 2 P

such that supp(v) ( supp(u). Let w(t) = v + t(u � v), and
t0 = min{ vi

vi�ui
: vi > ui}. We observe that t0 > 1 and

w(t0)i � 0 since supp(v) ( supp(u). This means w(t0) 2 P ,
and u lies on the line segment connecting v and w(t0) which
contradicts the fact that u is a vertex.

Finally we show that every minimal scaling is a vertex of
P({'i}ni=1). Suppose we are given a minimal scaling w which
is not a vertex of P({'i}ni=1). Then we can write w as a
convex combination of vertices, say w =

P
tivi, where we

know at least two ti’s are nonzero, without loss of generality
say t1 and t2. Since both t1 and t2 are positive and all the
entries of v1 and v2 are nonnegative, it follows that supp(v1)[
supp(v2) ✓ supp(w), which contradicts the fact the w is a
minimal scaling.

Theorem 3 reduces the problem of understanding the scal-
ings of the frame {'i}ni=1 to that of finding the vertices of
the polytope P({'i}ni=1). Relatvely fast algorithms for doing
this are known, see [2].

IV. WHEN ARE OUTER PRODUCTS LINEARLY
INDEPENDENT?

Since most of the results in this paper deal with linear
independence of the outer products of subsets of our frame
vectors we will address this issue in this section. It would
be nice if there were conditions on a frame {'i}ni=1 which
could guarantee that the set of outer products {'i'

⇤
i }ni=1 is

linearly independent, or conversely if knowing that {'i'
⇤
i }ni=1

is linearly independent tells anything about the frame {'i}ni=1.
One obvious condition is that in order for {'i'

⇤
i }ni=1 to be

linearly independent we must have n  d

2, and when this is
satisfied Theorem 1 tells us that this will usually be the case.

Another condition which is easy to prove is that if {'i}ni=1

is linearly independent then so is {'i'
⇤
i }ni=1. The converse of

this is certainly not true, and since we are usually interested
in frames for which n > d this condition is not very useful.
The main idea here is that while the frame vectors live in a d-
dimensional space the outer products live in a d

2-dimensional
space, so there is much more “room” for them to be linearly
independent.

Given a frame {'i}ni=1 we define its spark to be the size
of its smallest linearly dependent subset, more precisely

spark({'i}ni=1) := min{|I| : {'i}i2I is linearly dependent}.

Clearly for a frame {'i}ni=1 ✓ Cd we must have that
spark({'i}ni=1)  d + 1, if its spark is equal to d + 1 we
say it is full spark. For more background on full spark frames
see [1].

Proposition 3. Suppose {'i}ni=1 ✓ Cd is a frame with n 
2d � 1. If {'i}ni=1 is full spark then {'i'

⇤
i }ni=1 is linearly

independent.

Proof: Suppose by way of contradiction that {'i}ni=1 is
full spark but {'i'

⇤
i }ni=1 is linearly dependent. Then we can

write an equation of the form
X

i2I

ai'i'
⇤
i =

X

j2J

bj'j'
⇤
j

with ai > 0 for every i 2 I , bj > 0 for every j 2 J , and
I \ J = ;. This implies that

span({'i}i2I) = Im(

X

i2I

ai'i'
⇤
i )

= Im(

X

j2J

bj'j'
⇤
j ) = span({'j}j2J).

But since n  2d�1 we have either |I|  d�1 or |J |  d�1,
so this contradicts the fact the {'i}ni=1 is full spark.

We first remark that the converse of Proposition 3 is not
true:

Example 1. Let {e1, e2, e3} be an orthonormal basis for C3

and consider the frame {e1, e2, e3, e1 + e2, e2 + e3}. Clearly
this frame is not full spark and yet it is easy to verify that
{e1e⇤1, e2e⇤2, e3e⇤3, (e1 + e2)(e1 + e2)

⇤
, (e2 + e3)(e2 + e3)

⇤} is
linearly independent.

Next we remark that the assumption n  2d�1 is necessary:

Example 2. Let {e1, e2} be an orthonormal basis for C2 and
consider the frame {e1, e2, e1+e2, e1�e2}. Clearly this frame
is full spark but

e1e
⇤
1+e2e

⇤
2 = I2 =

1

2

((e1+e2)(e1+e2)
⇤
+(e1�e2)(e1�e2)

⇤
).
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Finally we remark that with only slight modifications the
proof of Propostion 3 can be used to prove the following more
general result:

Proposition 4. If spark({'i}ni=1) � s then
spark({'i'

⇤
i }ni=1) � 2s� 2.

Unfortunately, the converse of Proposition 4 is still not
true. The main problem here is that given any three vectors
such that no one of them is a scalar multiple of another, the
corresponding outer products will be linearly independent (we
leave the proof of this as an exercise). Therefore it is easy to
make examples (such as Example 1 above) of frames that have
tiny spark, but the corresponding outer products are linearly
independent.

We conclude our discussion of spark by remarking that in
[1] it is shown that computing the spark of a general frame
is NP-hard. Thus, the small amount of insight we gain from
Proposition 4 is of little practical use.

Another property worth mentioning in this section is known
as the complement property. A frame {'i}ni=1 ✓ Cd has the
complement property if for every I ✓ {1, ..., n} we have either
span({'i}i2I) = Cd or span({'i}i2Ic

) = Cd. We remark
that the complement property is usually discussed for frames
in a real vector space, but for our purposes it is fine to discuss it
for frames in a complex space. In [3] the complement property
was shown to be necessary and sufficient to do phaseless
reconstruction in the real case.

If a frame {'i}ni=1 ✓ Cd has the complement property then
clearly we must have n � 2d � 1 (if not we could partition
the frame into two sets each of size at most d � 1) and that
in this case full spark implies the complement property. If
n = 2d � 1 then the complement property is equivalent to
full spark, but for n > 2d � 1 the complement property is
(slightly) weaker. One might ask if the complement property
tells us anything about the linear independence of the outer
products, or vice versa. Example 1 above is an example of a
frame which does not have the complement property but the
outer products are linearly independent, and Example 2 is an
example of a frame that does have the complement property
but the outer products are linearly dependent. So it seems like
the complement property has nothing to do with the linear
independence of the outer products.

Given a frame with the complement property we can add
any set of vectors to it without losing the complement property.
Thus it seems natural to ask whether every frame with the
complement property has a subset of size 2d � 1 which is
full spark. This also turns out to be not true as the following
example shows:

Example 3. Consider the frame in Example 1 with the vector
e1 + e3 added to it. It is not difficult to verify that this frame
does have the complement property, but no subset of size 5 is
full spark.

We conclude by noting that as in the proof of Proposition
3, a set of outer products {'i'

⇤
i }ni=1 is linearly dependent if

and only if we have an equation of the form
X

i2I

ai'i'
⇤
i =

X

j2J

bj'j'
⇤
j

with ai > 0 for every i 2 I , bj > 0 for every j 2 J , and
I \ J = ;. This is equivalent to {'i}ni=1 having two disjoint
subsets, namely {'i}i2I and {'j}j2J , which can be scaled
to have the same frame operator. Thus, determining whether
{'i'

⇤
i }ni=1 is linearly independent is equivalent to solving a

more difficult scaling problem than the one presented in this
paper.
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Abstract—Compressive sensing (CS) is a powerful technique for 
sub-sampling of signals combined with reconstruction based on 
sparsity. Many papers have been published on the topic; 
however, they often fail to consider practical hardware factors 
that may prevent or alter the implementation of desired CS 
measurement kernels. In particular, different compressive 
architectures in the RF domain either sacrifice collected signal 
energy or create noise folding, both of which cause SNR 
reduction. In this paper, we consider valid signal models and 
other system aspects of RF compressive systems. 

I. INTRODUCTION 
Interest in the application of compressive sensing (CS) to 

radar and other radio frequency (RF) applications has grown 
rapidly. This interest is fueled by the potential to implement 
RF systems that perform well while reducing the burden on 
data collection hardware. For example, the idea of a sparsely 
populated or thinned array has been used for a long time as a 
way of obtaining high resolution from a long array baseline 
without the cost and weight of a fully populated array. The 
difference in recent years is that CS principles are now being 
used to design the array, to analyze its performance, and to 
process its data via sparse reconstruction methods. Similar 
statements can be made regarding other examples of 
compressive RF systems (not just antenna arrays). 

The current literature on compressive RF systems is 
skewed toward demonstrating the ability to recover signals 
from such systems using sparse reconstruction methods. While 
this approach is interesting, there is still a shortage of analysis 
on the system impacts of RF compression and on the ultimate 
performance of compressive RF systems in useful exploitation 
tasks such as signal detection and parameter estimation. 
Unfortunately, some published papers also fail to consider the 
architecture of the compressive system and resulting 
constraints that this architecture imposes on the structure of 
the compression kernels and the relevant signal model.  

In this paper, we address some of these structural and 
system considerations in compressive RF systems. We 
consider fundamental models of measurement as linear 
projections implemented in time and space, and map these 

models to appropriately structured sensing matrices for several 
types of compressive RF sensing. We then focus on 
compression via sub-Nyquist analog-to-digital conversion 
(ADC) and consider a compressive version of the traditional 
quadrature receiver.  

II. MODELS FOR RF COMPRESSION 
In this section, we start with a model for conventional 

sampling and map that model to the matrix-vector notation 
typically used in CS. We then use the model to represent two 
types of compression that RF systems might employ, namely 
measurement “thinning” and measurement “mixing”. We also 
discuss the inclusion of additive receiver noise in the models. 

Let a compressive RF receiver observe a signal, � �,s tr , 
that varies over space and time where r is a three-dimensional 
vector of spatial coordinates. Let the compressive system 
comprise a P-element antenna array with element coordinates 
rp and each element having its own receiver. We can express 
a “traditional” sample as the projection of the signal onto a 
measurement kernel that is localized in time and space. In 
ideal sampling, this kernel is an impulse-like space-time 
function located at the element position and sample time 
where the sample is to occur, such that 
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We can then express data collected by the array and sampled 
over time by a set of impulsive measurement kernels located 
at every element location and sampling time instant.  

In order to represent (1) with a discrete model suitable for 
computer simulations or manipulation via linear algebra, we 
can approximate the integral in (1) with a summation over 
small, finite-sized bins in space and time, such that 
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where r(i) denotes the ith spatial bin in the approximation, t(j) 
denotes the jth temporal bin, and the delta function with 
brackets, > @G �  is used to denote the Kronecker delta function 
that is equal to one when the argument is zero (to within the 
quantization error of the bins) and zero elsewhere. If the bins 
are chosen smaller than or equal to the Nyquist sampling 
interval, then the discrete approximation will be accurate. 

Next, we form a signal vector by taking all signal values 
over the discrete bins and organizing them into a vector 
according to a specific ordering; for example, 
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where Ns is the number of discrete bins covering the signal’s 
spatial volume and Nt is the number of discrete bins covering 
the signal’s temporal duration. The length of s is N = NtNs. 
The expression in (2) can then be expressed as  
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where mį  is defined (as shown) as a row vector with zeros 
everywhere except in the entry corresponding to the 
discretized bin where the mth data sample is collected. A 
sampling matrix can then be represented as a collection of 

mį ‘s, with each row having the ‘1’ in a different location. 
For example, if only three data samples are collected, the 
sensing matrix might look like 
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1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
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"

. (5) 

The matrix in (5) represents a “thinning” type of compression 
where the sampling kernels are still localized in space and 
time, but not all signal elements are sampled. Some radar-
specific examples of where this type of compression might 
occur include 1) some pulses in a coherent pulse train are not 
transmitted, causing gaps in the slow-time data collection, 2) 
the thinned or sparse antenna array mentioned above, and 3) 
stepped-frequency waveforms where frequency steps can be 
skipped in the data collection process [1]. In these structures, 
there will be groups of nearby samples taken at the Nyquist 
rate, followed by gaps in the sampling. Full Nyquist sampling 
can also be represented by using ) = IN. 

On the other hand, the “thinning” type compression 
depicted in (5) is usually not a suitable representation for 
compression in the ADC process (i.e., in fast time). For the 
examples above, it is easy to envision how some samples will 
be closely spaced (for example, two pulses in a row), but 

 
Figure 1. Block diagram of sub-Nyquist, fast-time compression 
implemented at an intermediate frequency (IF). 

for fast-time compression, the thinning approach means that 
the ADC must occasionally collect samples at the full 
bandwidth of the signal. If the ADC must have the capability 
to sample at the full bandwidth, then the hardware advantages 
of compressive sampling disappear. Therefore, fast-time 
compression will typically be implemented with an ADC 
operating at a uniform sampling rate lower than the Nyquist 
rate. In order to avoid aliasing, the signal must be mixed with 
a non-localized measurement kernel before being sampled; 
therefore, this second form of compression is a “mixing” type 
compression that requires an analog multiplication. Hardware 
structures for sub-Nyquist sampling, including the random 
demodulator [2] and the modulated wideband converter [3] 
fall into this category of compression. A block diagram of an 
example RF compressive receiver is shown in Figure 1 where 
we can see the required elements including low-noise 
amplifier (LNA), downconversion from RF frequency to an 
intermediate frequency (IF) where analog multiplication with 
another wideband kernel can be performed, a lowpass filter to 
complete the projection, and finally sampling at a sub-
Nyquist rate. 

Mixing type compression can be represented in the 
projection notation above by replacing the localized delta 
sampling functions with an arbitrary measurement kernel 
according to 
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If the compression is being performed via sub-Nyquist 
sampling of the signal captured by a particular antenna 
element, then the spatial component of the measurement 
kernel can be localized such that 
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where Ip(t) is the temporal mixing kernel applied to the 
receiving chain of the pth antenna element. For sub-Nyquist 
sampling on multiple antenna elements, the sensing matrix 
representation will be a composite of the thinning structure 
(due to elements that may or may not be present) with a 
structure that implements the non-localized temporal kernels.  

Until a technology exists to implement the temporal 
modulation component of the measurement kernel directly at 
the antenna (using, for example, current distributions on an 
antenna element varying at the bandwidth of the incoming 
signal), the fast-time compression must be implemented with 
hardware such as analog multipliers, mixers, and filters as 
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depicted in Figure 1. There are two implications of the 
architecture in Figure 1. First, because the compression is 
performed after the signal has entered the receiver, additive 
receiver noise must be applied to the signal prior to the 
compression operation, which leads to noise folding [4], or 
more generally a loss in signal-to-noise ratio (SNR). Second, 
the time duration over which the signal is integrated (and, 
therefore, the length of any single projection) is determined 
by the time support of the lowpass filter’s impulse response. 
Each successive sample taken by the ADC will be the result 
of integrating approximately Tc seconds of multiplier output 
where Tc is the approximate duration of the filter’s impulse 
response. If the ADC sampling interval, TADC, is less than Tc, 
then successive samples will be partially correlated due to 
overlapping integration periods. Typically, we will set TADC = 
Tc such that each sample is a result of an adjacent, and 
approximately non-overlapping, integration period. 

Considering the above statements, (7) can be modified as 
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which introduces a precise structure to the sensing matrix for 
each antenna element. This structure, which is depicted in 
Figure 2 (right panel) for compression down to eight ADC 
samples on a single antenna element, is a combination of the 
mixing kernel (left panel) and the LPF’s impulse response 
shifted to implement the correct convolution output at the 
ADC sample times (middle panel). The discrete sensing 
model is then 

 � �p p p p �y ĭ V Q  (9) 

where sp is the temporally varying signal incident on the pth 
antenna, np is the additive noise on the pth receiving channel, 
and )p is the fast-time sensing matrix for the pth channel in 
the structure shown in Figure 2 according to the ADC rate, 
filter impulse response, and pth channel’s mixing kernel Ip(t). 
An overall space-time sensing matrix can then be expressed 
by concatenating the sensing matrices for individual channels 
according to a pattern along the lines of  
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where blocks of columns containing all zeros are due to 
missing antenna elements that have been thinned from the 
system. The resulting measurements are 

 � � �y ĭ V Q  (11) 

where s and n have been formed by concatenating the signal 
and noise vectors for all antenna elements, including elements 
not sampled by the sensing matrix.  

The model in (11) shows noise added prior to application 
of the sensing matrix (pre-projection noise model) for many 
reasons. First, even though the zero columns of the sensing 
matrix may result in a larger representation than necessary, 
the full representation reinforces the true input dimensionality 
of the space-time, Nyquist-sampled signal. Second, as 
described earlier, pre-projection noise is the correct 
representation for mixing-type compression implemented in 
analog hardware. Third, while faithfully representing mixing-
type compression, the full representation also encompasses 
thinning-type compression as a special case. The sensing 
model in (11) can be expressed as 

 ˆ �  �y ĭV ĭQ ĭV Q  (12) 

where the post-projection noise covariance matrix can be 
easily calculated from the pre-projection covariance and the 
sensing matrix. Therefore, the post-projection additive noise 
model used in some of the RF CS literature is valid in certain 
situations, but (12) explicitly shows that care must be taken in 
considering the post-projection noise statistics. If the input 
noise is uncorrelated and the rows of ) are orthogonal, then it 
is valid to go directly to a post-projection uncorrelated 
additive noise model, but in general, post-projection noise 
skips over a more fundamental starting point that may be 
helpful for proper treatment of system constraints and noise 
statistics. Finally, the full representation admits interpretation 

:  

Figure 2. Structure of a sensing matrix for fast-time compression using analog multiplication followed by lowpass filtering. 
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of SNR loss due to compression as a loss in collected signal 
energy, as a noise folding behavior, or both. From the zero 
columns in (10), it is easy to see that for every measurement 
that is removed, collected signal energy is lowered. Radar 
systems are typically limited in transmit power and can’t 
arbitrarily transmit additional power to make up for fewer 
samples. It is easy to ignore this loss or model it improperly 
when starting from a post-projection additive noise model. 

III. QUADRATURE COMPRESSION 
Many RF receivers implement quadrature reception where 

the down-conversion from RF (or IF) to baseband results in 
an in-phase (I) branch and a quadrature (Q) branch. These 
branches are 90 degrees out of phase with respect to each 
other such that signals with a random phase component are 
captured by one of the branches or a combination of the two. 
In this section we consider I/Q compression and its impact on 
the relationship between the I and Q signals. 

A narrowband bandpass signal can be represented as  

 � � � � � �� �0 0cos 2s t a t F t tS T T � �  (13) 

where a(t) and T(t) are amplitude and phase modulations, 
respectively, with modulation bandwidths, B, much smaller 
than the carrier frequency F0. The signal is assumed to have 
an unknown global phase T0. Without knowledge of T0, if we 
demodulate with only the cosine of the carrier, we risk 
demodulating with a carrier term that is out of phase with the 
received carrier, and the signal will be lost. Therefore, 
quadrature receivers demodulate against quadrature 
components of the carrier, guaranteeing signal capture 
regardless of global phase. However, because the receiver has 
I and Q branches, compression should be performed in each.  

Figure 3 shows a potential architecture for a compressive 
quadrature receiver (hardware considerations may mean that 
the best design is a two-stage downconversion, but the format 
in Figure 3 is sufficient for the sampling analysis considered 
here). The incoming signal is split into two branches. The in-
phase branch is demodulated with a cosine of the carrier and 
the quadrature branch is demodulated with a sine of the 
carrier. The first LPF in each branch has cutoff frequency at 
or above B/2 where B is the signal’s bandpass bandwidth and 
is meant to reject all but the baseband copy of the signal. 
Next, the signal is mixed with a compression kernel, which 
might be a different kernel for the I and Q brances, followed 
by a LPF that completes the projection. The second LPF’s in 
each branch have the same cutoff frequency, which is related 
to the sub-Nyquist sampling rate. 

After passing the signal in (13) through the first 
mixer/LPF pair (downconversion step), the resulting signals 
are 

 � � � � � �� �0
1 cos
2Is t a t tT T ��  (14) 

and 

 � � � � � �� �0
1 sin
2Qs t a t tT T ��  (15) 

 
Figure 3. Compressive I/Q receiver architecture. 

in the I and Q branches, respectively. These signals are then 
separately compressed by passing them through the second 
multiplier/LPF pair corresponding to the compression kernels 
in each branch, � �I tI  and � �Q tI . Letting the matrix-vector 
representations of (14) and (15) be Is�  and Qs� , respectively, 
the compressed data samples for the two branches are 

 � �I I I I �y ĭ V Q� �  (16) 

and 

 � �Q Q Q Q �y ĭ V Q� � . (17) 

In the absence of compression, the outputs of the two 
branches are typically treated as orthogonal and placed as the 
real and imaginary components of complex-valued data 
samples. Compression, however, decreases the distance 
between the two components. Therefore, the fundamental I/Q 
relationship may be altered, which may impact traditional 
processing steps such as envelope detection. Appropriate 
detectors and estimators for compressive quadrature receivers 
have yet to be fully developed in the literature. 

IV. CONCLUSIONS 
We have consider several aspects of compressive RF 

sensing, including appropriate signal and noise models for 
compression in different dimensions (slow time, fast time, 
spatial) and corresponding constraints on sensing matrices. 
We have also begun to consider a compressive version of the 
traditional quadrature receiver and the impacts that 
compression of in-phase and quadrature components may 
have on subsequent processing algorithms. 
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Abstract—The goal of this manuscript (and associated talk)

is not to present any recent experimental results from my

laboratory. Rather, the purpose is to elucidate why I believe that

calibration is one of the few remaining significant challenges in

the struggle to create a wide range of practical computational

sensing and compressive sensing (CS) systems. Toward this end, I

briefly describe the fundamental and implementation difficulties

associated with calibration as well as the existing calibration

approaches and their associated limitations before sketching the

theoretical question that must be addressed in order to solve the

calibration challenge.

I. INTRODUCTION

Computational sensing is the general term for a sensing
approach in which estimation of the input signal x proceeds
from a set of measurements y that result from the action of
a linear measurement operator H (including the possibility of
potential noise corruption). The specific form of the measure-
ments depends on the physical nature of the system and the
noise. For example y = Hx+n is the appropriate form for an
optical system with post-measurement additive noise n, while
y = H(x+n) is the appropriate form for an RF system with
pre-measurement additive noise (such as that which arises at
the input to the first-stage amplifier).

Regardless of the specific form, for traditional isomorphic
sensor systems operating with impulse-like sampling, the
measurement operator (matrix) H is the identity matrix I.
Computational sensing then generalizes this to consider sensor
systems that implement measurement matrices H that have
non-zero off-diagonal elements. In this manner, the measure-
ments y become multiplexed and estimation of x becomes a
non-trivial inverse problem. In this picture, compressive sens-
ing can then be described as a subset of computational sensing
where the sensing matrix H not only has off-diagonal ele-
ments, but is also rectangular with fewer rows than columns.
Thus, the number of acquired measurements in y is less than
the number of native signal elements in x.

A. The Importance of Calibration

Solution of the inverse problem—that is, estimation of the
input signal x from the measurements y requires knowledge
of the measurement matrix H. While the measurement system
will have been designed to implement a specific measurement
matrix Hdes, experimental reality dictates that the implemented
matrix Himp will deviate from the design to some extent. An

Fig. 1. The designed (top) and as-implemented (bottom) measurement ma-
trices for an experimental compressive tracking system [1]. The implemented
version of the matrix is an estimate created via a calibration process.

example of the possible deviation between Hdes and Himp for
an experimental system is shown in Fig. 1. For reasons out-
lined below, high-quality recovery of x is frequently sensitive
to these variations. Determining the actual form of Himp is
then the role of calibration.

The sensitivity of system performance with respect to small
deviations between Hdes and Himp can be understood by con-
sidering the multiplex nature of the measurement matrix. As
mentioned above, the distinguishing feature of computational
and compressive sensing approaches is that their measurement
matrices contain non-zero off-diagonal elements. As a result,
multiple signal elements are multiplexed together in each of
the measurements. In cases where the input signal is dense
in the native basis, this has the effect of encoding information
about the input signal x into the variations of y about its mean.

This mean value (or baseline) frequently utilizes a signif-
icant fraction of the available system dynamic range, limit-
ing the dynamic range available for the variations—where
the information about x is encoded. An example is shown
schematically in Fig. 2. This issue is analogous to the interfero-
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Fig. 2. An example of the multiplexing baseline. (Left) Three phantoms of
size 32⇥32 composed of superposed partially-transparent ellipses. The mean
value of the three phantoms is the same. (Right) Plots of the measurements
produced by the phantoms when sampled with the measurement matrix
in Fig. 1 (bottom). Information regarding the structure of the phantoms
undergoes dynamic range compression and is encoded in the variations about
the measurement mean.

metric baseline problem that arises in interferometric systems
and is the primary manifestation of the so-called multiplex
disadvantage.

It is true that the effect is mitigated somewhat in systems
which are sparse in the native basis. However, practical situa-
tions that are natively sparse are rare (hence the need for the
sparsifying transform in the majority of compressive sensing
implementations).

The net effect of the dynamic range compression that results
from the multiplex measurement that converts x into y is that
accurate reconstruction becomes more sensitive to the specific
form of H that encoded the measurements—thus driving the
preference for Himp (which is determined via calibration) over
Hdes (which is known from the intended system design).

B. Difficulties of Direct Calibration

The most direct calibration approach is what we might
term point-by-point, and is effectively a Green’s function
(shift-variant impulse response) approach. The experimenter
sequentially energizes each of the individual signal elements
with unit amplitude. For each, the system response is recorded
and then placed sequentially as the columns of a matrix. Once

every signal element has been probed in this manner and the
results integrated into the matrix, the result is an estimate of
true measurement matrix Himp.

Although the point-by-point calibration approach is ad-
mirably direct, there are a number of potential difficulties that
limit its practicality:

1) Signal response too weak: Energizing a single signal
element at a time may produce a system response that
is swamped by noise. Here we directly encounter the
fact that calibration is itself a measurement process.
Specifically, direct calibration estimates the measure-
ment matrix Himp via a traditional isomorphic approach
where the estimate of each column of Himp is taken
as the measured system response for the corresponding
single-element excitation. Any measurement noise is
directly imposed on the estimate and may be non-
negligible.

2) Too many signal elements: As computational and com-
pressive sensing is applied to broader ranges of systems,
the dimensionality (number of native signal elements)
continues to grow. In the most advanced systems, the
number of signal elements is of such a size that direct
calibration is no longer practical—the time required is
either beyond the patience of the experimentalist, or is
on a timescale that is comparable with the timescales
over which the measurement matrix Himp varies (e.g.
via thermal drift). For example, a compressive spectral
imaging system under construction in my laboratory [2]
has ⇡ 8.4 ⇥ 106 native signal elements. Making the
(optimistic) assumption that the apparatus will allow
direct calibration at a rate of 10 Hz, we see that direct
calibration would complete in just under 10 days of
continual operation!

3) Lack of desired control: The direct approach requires
the ability to isolate single signal elements and to control
their amplitude. It is frequently the case that the experi-
mentalist does not have a source that provides this level
of control. For example, in a computational spectro-
scopic application, a tunable, narrowband spectral source
may not be available. Instead, the experimenter may
have access to a discrete set of spectral sources, each
with a unique spectral profile that is a linear combination
of the individual spectral channels.

II. EXISTING NON-DIRECT METHODS AND THEIR
LIMITATIONS

The realization (mentioned above) that calibration is it-
self a measurement process potentially provides the key to
overcoming the pitfalls inherent in direct calibration. Direct
calibration represents a traditional, isomorphic measurement
approach to estimating the measurement matrix Himp. That
is, if we imagine lexicographically reordering the elements of
Himp into a vector Himp,vec, the calibration process utilizes a
measurement matrix �cal to capture the calibration measure-
ments. For an optical system with post-measurement additive
noise, this would have the form y = �calHimp,vec+n, with the
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obvious extensions to other measurement models. For direct
calibration, �cal is the identity matrix I.

As with the original measurement problem, however, we
can apply computational or compressive sensing ideas to
the calibration process and consider more general forms of
�cal. There are a number of existing calibration approaches
that make this generalizing step. The following subsections
describe these approaches, their benefits with respect to direct
calibration, and their limitations.

A. Multiplexed Calibration

Multiplexed calibration simultaneously energizes multiple
signal elements for each measurement in the calibration pro-
cess, resulting in a �cal that contains non-zero off-diagonal
elements [3]–[5]. Estimation of Himp,vec then proceeds through
the solution of an inverse problem. If the column rank of the
resulting �cal is equal to the number of native signal elements,
then traditional algorithms can be brought to bear to yield
the estimate. If the column rank is smaller than the number
of native signal elements, compressive sensing techniques are
more appropriate.

The plausibility of compressive methods for determining
Himp,vec can be understood by examining the structure of
measurement matrices such as Fig. 1 (bottom) and noting the
large degree of structure present. Obviously, this structure is
a form of redundancy that indicates that H is fundamentally
a lower-dimensional object than the native number of matrix
elements would suggest. Note that this argument would not
hold for random measurement matrices (although structure im-
posed as a result of implementation deviations would provide
some reduction in the dimensionality)—a severe downside to
random measurement in extremely high-dimensional systems.

1) Advantages:
• Multiplex calibration combines signal elements in every

measurement. For systems dominated by additive noise,
this reduces the impact of the noise, increasing the
measurement SNR.

• Compressive multiplexed calibration—where the column
rank of �cal is less than the number of native signal
elements—reduces the number of measurement acquisi-
tions and hence the required calibration time. This may
prove helpful in situations where direct calibration is
unfeasible as a result of the number of signal elements.

2) Drawbacks:
• Multiplex-based improvement in measurement SNR does

not occur in systems that are Poisson (shot) noise limited.
The mean SNR of such measurements remains constant
upon multiplexing.

• Estimation via solution of the inverse problem results in
transform noise—The total noise in the measurements is
redistributed among the estimated signal elements in ways
that can radically modify the noise statistics. For example
in Poisson noise limited systems, noise is preferentially
redistributed from strong to weak areas of the signal.
This produces sub-Poisson noise statistics in the strong
signal areas and super-Poisson statistics in the weak

signal areas. Transform noise also frequently introduces
correlations between the noise present at different signal
elements, creating the appearance of structure when none
is truly present. This redistribution results in errors in
the estimated Himp,vec that can potentially impact system
performance.

B. Matrix Completion

A closely-related approach applies the techniques of ma-
trix completion [6]–[8] to the problem. In this approach,
assumptions regarding the low-rank nature of the measurement
matrix Himp allow its full structure to be estimated given
knowledge of only a subset of its entries. In a recent paper,
Vetterli et al. explore the use of matrix completion methods to
the calibration problem in ultrasound imaging [9] and obtain
promising results.

1) Advantages:
• The method is well-matched to the central task at hand—

estimating a low-rank (structured) matrix from a set of
possibly incomplete calibration measurements. In some
cases this would allow the experimenter to achieve an
accurate estimation of Himp from a reduced number of
calibration measurements and hence shorten the required
calibration time.

2) Drawbacks:
• Matrix completion is generally posed in the context of

missing entries that are distributed randomly throughout
the matrix (see [9] for an example). This is suitable
for systems where the output state of the system must
be sequentially acquired in order to determine the full
system response to a given calibration input. For systems
where the output measurements are acquired in parallel,
however, skipping a calibration step (to shorten the
calibration time) would result in missing entries that are
not arranged randomly throughout Himp, but rather are
organized in columns, and existing algorithms perform
poorly in this situation. Performing matrix completion
after a basis change to redistribute the missing entries
may possibly restore performance, but I am not aware of
any work in that area.

• In their current form, matrix completion methods assume
elements of the matrix are known in the native basis—
implying single element excitation. This suffers from the
same potential SNR issues as direct calibration. The pre-
viously mentioned idea of performing matrix completion
after a basis change, should such an approach prove
viable, would allow (require) multiplexed excitation. This
would increase measurement SNR for cases which are
limited by additive noise.

C. Parameterized Forward Model

The final (and most common) method of calibration is to
create a parameterized forward model. In essence, it seeks to
estimate Himp through the creation of a more sophisticated
Hdes. The system model is extended to include possible errors
that could arise during implementation and the magnitude of
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these errors are incorporated as adjustable parameters. Cali-
brating such a system is then a matter of determining certain
experiments (excitation patterns) which reveal the appropriate
magnitudes for these parameters.

1) Advantages:

• A well-developed parameterized forward model is ex-
tremely powerful. It incorporates a significant amount of
prior knowledge regarding the intended structure of Hdes
as well as the physics of the likely effects that transform
Hdes into Himp. The resulting number of parameters
captures the underlying dimensionality of Himp with
admirable efficiency.

2) Drawbacks:

• The parameterized forward model approach trades cali-
bration acquisition time for model development time. The
net benefit of this trade-off (if any) depends on the skill
and insight of the person developing the model.

• Model mismatch is a serious concern; the model only
incorporates terms that are explicitly included. Deviations
between Hdes and Himp that arise from implementation
errors that are not included in the model will not be
captured during the calibration process.

• In advanced, high-dimensional systems, the number of
necessary parameters can proliferate quickly (in cor-
respondence with the increasing dimensionality of the
underlying measurement structure of the instrument). The
resulting models can become unwieldy and design of
experiments to isolate the values of individual parameters
may become difficult or impossible.

III. WHAT IS NEEDED

Although there are a number of non-direct calibration
methods now in use, each has its own unique balance of
advantages and drawbacks and none of the methods is ideal. In
this section, I attempt to describe the properties that an ideal
calibration approach would have and the theoretical questions
that must be addressed in order to develop such an approach.

Over the past several years, there has been an evolution
in the field of compressive sensing that emphasizes a move
from random to designed sensing matrices. The various design
strategies incorporate prior information regarding the statistical
distributions of likely input signals, the nature of the sensing
task, and the reconstruction/estimation algorithms that will
be brought to bear. This design is then performed subject
to the constraints of both physics and system architecture.
The ideal calibration framework would provide a similar
level of design by identifying the sequence of calibration
measurements to be made subject to a variety of priors and
constraints. Fundamental questions related to this goal include:

• What is the appropriate mathematical framework for the
design of calibration sequences? Is there a mathematical
reason to prefer the matrix, Himp (matrix completion)
or vector, Himp,vec (computational/compressive sensing)
form to the problem?

• Can constraints on the available input signals be incor-
porated in the design process? What if only a fixed set
of inputs are possible?

• The experimenter will have general knowledge regarding
the approximate form of Himp (via knowledge of Hdes).
How can this prior knowledge be incorporated into the
design process?

• Clearly not all errors in estimating Himp will be equiv-
alent. The effect of specific errors is likely to depend
on the ultimate sensing task of the system. How can
prior information regarding this task be incorporated into
the design of the calibration sequence? How can prior
information regarding the likely input signals (in the
course of the sensor task, not calibration) be incorporated
into the design of the calibration sequence?

• Can the framework be made adaptive? Can the results
of early stages in the calibration sequence influence the
design of subsequent calibration measurements?

• Are there fundamental limits or guarantees that can be
stated about designed calibration?

IV. CONCLUSION

Calibration is currently an open challenge with regards to
developing advanced compressive and computational sensing
systems. The fact that calibration is itself a measurement
process provides a key opening through which to attack this
problem. It is my hope that the rough ideas presented here can
spark an engagement between the theoretical and experimental
communities on this crucial issue.
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Abstract—In this paper we investigate the performance of a
combined Compressive Sensing (CS) Constant False Alarm Rate
(CFAR) radar processor under different interference scenarios
using both the Cell Averaging (CA) and Order Statistic (OS)
CFAR detectors. Using the properties of the Complex Ap-
proximate Message Passing (CAMP) algorithm, we demonstrate
that the behavior of the CFAR processor is independent of
the combination with the non-linear recovery and therefore its
performance can be predicted using standard radar tools. We
also compare the performance of the CS CFAR processor to that
of an `1-norm detector using an experimental data set.

I. INTRODUCTION

Compressive Sensing (CS) is a novel data acquisition
scheme that enables reconstruction of sparse signals from
highly undersampled measurements. In many radar applica-
tions, such as air traffic control, obstacle avoidance, and wide
area surveillance, it is reasonable to assume that the scene is
sparse, since the number of targets is much smaller than the
number of resolution cells in the illuminated area. Examples
of CS applied to radar can be found in [1]–[5].

However, while classical radar architectures use well-
established processing algorithms and detection schemes, such
as Matched Filtering (MF) and Constant False Alarm Rate
(CFAR) detectors, the reconstruction of the target scene from
the CS measurements involves the use of highly nonlinear
algorithms such as `1-norm minimization. These algorithms
have a number of parameters that must be tuned properly in
order to achieve good performance. The optimal value of the
parameters depend on both the underlying noise power and the
number of non-zero coefficients. Hence, in a practical scenario,
where neither the disturbance variance nor the number of
targets are known a priori, it is not clear how to tune these
parameters to achieve the desired performance.

In most operational radars, to deal with the uncertainties
about the background and the interference scenario, CFAR
processors are widely used for adaptive target detection.
Several CFAR schemes have been designed to attain good
performance in the presence of different types of clutter and
target scenarios [6]–[8]. The modeling and prediction of False
Alarm Probability (FAP) is essential for the design of CFAR
schemes. This in turn requires some level of knowledge of the
underlying noise (or clutter) distribution that is input to the
detector. Designing CFAR schemes seem to be out of reach
for CS radar systems, due to the so far unknown relations
between FAP/noise statistics and the parameters involved in
the `1-norm reconstruction.

In [5], [9] we show that, using the properties of the
Complex Approximate Message Passing (CAMP) [10], CFAR
processing can be combined with `1-minimization to obtain
fully adaptive detection schemes. In this paper, we further
investigate the performance of the joint CS CFAR detector in
combination with both the Cell Averaging (CA) and the Order
Statistic (OS) CFAR processors under different interference
scenarios using a set of CS radar measurements.

II. COMPLEX APPROXIMATE MESSAGE PASSING (CAMP)
In CS, we are concerned with the problem of recovering a

k-sparse signal x
0

2 CN from an undersampled set of linear
measurements y 2 Cn of the form

y = Ax

0

+ n, (1)

where A 2 Cn⇥N is the sensing matrix, and n is complex
white Gaussian noise with variance �

2
in. Let n < N and define

� = n/N and ⇢ = k/n.
Since the number of measurements n is smaller than the

number of signal samples N , the problem of recovering x

0

is ill-posed. However, under certain conditions on A, n, and
k the following convex optimization problem, known in the
literature as the LASSO [11] or Basis Pursuit Denoising
(BPDN) [12], recovers a close approximation of x

0

[13], [14]:

b
x = min

x

1

2
ky �Axk22 + � kxk1, (2)

where � is a regularization parameter that controls the trade
off between the sparsity of the solution and the `2-norm of the
residual. Finding the “optimal” value of � is a major practical
problem when dealing with CS reconstruction algorithms. In
particular, for radar applications the relations between the
parameter � and the detection and false alarm rates are
unknown.

The Complex Approximate Message Passing (CAMP) is an
iterative algorithm for solving (2) for signals in the complex
domain.1 Interestingly, the CAMP algorithm has a number
properties that enable us to solve both the problem of optimal
tuning and adaptive target detection. These properties are
summarized in P1–P3 [10], [15], [16]:
P1: Under an appropriate tuning of the regularization param-

eter used in CAMP and the parameter � in (2), CAMP
solves LASSO exactly. See Section 3.4 in [10].

1A detailed description of the algorithm and its properties can be found in
[5], [9], [10].

Proceedings of the 10th International Conference on Sampling Theory and Applications

57



P2: At every iteration, x̃t can be considered as x
0

+w

t, where
the distribution of w

t converges to complex Gaussian
with zero mean and variance �

2
t . See Section 3.4 in [10].

P3: The performance of CAMP can be predicted theoretically
by the so-called state evolution equation. See Section 3.1
in [10].

An important relation derived from the analytical framework
used in CAMP is that the variance of the total noise �

2
t

present in the signal x̃ at each iteration t is expressed as a
linear combination of the input noise variance and the MSE
of the solution: MSEt=

kbxt�x0k2

N .2 In CAMP an estimate �̂

2
t

of the noise variance is computed at each iteration by means
of median filtering.

Also, using the signal-plus-noise model described in P2,
the problem of tuning the regularization parameter in CAMP,
which we refer to as ⌧ , can be easily solved. Amongst all
⌧ , the optimal threshold ⌧o in CAMP is the one that achieves
the minimum MSE or, equivalently, the minimum �

2
1. For the

practical case of unknown signal and noise statistics, we can
use the Adaptive CAMP algorithm described in [9] to obtain
a good estimate ⌧̂o of the optimal threshold multiplier ⌧o. The
optimum estimated threshold ⌧̂o is the one that minimizes the
estimated CAMP output noise variance. This choice, in turn,
also maximizes the recovery SNR of CAMP.

III. CS TARGET DETECTION USING CAMP
In radar, the detection problem is to determine the presence

or absence of a target in a given range/Doppler bin when the
received signal is corrupted by noise and clutter. In practice,
both the noise and clutter power are unknown a priori, and
therefore an adaptive detection scheme must be designed.
Also, it is desirable that the detector has the CFAR property.
We consider here two different CS CAMP based architectures,
whose block diagrams are shown in Figure 1.

In the first system, the CS reconstruction is considered as the
detector itself. This implies that in CAMP we should set the
threshold, say ⌧↵, such that the desired FAP ↵ is achieved. It is
shown in [5] that for complex signals, if x

0

= 0, then setting
the CAMP threshold ⌧↵ =

p
� ln↵ results in a FAP equal to

↵. We will refer to this detection strategy as Architecture 1;
its block diagram is shown in Figure 1(a).

However, theoretical and empirical results [9] show that
better performance can be achieved in terms of detection (Pd)
and false alarm probability (Pfa or FAP) if the CS recovery
is followed by a second detector. This means that, just as in
conventional radar processing, we can use the recovery stage
(a Matched Filter (MF) in classical architectures) to maximize
the recovery SNR (i.e., maximize detection for a given FAP),
and later use the detector to obtain the desired FAP. In this

2Specifically, for the case of Gaussian sensing matrices, at the fixed point
solution (t ! 1), the relation �2

1 = �2
in + 1

�
MSE1 holds; see [10], [15]

for a more detailed analysis on the (C)AMP input/output relations. From the
previous equation, it is clear that the CAMP total output noise power is the
sum of the effective system noise plus noise introduced by the recovery itself.
Consequently, for a given input SNR, minimizing MSE also minimizes the
output noise variance and therefore maximizes the reconstruction (or recovery)
SNR.

(a) Architecture 1

(b) Architecture 2

Fig. 1. Detection schemes based on CAMP. Note that in Architecture 2 the
output of CAMP is the noisy version of the estimated signal x̃.

case the CAMP threshold is selected to achieve the minimum
MSE at the output of CAMP, i.e., ⌧ = ⌧o, and ⌧o is estimated
using Adaptive CAMP. We refer to this scheme as Architecture
2. In this architecture, the input to the detector is the signal
x̃. According to P2, this signal can be modeled as the sum of
the true observable x

0

plus Gaussian noise.

Thanks to the statistical properties of CAMP summarized
in P1–P3, the CAMP thresholds can now be set, adaptively in
Architecture 2 and as a function of the FAP for Architecture
1.

Ideally, if the noise statistics were homogeneous, stationary
and known, the detector threshold in Architecture 2 could be
set once and remain fixed. This represents the ideal case of a
fixed threshold (FT) detector. In practice, however, these con-
ditions are never satisfied and CFAR processors are employed
to adaptively estimate the detector threshold (↵) when the
noise statistics are not known in advance. In CFAR schemes
the cell under test (CUT) is tested for the presence of a target
against a threshold that is derived based on an estimated clutter
plus noise power. The cells surrounding the CUT (CFAR
window) are used to derive an estimate of the background
and they are assumed to be target free. The great advantage
of CFAR schemes is that they are able to maintain a constant
false alarm rate via adaptation of the threshold to a changing
environment. It is known that for the case of homogeneous
Gaussian background, the optimum CFAR processor is the
well-known Cell Average CFAR (CA-CFAR) detector [6].
However, in situations in which the clutter changes rapidly or
in the presence of interfering targets in the CFAR window, or
when the clutter and noise distribution are not Gaussian, the
CA-CFAR detector performance degrades severely. For this
reason many alternative CFAR schemes have been developed
in the past, such as the Order Statistic (OS) CFAR detector
[7], [8]. In OS-CFAR processing, the power received from
the cells in the CFAR window are rearranged in increasing
order and the kth ordered cell (order statistic) is used as an
estimate of the environment. OS-CFAR processing has the
advantage of being robust against interfering targets in the
CFAR window and clutter power transitions, while preserving
reasonably good performance in homogenous background.
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IV. EXPERIMENTAL DATA

In the this section, we compare the performance of the pro-
posed detection schemes under different interference scenarios
using a set of experimental CS radar measurements.

A. Experimental Set-up

In our experiments, we consider the case of a one di-
mensional radar operating in the range domain. We use as
targets five stationary corner reflectors with different Radar
Cross Sections (RCS). For each transmitted waveform 300
measurements (with the same set-up) were performed.

The measurements were carried out at Fraunhofer FHR,
in Germany, using the LabRadOr experimental radar system
described in [5]. We used a stepped frequency (SF) waveform
and the TX signal consists of a number of discrete frequencies
fm. In the Nyquist case (that represents unambiguous mapping
of ranges to phases over the whole bandwidth) we transmit
N = 200 frequencies over a bandwidth of 800 MHz. The
achievable range resolution is therefore �R = 18.75 cm. Each
frequency is transmitted during 0.512 µs, corresponding to a
bandwidth of Bf = 1.95 MHz, and sequential frequencies are
separated by �f = 4 MHz, resulting in an unambiguous range
of �R = 37.5 m.

In the CS case, the number of TX frequencies is reduced
from N to n (n < N ). The subset of transmitted frequencies
is chosen uniformly at random within the total transmitted
bandwidth, with the constraints that we always use the first
and last frequencies in the bandwidth (to span the same total
bandwidth to preserve range resolution), and we also force
at least two of the transmitted frequencies to be separated by
the nominal frequency separation �f , to guarantee that the
unambiguous range is preserved.

After reception and demodulation each range bin maps to n

phases proportional to the n transmitted frequencies, and the n

samples ym, m = 1, · · · , n, of the compressed measurement
vector y are given by

ym =
1p
n

NX

i=1

e

�j4⇡fmri/c
x0,i, (3)

where ri = r0 + i�R/N , and i = 1, . . . , N is the range bin
index.

B. Results

In this section, we use ROC curves to analyze the perfor-
mance of the the two CAMP based detection schemes for
both interfering and non-interfering target scenarios, which we
obtain by changing the CFAR window size. For Architecture
2, we combine the CAMP recovery with both the CA and OS
CFAR processors.

Figure 2 exhibits the signals reconstructed by using the two
CAMP based architectures introduced in Section III in addition
to the MF, which represent the reference case. We use � = 0.5
for the CS measurements and N = 200 measurements for the
MF. There are five corner reflectors (T1–T5) at ranges from
20m to 36m. For Architecture 1, ⌧↵ was set using ↵ = 10�4.
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Fig. 2. Reconstructed range profile using CAMP Architectures 1 and 2, and
the MF. For the MF, N = 200 (i.e., no subsampling); for all other schemes
n = 100 and � = 0.5. The y-axis is in log scale and arbitrary units [au].

Notice that the signal from Architecture 2 is a noisy version of
the estimated sparse signal before soft thresholding is applied,
whereas the signal estimated from Architecture 1 is the sparse
signal, where each non-zero coefficient represents a detection.

In the interest of space, we report only the ROC curves for
target T3. For the other targets, the behavior of the detectors
is the same, although the actual values of Pd are different
due to the different SNRs of both the desired target and the
interferers. For estimating Pd, we used the detection at the
location of the highest target peak. For Architecture 2 we use
both the CA and OS CFAR processors, preceded by a Square
Law (SL) detector. For the CFAR processors, we use 4 guard
cells and 3 different CFAR windows of length 20, 40 and 90
respectively. For the OS-CFAR, the selected order statistic is
chosen as kOS = 0.6%.

Note that for all detector cases (adaptive and non-adaptive),
the CAMP reconstruction threshold ⌧o of Architecture 2 is
always adaptive, whereas in Architecture 1 the threshold ⌧↵ is
non-adaptive and fixed. Furthermore, the performance of the
two architectures are upper bounded by the performance of
Architecture 2 that uses an ideal (non-adaptive) fixed threshold
(FT) detector instead of a CFAR one.

Figure 3(a) shows the ROC curve for T3 with a CFAR
window of length M = 20. For this choice of M , none of the
other targets fall in the CFAR window of T3, and therefore
the CA-CFAR processor performs better than the OS one.
Furthermore, we can see that it also outperforms Architecture
1, where the noise variance is estimated inside the CAMP
algorithm using the median estimator. Therefore, Architecture
1 is similar to an OS processor that uses the entire range as the
CFAR window and kOS = 0.5. Clearly, in this case the CA-
CFAR performs better than both the OS and Architecture 1,
since it excludes the other targets from the (local) estimation
of the noise level, therefore resulting in an unbiased estimate.
For this window size, CA is the best choice since there are no
noise/clutter power transition, and the targets are never in the
reference window of one another.

Figures 3(b) and 3(c) show the results for the same data set
but for CFAR windows of sizes 40 and 90, which result in 2
and 3 interferers in the CFAR window of the target of interest.
In both cases we observe that, in accordance with conventional
CFAR processing, Architecture 2 with OS-CFAR outperforms
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(a) CFAR window length M = 20
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(b) CFAR window length M = 40
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(c) CFAR window length M = 90

Fig. 3. ROC curves for T3 using Architecture 1 (blue), and Architecture
2 in combination with FT detector (black), CA-CFAR (red), and OS-CFAR
(magenta) processors. For the OS-CFAR processor, kOS = 0.6M . � = 0.5.

Architecture 2 with CA-CFAR but performs very similarly
to Architecture 1. Furthermore, the performance of the CA-
CFAR processor degrades as the number of interfering targets
in the reference window increases. Note that the ROC curve
of Architecture 1 (and also Architecture 2 with FT detector)
is unchanged for different CFAR window sizes. In fact, for
Architecture 1 we do not use a CFAR processor and the
CAMP reconstruction is independent of the locations of the
targets, as it uses the whole range response. It is clear that, in
cases where there might be multiple interfering targets either
an OS-CFAR processor should be used after Architecture 2
or otherwise the theoretically suboptimum Architecture 1 can
represent a simple, effective alternative to CFAR processing.
However, the disadvantage of Architecture 1 is that it lacks the
local adaptivity provided by CFAR processing. Clearly, there
is a trade off between the number of range bins used for the
noise power estimation and the bias in the estimate that can
be caused by including in the reference window interfering
targets and /or noise and clutter power transitions.

V. CONCLUSIONS

In this paper we compare the results of different CS based
radar detection architectures. From the experimental results we
conclude that:

• the combination of CS with standard CFAR processing
does not alter the behavior of the CFAR processor com-
pared to the case when this is used in combination with
a standard MF;

• in the presence of interfering targets in the CFAR window,
as expected, OS is better than CA-CFAR processing;

• although the performance of Architectures 1 and Archi-
tecture 2 plus OS-CFAR are similar, Architecture 2 seems
to be preferable as it leaves the user the freedom to chose
the most appropriate processing parameters and it allows
to perform a local adaptation of the threshold. With the
combined architecture, the CFAR loss can be controlled
by changing both the type of CFAR processor and the
window length.
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Abstract—Ground-penetrating radar (GPR) and electromag-
netic induction (EMI) sensors are used to image and detect
subterranean objects; for example, in landmine detection. Com-
pressive sampling at the sensors is important for reducing the
complexity of the acquisition process. However, there is a second
form of sampling done in the imaging-detection algorithms where
a parametric forward model of the EM wavefield is used to
invert the measurements. This parametric model includes all
the features that need to be extracted from the object; for
subterranean targets this includes but is not limited to type,
3D location, and 3D orientation. As parameters are added to
the model, the dimensionality increases. Current sparse recovery
algorithms employ a dictionary created by sampling the entire
parameter space of the model. If uniform sampling is done over
the high-dimensional parameter space, the size of the dictionary
and the complexity of the inversion algorithms grow rapidly,
exceeding the capability of real-time processors. This paper shows
that strategic sampling practices can be exploited in both the
parameter space, and the acquisition process to dramatically
improve the efficiency and scalability of the these EM sensor
systems.

I. INTRODUCTION

Parameter estimation of unknown objects through the use
of wavefield sensors is a well researched area. An increasingly
popular solution to these types of problems comes from
the advancements in compressive sensing (CS) and sparse
recovery [1]. These inversion algorithms rely on the fact that
a highly accurate forward model of the data could be created
to describe the dependence of the physical sensor data (i.e.,
the measurements) on the interesting parameters of the objects
being imaged. This approach highlights an issue with CS. The
inherent need for a random sensing matrix does not always
lend itself easily to practical data acquisition from sensors.
On the other hand, creating a comprehensive target model,
oftentimes called a dictionary, and referred to in the CS world
as a sparsifying transform, can quickly become too large and
too computationally intensive for real-time computers. The
data collection and imaging flow is shown in Fig. 1.

The key sampling issue is creating a dictionary of manage-
able size, even when it is desirable to add more parameters
to the model. A d-parameter, m-measurment model leads to
a dictionary of size O(N

d+m
), assuming equal sampling (N)

of each variable. This paper will show, through the use of
strategic parameter-space sampling, that the dimensionality of
the dictionary can be reduced in two different acquisition
environments. Thus the computational complexity of these

Fig. 1. Imaging algorithm flow.

parameter detection problems can be drastically reduced for
these sensor systems.

There are two different acquisition systems that are dis-
cussed in this paper. The first system is three-dimensional (3D)
imaging of subterranean targets using a ground-penetrating
radar (GPR). The typical acquisition sampling pattern in GPR
allows for reduced data acquisition time through the use of
a random sensing pattern. The simplification of sampling
the parametric forward model comes from exploiting the
translationally-invariant nature of the physical model. The
second system uses electromagnetic induction (EMI) sensors
to detect and classify underground metallic targets. In this
case, the strategic sampling of the parameter space comes
from adopting an efficient tensor model to describe the ori-
entation and magnetic polarizability of the target. This can be
extracted using a rank-minimization detection algorithm. This
model represents orientation space continuously with very
few samples, instead of requiring the entire 3D angle space
to be enumerated. This dramatically reduces computational
complexity and also increases accuracy by eliminating the off-
grid parameter sampling problem with regards to orientation.

II. GROUND-PENETRATING RADAR

The GPR system considered here is a stepped-frequency
system that has been previously described in detail [2]. The
forward model is a point-target model, and the detection
algorithm is based on sparse recovery (CS). The remainder
of this section explains how acquisition sampling and model-
parameter sampling together lead to a translational-invariance
property that can achieve the computational complexity reduc-
tions in the detection algorithm that were shown in [3].
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A. Model

The point-target model used for the detection algorithm is

 (f, ls, lt) =
g(f)e

�2j⇡f⌧(ls,lt)

S(ls, lt)
, (1)

which is a function of the stepped frequencies, f ; the sensor
positions, ls = (ls(x), ls(y), 0); the target locations, lt =

(lt(x), lt(y), lt(z)); and the spreading parameter, S(ls, lt).
This forward model,  (f, ls, lt), is used as the dictionary, or
sparsifying transform. If  is discretized and enumerated for
all possible frequencies, sensor locations and target locations,
the resulting model  is 6D. The storage requirements are
O(N

6
) for equal discretization of all parameters, [3]. Our

objective is to use properties inherent in the model and the
acquisition system to reduce this storage and computational
burden.

B. Special Properties

A special property that can be used for increased efficiency
is the fact that the model above can be translationally invariant.
A translationally-invariant model can be applied using the
Fast Fourier Transform (FFT), which eliminates the storage
requirements for each dimension having this property. The
translational-invariance property is true when the parameter
space and the measurement space are evenly sampled in the
same direction. In other words, when the target and the sensor
are moved an equal distance in a horizontal dimension, x or y,
the radar response will remain the same. Also, to use the FFT
to garner the complexity reduction, the stepped frequencies at
each sensor position, ls, must be the same. This runs counter
to the usual random sampling approach in CS, but it is a
very important constraint when trying to exploit this special
property even in a CS environment.

C. Compressive Sensing Detection Algorithm

Now that the special properties in the model are identified,
the detection algorithm itself can reduce the time needed for
computation and data acquisition, if the sampling is done
properly. The idea behind CS is that if the model parameters
can be sparse, then projecting the model onto a known random
subspace with much lower dimensionality than the original can
still enable an accurate inversion [1]. Often the projections are
done with a random sampling matrix � applied to the model,
 . For good results, � should be independent and identically
distributed (IID) random. There are a few techniques that will
reduce the computational complexity of this general matrix
multiplication, but they do not allow for any reduction in
acquisition time for this particular GPR acquisition system
[4], [5].

To get a mix of computational complexity reduction and
data acquisition time reduction while staying within the CS
framework, a strategic � should be designed. An in-depth
analysis of the trade-offs in designing � for this GPR ac-
quisition system were studied by Gurbuz et al. [6]. The basic
trade-off is that the more structured � becomes, the higher the
coherence of the dictionary, and thus the higher the number

Fig. 2. Flow chart of GPR acquisition system, models, and complexity
reducing properties

of samples required for reconstruction, but this can also allow
for reduction in data acquisition time. For this problem, some
additional structure is needed in � to exploit the translational
invariance. To use the FFT across x and y dimensions, the
full x and y must be sampled for a given f . This means that
� can be built to randomly select a small number of f to
get both a reduction in complexity for the CS algorithm, but
also reduce the data acquisition time, and amount of data that
needs to be collected.

D. Complexity Reduction

The complexity reduction for exploiting these model prop-
erties in this particular system are quite significant. In terms
of storage space, the original fully discretized parameter-space
model is 6D having a storage requirement of O(N

6
). By using

the FFT and CS, the storage requirement for the dictionary
was reduced to O(MN

3
), where M < N is the number

of random frequency measurements. In practical application
of this method to laboratory measurements, the frequency
requirements are reduced from 401 to 10 [6]. For an actual
system, the data acquisition would take a fortieth of the time,
as well as saving a factor of 40 in the amount of storage
needed. The flow of the GPR acquisition system, the special
properties, and their effect on complexity are summarized in
Fig. 2.

There is also a rather significant reduction in algorithm time
in using the translationally-invariant model over using a direct
approach. Direct matrix multiplication for the 6D problem has
a complexity of O(N

6
), but the translationally-invariant model

can be applied in O(N

4
log2(N)) because the FFT can be

applied along two of the parameter dimensions. A semilog
plot of computation time versus problem size (N) for both of
these models in theory, and the FFT-based method in practice,
can be seen in Fig. 3. For N = 70, the FFT-based method is
more than 400 times faster. In fact, the direct method was not
measured since it cannot be applied for N = 70 because the
storage requirements are about 950 Gbytes, while the FFT-
based method requires around 200 Mbytes.

III. ELECTROMAGNETIC INDUCTION SENSOR

A different acquisition system used for collecting target data
is a multi-frequency (wideband) EMI sensor system. Multiple
sensors are scanned in a down-track pattern, acquiring a sam-
pled frequency response at uniformly spaced locations along
the scan path. The forward model is a frequency domain model
with many more parameters than the point target model [7]–
[10]. The sparse recovery algorithm used is formulated as a
combined least-squares and low-rank approximation problem.
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A. Model

The basic model used for this system is one that is written
in the frequency, !, domain, for a single target type, µ,

r(!, ls, lt,ot, µ) = g

T
(l)R(ot)A(!, µ)R

T
(ot)f(l). (2)

ls = (ls(x), 0, 0) is sensor position, lt = (lt(x), lt(y), lt(z))

is 3D target location, ot = (ot(↵), ot(�), ot(�)) is target
orientation, A(!, µ) is a 3⇥3 matrix that defines the mag-
netic polarizability of the target, and l = lt � ls is the
relative location vector for the target if the sensor was the
origin. g(l) and f(l) are vectors that contain the spatial
components of the magnetic field on the receive coil and the
transmit coil respectively based on the relative location vector
l. R(ot) is a simple rotation matrix that rotates by angle
ot. When all the measurements, {!, ls(x)}, and parameters,
{lt(x), lt(y), lt(z), ot(↵), ot(�), ot(�), µ}, are enumerated; the
result is a data hyper-cube of 9D. The storage requirement is
enormous when the parameter space is sampled finely enough.

An important change is to model the response as an ex-
pansion of magnetic dipoles, each with a frequency relaxation
[9]. The coefficients of the expansion can be computed from
the experimental data [11]. The coefficient for the term in the
expansion with a relaxation frequency, ⇣, is

r

⇣
(ls, lt,ot,⇤) = g

T
(l)R(ot)⇤R

T
(ot)f(l). (3)

Each individual ⇣ can be imaged separately using the same
model (3), regardless of type. Typically, the number of relax-
ation frequencies, N⇣ , is between one and six. There are two
significant benefits of the expansion. First, a specific frequency
response for each target type is no longer needed. Second,
A(!, µ) changes to ⇤, which is a 3⇥3 diagonal, positive
semidefinite, real matrix that does not depend on ! or µ. These
benefits greatly reduce the storage requirements. However,
since each ⇣ must be imaged independently, the number of
imaging steps increases from one to N⇣ , even though the
model itself does not depend on ⇣.

B. Special Properties

This model (3) has two special properties. First, the model
is separable into a product of functions. There are separate

functions for location, orientation, and magnetic polarizibility
that contribute to the product. This means that individual
parameters can be isolated from one another. The second prop-
erty comes from thinking of R(ot)⇤R

T
(ot) as a “generalized

amplitude” of the target. Usually, the response of a point target
is a scalar that represents the strength of the target, but the
matrix R(ot)⇤R

T
(ot) encodes additional information about

how the target strength depends on symmetry and orientation.
To build a dictionary, there needs to be an enumeration

for every possible sample in the interesting parameter space,
but it is undesirable to enumerate all possible entries of the
matrix ⇤ along with all possible orientation angles ↵. To avoid
storing a large number of samples, a change can be made to
the fundamentals of sampling this model. Instead of thinking
about a point target response as having a scalar amplitude, it
can be thought of as having a tensor amplitude by rewriting
the model in (3) as

r

⇣
(ls, lt,ot,⇤) = g

T
(l)T (ot,⇤)f(l), (4)

where T is a symmetric, positive semidefinite matrix that is
only 3⇥3. This will be referred to as a “tensor amplitude.” It
has a great advantage over just the scalar amplitude. It contains
the continuous orientation and the magnetic polarizability of
the target in its eigenvectors and eigenvalues respectively. This
gives a more accurate model, because it does not require
sampling of the orientation parameter, so there is no modeling
error associated with having targets whose orientations do
not lie exactly on the sampled orientation space. Also, this
reformulation reduces a 3D grid of angle samples to just
six independent values in T (ot,⇤) which provides a large
computational savings. Once T (ot,⇤) is found, an eigen-
decomposition will yield ot and ⇤.

C. Detection Algorithm

The detection algorithm for the EMI acquisition system is a
combination of least squares and a semidefinite programming
(SDP) technique used to get a low-rank approximation. The
solution to this problem is sparse in 3D, in just the same way
the GPR system is sparse. In fact, in most cases it should
be even more sparse, because the model (4) is much more
sophisticated and is looking for magnetic dipoles, and not just
a sum of point reflections.

The full problem can be solved using a block-tensor repre-
sentation to simultaneously find the target location and the
tensor amplitude through a convex relaxation to the rank-
minimization algorithm [12],

min tr( ˆT )

s. t.

ˆ

T ⌫ 0, k b� s k< ✏. (5)

ˆ

T is a block-diagonal tensor made up of 3⇥3 tensors T t,
one for each possible target location. b is the collected
measurement vector,  is the dictionary enumerated from
(4), and s is a sparse parameter vector that makes up the
nonzero values in T . This exploits the fact that the block-
tensor structure will be extremely low rank. This is the case
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Fig. 4. Storage size for different versions of the sampled EMI acquisition
and processing system. Complexity is reduced by exploiting special sampling
properties of parametric models for EMI.

because the rank of the large block tensor structure, ˆ

T , is
just the sum of the rank of all tensor amplitudes, T t, of each
present target. This work is in its initial stage of development
because the full problem is computationally intense.

A shortcut can be used to break the algorithm into two
steps to address the complexity of the full problem. Using an
orthogonal matching pursuit type technique, a least-squares
problem is solved to approximate the location of the target
first [13]. Then (5) can be recast as a very small SDP,

min tr(T t)

s. t. T t ⌫ 0, k b� tst k< ✏, (6)

to get the tensor amplitude of the target at location, lt. The
target response is then subtracted from the measurement and
the process is repeated until the stopping criteria, a small
enough residual, is met.

The EMI system also has the translationally-invariant prop-
erty in the scanning dimension, x, just like the GPR acquisition
system. However, the detection algorithm for this model setup
is more complicated than direct matrix multiplication, so it will
be more difficult to take advantage simultaneously of both the
tensor representation property and the translational invariance
in the large problem. Such a combined algorithm would be
desirable, but it has not been implemented yet for a practical
application.

D. Complexity Reduction

The flow chart of measurement and parameter space simpli-
fications of the EMI system in Fig. 4 summarizes the special
properties exploited, and their resulting complexity reductions.
Using the dipole model is a very important computation saving
step, eliminating N

2 storage, going from a data hyper-cube
of N

9 to N

7. Using the tensor amplitude representation,
which changes the fundamentals of how the forward model
is sampled, both increases the accuracy of the solution and
garners an N

3 savings to drop the overall storage requirements
to N

4. This is the result of tensor sampling (which needs
six values) eliminating the need to finely sample the entire
3D orientation parameter. The EMI system also has the same
translational invariance as the GPR system, and if it were
exploited, there is another dimension of savings. Ultimately,
the result of taking advantage of these special properties could
obtain a savings of N6.

IV. CONCLUSION

This paper emphasizes the importance of the model rep-
resentation. How the measurements are acquired, how the

parameter space of the forward model is sampled, and how
these two sampling operations can be adjusted to take ad-
vantage of special properties can all contribute to reducing
the computational complexity. The tensor representation is
also a different way to think about modeling data, and has
been exploited in other applications such as seismic [14].
Using discrete values to provide continuous responses can
allow for more accurate models while still harnessing the
power of computers. A variation of this idea has been done
in modeling continuous signals with Taylor series and cosine
representations which allow for discrete values to be ac-
quired [15]. The advantages of these sampling structures have
been shown to drastically reduce computational complexity,
increase accuracy, and reduce data acquisition times when
combined with dictionary based detection algorithms.
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Abstract—This paper discusses sampling system design for
estimation of multidimensional objects from lower dimensional
measurements. We consider examples in geometric, diffractive,
coherence, spectral and temporal tomography. Compressive to-
mography reduces or eliminates conventional tradeoffs between
temporal and spatial resolution.

I. INTRODUCTION

Compressive measurement is generally defined as the esti-
mation of N signal values fromM measurements forM < N .
While this definition has been highly useful and successful
in many sensing and imaging applications, an alternative
definition is of equal utlity in tomographic imaging. Tomog-
raphy most commonly consists of imaging 3D objects from
measurements distributed over 1D or 2D sensor arrays. Typical
tomographic systems may be described by integral equations
of the form

g(y) =

∫
f(x)h(x, y)dx (1)

where x ∈ RN and y ∈ RM . One may define “compressive
tomography” as estimation of f(x) from g(y) in the case that
M < N .
Tomographic systems typically use sensor arrays embedded

on the boundary or surface of a volume under observation.
In fan beam tomography, for example, a linear detector array
measures attenuation of rays through a 2D object space. In
cone beam tomography, a planar detector arrray measures
rays projected through a 3D volume. Conventional tomography
overcomes the dimensional mismatch between the object and
measurement spaces by varying illumination and sensor geom-
etry as a function of time, thereby increasing the dimension
of the measurement space by 1. Thus in conventional systems
M = N − 1 for measurements taken at a fixed time, but
M = N when time is taken into account.
The most unfortunate aspect of the conventional approach

is that it requires that the object remain static as measurements
are collected over time. Over the past several years, my
group has applied compressive sampling theory to implement
snapshot compressive tomography. For example, we have
shown that 3D hyperspectral [1], diffraction [2] and x-ray
scatter [3] images may be reconstructed from 2D data. We
have also analyzed compressive sampling for reconstruction
of 3D objects with conventional optics [4]. Most recently, we
have shown that 3D video data cubes may be constructed

from 2D frames [5], thus using compressive tomography to
reconstruct time itself.
While the object distribution f(x) is by definition dis-

tributed over continous space, measurements ultimately consist
of discrete digital data. There is no fundamental requirement
that discrete measurements be indexed by a continous variable.
Standard compressive sampling models assume independent
kernels for each measurement. Unfortunately, completely in-
dependent kernels are difficult or impossible to implement on
measurements embedded in continuous physical space. Due in
part to this challenge, Candes’ early analysis of compressive
tomography focused on discrete subsampling of the temporal
portion of Radon space with continuous sampling in each
snapshot [6].
My group’s initial theoretical studies of compressive to-

mography focused on the use of multidimensional reference
structures to enable random or decorrelated measurement over
a continuous space [7]. However, most subsequent efforts
to implement practical compressive tomography may be de-
scribed in the context of three basic coding strategies
1) Measurement space coding. The standard model for in-
creasing measurement dimensionality with time involves
varying the the measurement kernel to obtain

g(y, t) =

∫
f(x)h(x, y, t)dx (2)

Measurement space coding multiplexes diverse kernels
in a snapshot to obtain

g̃(y) =

∫
g(y, t)C(y, t)dt =

∫
C(y, t)f(x)h(x, y, t)dxdt

(3)
where C(y, t) is a code applied to each time slice in
measurement space. C(y, t) is designed to allow “code
division multiple access” (CDMA) such that g(y, t) can
be isolated from g̃(y).

2) Object space coding modulates the object density prior
to measurement to obtain the forward model

g(y) =

∫
f(x)C(x)h(x, y)dx (4)

Again, C(x) enables the use of CDMA to increase the
effective dimensionality of the measurements.

3) Transform subsampling expands the subsampling strat-
egy of [6] to optimize which portions of the transform
space measured.
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CDMA is, of course, most commonly understood in the
context of multiuser communications. CDMA considers the
case that a set of relatively low frequency signals fi(t) must
communicate over the same channel. Multiplication of each
signal with an independent high frequency code Ci(t) enables
one to isolate each signal even when the overall transmitted
data is g(t) =

∑
i fi(t)Ci(t). This is achieved by assuming

that the codes are orthogonal over short time windows such
that∫ t

t−T

g(t′)Cj(t
′)dt′ =

∑
i

fi(t)

∫
Ci(t

′)Cj(t
′)dt′ = fj(t)

(5)
In effect, coding turns the 1D measurement over time into a
2D measurement over time and transmitter index. In the same
way, coding in tomography systems effectively increases the
dimensionality of the measurements. The question “What is
the maximum bandwidth of f(t) relative to the bandwidth of
C(t) such that this dimensionality increase can be achieved is
a central issue in compressive sampling theory.
The goal of the remainder of this paper is to relate these

abstract coding strategies to practical tomographic imagers.
Tomographic system design is inherently an integrated sensing
and processing challenge by which physical and geometric
constraints must be matched to mathematical conditioning
and algorithms. The next section reviews the basic physical
structure of tomographic imagers and dicusses how coding
strategies 1-3 are implemented in these systems.

II. FIELD MODELS AND CODING
While Eqn. (1) might describe many different measure-

ment systems, the underlying concept that measurements and
objects are distributed over continous spaces linked by a
continous kernel uniquely describes remote sensing systems.
The transformation from object to measurement is mediated
by radiation fields propagating between the two spaces. While
“tomographic imaging” in its most general sense refers to
systems as diverse as MRI and electron microscopy, most
analyses of computed tomographic imaging focus specifically
on imaging using radiating fields [8].
Radiation fields are commonly described by (1) geometric

models, under which the fields propagate as nondiffracting
rays, (2) diffraction models, under which the fields propagate
as waves and (3) coherence models, which generalize wave
models to account for quantum noise and measurement char-
acteristics [9]. Each field model is most applicable in specific
contexts, corresponds to specific measureable features and is
amenable to specific coding strategies.
For geometric tomography, attenuation or scatter of rays is

the basic measureable quantity. Specifically, one measures

g(y, θ) =

∫
f(y + αθ)dα (6)

where y ∈ SN−1 is a point on a boundary enclosing the
object and θ ∈ SN−1 is the direction vector for a ray passsing
through y. For N > 2, the dimensionality of the potential
ray measurement space, M = 2N − 2, is greater than N

and inversion is over constrained. The challenge of geometric
tomography is that it is not possible to simultaneously dis-
criminate all rays passing through y. Typical detectors have
no mechanism for discriminating rays and simple intetrate the
total irradiance over all rays passing through the detector point.
Conventional tomographic imagers overcome this problem by
ensuring that only 1 ray passes through each measurement
point in each measurement time. This is most often achieved
by illuminating with a collimated pencil, fan or cone beam
source. Under this scenario, θ is a single valued function of y
and the measurement is

g(y, t) =

∫
f (y + αθ(y, t)) dα (7)

for y ∈ SN−1 and t ∈ R. A dimensional match between
measurements and the object is achieved by changing θ(y, t)
as a function of time.
Each of coding strategies 1-3 may be implemented in

geometric tomography. Measurement space coding is applied
in x-ray scatter imaging by placing a coded aperture between
the scattering target and the measurement plane. Where con-
ventional scatter imaging scans a colimator as function of
time, coding allows distinct range, cross range and momentum
slices to be multiplexed and reconstructed from a single time
step [3], [10]. Measurement space coding may also be applied
using a coded aperture with multiple illumination sources.
Illumination angle-based code shifts allow disambiguation of
the sources and simultaneous aquisition of multiple source
data [11]. Multisource coding in combination with scatter
imaging may also be understood as object space coding.
Rather than using coded aperture shadows to disambiguate
scatter sources, one may use structured illumination to code
scatter position of distributed targets. Finally, as noted above,
subsampling of multiple source data is an example of trans-
form subsampling. While in [6], this subsampling takes the
form of discontinous selection of continuous subspaces of the
Radon transformation, more effective compression is obtained
by combining mulitsource illumination with coded apertures,
reference structures or collimation filters to more randomly
sample Radon space. As suggested by this survey of practical
strategies, detailed analysis of the coding strategy depends
both on physical feasibility, object priors and mathematical
structure.
Despite all the complexity of wave mechanics, the most im-

mediate difference between geometric tomography and diffrac-
tion tomography is that the diffraction sample surface integrals
rather than via line integrals. More substantive differences
arise from object field-interaction models, typical object priors
and the use of time to measure space. Diffraction tomography,
including radar, millimeter wave and terahertz imaging, ultra-
sound and optical holography, most often considers scattered
radiation rather than attenuation or primary sources. Under the
Born approximation, the scattered field for single plane wave
illumination samples a spherical shell in the Fourier space of
the object density [12]. A single measurement corresponds to
a point in the Fourier space in this case.
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From a practical perspective, the use of phase delay or time
of flight to measure range is the most unique and powerful as-
pect of diffraction tomography. This technique enables optical
coherence tomography (OCT), which measures spatial range
with resolution proportional to spectral bandwidth rather than
aperture size. Compressive OCT has been considered in sev-
eral studies using transform subsampling [13]. Time of flight
from a monostatic transceiver integrates the object density on
a sphere surrounding the transceiver with a range proportional
to the observation time. Measurement of a family of spheres
obtained by translating the transceiver obtains a Randon-like
transformation of the volume. Bistatic or multistatic systems
sample integrals over hyperbolic surfaces between emitter and
receiver positions.
As with geometric tomography, strategies 1-3 may be ap-

plied in compressive diffraction tomography. While I am not
aware of any examples of measurement space coding with
coherent waves, the use of a metamaterial transceiver to create
structured illumination [14] is an example of compressive
tomography using object space coding. 3D object estimation
from Fourier space manifolds in [15], [16] is an example
of tranform subsampling, although disjoint or randomized
subsampling as described for 2D images in [17] may be
considered more sample efficient. Accounting for the unique
physical priors arising from diffuse and specular reflection of
coherent radiation is the most challenging aspect of diffraction
tomography, however.
The scattered field on the surface of a diffuse reflector

is a complex Gaussian random variable. Since the mean
of the field is 0, estimation of the mean is an ineffective
imaging strategy. The magnitude of the field is exponentially
distributed, estimation of the magnitude lead to speckled
images. Given that the field is random and uncorrelated in each
pixel, the field over a 2D image is not generally compressible.
Compressive tomography is therefore best implemented by
building a forward model on the nonnegative object scattering
density, which corresponds to the variance of the Gaussian
random process [18]. Whether the scatter is diffuse or specular,
however, one notes that diffraction tomography tends to be
most useful in imaging interfaces and surfaces rather than
continuous volumes. While the reason for this may be simply
that volume imaging is too noisy and random to allow imag-
ing to occur, design of compressive diffraction tomography
systems would most effectively build on the assumption that
the object consists exclusively of surfaces. This prior should
enable highly compressive and super-resolved estimation of
even diffuse scatters and is thus a worthy area for ongoing
research.
Optical coherence functions, most typically consisting of

the cross spectral density, describe fields radiated by random
natural sources. While one may apply interferometric methods
to directly sample the cross spectral density for transform sub-
sampling based compressive tomography [19], such methods
are ill-conditioned for complex sources. Focal imaging is the
only mathematically well conditioned strategy for measure-
ment of random sources but is incapable of mapping vol-

ume distributions onto measurement planes [9]. Object space
modulation [4] and focal stacking (sweeping focal parameters
during exposure) may be used to overcome this limitation.
Compressive tomography of random volume sources is much
more challenging that geometric or diffraction tomography,
however, and remains an active research challenge.

III. CONCLUSION
The reader may be surprised to complete an entire article on

tomographic imaging without encountering a single image. To
my knowledge, however, this is the first print article to explic-
itly consider compressive tomography as defined in Eqn. (1).
As such I hope that the reader will find the intellectual exercise
of mapping this definition onto essentially the complete gamut
of remote sensing systems sufficiently fascinating as to agree
that a few simple images of traditional phantoms would only
be a distraction. The conventional concept of an image as a
2D object that can be captured on a focal plane and displayed
in an article is an artifact of analog image processing. In
the modern world of computational and compressive imaging,
all images are multidimensional and all imaging systems are
tomographic.
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Abstract—The theory of compressive sensing (CS) has opened
up new opportunities in the field of optical imaging. However, its
implementation in this field is often not straight-forward. We list
the implementation challenges that might arise in compressive
imaging and present some solutions to overcome them.

I. INTRODUCTION

Compressive sensing (CS) theory introduced a new
paradigm for sampling and, subsequently, stimulated interest
in its application in various fields. Imaging is a natural field
for the implementation of CS theory because typical images
involve a large amount of data, which facilitates efficient
compression. Compressive imaging (CI) techniques were de-
veloped for various purposes, such as reducing hardware [1,
2], shortening image scanning time [1, 3], increasing image
resolution [4-6] [7] and improving other imaging performance
parameters [8]. CI techniques have been developed for motion
tracking [9], spectral imaging [10] and holography. A review
of CI techniques may be found in [11].

Principles of CI system design differ drastically from the
principles used for conventional imaging. Conventional imag-
ing seeks to perform isomorphic mapping; that is, to create
images that are exact replica of the object. Ideally, each
object point is mapped to a single pixel sensor so that,
besides simple geometrical transformation (e.g., inversion), the
captured image is a sharp copy of the object. In contrast,
CS acquisition guidelines prescribe some way of mixing the
information so that multiple image points are projected onto a
single pixel sensor. The preferred projection is a random one
so that all object points are randomly spread on the image
sensors.

When coming to apply the CS framework for optical imag-
ing and sensing one needs to consider the special characteris-
tics of the optical data collection systems. In Sec. II we discuss
the special issues and implementation limitations arising in
the application of CS for optical imaging and sensing. The
implementation limitations can be significantly reduced by
intelligently compromising the guidelines for optimal universal
CS. For instance, instead of using random projections one
may use some kind of structured pseudo random projection
scheme. Random convolution [12] is such an example. In
subsections III A, B we present another two examples. The CI

implementation challenges may also be bypassed if a specific-
task system is to be designed. For example, if the task is to
track motion in the scene, a technique as described in Sec. IIIC
can be efficiently applied. Fortunately, there are also cases in
which the optical sensing mechanism fits the CS guidelines
well. Such a case is demonstrated in Sec. IV.

II. SPECIAL ASPECTS OF APPLICATION OF CS FOR
IMAGING

Let us consider a conventional CS measurement scheme:

g = �f (1)

where the signal f is assumed to be k -sparse (or at least
compressible) in a domain defined by the sparsifying operation
a =  f. For universal imaging tasks,  should perform some
random projections. In incoherent imaging f 2 RN

, g 2 RM

and � 2 RM⇥Nwhile in coherent imaging f 2 CN

, g 2 CM

and � 2 CM⇥N . In the following, we shall consider the
particular features of the components of (1) in the context
of optical imaging and sensing.

A. The input signal
In optical sensing, the input signal f represents the features

of the ”object”, such as the spatial, spatio-temporal, spectral
or polarimetic distributions of the electromagnetic field or of
the radiant power. We shall list the special features of f and
their consequences.

1) Sparsity: In most imaging scenarios, the object is indeed
highly compressiable, as required for CS. For instance, 2D
images in the visible may be compressible by a factor of 10�
50. 3D images and hyprespectral images may be even more
compressible.

2) Physical representation dimensions: The object is typ-
ically represented as a 2D or 3D distribution. Therefore, in
order to adjust to the matrix-vector formalism of (1) the
signal is converted into the form of a vector by lexicographic
ordering. By this, analytic and computational tools devel-
oped for (1) can be directly applied; however, part of the
structural information is lost. For efficient implementation of
CS one should attempt to employ the structural information
intelligently in the sparsifying operator  and by introducing
appropriate priors in the reconstruction process.
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3) Size: The signal f and measurements g are typically
large. For example, in incoherent imaging in the visible,
N can be easily of order of 10

7 and in multidimensional
imaging (such as in 3D images and hyperspectral images) it
can be much larger. Obviously, this leads to computational
implications in terms of reconstruction speed.

4) Non-negativity: In incoherent imaging, the signal f is
non-negative. For efficient CI, this fact should be consid-
ered in the reconstruction process by introducing appropriate
constrains in the reconstruction problem or by working with
centralized signals (with the average subtracted).

B. The System Matrix

1) Size of the matrix: The size of the system matrix is
M ⇥ N , where N and M may be of order of 10

5 � 10

7.
Therefore the size of the system matrix is huge, leading to the
following significant challenges:
Computational - � may require hundreds of Gigabytes of
storage and the application of reconstruction algorithms with
such large matrices is very difficult and time-consuming.
Optical realization - Realization of random � requires build-
ing an imaging system with a space bandwidth product (SBP)
larger than M ⇥N . In other words, the imaging system needs
to have at least M ⇥N almost independent modes, or degrees
of freedom. It is not trivial to design a system with such a large
SBP. For example, spatial light modulators that are commonly
used in CI, have an SBP of O(N). Therefore, in order to
realize ⇥ M times larger SBP, multiple measurements are
required.
Optical Calibration - Sensing systems with a large SBP also
require exhaustive and time-consuming calibration processes.
In order to calibrate � , one needs to measure N point spread
functions, each having M samples.

2) Non-negativity: In incoherent imaging, it is impossible
to realize a system matrix � with negative entries. This means
that � spans only the positive orthant. As a result, the mutual
coherence of� is lower, indicating lower compressibility. This
problem may be addressed by applying preconditioning in
the reconstruction process [13] or by doubling the number
of measurements to generate measurements equivalent to that
of a bipolar system matrix.

C. Measured signal

1) Size: Although the dimension of the measured image g
is smaller than that of the signal f (M < N), in typical CI
systems it is still large. Therefore, similar computation issues
as with f (see subsection II.A ) are relevant for g too.

2) Realness and non-negativity: Optical sensors measure
irradiance, which is real and non-negative. Negative and
complex values can be measured indirectly, typically
by acquiring multiple measurements. For example, in
compressive holography [10] complex field amplitude is
measured with temporal or spatial multiplexing.

3) Dynamic range: The dynamic range of optical sensors
is typically limited. For example, conventional, uncooled op-
toelectronic sensors in the visible have a dynamic range of
8-12 bits. At longer wavelengths, the dynamic range may be
even smaller. This may set significant limitations, particularly
in incoherent imaging, where � is no-negative.

III. FEASIBLE SAMPLING OPERATORS FOR OPTICAL CS
A. Separable Sensing Matrix

One way to alleviate the complexity associated with imple-
menting CI systems with random projections is by designing
sensing operators � that are separable in the physical dimen-
sion of the optical signal [14, 15]. For instance, for capturing
a typical 2D image, one may use a sampling operator that is
separable in the x-y directions. Mathematically, such a sensing
operator can be expressed by means of the Kronecker product
of the sensing operators in each direction, � = �

x

⌦�
x

. The
sensing operators in each direction,�

x

,�
y

, can be designed
to perform random projections.
The SBP of an x � y separable �, is O(

p
N ·M); thus the

matrix storage requirements and the optical sensing complex-
ity is reduced from O(N ·M) to O(

p
N ·M). Employing

separable � can be useful also in the reconstruction step as it
permits using block-iterative algorithms.
The price to be paid by using a separable sensing technique
is in reducing the compressibility performance. For instance,
a theoretical analysis in [14] showed that for 2D images,
approximately

p
N times more samples are needed to achieve

similar performance as with a non-separable random system
matrix. An empirical study in [16] showed more relaxed
requirements, indicating that the minimum number of samples
required for perfect recovery is M ⇡ 1.25K log(N/k + 1).
Analysis of compressibility of signals separable in more than
two dimensions may be found in [17].
Compressive imaging with a separable sensing operator has
been demonstrated for 2D images [14, 16]. Recently, an optical
scheme implementing hyperspectral imaging with a separable
sensing operator was presented in [18].

B. Optical Radon Projections for Imaging

In [3], a CI technique is proposed that uses a cylindrical
lens to perform a Radon projection of the object plane on a
line array of sensors. The system performs a rotational scan
to capture multiple Radon projections at various angles during
the scanning process. By applying reconstruction algorithms
based on `1 minimization, the image can be reconstructed
from many fewer projections than are needed conventionally,
e.g. with filtered back-projection algorithms.
The CI approach in [3] exhibits a very good trade-off between
acquisition time and system complexity. Compared to the two
other main CI approaches, it allows a much faster scan than
with the ”single pixel camera” [1], while, on the other hand,
its implementation complexity is much lower than that of the
”single shot compressive imaging camera” [4]. The imaging
approach presented in [3] was further improved in [19], where
it is shown that angular sampling with golden angle steps
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allows progressive compressive image acquisition. Gradual
improvement of the reconstructed image is obtained by adding
new projections to the existing ones without re-sampling and
recalculation. Each new measurement increases the quality of
the previous reconstruction, as demonstrated in Fig. 1.

Fig. 1. Progressive compressive imaging with optical Radon projections,
using obtained 1.56% (top), 3.13% (middle), 5.5% (bottom) of nominal
samples (Nyquist). Image size 1280x1280 pixels.

The progressive compressive sensing approach is particu-
larly useful when no prior knowledge about the required num-
ber of samples for good reconstruction is available. This means
that the progressive Radon acquisition scheme is inherently
adjustable to the type of the object imaged. The approach is
also shown to be immune to sudden stopping of the scan-
ning process, which otherwise would be intolerable with the
uniform angular sampling scheme. An additional advantage
of the approach is that it facilitates compressive imaging of
large size images by employing ordered sets reconstruction
algorithms on subsets of the data, thus remedying otherwise
severe computation issues [19]. Note, for example, that the
images in Fig. 1 are of megapixel size.

C. Optical Radon Projections for Motion Tracking

In the case that the task of the acquisition system is change
detection or motion tracking, the signal is extremely sparse.
Consider, for example, the task of tracking a point during
10 sec. with a temporal resolution of 20 milliseconds in a
field of view of 1Megapixels. With conventional imagers, 500
Megapixels are acquired for this task, while here, the trajectory
of the moving point can be described by only 500 pairs
of Cartesian coordinates; thus K/N = 0.5 · 106. Cartesian
coordinates of moving objects can be obtained by measuring
the temporal differences of two perpendicular Radon projec-
tions. As mentioned in Sec. IIIB, Radon projections can be
obtained optically with anamorphic optical elements such as
a cylindrical lens. Figure 2 depicts the concept behind change
detection form two Radon projections. Consecutive temporal
projections are subtracted from one another, indicating the

projected location of the changes [Fig. 2 (c) and (d)]. Then
the projections may be back projected to give the location of
the changes on a Cartesian grid. Since the signal is extremely
sparse, `1 minimization algorithms are particularly efficient.

Fig. 2. Motion detection with two projections. (a) Original frame out of
2 consecutive frames; (b,c) difference between projection of two consecutive
frames; (d,e) back projection of the frame difference; (f) intersection of the
x,y back projections. The detected object is marked with white circle.

In practice, two projections are insufficient for detecting
multiple moving objects in arbitrary directions. At least three
projections are necessary to track objects moving in an ar-
bitrary direction. In [9] we developed an optical system that
essentialy perform, uses a superposition of four projections.
Simulative experiments in [9] show that this system is able
to track up to ten moving object points. Real experiments
showed that objects can be tracked within a field of view of
500 ⇥ 500 pixels with approximately 250 times less samples
than a conventional camera takes for the same task.

IV. NATURAL OPTICAL COMPRESSIVE SENSING
OPERATORS

There are cases in which the optical sensing operator
fits the CS guidelines well. One such example is the free
space propagation operator, described mathematically by the
Fresnel transform. The Fresnel diffraction of the object field
can be recorded by means of digital holography, which is
found to be a physically realizable, quite simple and yet very
efficient compressive sensing mechanism. Applying the CS
paradigm for digital Fresnel holograms is attractive from the
fact that the Fresnel and Fourier transforms are closely related.
Therefore, Fourier subsampling schemes, studied extensively
in CS literature, can be directly applied. In [20] it is shown
that for a sufficiently large propagation distance the number
of random samples in the hologram plane that is required
for full reconstruction is K logN , just like for the Fourier
sensing case. Figure 3 shows an example of the dependence
of the compressibility ratio M/N as a function of the imaging
distance. From Fig. 3 it can be seen that the number of random
Fresnel samples required to reconstruct the image exactly
decreases with the imaging distance till it reaches an asymptote
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in the region where the Fresnel propagator behaves as a Fourier
transform.

Fig. 3. Compressive sampling ratio required for full reconstruction of the
Cameraman image (inset). M/N is the compressive sensing ratio and z is
the recording distance.

For a recent review on compressive digital holography
theory and applications the reader is referred to [10].

V. CONCLUSIONS

We have overviewed the characteristics of optical imaging
that preclude straight-forward application of CS theory to
imaging. In many cases, practical and physical limitations
force the CI designer to deviate from basic CS guidelines. He
has to compromise the randomness of the sensing operator
required for universal CS by introducing some amount of
structure. We presented two examples to demonstrate this.
The implementation limitations may be much less severe
if a specific task is defined, as we have shown with our
compressive motion detection and tracking system. In some
particular cases, the particular optical sensing mechanism fits
CS guidelines well. We have described compressive hologra-
phy as an example of such a case.
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Abstract—To be accurate, the theoretical spectral analysis of
quantized sequences requires that the deterministic definition of
power spectral density be used. We establish the functional space
foundations for this analysis, which remarkably appear to be
missing until now. With them, we then shed some new light on
quantization error spectra in PCM and Σ∆ modulation.

I. INTRODUCTION

The spectral analysis of quantized signals appears to miss
clear functional foundations. In spite of their deterministic
nature, quantized sequences are often theoretically described
using a probabilistic definition of power spectral density. This
however only leads to approximate statistical models that
cannot predict quantization phenomena such as intermodula-
tion, idle tones and limit cycles present in Σ∆ modulation
for example. The first rigorous analysis of quantized signals
in pulse code modulation (PCM) and Σ∆ modulation was
performed by R. M. Gray [1], [2], [3] in the late 80’s based
on the deterministic time-averaged power function M(|x|2) of
a sequence x[n], where

M(x) := lim
N→∞

1

N

N∑

n=1

x[n].

Similarly to the probabilistic case, power spectral density is
obtained by taking the Fourier transform of the autocorrelation
rx[m] := M(xTmx), where T is the shift sequence operator
defined by Tx[n] = x[n+1]. From a functional space view-
point, this appears at first sight as a mere extension of energy
spectral density defined in the Hilbert space !2 of square-
summable sequences. In this view, one would define the space
of finite-power sequences as

P :=
{
x ∈ CN : M(|x|2) exists

}

with the inner-product

〈x, y〉P := M(x∗y).

This is however doomed to fail as P is not even a linear space
as shown in this paper.

The goal of this article is to rigorously establish Hilbert
space foundations to the spectral analysis of finite-power se-
quences. Based on this, standard theorems can be applied such
as the spectral properties of unitary operators. We thus provide
a functional space background to the work of R. M. Gray,
explaining for example why mixed quantization spectra are to

be expected. We also indicate some possible generalization to
overloaded Σ∆ modulators. The detailed proofs of the claimed
results are included in [4].

II. HILBERT SPACES OF FINITE-POWER SEQUENCES

The first obstacle to a direct analogy between !2 and P is
that the function 〈·, ·〉P is not defined everywhere in P×P.
Consider for example the sequence s[n] := (−1)$log2(n)% for
n ≥ 1, which is clearly an element of P. One easily shows
that M(s) does not converge, which is equivalent to saying
that 〈s, 1〉P does not exist, although the constant sequence 1
is also in P. This simultaneously shows that M(|s+1|2) does
not exist, otherwise we would obtain 2〈s, 1〉 = M(|s+1|2) −
M(|s|2)−M(|1|2). So P is not even a linear space.

To rigorously justify spectral analysis in the sense of finite
power, one needs to explicitly build a Hilbert space within P.
One possible procedure is to come up with a known family
of sequences {ϕk}k∈K of P such that 〈ϕk,ϕk′〉P exists for
all k, k′ ∈ K and is equal to δk−k′ where δ is the Kronecker
symbol. We say that 〈ϕk,ϕk′〉P is orthonormal with respect
to 〈·, ·〉P. Up to some non-trivial theoretical considerations
[4], it can be shown that the space of sequences of the form
x[n] =

∑
k∈K αk ϕk where (αk)k∈K is a family of complex

coefficients whose nonzero values are in countable number and
square summable, is a Hilbert space with respect to 〈·, ·〉P that
is included in P. We denote this space by

H := span{ϕk}k∈K .

The most basic example of such a construction is obtained
with the exponential sequences eξ[n] := ei2πξn. Note that
〈eξ, eξ′〉P = M(eξ′−ξ) = δξ′−ξ when ξ, ξ′ ∈ [0, 1), where
δ is the Kronecker symbol. Thus, B := span{eξ}ξ∈[0,1) is a
Hilbert space included in P. This is called the space of almost
periodic sequences in the sense of Besicovitch (Besicovitch-
AP sequences) [5]. Its elements can be presented in the form

x[n] =
∑

k∈Z αk eξk [n] (1)

where (αk)k∈Z is square summable and (ξk)k∈Z are distinct
values in [0, 1).

III. FINITE POWER BY WEYL’S CRITERION

Weyl’s equidistribution criterion [6] states that a real se-
quence s[n] is uniformly distributed modulo 1 (i.e., its frac-
tional part is uniformly distributed in [0, 1)) if and only if
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M(ei2πks) = 0 for all nonzero integers k, where ei2πks

designates the sequence (ei2πks[n])n≥1. Noticing the relation
〈ei2πk·s, ei2πk′·s〉

P
= M(ei2πl·s) where l := k−k′, the uniform

distribution of s[n] is then equivalent to the orthonormality
of the family of sequences {ei2πks}k∈Z. We state below the
multi-dimensional version [6] of this result.

Proposition 3.1: Let s[n] be a sequence of vectors in Rd.
Then s[n] is uniformly distributed modulo 1 (u.d. mod 1)
if and only if

{
ei2πk·s

}
k∈Zd is an orthonormal family with

respect to 〈·, ·〉P (where k · s is the dot product of k and s in
Rd).

As soon as a u.d. mod 1 sequence s[n] is found, one
therefore generates a (separable) Hilbert space in P by forming
the space

Hs := span{ei2πk·s}k∈Zd .

The next proposition characterizes a useful subspace of Hs.
Proposition 3.2: Let s[n] be a sequence of vectors in Rd

that is u.d. mod 1. Then, for any d-variable 1-periodic Riemann
integrable function h(u), the sequence h(s[n]) belongs to
Hs ⊂ P and yields the orthogonal expansion

h(s[n]) =
∑

k∈Zd

ĥk e
i2πk·s[n] (2)

where (ĥk)k∈Zd are the Fourier coefficients of h(u).
The 1-periodicity of h implies that h(u+k) = h(u) for all

u ∈ Rd and k ∈ Zd. The proof of this proposition uses the
more general equivalent criterion for equidistribution implying
that M

(
f(s[n])

)
=

∫
[0,1)d f(u) du for any d-variable 1-

periodic Riemann integrable function f(u) [6]. The conceptual
difficulty of (2) is that the summation does not necessarily
converge pointwise, although it converges in the sense of the
norm ‖ · ‖P.

A simple case of interest is when s[n] = nζ where
ζ = (ζ1, · · ·, ζd) ∈ Rd. It is known that s[n] = nζ is uniformly
distributed modulo 1 if and only if ζ1, · · ·, ζd, 1 are rationally
independent (i.e., no rational combination of ζ1, · · ·, ζd, 1 other
than the zero combination is equal to zero) [6]. Assuming
that this condition is realized and that h has the required
property, Proposition 3.2 implies that h(nζ) is a finite-power
sequence that belongs to the closed space Hs spanned by the
orthonormal family {eξk}k∈Zd where

ξk := k · ζ = k1 ζ1 + · · ·+ kd ζd, (3)

since ei2πk·s[n] = ei2πk·(nζ) = ei2πξkn. In this case, Hs ⊂ B.
Hence, h(nζ) is a Besicovitch-AP sequence. Its orthogonal
expansion in B is explicitly

h(nζ) =
∑

k∈Zd ĥk eξk [n]. (4)

IV. BASICS OF SPECTRAL ANALYSIS

A. Power spectral measure
Similarly to the probabilistic approach, the power spectral

density of a sequence x[n] would be the Fourier transform of
the autocorrelation

rx[m] := 〈x, Tmx〉P (5)

and T is the shift sequence operator defined in the introduc-
tion. The sequence rx[m] is guaranteed to exist if x[n] is shown
to be in some Hilbert space H ⊂ P that is invariant by T .
Assume that this is the case. Then, T is a unitary operator
of H as it preserves the inner-product and is invertible. Now
rigorously speaking, rx[m] may not have a Fourier transform.
Given the positive definite property of rx[m], it is however
shown to be at least the Fourier coefficients of a positive
measure µx [7], which we call the power spectral measure of
x[n]. By Lebesgue’s decomposition theorem, µx has in general
three components, a pure-point part (purely discrete measure
composed of Dirac masses), an absolutely-continuous part (the
actual and only part that yields a power spectral density by
Radon-Nikodym derivative) and a singular-continuous part.

B. Spectral decomposition
A key to analyzing the measure structure of µx is to

decompose H as an orthogonal sum

H =
⊕

k∈K Ik (6)

of Hilbert subspaces Ik that are invariant by T . Writing x =∑
k∈K xk where xk is the orthogonal projection of x onto Ik,

it is clear that 〈xk, Tmxk′〉 = 0 when k )= k′. This leads to
the decompositions

rx[m] =
∑

k∈K rxk [m] and µx =
∑

k∈K µxk .

In this reduction process, we will encounter in this paper two
types of measure µxk .

1) Simple discrete spectrum: This is the case where Ik is
spanned by a single vector ϕ which we can assume of norm 1.
By T -invariance of Ik, ϕ must be an eigenfunction of T . Since
T is unitary, it is known that the eigenvalue of ϕ must be of
the form ei2πξ where ξ ∈ [0, 1). Since Tmϕ = ei2πξmϕ, the
sequence xk which is of the form aϕ yields the autocorrelation
rxk [m] = 〈aϕ, aTmϕ〉P = |a|2ei2πξm. The corresponding
spectral measure µxk is then discrete and equal to |a|2δξ where
δξ denotes the Dirac mass at frequency ξ.

2) Simple absolutely-continuous spectrum: This is the case
where Ik is the closed span of an orthonormal family of
the form {Tnϕ}n∈Z. The sequence xk is then of the form∑

n∈Z an T
nϕ, where an is a square-summable sequence. By

orthonormality of {Tnϕ}n∈Z, one finds that

rxk [m] = 〈xk, Tmxk〉P =
∑

n∈Z a
∗
n+m an.

This is precisely the finite-energy autocorrelation of a−n.
In this case, rxk [m] yields a Fourier transform Rxk(ξ) =
|A(−ξ)|2 where A(ξ) is the Fourier transform of an in
L2([0, 1)), making Rxk(ξ) a function in L1([0, 1)). This
makes the measure µxk absolutely-continuous.

C. Besicovitch almost-periodic sequences
The most straightforward example of spectral decompo-

sition is achieved in the space B. Every function of its
orthonormal basis {eξ}ξ∈[0,1) turns out to be an eigenfunction
of T since

Teξ = ei2πξ eξ.
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Once a Besicovitch-AP sequence x[n] is written in the form
(1), it can be presented as element of a space sum (6) with
K := Z and Ik := span{eξk}. This falls in the case of Section
IV-B1. One then obtains the discrete power spectral measure
µx =

∑
k∈Z |αk|2 δξk .

V. PCM WITH TRIGONOMETRIC POLYNOMIAL INPUT

We show that the quantizer error sequence ε[n] from the
pulse code modulation (PCM) of a finite sum of sinusoids
is Besicovitch almost-periodic, thus yielding a purely discrete
power spectral measure. PCM consists in transforming every
sample of a sequence x[n] individually by a nonlinear memo-
ryless scalar function Q(·) that is basically piecewise constant.
This results in an error sequence ε[n] := x[n]−Q(x[n])1.
An input sequence x[n] that is a finite sum of sinusoids
can always be expanded as a trigonometric polynomial2.
x[n] =

∑p
k=1 αk ei2πζkn where ζk are distinct frequency

values in [0, 1). By defining the p-variable 1-periodic function
x(u1, · · ·, up) =

∑p
k=1 αk ei2πuk , one can write x[n] = x(nζ)

where ζ := (ζ1, · · ·, ζp). Thus, the error sequence is of the
form

ε[n] = h(nζ) where h(u) := Q(x(u))−x(u). (7)

The function h(u) is p-variable, 1-periodic and Riemann inte-
grable since Q is piecewise constant and x(u) is continuous.
Under the condition that ζ1, · · ·, ζp, 1 are rationally indepen-
dent, we know from Section III that ε[n] is a Besicovitch-AP
sequence of orthogonal expansion (4). From Section IV-C, we
conclude that the power spectral measure of ε[n] is purely
discrete with the autocorrelation expansion

rε[m] =
∑

k∈Zr

|ĥk|2 ei2πξkm.

The discrete frequencies of the spectrum of ε[n] are the values
ξk given by (3) and are nothing but the intermodulation
products of the fundamental input frequencies ζ1, · · ·, ζp, as
seen in (3).

VI. QUANTIZATION ERROR IN IDEAL Σ∆ MODULATION

In an ideal Σ∆ modulator with a polynomial trigonometric
input, we show that the errors due to quantization can be
presented as output of a system of the form

{
s[n] = Ms[n−1]+ τ
ε[n] = h(s[n])

(8)

where h is a d-variable 1-periodic Riemann-integrable function
and M is a square matrix that is unimodular (i.e., invertible
with integer entries) and unipotent (i.e., with all eigenvalues
equal to 1).

A. General equations
The general diagram of a Σ∆ modulator is shown in Figure

1 and defines the signal notation we will use. In this section,
1The usual convention for a system error is e[n] = Q(x[n])−x[n].

Working with the sequence ε[n] := −e[n] will prove more convenient from
a dynamical system viewpoint.

2This is in the largest sense of sequences of the form x[n] :=∑N
k=1 α ei2πξkn, where the ξk’s are not necessarily harmonics of a single

frequency.

+ 

][][ nnh δ− + 
e[n] 

Q 

scalar 
quantizer

y[n] q[n] x[n] 

Fig. 1. General diagram of a Σ∆ modulator

the modulator is assumed to be ideal, i.e., h[n] is a purely
differentiating sequence of z-transform H(z) = (1−z−1)r and
the quantizer is not overloaded. Like in PCM, we define the
quantizer error to be ε[n] = y[n]−q[n] = −e[n]. Using the
vector sequence v[n] = (v1[n], · · ·, vr[n]) such that vi[n] is
the (r−i)th order differentiation of ε[n], one can show the
following system of equation

{
v[n] = Lv[n−1]+ 1(x[n]−q[n])
ε[n] = j · v[n] (9)

where L is the lower-triangular matrix of 1’s and size r, 1 :=
(1, · · ·, 1) ∈ Rr and j := (0, · · ·, 0, 1) ∈ Rr. The outstanding
property of this state model is that L, 1, j and q[n]+ 1

2 all have
entries or coefficients that are integers. So, if we recursively
construct the sequence

u[n] = Lu[n−1]+ 1x′[n] (10)

where x′[n] := x[n]+ 1
2 and u[0] = v[0], then the relation

v[n]−u[n] ∈ Zr is maintained for all n ≥ 0. Then,

ε[n] ≡ j · u[n] mod 1. (11)

B. Trigonometric polynomial inputs
Assuming that x[n] is a trigonometric polynomial, we

show that ε[n] can be at least determined modulo 1 via an
autonomous system of the type

{
s[n] = Ms[n−1]+ τ
ε[n] ≡ g(s[n]) mod 1

(12)

where M is unimodular and unipotent, and g is a continuous
function of Rd such that g(s)−g(s′) ∈ Zd when s−s′ ∈ Zd.
When x′[n] is equal to a constant x̄, this is easily achieved
from (10) and (11) by taking s[n] = u[n], M = L, τ = 1x̄
and h(u) = 〈j · u〉I . When x′[n] is not constant, one goes
from (10-11) to (12) by the technique of skew-product first
used in Σ∆ modulation in [8]. This requires the following
preliminary result.

Proposition 6.1: Let x(u) =
∑p

k=1 αk ei2πuk and ζ ∈
(0, 1)p. An explicit solution to the equation

w[n] = Lw[n−1]+ 1 x(nζ) (13)

is w[n] = x(nζ), where x(u) :=
∑p

k=1 αk ei2πuk xζk and
xζ := (xζ , x2

ζ , · · ·, xr
ζ) with xζ := (1−ei2πζ)−1.

Calling x̄ the constant component of x′[n], we express the
“AC-component” x′[n]−x̄ in the form x(nζ) as was done
in Section V with the difference that ζ ∈ (0, 1)p. With the
resulting function x(u) as obtained in the above proposition,
we obtain the following result.
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Proposition 6.2: The sequence s[n] :=
(
nζ,u[n]−x(nζ)

)

achieves the system (12), with

M :=
[
I 0
0 L

]
, τ = (ζ,1x̄) and g(θ, ū) := j · (ū+x(θ))

where I is the identity matrix of size p.
The central argument of the proof is that the second com-

ponent ū[n] := u[n]−x(nζ) of s[n] satisfies the recursion
ū[n] = L ū[n−1]+ 1 x̄.

C. Non-overloaded quantizer
The fact that the quantizer is not overloaded implies that ε[n]

remains in the interval I := [− 1
2 ,

1
2 ). Let 〈·〉I be the unique

1-periodic function that is identity in I (explicitly equal to
〈·+ 1

2 〉 −
1
2 where 〈·〉 is the fractional part function). Since

ε[n] = 〈ε[n]〉I and ε[n] ≡ g(s[n]) mod 1, then ε[n] = h(s[n])
where h(s) := 〈g(s)〉I . One easily verifies that h is 1-periodic
and Riemann integrable. The system (8) is thus fully achieved.

VII. SPECTRAL ANALYSIS IN “UNIPOTENT” DYNAMICAL
SYSTEM

In this section, we perform the spectral analysis of se-
quences ε[n] output by systems of the type (8) with a uni-
modular and unipotent matrix M .

A. State equidistribution
Proposition 7.1: Let s[n] be a sequence satisfying (8)

where M is unimodular and unipotent. Then, s[n] is u.d.
mod 1 if and only if k · τ /∈ Z for all k ∈ Zd\{0} such
that M*k = k.

The basic ingredients of the proof are as follows. Due to the
unipotent property of M , the components of s[n] are shown to
be polynomial sequences. Next, one uses the known fact that
a polynomial sequence is u.d. mod 1 if and only if at least one
of the coefficients of its non-constant terms is irrational [6].
In the setting of ideal Σ∆ modulation of the previous section,
this proposition implies that x̄, ζ1, · · ·, ζr, 1 must be rationally
independent for s[n] to be u.d. mod 1. In the constant input
case, this reduces to the condition that x̄ be irrational.

B. Spectral analysis
Assume that the condition of Proposition 7.1 is realized.

Proposition 3.2 then implies that ε[n] is a finite-power se-
quence with the orthogonal expansion

ε =
∑

k∈Zd ĥk ϕk where ϕk[n] := ei2πk·s[n].

To derive the autocorrelation rε[m] := 〈ε, Tmε〉P, one needs
to apply Tm on the basis vectors ϕk. From the mere relation
s[n+1] = Ms[n]+τ , one finds that

Tϕk = ei2πξk ϕk′ where ξk := k · τ (14)

and k′ := M*k ∈ Zd. This first implies that the space
H := span{ϕk}k∈Zd is T -invariant. But as M is unimodular,
it defines a permutation of Zd. Hence, the action of T on
{ϕk}k∈Zd amounts to a permutation of the basis vectors plus
some phase shift. One then obtains an orthogonal decomposi-
tion of H of the type (6) with the following definitions: Ik :=

span{ϕl}l∈O(k), O(k) :=
{
kn : n ∈ Z

}
, kn := M*n

k and
K equal to a subset of Zr such that {O(k)}k∈K is a partition
of Zr. We know from Section IV-B that µε =

∑
k∈K µεk

where εk is the orthogonal projection of ε onto Ik.
Proposition 7.2: For any k ∈ Zd, the following statements

are equivalent: (i) O(k) is a finite orbit, (ii) O(k) = {k}, (iii)
k belongs to the set JM :=

{
l ∈ Zd : M*l = l

}
.

While (ii) ⇔ (iii) is trivial, (i) ⇔ (iii) uses the unipotent
property of M . When k ∈ JM , Ik = span{ϕk}, so µεk

is a single Dirac mass according to Section IV-B1. When
k ∈ K\JM , one easily sees from (14) that {Tnϕk}n∈Z is
equal to {ϕkn}n∈Z up to some phase shifts, and is therefore
an orthonormal basis of Ik. So µεk is absolutely continuous
according to Section IV-B2. We conclude that the power
spectral measure of ε[n] is a priori mixed, with a pure-point
part and an absolutely continuous-part equal to µε̊ and µε̄,
respectively, where ε̊ :=

∑
k∈J

M
εk and ε̄ :=

∑
k∈K\J

M
εk,

but no singular-continuous part.

VIII. DISCUSSION AND EXTENSIONS

In his work [1], [2], [3], R. M. Gray found with ideal
Σ∆ modulators the more precise result that µε is either
purely discrete or uniform (white noise), which is a particular
case of absolutely-continuous spectral measure. The reason
for this special result is particular to the specific function
h(s) = 〈g(s)〉I found in Section VI-C. It is however shown
in [4] that systems of the type (8) are achieved with a class
of Σ∆ modulators that are more representative of practical
configurations [9] including quantizer overloading, and yield
truly mixed spectra. Finally, although this paper constantly
assumed the uniform distribution of s[n] modulo 1, similar
results can be obtained with absolutely no condition on s[n].
This uses the result that the closure of the set of points s[n]
modulo 1 is a compact group and the generalized notion of
uniform distribution in a compact group [6].
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Abstract—Recently Güntürk et al. showed that Σ∆ quantiza-
tion is more effective than memoryless scalar quantization (MSQ)
when applied to compressed sensing measurements of sparse
signals. MSQ with the l1 decoder recovers an approximation
to the original sparse signal with an error proportional to
the quantization step size δQ. For an r-th order Σ∆ scheme
the reconstruction accuracy can be improved by a factor of
(m/k)α(r−1/2) for any 0 < α < 1 if m ! k(logN)1/(1−α),
with high probability on the measurement matrix. The method
requires a preliminary support recovery stage for which r cannot
be too large and δQ must be sufficiently small. In this paper, we
remove this requirement, showing that the constrained l0 and
lτ (for sufficiently small τ ) minimization problems subject to a
Σ∆-type quantization constraint would approximate the original
signal from the Σ∆ quantized measurements with a comparable
reconstruction accuracy. We note that these results allow us to
achieve root-exponential reconstruction accuracy while using a
fixed quantization alphabet.

I. INTRODUCTION

The robust recovery results in compressed sensing, e.g.
[3], [6], [11] showed that sparse vectors could be recovered
from compressed sensing measurements even when the mea-
surements are perturbed. Quantization of these measurements
introduces such a perturbation from which the robust recovery
result allows us to recover.

To fix notation, let N be the ambient dimension of the sparse
signal x that we wish to recover. Define the sparsity measure
‖x‖0 := |{i : x(i) "= 0}| and let ΣN

k be the set of all k-sparse
vectors in N dimensions ΣN

k := {x ∈ RN : ‖x‖0 ≤ k}. We
will use Φ to denote the m×N measurement matrix, where we
wish to recover x from the quantization of the measurements
y = Φx.

Mathematically, a quantizer maps the measurement space
Rm to a finite set, which we will assume to be of the
form Am, where the quantization alphabet A is a finite
arithmetic progression of step size δQ. For memoryless scalar
quantization (MSQ), each measurement is simply rounded to
the nearest element of A. For an r-th order Σ∆ scheme, the
quantization is found by solving a difference equation

y − q = Dru (1)

for q ∈ Am and u ∈ Rm, where ‖u‖∞ should be bounded
independently of m. Dr is the r-th difference operator: in ma-
trix form, D is 1 on the diagonal and −1 on the subdiagonal,
with zeros elsewhere. Note that MSQ corresponds to the case
r = 0.

The authors in [8] investigated the use of Σ∆ quantization
for a specific class of compressed sensing matrices: the random
m×N matrices with each entry drawn independently from the
standard Gaussian distribution, N (0, 1). For MSQ, the quan-
tization introduces an error of at most δQ/2 per measurement,
and the corresponding recovery error is a constant multiple of
δQ. For r-th order Σ∆, the quantization introduces an error of
at most 2r−1δQ per measurement, but the error vector is highly
structured. Once the support is recovered, for instance via l1

minimization, the Sobolev-dual approximation (Equation 6)
yields an error of at most δQ(m/k)−α(r−1/2) for some 0 <
α < 1, when m ! k(logN)1/(1−α). However, the method to
recover the support requires that 5

√
2 · 2rδQ < mini:xi #=0 |xi|

[8]. Thus δQ needs to be small, and r cannot be too large.
Suppose we use r-th order Σ∆ with step size δQ to produce

q ∈ Am with ‖u‖∞ ≤ µ. Rearranging Equation 1 shows that
‖D−r(y−q)‖2 ≤

√
mµ. We will show in Proposition II.2 that

the sparsest solution satisfying this quantization constraint

x0,µ := Argmin
‖D−r(Φz−q)‖2≤

√
mµ

‖z‖0 , (2)

approximates the original sparse vector with the same accuracy
up to a constant as the Sobolev-dual approximation. Then we
will show in Theorem IV.3 that if we solve the non-convex
minimization

xτ,µ := Argmin
‖D−r(Φz−q)‖2≤

√
mµ

‖z‖τ , (3)

where ‖z‖τ =
(

∑N
i=1 |z(i)|τ

)1/τ
, then there is a value of

τ > 0 sufficiently small so that the minimizer approximates the
original sparse vector with the same accuracy up to a constant
as the Sobolev-dual approximation. In Section V we note
that given a bit budget R for quantizing the measurements,
we can now achieve a reconstruction accuracy of the form
exp(−c(R/k)α) where c is an absolute constant. Previously,
Krahmer et al. showed a similar result for Σ∆ quantization of
frame coefficients for specially designed frames [9]. Finally
in section VI we briefly discuss approaches for tackling the
minimization problems.

II. Σ∆-QUANTIZATION AND SOBOLEV DUAL RECOVERY

Suppose we quantize the measurements y = Φx with r-
th order Σ∆, i.e. we solve Equation (1) for q ∈ Am and
u ∈ Rm. We highlight two approaches for accomplishing this,
where details can be found in [5], [7]:
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A. The simplest greedy method chooses qi+1 which would
minimize the corresponding value of |ui+1| in the equa-
tion. The result is a solution that requires an alphabet of
size 2r + 2‖y‖∞/δQ and has the bound ‖u‖∞ ≤ δQ/2.

B. An alternative method which can be viewed as a greedy
method on a different but related difference equation
decreases the required alphabet size to

C1 + 2‖y‖∞/δQ (4)

for some absolute constant C1 but increases the bound to

‖u‖∞ " (C2r)
rδQ (5)

This method allows us to use a fixed quantization alpha-
bet for all r.

Consider any solution with ‖u‖∞ ≤ µ. The difference equa-
tion can be rewritten as

D−rΦx−D−rq = u .

We review the results from [2] concerning the Sobolev dual.
Suppose that an oracle tell us the support T of x. We can
then focus on just ΦT , the m × k submatrix with columns
corresponding to the index set T . Taking the pseudoinverse,

x− (D−rΦT )
†D−rq = (D−rΦT )

†u .

Note that if r = 0, the quantizer is MSQ, and u is the
quantization error vector with norm

√
mδQ/2. Taking the

pseudoinverse of ΦT recovers an approximation x̂(0) = Φ†
T q

with error

‖x− x̂(0)‖2 ≤ ‖Φ†
T ‖2

√
mδQ/2 .

From the restricted isometry property, the singular values of
every submatrix of Φ with |T | = k columns is concentrated
around

√
m with high probability if the entries of Φ are drawn

independently from N (0, 1); so ‖Φ†
T ‖2 ∼ 1/

√
m and the error

bound is proportional to δQ and does not decrease with m, as
stressed in [8].

For r > 0, we see that x̂(r) = (D−rΦT )†D−rq recovers an
approximation with error

‖x− x̂(r)‖2 ≤
√
mµ

σmin(D−rΦT )
. (6)

Note (D−rΦT )†D−r is precisely the r-th order Sobolev dual
of ΦT . Here we will restate the relevant result from [8,
Theorem 3.8] about the smallest singular value:

Theorem II.1. Let Φ be an m × N random matrix whose

entries are i.i.d. N (0, 1). Let 0 < α < 1 and suppose for

some C3 = C3(r)

m

s
≥ C3(logN)1/(1−α) .

Then there exist constants C4, C5 depending only on r such

that with probability at least 1 − exp(−C4m1−αsα) on the

draw of Φ, every m× s submatrix E of Φ satisfies

σmin(D
−rE) ≥ C5

√
m(m/s)α(r−1/2)

This theorem implies that given the support, the error for
the Sobolev dual recovery (6) becomes C5(m/k)−α(r−1/2)µ.

We now use Theorem II.1 to show that solving (2) will
recover the support and have an accuracy matching that of the
Sobolev dual.

Proposition II.2. Let Φ be an m×N random matrix whose

entries are i.i.d N (0, 1). Let α, m, r, and s = 2k satisfy the

conditions of Theorem II.1. Suppose x ∈ ΣN
k and let q be the

quantization of Φx using r-th order Σ∆. Let ‖u‖∞ ≤ µ. Then

the minimizer x0,µ of (2) recovers an approximation of x with

error

‖x0,µ − x‖2 ≤ 2

C5

(m

2k

)−α(r−1/2)
µ .

Proof: Suppose T is the support of x, and let x′ = x0,µ

with support T ′. Since x, x′ are both feasible and x′ is the
sparsest feasible point, |T ′| = |x′|0 ≤ |x|0 ≤ k. Then by
Theorem II.1,

‖x− x′‖2 ≤ ‖D−rΦT∪T ′(x− x′)‖2
C5

√
m
(

m
2k

)α(r−1/2)
.

Note that D−rΦT∪T ′(x − x′) = D−rΦ(x − x′). Using the
triangle inequality and feasibility conditions,

‖D−rΦ(x− x′)‖2 ≤ ‖D−r(Φx′ − q)‖2 + ‖D−r(Φx− q)‖2
≤ 2

√
mµ .

The result follows from substitution.

III. ROBUSTNESS OF lτ MINIMIZATION

We will follow the approaches of [6], [12] to study ‖x‖τ
minimization as stated in (3). As in [6], we will state our
results in terms of the condition numbers of submatrices of
the measurement matrix:

Definition III.1. Define as(A) to be the largest a and bs(B)
to be smallest b such that the following holds:

a‖z‖2 ≤ ‖Az‖2 ≤ b‖z‖2 for all z ∈ ΣN
s .

The next result combines ideas from the analysis in [6], [12]
which will show that constrained lτ minimization recovers an
approximation with error proportional to 1/a:

Theorem III.2. Let A be an m×N matrix, 0 < τ ≤ 1, and

let x ∈ ΣN
k , w ∈ Rm satisfy ‖Ax−w‖2 ≤ ε. Define ρ := k/J

and γ := bJ (A)
ak+J (A) . If γρ1/τ−1/2 < 1 holds, then the minimizer

x# := Argmin
‖Az−w‖2≤ε

‖z‖τ

satisfies the bound

‖x# − x‖2 ≤

√

1 + 1
2/τ−1

(

k
k+J

)2/τ−1

1− γρ1/τ−1/2
· 2ε

ak+J(A)
.

Proof: Define η := x# − x, and T to be the support of
x. Using Hölder’s inequality and the fact that xτ,µ is the lτ

minimizer (see (25) of [12]),

‖ηT c‖τ ≤ ‖ηT ‖τ ≤ k1/τ−1/2‖ηT ‖2 . (7)
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Block ηT c into disjoint blocks of size J of decreasing magni-
tudes, i.e. ηT c =

∑L
i=1 ηTi

with |Ti| = J and |ηTi
(j)| ≤

|ηTi−1
(j′)| for j ∈ Ti, j′ ∈ Ti−1 and i > 1. Using the

constraint and singular value conditions,

‖ηT∪T1
‖2 ≤ 1

ak+J(A)
‖AηT∪T1

‖2

≤ 1

ak+J(A)

(

‖Aη‖2 +
L
∑

i=2

‖AηTi
‖2

)

≤ 2ε

ak+J(A)
+ γ

L
∑

i=2

‖ηTi
‖2 . (8)

Using 4.2.II of [12], bound ‖ηTi
‖2 ≤ J

1
2
− 1

τ ‖ηTi−1
‖τ . Com-

bined with the reversed triangle inequality (for τ < 1 and
non-negative vectors), we have

∑L
i=2 ‖ηTi

‖2 ≤ J
1
2
− 1

τ ‖ηT c‖τ .
Finally using (7),

L
∑

i=2

‖ηTi
‖2 ≤ ρ1/τ−1/2‖ηT∪T1

‖2 . (9)

Combining equation (30) of [12] with (7) gives

‖η‖2 ≤

√

1 +
1

2/τ − 1
ρ2/τ−1‖ηT∪T1

‖2 .

The result follows from substituting (9) into (8), solving for
‖ηT∪T1

‖2 and substituting into the last equation.

IV. lτ MINIMIZATION WITH Σ∆ AND COMPRESSED

SENSING

Finally we put together our two main observations and
state the known bounds and conditions for recovery. We state
precisely the results concerning the singular value of subma-
trices of D−rΦ to use with Theorem III.2. We already know
that Theorem II.1 covers the smallest singular values of the
submatrices. For the largest singular values, we can first use
Gershgorin’s circle theorem for eigenvalues on (D−1)TD−1,

to show that σmax(D−1) ≤
√

m+ (m−1)m
2 ≤ m. Then using

the bound σmax(AB) ≤ σmax(A)σmax(B),

σmax(D
−rE) ≤ mrσmax(E) . (10)

The standard restricted isometry property allows us to bound
the largest singular value of submatrices of Φ, which has a
simple proof in [1]:

Theorem IV.1 (e.g. Theorem 5.2 of [1]). Let Φ be an m×N
matrix whose entries are i.i.d. N (0, 1), and suppose

m

s
≥ C6 log(N/s)

for some absolute constant C6. Then there exists an absolute

constant C7 such that bs(Φ) < 2
√
m with probability ≥ 1 −

2e−C7m.

We can now combine these two results to obtain upper and
lower singular value bounds:

Corollary IV.2. Let Φ be an m × N random matrix whose

entries are i.i.d N (0, 1). Let 0 < α < 1 and suppose that

m

s
≥ C8(logN)

1
1−α (11)

for C8 = max(C3, C6) from Theorems II.1 and IV.1. Then

for some constant C9 depending on r, with probability ≥ 1−
3 exp(−C9m1−αsα) the following holds: For all z ∈ ΣN

s ,

C5
√
m(m/s)α(r−1/2)‖z‖2 ≤ ‖D−rΦT z‖2 ≤ 2mr+1/2‖z‖2

where C5 is from Theorem II.1. In other words,

as(D
−rΦ) ≥ C5

√
m(m/s)α(r−1/2)

bs(D
−rΦ) ≤ 2mr+1/2 .

Proof: Note that the condition (11) implies that the
conditions for both Theorems II.1 and IV.1 are satisfied.
Then with the union bound, both conclusions hold with prob-
ability ≥ 1− exp(−C4m1−αsα)− 2 exp(−C7m). Since m ≥
m1−αsα, we can bound this by ≥ 1 − 3 exp(−C9m1−αsα)
with C9 = min(C4, C7). The conclusion of Theorem II.1 gives
the lower inequality (as), and the conclusion of Theorem IV.1
along with observation (10) gives the upper inequality (bs).

The following result is then immediate from Theorem III.2
and Corollary IV.2 using A = D−rΦ, w = D−rq, J = 2k
and ε =

√
mµ:

Theorem IV.3. Let Φ be an m×N matrix whose entries are

i.i.d N (0, 1), and let 0 < α < 1. Suppose for k and 0 < τ ≤ 1,

the following conditions are satisfied:

i. m

k
≥ 3C8(logN)

1
1−α

ii.
1

τ
>

1

2
+ log2(2/C5) + r log2 m

Then with probability ≥ 1 − exp(−3αC9m1−αkα), the fol-

lowing holds:

For every x ∈ ΣN
k , if r-th order Σ∆ is used to quantize

Φx, with q being the quantization and ‖u‖∞ < µ in the

corresponding difference equation, then the minimizer xτ,µ of

(3) satisfies the bound

‖xτ,µ − x‖2 ≤ C10µ
(m

k

)−α(r−1/2)

for some r-dependent constant C10.

Remark IV.4. Note that for any fixed δQ and order r, there
is a τ sufficiently small for which the conditions for recovery
hold, and in the recovery error µ will typically have a linear
dependence on δQ.

V. ROOT-EXPONENTIAL ACCURACY

Suppose we impose a bit budget of R bits for quantizing
measurements from unit-norm vectors in ΣN

k . Define Reff :=
R/k, the effective bit-rate per sparse dimension. We will also
work with a fixed quantization alphabet A of spacing δQ. This
requires that we use the quantization method (II.B) and that
the measurements be bounded independently from the number
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of measurements. Unfortunately, Gaussian measurements do
not satisfy this criteria [8], but there is also ongoing work
that would allow us to use alternative matrix ensembles which
are bounded, such as the Bernoulli-{±1} matrices [10]. For
what follows we will assume the bound ‖y‖∞ ≤ M for some
absolute constant M .

Also, by inspecting the proofs in [8] we can expand the
r-dependent constants in the paper so that in Theorem IV.3,
C8 does not actually depend on r and C10 ≤ (C11r)r where
C11 is now an absolute constant. Substituting (5) for µ in the
conclusion of Theorem IV.3 gives a reconstruction accuracy
of

δQ(C12r
2)r(3k/m)α(r−1/2)

with C12 = C2C11, and the number of bits needed for
quantization is Reff = C13

m
k with C13 = log2(C1 + 2M/δQ)

from (4). Solving for m/k in the rate and substituting, the
accuracy becomes

δQ(Reff/C13)
α/2(C14r

2/Rα
eff)

r

with C14 = C12(3C13)α. Then optimizing over r, or choosing
r =

√

Rα
eff/(eC14) gives

δQ(Reff/C13)
α/2 exp(−C15R

α/2
eff )

with C15 = 1/
√
eC14.

VI. ALGORITHMS

Solving the constrained lτ minimization problem (3) is
tricky given the non-convexity of the ‖ · ‖τ , but there are
several approaches. In [11], Saab et al. use a modification to
iterative reweighted least squares with encouraging numerical
results. If we want a weight that encourages minimization of
the sparsity measure ‖x‖0 instead, [13] mentions a weighting
scheme that is non-separable which could potentially be used
in this situation. Other approaches involve projected gradient,
and different regularizations of the lτ norm [4].

We conclude with a sample plot from the approach of [11],
which uses the iteration

w(n)
i = (|x̂(n)

i |2 + εw)
τ/2−1

x̂(n+1) = W−1A′(AW−1A′ + λI)−1D−rq

where W = W (n) is diagonal with entries w(n)
i , and w(0) ≡ 1.

Fixing εw = 10−10 and λ = 1, we start with τ = 1 and
decrease τ to 0.1. With N = 200 and k = 3, we generate a
k-sparse signal and a 180×200 Bernoulli random matrix. For
a range of m, we take the first m measurements, quantize and
recover, recording the resulting error. In figure 1 we plot the
result, comparing the iterative method with l1 minimization
and with the Sobolev dual (assuming a support oracle). What
we observe in many cases is that after a certain number of
measurements, the error starts tracking that of the Sobolev

dual. In fact, if w(n)
i → ∞ for i "∈ supp(x), x̂(n+1) converges

to a small perturbation of the Sobolev dual reconstruction.
Thus the success of the method hinges on a reweighting
scheme that can detect the support of the source signal. We

emphasize that with such a coarse quantization step size, l1

minimization generally will fail to detect the support, a crucial
requirement for the results in [8].
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Fig. 1. Log-log plot comparing accuracy vs oversampling ratio m/k for a
fixed k-sparse signal and Bernoulli measurements for r = 1 and δQ = 2. In
this example, N = 200, and k = 3.
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Abstract—In this work, we show that reconstructing a sparse
signal from quantized compressive measurement can be achieved
in an unified formalism whatever the (scalar) quantization
resolution, i.e., from 1-bit to high resolution assumption. This
is achieved by generalizing the iterative hard thresholding (IHT)
algorithm and its binary variant (BIHT) introduced in previous
works to enforce the consistency of the reconstructed signal
with respect to the quantization model. The performance of
this algorithm, simply called quantized IHT (QIHT), is evaluated
in comparison with other approaches (e.g., IHT, basis pursuit

denoise) for several quantization scenarios.

I. INTRODUCTION

Since the advent of Compressed Sensing (CS) almost 10
years ago [1, 2], many works have treated the problem of
inserting this theory into an appropriate quantization scheme.
This step is indeed mandatory for transmitting, storing and
even processing any compressively acquired information, and
more generally for sustaining the embedding of the CS prin-
ciple in sensor design.

In its most popular version, CS provides uniform theoretical
guarantees for stably recovering any sparse (or compressible)
signal at a sensing rate proportional to the signal intrinsic
dimension (i.e., its sparsity level) [1, 2]. In this context,
scalar quantization of compressive measurements has been
considered along two main directions.

First, under a high-resolution quantization assumption, i.e.,
when the number of bits allocated to encode each measurement
is high, the quantization impact is often modeled as a mere
additive Gaussian noise whose variance is adjusted to the
quantization `2-distortion [3]. In short, under this high-rate
model, the CS stability guarantees under additive Gaussian
noise, i.e., as derived from the `2� `1 instance optimality [2],
are used to bound the reconstruction error obtained from quan-
tized observations. Variants of these works handle quantization
saturation [4], prequantization noise [5], `

p

-distortion models
(p � 2) for improved reconstruction in oversampled regimes
[6, 7], optimize the high-resolution quantization procedure [8]
or integrate more evolved ⌃�-quantization models departing
from scalar PCM quantization [9].

Second, and more recently, extreme 1-bit quantization
recording only the sign of the compressive measurement, i.e.,
an information encoded in a single bit, has been considered
[10–13]. New guarantees have been developed to tackle the
non-linear nature of the sign operation thanks to the re-
placement of the restricted isometric property (RIP) by the
quasi-isometric binary ✏-stable embedding (B✏SE) [11], or
to more general characterization of the binary embedding of

*LJ and CDV are funded by the Belgian F.R.S-FNRS. Part of this research
is supported by the DETROIT project (WIST3), Walloon Region, Belgium.
Acknowledgements: We thank Prasad Sudhakar (UCL/ICTEAM) and the
anonymous reviewers of SAMPTA 2013 for their useful comments.

sets based on their Gaussian Mean Width [12, 13]. In this
context, iterative methods such as the binary iterative hard
thresholding [11] or linear programming optimization [12]
have been introduced for estimating the 1-bit sensed signal.

This work proposes a general procedure for handling the
reconstruction of sparse signals observed according to a
standard non-uniform scalar quantization of the compressive
measurements. The novelty of this scheme is its ability to
handle any resolution level, from 1-bit to high-resolution, in
a progressive fashion. Conversely to the Bayesian approach
of [16], our method relies on a generalization of the iterative
hard thresholding (IHT) [17] that we simply called quantized
iterative hard thresholding. Actually, QIHT reduces to BIHT
for 1-bit sensing and it converges to IHT at high resolution.

Conventions: Most of domain dimensions (e.g., M , N )
are denoted by capital roman letters. Vectors and matrices are
associated to bold symbols while lowercase light letters are
associated to scalar values. The ith component of a vector u

is u
i

or (u)

i

. The identity matrix is Id. The set of indices in
RD is [D] = {1, · · · , D}. Scalar product between two vectors
u,v 2 RD reads u

⇤
v = hu,vi (using the transposition (·)⇤),

while the Hadamard product u�v is such that (u�v)

i

= u
i

v
i

.
For any p � 1, k · k

p

represents the `
p

-norm such that
kukp

p

=

P
i

|u
i

|p with kuk = kuk2 and kuk1 = max

i

|u
i

|.
The `0 “norm” is kuk0 = #suppu, where # is the cardinality
operator and supp u = {i : u

i

6= 0} ✓ [D]. For S ✓ [D],
uS 2 R#S (or �S ) denotes the vector (resp. the matrix)
obtained by retaining the components (resp. columns) of
u 2 RD (resp. � 2 RD

0⇥D) belonging to S ✓ [D]. The
operator H

K

is the hard thresholding operator setting all the
coefficients of a vector to 0 but those having the K strongest
amplitudes. The set of canonical K-sparse vectors in RN

is ⌃

K

= {v 2 RN

: kvk0  K} while ⌃T denotes
the set of vectors whose support is T ✓ [N ]. Moreover,
⌃

⇤
K

= ⌃

K

\ SN�1 and ⌃

⇤
T = ⌃

⇤
T \ SN�1 with SN�1 the

(N�1)-sphere in RN . Finally, �I is the characteristic function
on I ⇢ R, sign� equals 1 if � is positive and �1 otherwise,
(�)+ = (� + |�|)/2 and (�)� = �(��)+ project � on R+

and R�, respectively, with all these operators being applied
component wise onto vectors.

II. NOISY COMPRESSED SENSING FRAMEWORK

The iterative hard thresholding (IHT) algorithm has been in-
troduced for iteratively reconstructing a sparse or compressible
signal x 2 RN from compressible observations y = �x + n,
where � 2 RM⇥N is the sensing matrix and n 2 RM

stands for a possible observational noise with bounded energy
knk  ". IHT is an alternative to the basis pursuit denoise
(BPDN) method [18] which aims at solving a global convex
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minimization promoting a `1-sparse data prior model under
the constraint of reproducing the compressive observation.

Assuming that x is K-sparse in the canonical basis = Id,
i.e., x 2 ⌃

K

, the IHT algorithm is designed to approximately
solve the (LASSO-type) problem

min

u2RN

1
2ky ��uk2 s.t. kuk0  K. (1)

It proceeds by computing the following recursion

x

(n+1)
= H

K

⇥
x

(n)
+ µ�⇤(y ��x

(n)
)

⇤
, (IHT)

where x

(0)
= 0, and µ > 0 must satisfy µ�2 > k�k :=

supu:kuk=1 k�uk for guaranteeing convergence [19].
In other words, at each iteration, starting from the previ-

ous estimation x

(n), the fidelity function E(u) :=

1
2ky �

�uk2 is decreased by a gradient descent step with gradient
rE(x

(n)
) = �⇤(�x

(n) � y), followed by a “projection” on
⌃

K

accomplished by the hard thresholding H
K

.
In [17], it is shown that if � respects the restricted isometry

property (RIP) of order 3K with radius �3K

< 1/15, which
means that for all u 2 ⌃3K

, (1 � �3K

)kuk2  k�uk2 
(1 + �3K

)kuk2, then, at iteration n⇤ = dlog2 kxk/"e, the
reconstruction error satisfies kx� x

(n⇤)k  5".

III. QUANTIZED SENSING MODEL

For the sake of simplicity, let us consider a unit K-sparse
signal x0 2 ⌃

⇤
K

observed through the following Quantized
Compressed Sensing (QCS) model

y = Q
b

[�x0], (2)

where � 2 RM⇥N is the sensing matrix and Q
b

the quantiza-
tion operator defined at a resolution of b-bits per measurement,
i.e., with no further encoding treatment, y requires a total
of B = bM bits. In this work, we will not consider any
prequantization noise in (2).

The quantization Q
b

is assumed optimal with respect to
the distribution of each component of z = �x0 2 RM .
In particular, by considering only random Gaussian matri-
ces � ⇠ NM⇥N

(0, 1), i.e., where each matrix entry fol-
lows �

ij

⇠iid N (0, 1), we have z
i

⇠ N (0, kx0k2 = 1)

and we adjust Q
b

to an optimal b-bits Gaussian Quantizer
minimizing the quantization distortion, e.g., using a Lloyd-
Max optimization [20]. This provides a set of thresholds
{⌧

i

2 ¯R : 1  i  2

b

+ 1} (with �⌧1 = ⌧2b+1 = +1)
defining 2

b quantization bins R
i

= [⌧
i

, ⌧
i+1), and a set of

levels {q
i

2 R
i

: 1  i  2

b} such that

Q
b

[�] = q
k

, � 2 R
k

,

with 2⌧
i

= q
i�1 + q

i

and q
i

= E[g
x

|g
x

2 R
i

] with g
x

⇠
N (0, 1). Notice that this QCS model includes 1-bit CS scheme
since Q1[�] = q0 sign (�) with q0 := q2 = �q1 =

p
2/⇡.

IV. QUANTIZED ITERATIVE HARD THRESHOLDING

In this section, we propose a generalization of the IHT
algorithm taking into account the particular nature of the
scalar quantization model introduced in Sec. III. The idea is
to enforce the consistency of the iterates with the quantized
observations. This is first achieved by defining an appropriate
cost measuring deviation from quantization consistency.

J
(⌫

,�
)

⌫
⌧2 ⌧3 ⌧4 ⌧5 ⌧6 ⌧7 ⌧8

� q5
0

1

2

3

Fig. 1: (plain curve) Plot of J as a function of ⌫ 2 R for b = 3 (⌧5 = 0)
and � 2 R5. (dashed curve) Plot of 1

2 (⌫ � q5)2.

Given ⌫, � 2 R and using the levels and thresholds associ-
ated to Q

b

, we first define

J(⌫, �) =

2bX

j=2

w
j

���
sign (�� ⌧

j

) (⌫ � ⌧
j

)

�
�

��, (3)

with w
j

= q
j

� q
j�1. Equivalently, given I(⌫, �) :=

[min(⌫, �),max(⌫, �)], J(⌫, �) =

P2b

j=2 w
j

�I(⌧
j

) |⌫ � ⌧
j

|.
The non-zero terms are therefore determined by the thresholds
lying between � and ⌫, i.e., for which sign (� � ⌧

j

) 6=
sign (⌫ � ⌧

j

). Interestingly, J(⌫;�) = J(⌫;Q
b

(�)) since
sign (�� ⌧

j

) = sign (Q
b

(�)� ⌧
j

) for all j 2 [2

b

+ 1].
Then, our quantization consistency function between two

vectors u,v 2 RM reads

J (u,v) :=

MX

k=1

J(u
k

, v
k

) = J (u,Q
b

(v)). (4)

This cost, which is convex with respect to u, has two
interesting limit cases. First, for b = 1, it reduces to the
cost on which relies the binary iterative hard thresholding
algorithm (BIHT) adapted to 1-bit CS [11]. In this context,
the sum in (3) has only one term (for j = 2) and J (u,v) =

2q0 k(sign (v)�u)�k1. Up to a normalization by 2q0, this is
the `1-sided norm minimized by BIHT which vanishes when
q0 sign (u) = Q1(u) = Q1(v) = q0 sign (v), with q0 defined
in Sec. III.

Second, in the high resolution limit when b � 1, J (u,v)

tends to 1
2ku�vk2. Indeed, in this case w

j

⌧ 1 and, the sum
in (3) tends to

J(⌫, �) ' ��R �

⌫

(⌫ � t) dt
��
=

1
2 (⌫ � �)

2.

This asymptotic quadratic behavior of J is illustrated in Fig. 1.
Given the quantization consistency cost J , we can now

formulate a generalization of (1) for estimating a K-sparse
signal x0 observed by the model (2):

min

u2RN
E

b

(u) s.t. kuk0  K, (5)

with E
b

(u) := J (�u,y) = J (�u,Q
b

[�x0]).
Following the procedure determining the IHT algorithm

from (1) (Sec. II), our aim is to find an IHT variant which
minimizes the quantization inconsistency, as measured by
E

b

, instead of the quadratic cost E . This is done by first
determining a subgradient of the convex but non-smooth
function E

b

[21].
A quick calculation shows that a subdifferential of J(⌫, �)

with respect to ⌫ reads
k+X

j=k�+1

wj

2 (sign (⌫ � ⌧
j

)� sign (�� ⌧
j

)), (6)
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where k� = min(k
⌫

, k
�

), k+ = max(k
⌫

, k
�

), and k
⌫

and k
�

are the bin indices of Q
b

(⌫) and Q
b

(�) respectively. From
the definition of the w

j

, the sum simplifies to q
k⌫ � q

k� .
Therefore, a subgradient of J (u,v) with respect to u reads
simply Q

b

(u) � Q
b

(v), so that a subgradient of J (�u,y)

with respect to u corresponds to �⇤(Q
b

(�u)� y).
Therefore, from this last ingredient, we define the quantized

iterative hard thresholding algorithm (QIHT) by the recursion

x

(n+1)
= H

K

⇥
x

(n)
+ µ�⇤

�
y �Q

b

(�x

(n)
)

�⇤
, (QIHT)

where x

(0)
= 0 and µ is set hereafter.

V. QIHT ANALYSIS

Despite successful simulations of sparse signal recovery
from quantized measurements (see Sec. VI), we were not
able to prove the stability and the convergence of the QIHT
algorithm yet. However, there exist a certain number of
promising properties suggesting the existence of such a result.
The first one comes from a limit case analysis. Except for the
normalizing factor µ, QIHT at 1-bit (b = 1) reduces to BIHT
[11]. Moreover, when b � 1, Q

b

[z] ' z for z 2 RM and we
recover the IHT algorithm. These limit cases are consistent
with the previous observations made above on the asymptotic
behaviors of J in these two cases.

Second, as for the modified Subspace Pursuit algorithm [3],
QIHT is designed for improving the quantization consistency
of the current iterate with the quantized observations. For the
moment, the importance of this improvement can only be
understood in 1-bit. Given � > 0, when M = O(��1K log N)

and with high probability on the drawing of a random Gaussian
matrix � ⇠ NM⇥N

(0, 1), k a
kak � b

kbkk  � if Q1(�a) =

Q1(�b) for all a, b 2 ⌃

K

[11]. Actually, it can be shown1

that if no more than r components differ between Q1(�a)

and Q1(�b), then, with high probability on �,

k a
kak � b

kbkk  (

K+r

K

) �,

for M = O(��1K log MN). We understand then the benefi-
cial impact of any increase of consistency between Q1(�x

(n)
)

and y at each QIHT iteration.
Third, the adjustment of µ, which is decisive for QIHT

efficiency, leads also to some interesting observations. Ex-
tensive simulations not presented here pointed us that, for
� ⇠ NM⇥M

(0, 1), µ / 1/M seems to be a universal rule
of efficiency at any bit rate. Interestingly, this setting was
already characterized for IHT where µ ' 1/(1 + �2K

) if
the sensing matrix respects the RIP property with radius �2K

[19]. Since �/
p

M is RIP for � ⇠ NM⇥N

(0, 1) as soon as
M = O(K log N/K) this is equivalent to impose µ ' 1/M .

At the other extreme, the rule µ / 1/M is also consistent
with the following 1-bit analysis. In [13], it is shown that the
mapping u ! sign (�u) respects an interesting property that
we arbitrary call sign product embedding2 (SPE):

Proposition 1. Given 0 < � < 1, there exist two constants
c, C > 0 such that, if M � C��6K log N/K, then, with a

1The interested reader can find the proof in a related technical report [15].
2In [13], more general embeddings than this of ⌃K are studied.

probability higher than 1�8 exp(�c�2M), � ⇠ NM⇥N

(0, 1)

satisfies
��µ⇤hsign (�u),�vi � hu,vi��  �, 8u,v 2 ⌃

⇤
K

, (7)

with µ⇤ = 1/(q0 M). When u is fixed, the condition on M is
relaxed to M � C��2K log N/K.

When � respects (7), we simply write that � is
SPE(⌃

⇤
K

, �). When u is fixed, we say that � is locally
SPE(⌃

⇤
K

, �) on u. This SPE property leads to an interesting
phenomenon.

Proposition 2. Given x 2 ⌃

⇤
K

and let � 2 RM⇥N be a
matrix respecting the local SPE(⌃

⇤
2K

, �) on x for some 0 <
� < 1. Then, given y = Q1[�x] = q0 sign (�x), the vector

ˆ

x :=

1
q

2
0M

H
K

(�⇤y),

satisfies kx� ˆ

xk  2�.

Proof: Let us define T0 = suppx, T = T0[ supp

ˆ

x, and
a =

1
q

2
0M

�⇤y = µ⇤�⇤sign (�x) with ˆ

x = H
K

(a). Then ˆ

x is
also the best K-term approximation aT = �⇤T y, so that kx�
ˆ

xk  kx� aT k+ kˆ

x� aT k  2kx� aT k. Therefore, since
kx � aT k = supw2⌃⇤

T
hw,x � aT i and � is SPE(⌃

⇤
2K

, �),
kx � ˆ

xk  2 supw2⌃⇤
T

�hw,xi � µ⇤h�w, sign (�x)i� 
2 supw2⌃⇤

T

�hw,xi � hw,xi + �
�

= 2�, using supp (x �
aT ) ✓ T with #T  2K.

This proposition shows that a single hard thresholding of
1

q

2
0M

�⇤y already provides a good estimation of x. Actually,
from the condition on M for reaching the local SPE, we de-
duce that kx� ˆ

xk = O(

p
K/M). This is quite satisfactory for

such a simple x estimation and it suggests setting µ / 1/M
in QIHT for b = 1 where ˆ

x is related to x

(1).
Noticeably, it has been recently observed in [14] that ˆ

x

0
:=

ˆ

x/kˆ

xk is actually solution of argmaxuhy,�ui s.t. kuk0 
K, for which there exists the weaker error bound kx� ˆ

x

0k2 =

O(

p
K/M) when x is fixed [13].

VI. EXPERIMENTS

An extensive set of simulations has been designed for
evaluating the efficiency of QIHT in comparison with two
other methods more suited to high-resolution quantization,
namely, IHT and BPDN. Our objective is to show that QIHT
provides better quality results at least at small quantization
levels. For all experiments, we set N = 1024, K = 16

and the K-sparse signals were generated by choosing their
supports uniformly at random amongst the

�
N

K

�
available ones,

while their non-zero coefficients were drawn uniformly at
random on the sphere SK�1 ✓ RK . For each algorithm,
100 initial such sparse vectors were generated and the re-
construction method was tested for 1  b  5 and for
B = bM 2 {64, 128, · · · , 1280}, i.e., approximately fixing
M = bB/bc. For each experimental condition, the quantized
M -dimensional measurement vectors y

b

was generated as
in (2) with a random sensing matrix � ⇠ NM⇥N

(0, 1)

and according to an optimal Lloyd-Max b-bits Quantizer Q
b

(Sec. III). IHT and QIHT iterations were both stopped at
step n as soon as kx(n+1) � x

(n)kkx(n+1)k�1
< 10

�4 or if
n = 1000. The BPDN algorithm was solved with the SPGL1
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Fig. 2: Comparison between (from left to right) BPDN, IHT and QIHT for several quantization scenarios. The SNR is expressed in dB as a function of the
bit budget B and the number of bits b used to quantize each measurement.

MATLAB toolbox [22]. In IHT and QIHT, signal sparsity K
was assumed known and both were set with µ =

1
M

�
1 �»

2K

M

�
. This fits the IHT condition µ < 1/(1+�2K

) mentioned
in Sec. V by assuming that the RIP radius �2K

behaves likep
2K/M , which is a common assumption in CS. For BPDN,

the noise energy was given by an oracle installing BPDN in the
best reconstruction scenario, i.e., ✏ = k�x0 � yk2. Whatever
the reconstruction method, given an initial signal x0 2 ⌃

⇤
K

and
its reconstruction x

⇤, the reconstruction quality was measured
by SNR(x0,x

⇤
) = �20 log10

��
x0 � kx⇤k�1

x

⇤��. In other
words, we focus here on a good “angular” estimation of the
signals, adopting therefore a common metric for b > 1 and for
b = 1, where amplitude information is lost. Finally, for each
method and each couple of (M, b), the SNR was averaged
over the 100 test signals and expressed in dB.

Fig. 2 gathers the SNR performances of the 3 methods as
a function of B. QIHT outperforms both BPDN and IHT for
the selected scenarios, especially for low bit quantizers. At
high resolution, the gain between QIHT and IHT decreases as
expected from the limit case analysis of QIHT. We can also
notice that, first, there is almost no quality difference between
QIHT at b = 1 and b = 2. This could be due to a non-
optimality of the Lloyd-Max quantizer with respect to QIHT
reconstruction error minimization. Second, BPDN and IHT
asymptotically present the “6dB per bit” gain, while QIHT
hardly exhibits such behavior only when b = 4 ! 5.

Finally, in order to test Prop. 2, the SNR reached by the
single thresholding solution ˆ

x is plotted in dashed in Fig 2-
right. Despite its poor behavior compared to QIHT at b = 1,
it outperforms BPDN at high B = M with a SNR � 10dB at
M = N = 1024. A curve fitting (no shown here) shows that
this SNR increases a bit faster than 20 log10

p
K/M + O(1).

VII. CONCLUSION

We have introduced the QIHT algorithm as a generalization
of the BIHT and IHT algorithms aiming at enforcing con-
sistency with quantized observations at any bit resolution. In
particular, we showed that the almost obvious inclusion of the
quantization operator in the IHT recursion is actually related to
the implicit minimization of a particular inconsistency cost E

b

.
This function generalizes the one-sided `1 cost of BIHT and
asymptotically converges to the quadratic fidelity minimized
by IHT. There is still a hard work to be performed in order to
prove QIHT convergence and stability. However, the different

ingredients defining it, as E
b

, deserve independent analysis
extending previous 1-bit embeddings developed in [11–13].
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[9] C. Sinan Güntürk, M Lammers, A. M. Powell, R. Saab, and Ö. Yılmaz,
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Abstract—Recently, it has been shown that for the setup

of compressed sensing with Gaussian measurements that ⌃�
quantization can be effectively incorporated into the sensing

mechanism [1]. In contrast to independently quantized measure-

ments, the resulting schemes yield better reconstruction accuracy

with a higher number of measurements even at a constant

number of bits per signal. The original analysis of this method,

however, crucially depends on the rotation invariance of the

Gaussian measurements and hence does not directly generalize

to other classes of measurements. In this note, we present a

refined analysis that allows for a generalization to arbitrary sub-

Gaussian measurements.

I. INTRODUCTION

Compressed Sensing [2], [3] is a recent paradigm in sig-
nal processing based on the observation that many natural
signals are approximately sparse in suitable representation
systems, that is, they have only few significant coefficients.
The underlying idea is that such signals are intrinsically low-
dimensional, so the number of linear measurements necessary
to allow for recovery of the signal should be considerably
smaller than the signal dimension. Here taking m linear
measurements of a signal x 2 RN is to be understood as con-
sidering the measurement vector y = Ax, where A 2 Rm⇥N

is a fixed measurement matrix. As it turns out, a number of
measurements proportional to s log(N/s) can allow for stable
and robust recovery of signals with s non-vanishing entries
in dimension N , provided the measurement matrix is suitably
chosen. As no deterministic constructions for such matrices
are known, this choice typically involves a random matrix
construction.

Note that the resulting linear system to be solved to recover
the signal is underdetermined, so the regularizing assumption
of sparsity is crucial. However, once it has been determined
which s coefficients are significant, the system becomes re-
dundant by at least a logarithmic factor.

In order for the signal to be processed digitally, the mea-
surements must, in a second step, be quantized. That is, the
measurement vector, whose entries can a priori take arbitrary
real values, must be represented by a sequence of values
from a given finite alphabet. At this stage, the redundancy
mentioned above can be exploited by applying a Sigma-
Delta quantization scheme. Such coarse quantization schemes,

originally designed for quantizing oversampled bandlimited
signals [4], translate redundancy in a signal representation
to more accurate quantized representations even though the
alphabet size representing each sample is fixed. The idea is that
the quantized representations are chosen dynamically using a
feedback loop such that the quantization error made in a given
sample partly compensates for the error made in previous
samples.

This idea has been transferred to the setup of quantizing
frame representations in RN in [5]. As it turned out in
subsequent works, higher accuracy can be achieved if instead
of the Moore-Penrose pseudoinverse of the frame matrix, the
so called canonical dual frame, an alternative dual frame,
the so-called Sobolev dual is used for reconstruction [6].
In compressed sensing, once the support is identified, the
measurement vector is nothing but a frame representation of
the signal, so similar ideas apply.

For measurement matrices with independent standard nor-
mal entries, this scenario has been analyzed in [1]. For
recovery, the authors proceed via a two-stage approach. In
a first stage, standard compressed sensing techniques are used
to estimate the support of the signal from the quantized
measurements. In a second step, once the support has been
identified, a Sobolev dual is used to obtain a more precise
estimate of the signal coefficients.

The analysis in [1] is specific to Gaussian measurements. In
this note, we generalize their results to arbitrary sub-Gaussian
measurements. This more general setup includes important
examples like Bernoulli matrices.

II. SIGMA-DELTA QUANTIZATION

A. Greedy quantization schemes

Denote by A the 2L level mid-rise alphabet

A =

n

± (2j + 1)�/2, j 2 {0, ..., L� 1}
o

and let Q : R 7! A denote the scalar quantizer, which is
defined via its action

Q(x) = argmin

q2A
|x� q|.
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The rth order greedy ⌃� quantization scheme, defined via

qi = Q

⇣

r
X

j=1

(�1)

j�1

✓

r

j

◆

ui�j + yi

⌘

ui =

r
X

j=1

(�1)

j�1

✓

r

j

◆

ui�j + yi � qi, (1)

maps a sequence of inputs (yi)mi=1 to a sequence (qi)mi=1 whose
elements take on values from A. Note that condition (1) can
be rewritten as

(�

r
u)i = yi � qi,

where � is the finite difference operator.
It is easily seen by induction that for bounded input se-

quences kyk1 < (L� 2

r�1 � 3/2), such schemes satisfy

kuk1  �/2.

In other words, the scheme is stable, that is, its state sequence
remains bounded. Note that to satisfy this stability condition,
the number of levels L must increase with r.

B. Sigma-Delta error analysis

If y = Ex 2 Rm is a vector of frame coefficients that
is ⌃� quantized to yield the vector q 2 Am, then linear
reconstruction of x from q using some dual frame F of E

(i.e., FE = I) produces the estimate x̂ := Fq. We would like
to control the reconstruction error ⌘ := x � x̂. Writing the
state variable equations (II-A) in vector form, we have

D

r
u = y � q,

where D is the m ⇥ m difference matrix with entries given
by

Dij =

8

<

:

1 i = j

�1 i = j + 1

0 otherwise
.

Thus,
⌘ = x� Fq = F (y � q) = FD

r
u.

Working with with stable ⌃� schemes, one can control kuk2
via kuk1. Thus, it remains to bound the operator norm
kFD

rk := kFD

rk`m2 7!`k2
and a natural choice for F is

F := arg min

G:GE=I
kGD

rk = (D

�r
E)

†
D

�r
. (2)

This so-called Sobolev dual frame was first proposed in [6].
Here A

†
:= (A

⇤
A)

�1
A

⇤ is the k ⇥ m Moore-Penrose (left)
inverse of the m⇥ k matrix A. Since (2) implies that FD

r
=

(D

�r
E)

†
, the singular values of D

�r
E will play a key role

in this paper.
An important property of the matrix D is given in the

following proposition .
Proposition 1 ([1], Proposition 3.1): There are constants

c1, c2 depending only on r such that the singular values of
the matrix D

�r satisfy

c1(r)

✓

m

j

◆r

 �j(D
�r

)  c2(r)

✓

m

j

◆r

.

III. PRELIMINARIES

Here and throughout, x ⇠ D denotes that the random
variable x is drawn according to a distribution D. Furthermore,
N (0,�

2
) denotes the zero-mean Gaussian distribution with

variance �

2. The following definition provides a means to
compare the tail decay of two distributions.

Definition 2: If two random variables ⌘ ⇠ D1 and ⇠ ⇠ D2

satisfy P (|⌘| > t)  KP (|⇠| > t) for some constant K

and all t � 0, then we say that ⌘ is K-dominated by ⇠ (or,
alternatively, by D2).

Definition 3: A random variable is sub-Gaussian with pa-
rameter c > 0 if it is e-dominated by N (0, c

2
).

Remark 4: One can also define sub-Gaussian random vari-
ables via their moments or, in case of zero mean, their
moment generating functions. See [7] for a proof that all these
definitions are equivalent.

Remark 5: Exmaples of sub-Gaussian random variables in-
clude Gaussian random variables, all bounded random vari-
ables (such as Bernoulli), and their linear combinations.

Definition 6: We say that a matrix E is sub-Gaussian with
parameter c if its entries are independent sub-Gaussian random
variables with mean zero, variance one, and parameter c.

IV. MAIN RESULTS

In this section, we present our main results, generalizing
the theorems of [1] on the singular values of D

�r
E to

sub-Gaussian matrix entries and leveraging these results to
establish recovery guarantees from ⌃� quantized compressed
sensing measurements.

Proposition 7: Let E be an m ⇥ k sub-Gaussian matrix
with parameter c, let S = diag(s) be a diagonal matrix, and
let V be an orthonormal matrix, both of size m⇥m. Further,
let r 2 Z+ and suppose that sj � C

r
1

⇣

m
j

⌘r
, where C1 is

a positive constant that may depend on r. Then there exist
constants C2, C3 > 0 (depending on c and C1) such that for
0 < ↵ < 1 and � :=

m
k � C

1
1�↵

2

P
⇣

�min(
1p
m
SV

⇤
E)  �

↵(r�1/2)
⌘

 2 exp(�C3m
1�↵

k

↵
).

In particular, C3 depends only on c, while C2 can be expressed
as f(c)C

� 2r
2r�1

1 provided C1  1/2.
Proof: The matrix SV

⇤
E has dimensions m and k, so

by the Courant min-max principle applied to the transpose
one has

�min(SV
⇤
E) = min

W⇢Rm

dimW=m�k+1

sup

z2W :kzk2=1
kE⇤

V Szk2

Noting that, for m � e

k := C4m
1�↵

k

↵
> k, where the

constant C4 will be determined later, each m � k + 1-
dimensional subspace intersects the span Vek of the first e

k

standard basis vectors in at least a e

k � k + 1-dimensional
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space, this expression is bounded from below by

min

W⇢Vek
dimW=ek�k+1

sup

z2W :kzk2=1
kE⇤

V Szk2

� min

W⇢Vek
dimW=ek�k+1

sup

z2W :kzk2=sek

kE⇤
V zk2

= min

W⇢Rek

dimW=ek�k+1

sup

z2W :kzk2=1
sekkE

⇤
V P

⇤
ek zk2.

(3)

The inequality follows from the observation that Vek is invariant
under S and the smallest singular value of S|Vek

is sek. In the
last step, Pek denotes the projection of an m-dimensional vector
onto its first e

k components. We note that (3), again by the
Courant min-max principle, is equal to

sek�k(E
⇤
V P

⇤
ek ) = sek�min(PekV

⇤
E) = sek inf

y2Sk�1
kPekV

⇤
Eyk2

Now, as EkPekV
⇤
Eyk22 =

e

k,

inf

y2Sk�1
kPekV

⇤
Eyk22

�
⇣

e

k � sup

y2Sk�1

�

�kPekV
⇤
Eyk22 � EkPekV

⇤
Eyk22

�

�

⌘

.

Thus, noting that

�

↵(r�1/2)

sek
< m

↵(r�1/2)
k

�↵(r�1/2)
C

�r
1 m

�r
e

k

r

= C

�r
1 C

r� 1
2

4

p

e

kp
m

and that by choosing C4 = min(

1
2C

2r
2r�1

1 ,

1
2 ) we ensure that

1� C

�2r
1 C

2r�1
4 � 1

2 ,

P(�min(
1p
m
SV

⇤
E)  �

↵(r�1/2)
)

 P( sup

y2Sk�1

�

�k 1p
m
PekV

⇤
Eyk22 � Ek 1p

m
PekV

⇤
Eyk22

�

� �
e

k

2m

).

(4)

Note that this choice of C4 also ensures e

k  m, which is
required above. We will estimate (4) using the chaos bounds
of [9], similarly to the proof of [9, Thm. A.1]. Indeed, we can
write

1p
m
PekV

⇤
Ey = Wy⇠,

where ⇠ is a vector of length km with independent subgaussian
entries of mean zero and variance 1, and

Wy =

1p
m

PekV
⇤

0

B

B

B

@

y

T
0 · · · 0

0 y

T · · · 0

...
...

...
...

0 · · · 0 y

T

1

C

C

C

A

.

In order to apply [9, Thm. 3.1], we need to estimate, for
A = {Wy : y 2 S

k�1}, dF (A) := sup

A2A
kAkF , d2!2(A) :=

sup

A2A
kAk2!2, and the Talagrand functional �2(A, k · k2!2)

(see [8] for its definition). We obtain for A = Wy 2 A:

kAk2F =

1

m

k
X

j=1

ek,m
X

`1,`2=1

y

2
jV

2
`1,`2 =

e

k

m

, so dF (A) =

s

e

k

m

.

Furthermore, we have, for z 2 Rk,

kWzk2!2 =

�

�

�

�

�

�

�

�

�

1p
m

PekV
⇤

0

B

B

B

@

z

T
0 · · · 0

0 z

T · · · 0

...
...

...
...

0 · · · 0 z

T

1

C

C

C

A

�

�

�

�

�

�

�

�

�

2!2



�

�

�

�

�

�

�

�

�

1p
m

0

B

B

B

@

z

T
0 · · · 0

0 z

T · · · 0

...
...

...
...

0 · · · 0 z

T

1

C

C

C

A

�

�

�

�

�

�

�

�

�

2!2

,

so the quantities d2!2(A) and �2(A, k·k2!2) can be estimated
in exact analogy to [9, Thm. A.1]. This yields d2!2(A) =

1p
m

and �2(A, k·k2!2)  C5

q

k
m for some constant C5 depending

only on c. With these estimates, we obtain for the quantities
E, U , V in [9, Thm. 3.1]

E (2C5 + 2)

p

k

e

k

m

U  1

m

V (C5 + 1)

p

e

k

m

,

so the resulting tail bound reads

P
⇣

sup

y2Sk�1

�

�k 1p
m
PekV

⇤
Eyk22 � Ek 1p

m
PekV

⇤
Eyk22

�

� �

c1(2C5 + 2)

p

k

e

k

m

+ t

⌘

 e

�c2 min
�

t2m2

(C5+1)ek
,mt

�

.

where c1 and c2 are the constants depending only on c as
they appear in [9, Thm. 3.1]. Note that k =

e

k

��(1�↵)

C4
, so for

oversampling rates � >

�

(4c1(2C5 + 2))

2
/C4

�

1
1�↵

=: C

1
1�↵

2 ,
we obtain c1E  ek

4m and hence, choosing t =

ek
4m , we obtain

the result

P( sup

y2Sk�1

�

�k 1p
m
PekV

⇤
Eyk22 � Ek 1p

m
PekV

⇤
Eyk22

�

� �
e

k

2m

)

 e

�C3
ek

where, as desired, the constant C3 :=

c2
16(C5+1) depends only

on the subgaussian parameter c.
Analogously to [1], we can use the above bounds to estab-

lish guarantees for recovery from ⌃� quantized compressed
sensing measurements.

Theorem 8: Let e

� be an m⇥N sub-Gaussian matrix with
parameter c and set � :=

1p
m
e

�, let r 2 Z+, and let 0 < ↵ <
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1. Then exist constants C6, C7, C8, C9 depending only on r

and c such that the following holds. Suppose that

� :=

m

k

�
⇣

C6 log(eN/k)

⌘

1
1�↵

.

Consider the 2L-level rth order greedy ⌃� schemes with
step-size �, denote by q the quantization output resulting
from �z where z 2 RN , and denote by � a standard
compressed sensing decoder. Then with probability exceeding
1�2e

�C7m
1�↵k↵

for all z 2 ⌃

N
k having min

j2supp(z)
|zj | > C8�:

1) the support of z, T , coincides with the support of the
best k-term approximation of �(q).

2) denoting by E and F the sub-matrix of � corresponding
to the support of z and its rth order Sobolev dual
respectively, and by x 2 Rk the restriction of z to its
support, we have

kx� Fqk2  C9�
�↵(r�1/2)

�.

The proof traces the same steps as in [1]. Namely, 1) is a direct
consequence of standard RIP-based recovery guarantees and
2) follows from a union bound over all submatrices consisting
of k columns of �. This union bound determines the condition
on � and the probability. As the all the proof ingredients
established above are identical to the corresponding results
in [1], we omit the details.

V. CONCLUSION

Theorem 8 is a complete generalization of the main result of
[1] to the scenario of sub-Gaussian matrices. Up to constants,
the resulting embedding dimensions are the same as in the
Gaussian case.
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Caen, France Paris, France Bordeaux, France Paris, France

Abstract—In this paper, we investigate in a unified way the
structural properties of solutions to inverse problems. These
solutions are regularized by the generic class of semi-norms
defined as a decomposable norm composed with a linear operator,
the so-called analysis type decomposable prior. This encompasses
several well-known analysis-type regularizations such as the
discrete total variation (in any dimension), analysis group-Lasso
or the nuclear norm. Our main results establish sufficient
conditions under which uniqueness and stability to a bounded
noise of the regularized solution are guaranteed. Along the way,
we also provide a strong sufficient uniqueness result that is of
independent interest and goes beyond the case of decomposable
norms.

I. INTRODUCTION

A. Problem statement

Suppose we observe

y = �x0 + w, where ||w||2 6 " ,

where � is a linear operator from RN to RM that may
have a non-trivial kernel. We want to robustly recover an
approximation of x0 by solving the optimization problem

x

? 2 Argmin
x2RN

1
2 ||y � �x||22 + �R(x) , (1)

where
R(x) := ||L⇤x||A ,

with L : RP ! RN a linear operator, and || · ||A : RP ! R+

is a decomposable norm in the sense of [1]. Decomposable
regularizers are intended to promote solutions conforming to
some notion of simplicity/low complexity that complies with
that of u0 = L

⇤
x0. This motivates the following definition of

these norms. Throughout the paper, given a subspace V ⇢ RP ,
we will use the shorthand notation L

V

= LP
V

, L

⇤
V

= P
V

L

⇤,
and ↵

V

= P
V

↵ for any vector ↵ 2 RP , where P
V

(resp.
P

V

? ) is the orthogonal projector on V (resp. on its orthogonal
complement V

?).

Definition 1. A norm || · ||A is decomposable at u 2 RP

if:

(i) there is a subspace T ⇢ RP

and a vector e 2 T such

that

@|| · ||A(u) =
�
↵ 2 RP | ↵

T

= e and ||↵
T

? ||⇤A 6 1
 

(ii) and for any z 2 T

?
, ||z||A = sup

v2T

?
,||v||⇤A61hv, zi,

where || · ||⇤A is the dual norm of || · ||A.

From this definition, it can be easily proved, using Fenchel
identity, that u 2 T whenever || · ||A is decomposable at u.
Popular examples covered by decomposable regularizers are
the `1-norm, the `1-`2 group sparsity norm, and the nuclear
norm [1].

B. Contributions and relation to prior work

In this paper, we give a strong sufficient condition under
which (1) admits a unique minimizer. From this, sufficient
uniqueness conditions are derived. Then we develop results
guaranteeing a stable approximation of x0 from the noisy
measurements y by solving (1), with an `2-error that comes
within a factor of the noise level ". This goes beyond [1] who
considered identifiability under a generalized irrepresentable
condition in the noiseless case with L = Id. `2-stability for a
class of decomposable priors closely related to Definition 1, is
also studied in [8] for L = Id and general sufficiently smooth
data fidelity. Their stability results require however stronger
assumptions than ours (typically a restricted strong convexity
which becomes a type of restricted eigenvalue property for
linear regression with quadratic data fidelity). The authors
in [3] provide sharp estimates of the number of generic mea-
surements required for exact and `2-stable recovery of models
from random partial information by solving a constrained form
of (1) regularized by atomic norms. This is however restricted
to the compressed sensing scenario. Our results generalize the
stability guarantee of [7] established when the decomposable
norm is `1 and L

⇤ is the analysis operator of a frame. A
stability result for general sublinear functions R is given in [6].
The stability is however measured in terms of R, and `2-
stability can only be obtained if R is coercive, i.e., L

⇤ is
injective.

At this stage, we would like to point out that although
we carry out our analysis on the penalized form (1), our
results remain valid for the data fidelity constrained version
but obviously with different constants in the bounds. We omit
these results for obvious space limitations.

II. UNIQUENESS

A. Main assumptions

We first note that traditional coercivity and convexity argu-
ments allow to show that the set of (global) minimizers of (1)
is a non-empty compact set if, and only if, ker(�)\ker(L⇤) =
{0}.
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The following assumptions will play a pivotal role in our
analysis.

Assumption (SC
x

) There exist ⌘ 2 RM and ↵ 2 @||·||A(L⇤x)
such that the following so-called source (or range) condition
is verified:

�⇤
⌘ = L↵ 2 @R(x) .

Assumption (INJ
T

) For a subspace T ⇢ RP , � is injective
on ker(L⇤

T

?).

It is immediate to see that since ker(L⇤) ✓ ker(L⇤
T

?),
(INJ

T

) implies that the set of minimizers is indeed non-empty
and compact.

B. Strong Null Space Property

We shall now give a novel strong sufficient uniqueness con-
dition under which problem (1) admits exactly one minimizer.

Theorem 1. For a minimizer x

?

of (1), let T and e be the

subspace and vector in Definition 1 associated to u

? = L

⇤
x

?

,

and denote S = T

?
. x

?

is the unique minimizer of (1) if

hL⇤
T

h, ei < ||L⇤
S

h||⇤A, 8h 2 ker(�) \ {0} .

The above condition is a strong generalization of the Null
Space Property well known in `1 regularization [4].

C. Sufficient uniqueness conditions

1) General case: A direct consequence of the above theo-
rem is the following corollary.

Corollary 1. For a minimizer x

?

of (1), let T and e be the

subspace and vector in Definition 1 associated to u

? = L

⇤
x

?

,

and denote S = T

?
. Assume that (SC

x

? ) is verified with

||↵
S

||⇤A < 1, and that (INJ
T

) holds. Then, x

?

is the unique

minimizer of (1).

In fact, it turns out that the above two results are proved
without requiring some restrictive implications of Defini-
tion 1(ii) of decomposable norms, and are therefore valid for
a much larger class of regularizations. This can be clearly
checked in the arguments used in the proofs.

2) Separable case:

Definition 2. The decomposable norm || · ||A is separable on

the subspace T

? = S = V �W ⇢ RP

if for any u 2 RP

,

||u
T

? ||A = ||u
V

||A + ||u
W

||A.

Separability as just defined is fulfilled for several decom-
posable norms such as the `1 or `1� `

p

norms, 1 6 p < +1.
The non-saturation condition on the dual certificate required

in Corollary 1 can be weakened to hold only on a subspace
V ⇢ S and the conclusions of the corollary remain valid, and
assuming a stronger restricted injectivity assumption. We have
the following corollary.

Corollary 2. Assume that || · ||A is also separable, with S =
V � W , such that (SC

x

? ) is verified with ||↵
V

||⇤A < 1, and

(INJ
V

) holds. Then, x

?

is the unique minimizer of (1).

III. STABILITY TO NOISE

A. Main result

1) General case: We are now ready to state our main
stability results.

Theorem 2. Let T0 and e0 be the subspace and vector in

Definition 1 associated to u0 = L

⇤
x0, and denote S0 = T0

?
.

Assume that (SC
x0) is verified with ||↵

S0 ||⇤A < 1, and that

(INJ
T0) holds. Then, choosing � = c", c > 0, the following

holds for any minimizer x

?

of (1)

||x? � x0||2 6 C" ,

where C = C1 (2 + c||⌘||2)+C2
(1+c||⌘||2/2)2

c(1�||↵S0 ||
⇤
A) , and C1 > 0 and

C2 > 0 are constants independent of ⌘ and ↵.

Remark 1 (Separable case). When the decomposable norm

is also separable (see Corollary 2), the stability result of

Theorem 2 remains true assuming that ||↵
V

||⇤A < 1 for

V ⇢ S0. This however comes at the price of the stronger

restricted injectivity assumption (INJ
V

). To show this, the only

thing to modify is the statement and the proof of Lemma 2

which can be done easily using similar arguments to those in

the proof of Corollary 2.

2) Case of frames: Suppose that L

⇤ is the analysis operator
of a frame (ker(L⇤) = {0}) with lower bound a > 0, let L̃ be
a dual frame. The following stability bound can be obtained
whose proof is omitted for space limitations.

Proposition 1. Let T0 and e0 be the subspace and vector in

Definition 1 associated to u0 = L

⇤
x0, and denote S0 = T0

?
.

Assume that (SC
x0) is verified with ||↵

S0 ||⇤A < 1, and that �
is injective on Im(L̃

T0). Then, choosing � = c", c > 0, the

following holds for any minimizer x

?

of (1)

||x? � x0||2 6 C

0
" ,

where C

0 = C1 (2 + c||⌘||2) + C

0
2

(1+c||⌘||2/2)2

c(1�||↵S0 ||
⇤
A) , and C1 > 0

and C

0
2 > 0 are constants independent of ⌘ and ↵.

Since ker(L⇤
S0

) ✓ Im(L̃
T0), the required restricted injectiv-

ity assumption is more stringent than (INJ
T0). On the positive

side, the constant C

0
2 is in general better than C2. More

precisely, the constant C

L

, see the proof of Theorem 2, is
replaced with

p
a. Note also that coercivity of R in this case

allows to derive a bound similar to ours from the results in [6].
His restricted injectivity assumption is however different and
our constants are sharper.

B. Generalized irrepresentable condition

In the following corollary, we provide a stronger sufficient
stability condition that can be viewed as a generalization of
the irrepresentable condition introduced in [5] when R is the
`1 norm. It allows to construct dual vectors ⌘ and ↵ which
obey the source condition and are computable, which in turn
yield explicit constants in the bound.
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Definition 3. Let T ⇢ RP

and e 2 RP

, and denote S = T

?
.

Suppose that (INJ
T

) is verified. Define for any u 2 ker(L
S

)
and z 2 RM

such that �⇤
z 2 Im(L

S

)

IC
u,z

(T, e) = ||�e + u

S

+ (L
S

)+�⇤
z||⇤A

where

� = (L
S

)+(�⇤�⌅� Id)L
T

⌅ : h 7! ⌅h = argmin
x2ker(L⇤S)

1
2 ||�x||22 � hh, xi ,

and M

+
is the Moore-Penrose pseudoinverse of M . Let ū, z̄

and u defined as

(ū, z̄) = argmin
u2ker(LS),{z | �⇤z2Im(LS)}

IC
u,z

(T, e)

and u = argmin
u2ker(LS)

IC
u,0(T, e) .

Obviously, we have

IC
ū,z̄

(T, e) 6 IC
u,0(T, e) 6 IC0,0(T, e) .

The convex programs defining IC
ū,z̄

(T, e) and IC
u,0(T, e)

can be solved using primal-dual proximal splitting algorithms
whenever the proximity operator of || · ||A can be easily
computed [2]. The criterion IC

u,0(T, e) specializes to the one
developed in [10] when || · ||A is the `1 norm. IC0,0(T, e) is a
generalization of the coefficient involved in the irrepresentable
condition introduced in [5] when R is the `1 norm, and to the
one in [1] for decomposable priors with L = Id.

Corollary 3. Assume that (INJ
T0) is verified and

IC
ū,z̄

(T0, e0) < 1. Then, taking ⌘ = �⌅L

T0e0 + z̄,

one can construct ↵ such that (SC
x0) is satisfied and

||↵
S0 ||⇤A < 1. Moreover, the conclusion of Theorem 2 remains

true substituting 1� IC
ū,z̄

(T0, e0) for 1� ||↵
S0 ||⇤A.

IV. PROOFS

A. Proof of Theorem 1

A key observation is that by strong (hence strict) convexity
of µ 7! ||y � µ||22, all minimizers of (1) share the same image
under �. Therefore any minimizer of (1) takes the form x

?+h

where h 2 ker(�). Furthermore, it can be shown by arguments
from convex analysis that any proper convex function R has
a unique minimizer x

? (if any) over a convex set C if its
directional derivative satisfies

R

0(x?;x� x

?) > 0, x 2 C, x 6= x

?

.

Applying this to (1) with C = x

? +ker(�), and using the fact
that the directional derivative is the support function of the
subdifferential, we get that x

? is the unique minimizer of (1)
if 8 h 2 ker(�) \ {0}

0 < R

0(x?;h) = sup
v2@R(x?)

hv, hi

= sup
↵2@||·||A(L⇤x

?)
h↵, L

⇤
hi

= he, L

⇤
T

hi+ sup
||↵S ||⇤A61

h↵
S

, L

⇤
S

hi

= he, L

⇤
T

hi+ ||L⇤
S

h||A .

We conclude using symmetry of the norm and the fact that
ker(�) is a subspace.

B. Proof of Corollary 1

The source condition (SC
x

? ) implies that 8 h 2 ker(�)\{0}

hh, L↵i = hh, �⇤
⌘i = h�h, ⌘i = 0 .

Moreover

hh, L↵i = hL⇤h, ↵i =hL⇤
T

h, ei+ hL⇤
S

h, ↵

S

i .

Thus, applying the dual-norm inequality we get

hL⇤
T

h, ei 6 ||L⇤
S

h||A||↵
S

||⇤A < ||L⇤
S

h||A ,

where the last inequality is strict since L

⇤
S

h does not vanish
owing to (INJ

T

), and ||↵
S

||⇤A < 1.

C. Proof of Corollary 2

We follow the same lines as the proof of Corollary 1 and
get

hL⇤h, ↵i = hL⇤
T

h, ei+ hL⇤
V

h, ↵

V

i+ hL⇤
W

h, ↵

W

i .

We therefore obtain
hL⇤

T

h, ei 6 ||L⇤
V

h||A||↵
V

||⇤A + ||L⇤
W

h||A||↵
W

||⇤A
< ||L⇤

V

h||A + ||L⇤
W

h||A = ||L⇤
S

h||⇤A ,

where we used that h /2 ker(L⇤
V

), ||↵
V

||⇤A < 1, separability
and ||↵

W

||⇤A 6 ||↵
V

||⇤A + ||↵
W

||⇤A = ||↵
S

||⇤A 6 1.

D. Proof of Theorem 2

We first define the Bregman distance/divergence.

Definition 4. Let D

R

s

(x, x0) be the Bregman distance associ-

ated to R with respect to s 2 @R(x0),

D

R

s

(x, x0) = R(x)�R(x0)� hs, x� x0i .

Define D

A
↵

(u, u0) as the Bregman distance associated to || · ||A
with respect to ↵ 2 @|| · ||A(u0).

Observe that by convexity, the Bregman distance is non-
negative.
Preparatory lemmata We first need the following key
lemmata.

Lemma 1 (Prediction error and Bregman distance convergence
rates). Suppose that (SC

x0) is satisfied. Then, for any mini-

mizer x

?

of (1), and with � = c" for c > 0, we have

D

R

�⇤⌘

(x?

, x0) = D

A
↵

(L⇤x?

, L

⇤
x0) 6 "

(1 + c||⌘||2/2)2

c

,

||�x

? � �x0||2 6 "(2 + c||⌘||2) .

The proof follows the same lines as that for
any sublinear regularizer, see e.g. [9], where we
additionally use the source condition (SC

x0) and
D

R

�⇤⌘

(x, x0) = D

R

L↵

(x, x0) = D

A
↵

(L⇤x, L

⇤
x0).

Now since || · ||A is a norm, it is coercive, and thus

9 CA > 0 s.t. 8x 2 RP

, ||x||A > CA||x||2.
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We get the following inequality.

Lemma 2 (From Bregman to `2 bound). Suppose that (SC
x0)

holds with ||↵
S0 ||⇤A < 1. Then,

||L⇤
S0

(x? � x0)||2 6 D

A
↵

(L⇤x?

, L

⇤
x0)

CA (1� ||↵
S0 ||⇤A)

,

Proof: Decomposability of || · ||A implies that 9v 2 S0

such that ||v||⇤A 6 1 and ||L⇤
S0

(x?�x0)||A = hL⇤
S0

(x?�x0), vi.
Moreover, v + e0 2 @|| · ||A(L⇤x0). Thus

D

A
↵

(L⇤x?

, L

⇤
x0) > D

A
↵

(L⇤x?

, L

⇤
x0)

�D

A
v+e0

(L⇤x?

, L

⇤
x0)

= hv + e0 � ↵, L

⇤(x? � x0)i
= hv � ↵

S0 , L

⇤
S0

(x? � x0)i
= ||L⇤

S0
(x? � x0)||A
�h↵

S0 , L

⇤
S0

(x? � x0)i
> ||L⇤

S0
(x? � x0)||A(1� ||↵

S0 ||⇤A)
> CA||L⇤

S0
(x? � x0)||2(1� ||↵

S0 ||⇤A) .

Proof of the main result

||x? � x0||2 6 ||Pker(L⇤S0
)(x? � x0)||2

+||PIm(L⇤S0
)(x? � x0)||2

6 C�
�1||�Pker(L⇤S0

)(x? � x0)||2
+||PIm(L⇤S0

)(x? � x0)||2
6 C�

�1||�(x? � x0)||2
+(1 + C�

�1||�||2,2)||PIm(L⇤S0
)(x? � x0)||2 ,

where we used assumption (INJ
T0), i.e.,

9 C� > 0 s.t. ||�x||2 > C�||x||2, 8x 2 ker(L⇤
S0

) .

Since L

⇤
S0

is injective on the orthogonal of its kernel, there
exists C

L

> 0 such that

||x? � x0||2 6 C�
�1||�(x? � x0)||2

+ ||�||2,2+C�
CLC�

||L⇤
S0

PIm(L⇤S0
)(x? � x0)||2 .

Noticing that

||L⇤
S0

(x? � x0)||2 = ||L⇤
S0

PIm(L⇤S0
)(x? � x0)||2,

we apply Lemma 2 to get

||x? � x0||2 6 C�
�1||�(x? � x0)||2

+ ||�||2,2+C�

CLC�(1�||↵S0 ||
⇤
A)D

A
↵

(L⇤x?

, L

⇤
x0) .

Using Lemma 1 yields the desired result.

E. Proof of Corollary 3

Take ↵ = e0 + �e0 + ū

S0 + (L
S0)+�⇤

z̄. First, ↵

T0 = e0

since e0 2 T0 and Im(�) ✓ Im((L
S0)+) = Im(L⇤

S0
). Then

||↵
S0 ||⇤A = IC

ū,z̄

(T0, e0) < 1, whence we get that ↵ 2 @|| ·
||A(L⇤x0).

Now, we observe by definition of ⌅ that Pker(L⇤S0
)(�⇤�⌅�

Id)L
T0 = 0, which implies that Im((�⇤�⌅ � Id)L

T0)) ✓
Im(L

S0). In turn, L

S0� = L

S0(LS0)+ ((�⇤�⌅� Id)L
T0) =

PIm(LS0 ) ((�⇤�⌅� Id)L
T0) = (�⇤�⌅ � Id)L

T0 . This, to-
gether with the fact that ū 2 ker(L

S0) and �⇤
z̄ 2 Im(L

S0)
yields

L

S0↵ = (�⇤�⌅� Id)L
T0e0 + �⇤

z̄

= �⇤
⌘ � L

T0↵ () �⇤
⌘ = L↵ ,

which implies that �⇤
⌘ = L↵ 2 @R(x0). We have just shown

that the vectors ↵ and ⌘ as given above satisfy the source
condition (SC

x0) and the dual non-saturation condition. We
conclude by applying Theorem 2 using (INJ

T0).

V. CONCLUSION

We provided a unified analysis of the structural properties of
regularized solutions to linear inverse problems through a class
of semi-norms formed by composing decomposable norms
with a linear operator. We provided conditions that guarantee
uniqueness, and also those ensuring stability to bounded noise.
The stability bound was achieved without requiring (even
partial) recovery of T0 and e0. Recovery of T0 and e0 for
analysis-type decomposable priors and beyond is currently
under investigation. Another perspective concerns whether the
`2 bound on x

? � x0 can be extended to cover more general
low complexity-inducing regularizers beyond decomposable
norms.
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Abstract—Signals consisting of short pulses are present in
many applications including ultrawideband communication, ob-
ject detection and navigation (radar, sonar) and medical imaging.
The structure of such signals, effectively captured within the
finite rate of innovation (FRI) framework, allows for significant
reduction in sampling rates, required for perfect reconstruction.
In this work we consider two applications, ultrasound imaging
and radar, where the FRI signal structure allows to reduce
both sampling and processing rates. Furthermore, we show
how the FRI framework inspires new processing techniques,
such as beamforming in the frequency domain and Doppler
focusing. In both applications a pulse of a known shape or a
stream of such pulses is transmitted into the respective medium,
and the received echoes are sampled and digitally processed
in a way referred to as beamforming. Applied either spatially
or temporally, beamforming allows to improve signal-to-noise
ratio. In radar applications it also allows for target Doppler
frequency estimation. Using FRI modeling both for detected and
beamformed signals, we are able to reduce sampling rates and to
perform digital beamforming directly on the low-rate samples.

I. INTRODUCTION

When sampling an analog signal, we aim to represent it
by discrete-time coefficients, while capturing its important
features. According to the classic Shannon-Nyquist theorem
the minimal sampling rate required for perfect reconstruction
of bandlimited signals is twice the the maximal frequency.
The required sampling rate can be significantly reduced when
additional information about the signal structure is available.
An interesting class of structured signals was suggested by
Vetterli et al. [1], who considered signals with a finite number
of degrees of freedom per unit time - signals with finite rate of
innovation (FRI). One of the most studied cases of FRI signals
is a stream of pulses, namely, a signal consisting of a stream
of short pulses where the pulse shape is known. Such signals
are presented in abundance in ultrawideband communication,
object detection and navigation (radar, sonar) and medical
imaging.

In this work we consider two applications where the FRI
signal structure allows to reduce both sampling and processing
rates and inspires new processing techniques. In particular,
we show how different forms of beamforming, used to im-
prove resolution and increase signal-to-noise-ratio (SNR), can
be implemented directly on reduced rate samples. This is
achieved by replacing the standard time-domain beamforming
by a frequency domain approach and relying on previous FRI

sampling techniques in frequency [2]–[4].
The first application is medical ultrasound, where the known

pulse shape is transmitted into the tissue and the echoes
reflected off scatterers form a stream of pulses signal detected
by the elements of the transducer. Signals detected at each
element are sampled and digitally processed by beamforming
in time, exploiting the array geometry. Such a beamformed
signal forms a line in the image. Treating both detected and
beamformed signals in the FRI framework and performing
beamforming in frequency allows to reduce the sampling rate
far below standard rates that are required to improve the
system’s beamforming resolution.

The second application is radar. Similar to ultrasound, a
stream of known pulses is transmitted into space and reflected
off any targets. Whereas in ultrasound digital beamforming
is performed spatially, i.e. combining a single pulse from
different transducers, in the single transceiver radar model we
consider beamforming is performed temporally between differ-
ent pulses on the same transceiver. This beamforming process,
besides improving SNR, allows for target Doppler frequency
estimation as well. Here again we show how beamforming, and
consequently, radar detection, can be performed efficiently at
sub-Nyquist rates by using sub-Nyquist sampling methods in
frequency [4], [5].

II. ULTRASOUND

Modern imaging systems use multiple transducer elements
to transmit and receive acoustic pulses. The imaging process
is described as follows: An energy pulse is transmitted along a
narrow beam. During its propagation echoes are scattered by
acoustic impedance perturbations in the tissue, and detected
by the elements of the transducer. Collected data are sampled
and digitally beamformed, resulting in an image line.

Rates up to 4 times the Nyquist rate, dictated by the
bandwidth of the individual signal, are required in order to
improve the system’s beamforming resolution and to avoid
artifacts caused by digital implementation. From now on we
will denote this sampling rate as the beamforming rate fs.

To get a sense of the sampling and processing rates involved
in ultrasound imaging, we can evaluate the number of samples
taken at each transducer element based on the imaging setup
used to acquire in vivo cardiac data. The acquisition was
performed with a GE breadboard ultrasonic scanner of 64
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acquisition channels. The radiated depth r = 16 cm and the
speed of the sound c = 1540 m/sec yield a signal of duration
T = 2r/c ! 210 µsec. The acquired signal is characterized
by a narrow bandpass bandwidth of 2 MHz, centered at the
carrier frequency f0 ≈ 3.1 MHz, leading to a beamforming
rate of fs ≈ 16 MHz and Tfs = 3360 real-valued samples.

We now show that the number of samples can be reduced
significantly since the oversampling dictated by the digital im-
plementation of beamforming in time can be bypassed, when
the beamformed signal is treated within the FRI framework
and beamforming is performed in the frequency domain.

A. Signal Model

According to [2], [4], the beamformed signal in ultrasound
imaging obeys an FRI model:

Φ(t; θ) !
L∑

l=1

b̃lh(t− tl), (1)

where h(t) is the transmitted pulse-shape, L is the number of
scattering elements in direction θ, {b̃l}Ll=1 are the unknown
amplitudes of the reflections and {tl}Ll=1 denote the unknown
delays. Sampling both sides of (1) at the rate fs and quantizing
the delays {tl}Ll=1 with quantization step 1/fs, such that tl =
ql/fs, ql ∈ Z, we can rewrite (1) as follows:

Φ[n; θ] !
L∑

l=1

b̃lh[n− ql] =
N−1∑

l=0

blh[n− l], (2)

where
bl =

{
b̃l if l = ql
0 otherwise.

(3)

Calculating the Discrete Fourier Transform (DFT) using (2):

ck =
N−1∑

n=0

Φ[n; θ]e−i 2π
N kn = hk

N−1∑

l=0

ble
−i 2π

N kl, (4)

where hk is the DFT coefficient of h[n]. The transmitted pulse
h(t) is a narrowband baseband waveform, g(t), modulated by
a carrier at frequency f0. When such a pulse is sampled at
rate fs, most of its DFT coefficients are zero. Obviously, (4)
implies that the only non-zero DFT coefficients are in the
bandwidth of the transmitted pulse. When a set κ of these non-
zero DFT coefficients is known we can reconstruct the signal
perfectly by zero-padding and then performing an inverse DFT
(IDFT). In the cardiac imaging setup described above the
bandwidth of g(t) is equal to 2 MHz, the modulation frequency
f0 = 3.1 MHz, and the sampling rate fs = 16 MHz, leading
to K = |κ| ≈ 360.

As we show further in Section II-C, sampling rates are
proportional to the number of DFT coefficients of the beam-
formed signal that we want to calculate. Hence, to reduce
the sampling rates, we aim to obtain only a subset µ ⊂ κ,
|µ| = M < K = |κ|, of non-zero DFT coefficients of the
beamformed signal and propose a method to reconstruct κ
from its subset µ.

B. Beamformed Signal Reconstruction
Defining a K-length vector c with k-th entry ck/hk, k ∈ κ,

we can rewrite (4) in matrix form:

c = Db, (5)

where D is a K × N matrix formed by taking the set κ of
rows from an N×N DFT matrix, and vector b is of length N
with l-th entry bl. Since from now on only subset µ is given,
define an M -length vector cµ with k-th entry ck/hk, k ∈ µ
and rewrite (5) as follows:

cµ = ADb, (6)

where A is an M ×K measurement matrix which picks the
subset µ of rows from D.

We propose an analysis approach [6], namely, we aim to
reconstruct the set κ from its subset µ, while assuming that
the analyzed vector D∗c is compressible. This assumption is
justified as follows: A typical beamformed ultrasound signal
is comprised of a relatively small number of strong reflections
and a bunch of much weaker scattered echoes. It is, therefore,
natural to assume that b from (5) is compressible, implying
that c has a compressible expansion in D. Since D is a partial
DFT matrix, its Gram matrix is nearly diagonal, implying that
D∗c is also compressible [6]. The analysis approach can be
translated into the l1 optimization problem:

min
c

‖D∗c‖1 subject to ‖Ac− cµ‖2 ≤ ε. (7)

Under certain conditions which are satisfied in our ultrasound
setup [6], [7] the solution of (7) yields the set κ̃ of non-
zero DFT coefficients of the beamformed signal which is
sufficiently close to the true values of κ.

C. Sampling Scheme and Beamforming in Frequency
We now address the following question: how many samples

of the individual signals should be taken in order to compute
the subset µ of non-zero DFT coefficients of the beamformed
signal?

To answer this question we introduce a recently developed
technique, referred to as beamforming in frequency. This
method was proposed in [4] and [7], where it was shown
that beamforming can be performed directly in the frequency
domain, namely, a set µ of the DFT coefficients of the
beamformed signal can be calculated as a linear combination
of a set ν of the DFT coefficients of each individual signal.
Experimental results show that |ν| ≈ |µ|, implying that we
can calculate the desired set of beamformed DFT coefficients
from a small number of DFT coefficients of each individual
signal.

As it was shown in [2], [4], [7], a set ν of the DFT
coefficients of each individual signal can be obtained by the
sub-Nyquist Xampling (“compressed sampling”) [8] method,
an analog-to-digital conversion (ADC) which performs analog
prefiltering of the signal before taking low-rate point-wise
samples. The number of samples taken from the individual
signal in this case is |ν| ≈ |µ|.
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To demonstrate the proposed method and evaluate the rate
reduction, a subset µ of 100 DFT coefficients corresponding to
the central frequency samples in the bandwidth of the transmit-
ted pulse were chosen. To calculate µ we need approximately
|µ| = 100 samples per individual signal, implying 30 fold
reduction in sampling rate. The result is shown in Fig. 1 (a).
We compare it with an image created by a standard technique
using 3360 samples per individual signal in Fig. 1 (b). As can
be seen, we obtain sufficient image quality with more than 30
fold reduction in sampling rate.

(a) (b)
Fig. 1: Cardiac images. (a) Proposed method, 100 samples per
image line. (b) Standard method, 3360 samples per image line.

III. RADAR

We next consider target detection and feature extraction
in a single transceiver, monostatic, narrow-band pulse-train
radar system. We show that both sampling and processing
can be performed at sub-Nyquist rates, when an appropriate
signal model is used. Targets are non-fluctuating point targets,
sparsely populated in the radar’s unambiguous time-frequency
region: delays up to the Pulse Repetition Interval (PRI) and
Doppler frequencies up to its reciprocal the Pulse Repetition
Frequency (PRF). We propose a recovery method which
can detect and estimate targets’ delay and Doppler, using a
linear, non-adaptive sampling technique at a rate significantly
lower than the radar signal’s Nyquist frequency, assuming the
number of targets L is small.

Current state-of-the-art radar systems sample at the signal’s
Nyquist rate, which can be hundreds of MHz and higher. Sim-
ilarly to the ultrasound application, the goal of our approach,
breaking the link between the signal bandwidth and sampling
rate, is achieved by using FRI signal model and the Xampling
method. The latter yields compressed samples (“Xamples”),
containing the information needed to recover the desired signal
parameters. This work expands [5], adding Doppler to the
target model and proposing a new digital recovery method to
estimate it by relying on beamforming ideas operating on sub-
Nyquist samples, as we showed in the context of ultrasound
imaging.

A. Signal Model

We consider a radar transceiver that transmits a pulse train

xT (t) =
P−1∑

p=0

h(t− pτ), 0 ≤ t ≤ P τ (8)

consisting of P equally spaced pulses h(t). The pulse-to-pulse
delay τ is referred to as the PRI. The pulse h(t) is a known
time-limited baseband function with continuous-time Fourier
transform (CTFT) H(ω) =

∫∞
−∞ h(t)e−jωtdt. We assume that

H(ω) has negligible energy at frequencies beyond Bh/2 and
we refer to Bh as the bandwidth of h(t). The target scene
is composed of L non-fluctuating point targets, where we
assume that L is known, although this assumption can easily
be relaxed. The pulses reflect off the L targets and propagate
back to the transceiver. Each target l is defined by three
parameters: a delay τl, a Doppler frequency νl and a complex
amplitude αl, proportional to the target’s radar cross section
(RCS) and all propagation factors.

Under several assumptions [9], we can write the received
signal as

x(t) =
P−1∑

p=0

L−1∑

l=0

αlh(t− τl − pτ)e−jνlpτ . (9)

It will be convenient to express the signal as a sum of single
frames

x(t) =
P−1∑

p=0

xp(t), (10)

where

xp(t) =
L−1∑

l=0

αlh(t− τl − pτ)e−jνlpτ . (11)

It is evident from (9) that we are dealing with an FRI
signal, since it can be described by 3L parameters spanning
an interval of duration P τ , yielding a rate of innovation of
3L/P τ . Our goal is to accurately detect the L targets, i.e. to
estimate the 3L parameters {αl, τl, νl}L−1

l=0 in (9), using the
least possible number of digital samples.

B. Doppler Focusing

The Doppler Focusing processing technique uses target
echoes from different pulses to create a single superimposed
pulse, improving SNR for robustness against noise and im-
plicitly estimating targets’ Doppler in the process. Using (11),
we define the following time shift and modulation operation
on the received signal:

Φ(t; ν) =
P−1∑

p=0

xp(t+ pτ)ejνpτ

=
P−1∑

p=0

L−1∑

l=0

αlh(t− τl)e
j(ν−νl)pτ

=
L−1∑

l=0

αlh(t− τl)
P−1∑

p=0

ej(ν−νl)pτ . (12)

We now analyze the sum of exponents in (12). For any
given ν, targets with Doppler frequency νl in a band of width
2π/P τ around ν, i.e. in Φ(t; ν)′s “focus zone”, will achieve
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coherent integration and an SNR boost of approximately

g(ν|νl) =
P−1∑

p=0

ej(ν−νl)pτ
|ν−νl|<2π/Pτ∼= P (13)

compared with a single pulse. On the other hand, since the sum
of P equally spaced points covering the unit circle is generally
close to zero, targets with νl not “in focus” will approximately
cancel out. Thus g(ν|νl) ∼= 0 for |ν − νl| > 2π/P τ . Hence
we can approximate (12) by

Φ(t; ν) ∼= P
∑

l:|ν−νl|<2π/Pτ

αlh(t− τl). (14)

Instead of trying to estimate delay and Doppler together,
we have reduced our problem to delay only estimation for a
small range of Doppler frequencies, with increased amplitude
for improved performance against noise.

C. Delay-Doppler Recovery Using Doppler Focusing
Calculating the DFT of each of the pulses xp(t) of the multi-

pulse signal (9), and since xp(t) is confined to the interval
t ∈ [pτ, (p+ 1)τ ], we obtain

cp[k] =
1

τ
H(2πk/τ)

L−1∑

l=0

αle
−jνlpτe−j2πkτl/τ , (15)

where we used the fact that since both k, p ∈ Z we have
e−j2πkp ≡ 1. From (15) we see that all 3L unknown param-
eters {αl, τl, νl}L−1

l=0 are embodied in the Fourier coefficients
cp[k] in the form of a complex sinusoid problem.

Having acquired cp[k] using a framework similar to one
introduced in section II-C, we now perform the Doppler
focusing operation for a specific frequency ν

Ψν [k] =
P−1∑

p=0

cp[k]e
jνpτ

=
1

τ
H(2πk/τ)

L−1∑

l=0

αle
−j2πkτl/τ

P−1∑

p=0

ej(ν−νl)pτ . (16)

Following the same arguments as in (13), for any target l
satisfying |ν − νl| < 2π/P τ we have

P−1∑

p=0

ej(ν−νl)pτ ∼= P. (17)

Therefore, Doppler focusing can be performed on the low rate
sub-Nyquist samples:

Ψν [k] ∼=
P

τ
H(2πk/τ)

∑

l:|ν−νl|<2π/Pτ

αle
−j2πkτl/τ . (18)

Equation (18) is scaled by P compared with a single
pulse, increasing SNR for improved performance with noise.
Furthermore, we reduced the number of active delays. For
each ν we now have a delay estimation problem, which can
be written in vector form as

Ψν =
P

τ
HVxν , (19)

where
Ψν = [Ψν [k0] ... Ψν [k|κ|−1]]

T ∈ C|κ|. (20)

This is a CS problem which has already been solved [3], [9],
[10]. We emphasize that the Doppler focusing technique is
a continuous operation on ν, and can be performed for any
Doppler frequency. Since the focus zone for each ν is of
width 2π/P τ , we can find various finite sets of ν’s spanning
[0, 2π/τ ]. For any such set, define its size as Nν . For each
ν in the set, we solve (19) assuming xν’s support is of size
L. This problem can be solved using an abundance of CS
algorithms [11]–[13]. After solving Nν separate CS problems
with dictionary of size |κ| × Nτ , we hold at most LNν

estimated amplitudes. Since the absolute value of amplitudes
recovered in the support is indicative of true target existence
as opposed to noise, we take the L strongest ones as true target
locations.
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Abstract—We consider the recovery of a finite stream of
Dirac pulses at nonuniform locations, from noisy lowpass-filtered
samples. We show that maximum-likelihood estimation of the
unknown parameters amounts to solve a difficult, even believed
NP-hard, matrix problem of structured low rank approximation.
We propose a new heuristic iterative optimization algorithm to
solve it. Although it comes, in absence of convexity, with no
convergence proof, it converges in practice to a local solution, and
even to the global solution of the problem, when the noise level
is not too high. Thus, our method improves upon the classical
Cadzow denoising method, for same implementation ease and
speed.

I. INTRODUCTION AND PROBLEM FORMULATION

Reconstruction of signals lying in linear spaces, including
bandlimited signals and splines, has long been the dominant
paradigm in sampling theory, rooted in Shannon’s work. Re-
cently, analog reconstruction from discrete samples has been
enlarged to a broader class of signals, with so-called finite
rate of innovation, i.e. ruled by parsimonious models [1]–[3].
This theory predates and parallels the emerging framework of
sparse recovery and compressed sensing [4]. The most studied
problem in this context, on which we focus in this paper, is the
recovery of a finite stream of Dirac pulses, a.k.a. a spike train,
from uniform, noisy, lowpass-filtered samples [1], [5]–[8].

More precisely, the sought-after unknown signal s consists
of K Dirac pulses in the finite interval [0, τ [, where the real
τ > 0 and the integer K ≥ 1 are known; that is

s(t) =
K∑

k=1

akδ(t− tk), ∀t ∈ [0, τ [, (1)

where δ(t) is the Dirac mass distribution, {tk}Kk=1 are the
unknown distinct locations in [0, τ [, and {ak}Kk=1 are the
unknown real nonzero amplitudes. The goal is to obtain esti-
mates of these 2K values, which forms a deterministic (non-
Bayesian) parametric estimation problem. The available data
are, classically, linear uniform noisy measurements {vn}

N−1
n=0

on s, of the form

vn =

∫ τ

0
s(t)ϕ

(nτ
N

− t
)
dt+ εn (2)

=
K∑

k=1

akϕ
(nτ
N

− tk
)
+ εn, ∀n = 0, . . . , N − 1, (3)

where ϕ(t) is the sampling function and the εn ∼ N (0,σ2) are
independent random realizations of Gaussian noise. Note that

other noise models could be considered as well, by changing
the cost function in eqns. (5), (7), (9) below.

The questions of the choice of the function ϕ and of the
number N of measurements allowing perfect reconstruction,
in absence of noise, has been addressed in the literature [6],
[7], [9]. In a nutshell, the condition N ≥ 2K + 1, which
we hereafter assume to be true, is necessary and sufficient,
provided that ϕ satisfies some constraints in Fourier domain.
Additionally, we assume, without loss of generality and only
to simplify the notations, that N is odd, of the form N =
2M+1. Since our emphasis here is on appropriately handling
the presence of noise and not on being the most general, we
adopt the simplest choice of the Dirichlet sampling function
[6], which amounts to periodizing the signal s on the real line
before sampling it with the sinc kernel:

ϕ(t) =
sin(Nπt/τ)

N sin(πt/τ)
=

1

N

M∑

m=−M

ej2πmt/τ , ∀t ∈ R. (4)

The extension of the setting to the reconstruction of pulses
with real shape, instead of the ideal Dirac distribution, is of
obvious practical interest in ultrawideband communications
[2] or to detect impulsive signals in biomedical applications
[6]. This generalization, or equivalently the choice of another
sampling function ϕ, can be done without difficulty, as shown
in [6], and will not be addressed here.

The paper is organized as follows. In Sect. II, we formulate
the maximum likelihood estimation problem and in Sect. III,
we show that it amounts to a low rank matrix approximation
problem. The new algorithm to solve it is presented in Sect. IV.

II. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

A natural approach to solve parametric estimation problems
is maximum likelihood (ML) estimation; it consists in select-
ing the model which is the most likely to explain the observed
noisy data. In our case, as we have assumed Gaussian noise,
this corresponds to solving the nonlinear least-squares problem
[10]:

minimize
{t′

k
}K

k=1∈ [0, τ [K

{a′

k
}K

k=1∈R
K

N−1∑

n=0

∣∣∣∣∣
vn −

K∑

k=1

a′kϕ
(nτ
N

− t′k

)∣∣∣∣∣

2

. (5)

Now, applying the discrete Fourier transform to the vector of
samples {vn}

N−1
n=0 yields the Fourier coefficients defined by
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v̂m =
∑N−1

n=0 vne−j2πmn/N , ∀m = −M, . . . ,M. We define
the Fourier coefficients {ε̂m}Mm=−M similarly. Then, it is easy
to show that

v̂m =
K∑

k=1

ake
−j2πmtk/τ + ε̂m, ∀m = −M, . . . ,M. (6)

Since the inverse discrete Fourier transform is unitary, up to
a constant, the problem (5) can be rewritten as [10]:

minimize
{t′

k
}K

k=1∈ [0, τ [K

{a′

k
}K

k=1∈R
K

M∑

m=−M

∣∣∣∣∣
v̂m −

K∑

k=1

a′ke
−j2πmt′

k
/τ

∣∣∣∣∣

2

. (7)

Thus, (7) takes the form of a spectral estimation problem,
which consists in retrieving the parameters of a sum of
complex exponentials from noisy samples [11]. However,
solving (7) is very difficult task, as the function to minimize is
oscillating, with many local minima [12]. Numerous methods
have been proposed to find a local minimum of the cost
function in (7). They mostly proceed by iteratively refining
an initial estimate of the solution, which has to be already of
good quality. Also, when N & K and the locations tk are not
too close to each other, classical spectral estimation techniques
like MUSIC and ESPRIT can be used; they are fast but
statistically suboptimal. The main advantage of the proposed
approach is that it gets rid of such limitations, without any
simplifying assumption.

III. PRONY’S ANNIHILATION PROPERTY:
REFORMULATION AS MATRIX APPROXIMATION PROBLEM

Let us assume temporarily that there is no noise, i.e.
ε̂m = 0 in (6). Then, the sequence of Fourier coefficients
{v̂m}Mm=−M can be annihilated, a known property which dates
back to Prony’s work in the eighteenth century [13]. That
is, its convolution with the sequence {hk}Kk=0 is identically

zero:
∑K

k=0 hkv̂m−k = 0, ∀m = −M + K, . . . ,M, where
the annihilating filter h is defined, up to a constant, by∑K

k=0 hkzk =
∏K

k=1(z − ej2πtk/τ ). In matrix form, the
annihilation property is





v̂−M+K · · · v̂−M
...

. . .
...

...
. . .

...
v̂M · · · v̂M−K





︸ ︷︷ ︸
TK





h0
...

hK



 =





0
...
0



 . (8)

Let us choose an integer P in K, . . . ,M and define the
Toeplitz—i.e. with constant values along its diagonals—matrix
TP , of size N −P ×P +1, obtained by arranging the values
{v̂m}Mm=−M in its first row and column; TK is depicted in
(8). Then, the existence of an annihilating filter of size K +1
for the sequence {v̂m}Mm=−M is completely equivalent to the
property that TP has rank at most K .

Hence, turning back to the case when noise is present in
the data, we can rewrite (7) as the following structured low

rank approximation (SLRA) matrix problem:

Find T̃P ∈ argmin
T′∈CN−P×P+1

‖T′ −TP ‖
2
w

s. t. T
′ is Toeplitz and rank(T′) ≤ K, (9)

where the weighted Frobenius norm of a matrix A = {ai,j} ∈
CN−P×P+1 is defined by ‖A‖2w =

∑N−P
i=1

∑P+1
j=1 wi,j |ai,j |2

and wi,j is the inverse of the size of the diagonal going through
the position (i, j), see formula in [14, eq. (16)].

After the SLRA problem (9) has been solved, the procedure
to recover the estimates of the parameters is the following [1].
First, reshape the obtained Toeplitz matrix T̃P to a Toeplitz
matrix T̃K of size N − K × K + 1. Second, compute the
right singular vector h̃ = {h̃k}Kk=0 of T̃K , corresponding to
the singular value 0. Third, compute the roots {z̃k}Kk=1 of the

polynomial
∑K

k=0 h̃kzk; the estimates {t̃k}Kk=1 of the loca-
tions are given by t̃k = τ

2π arg[0,2π[(z̃k). Fourth, the estimates

{ãk}Kk=1 of the amplitudes are obtained by solving the linear

system ŨHŨã = ŨHv̂, where v̂ = [v̂−M · · · v̂M ]T, ·H

denotes the Hermitian transpose, and

Ũ =





ej2πMt̃1/τ · · · ej2πMt̃K/τ

...
...

...

e−j2πMt̃1/τ · · · e−j2πMt̃K/τ



 . (10)

We note that this procedure yields the ML estimates solution
to (7), only if the roots {z̃k}Kk=1 are all on the complex unit
circle. This is the case, by centro-Hermitian symmetry of the
matrices, except if the noise level is too high; in this case, two
roots could merge and then split in a pair (z̃k, z̃k′ = 1/z̃∗k) on
both sides of the unit circle, yielding t̃k = t̃k′ .

Thus, the proposed process consists in denoising the matrix
TP , or equivalently the measurements {vn}

N−1
n=0 , by finding

the closest data consistent with the model’s structure, from
which the parameters are estimated by Prony’s method. In
absence of noise, the parameters are perfectly recovered.
However, the SLRA problem (9) at the heart of the procedure,
which consists in projecting a matrix on a nonconvex manifold,
is believed to be NP-hard [15]. Yet, the main advantage
of the SLRA formulation, compared to (7), is that there is
no initialization problem: an iterative algorithm to solve (9)
proceeds directly, with the noisy matrix TP as initial estimate
of the solution T̃P . Moreover, for a low noise level, an
algorithm converging to a local solution will actually find the
global solution T̃P , as we observe in practice.

We now tackle the state-of-the-art to solve SLRA problems,
which have a wide range of applications [15]. A few algo-
rithms, able to find a local solution of the SLRA problem (9),
have been proposed in the community of numerical algebra
[16]–[18]. For instance, the iterative approach in [16] is based
on a BFGS quasi-Newton solver. Besides the difficulty of
implementation, the algorithm is very costly, as it requires
computing many singular value decompositions (SVD) at each
iteration. To our knowledge, the only publicly available soft-
ware package for SLRA is the one currently in development
by Ivan Markovsky [19]. However, it only handles real-valued,
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Fig. 1. The signal to estimate from N = 11 noisy measurements, consists in K = 2 Dirac pulses. The true parameters are (t1, t2) = (0.42, 0.52) and
(a1, a2) = (1, 1), with τ = 1 and P = M = 5. (a) In black, the true pulses. In blue and red, the locations and amplitudes reconstructed by Cadzow denoising
and the proposed algorithm, respectively, for 500 different noise realizations. The signal-to-noise-ratio (SNR) was 15dB and the computation time for every
reconstruction, with 50 iterations, was 14ms. The proposed method yields lower errors, with a points cloud slightly less dispersed. (b) Plot in log-log scale of
the mean squared periodic error (MSPE) on the locations min

(

(t̃1 − t1)2τ + (t̃2 − t2)2τ , (t̃1 − t2)2τ + (t̃2 − t1)2τ
)

, where (x)τ =
(

(x+ τ

2
) mod τ

)

−

τ

2
,

averaged over 10,000 noise realizations for every SNR value. An upper bound of the error is given by the naive estimator, which sets the locations randomly
and uniformly in [0, τ [.

and not complex-valued, matrices. We note that replacing in
the problem the rank by its convex surrogate, the nuclear norm,
does not perform well in our setting, where two close pulses
yield highly coherent measurements [20]. Thus, practitioners
rely on a popular heuristic method, called Cadzow denoising

[21], which is used in [1], [6] for the recovery of Dirac
pulses. This algorithm consists in denoising the matrix TP by
alternating projections: at each iteration, the matrix is replaced
by its closest, in Frobenius norm, matrix of rank at most
K , and then the obtained matrix is replaced by its closest
Toeplitz matrix. Although Cadzow denoising seems to always
converge in practice to a Toeplitz matrix of rank at most K ,
there exists no global proof of convergence to date, contrary
to a common belief [22]. Anyways, the obtained matrix is not
a local minimizer of the cost function ‖ ·−TP ‖2w [12], [16].
In the next section, we propose a new algorithm to compute
a local solution of the SLRA problem (9), thus improving
theoretically upon Cadzow denoising.

IV. A NEW OPTIMIZATION METHOD FOR SLRA

Let us consider the generic optimization problem:

Find x̃ ∈ argmin
x∈H

F (x) s.t. x ∈ Ω1 ∩ Ω2, (11)

where H is a real Hilbert space of finite dimension, Ω1 and Ω2

are two closed subsets of H, and F : H → R is a differentiable
function with Lipschitz-continuous gradient; that is, there
exists some β > 0 such that ‖∇F (x′)−∇F (x)‖ ≤ β‖x−x′‖,
∀x, x′ ∈ H. Recently [23], the first author proposed a new
algorithm to solve (11):

Optimization algorithm. Choose the parameters µ > 0,
γ ∈ ]0, 1[, and the initial elements x(0), s(0) ∈ H. Then iterate,
for every i ≥ 0,∣∣∣∣
x(i+1) = PΩ1

(
s(i) + γ(x(i) − s(i))− µ∇F (x(i))

)

s(i+1) = s(i) − x(i+1) + PΩ2
(2x(i+1) − s(i))

,

where PΩ denotes the closest-point projection onto Ω ⊂ H.
It has been proved in [23] that if Ω1 and Ω2 are convex and
2γ > βµ, the sequence (x(i))i∈N converges to some element
x̃ solution to the problem (11).

In absence of convexity, this result does not apply, so that
we will use the method as a heuristic, without guarantee of
convergence. The SLRA problem (9) can be recast as an
instance of (11) as follows: H = CN−P×P+1 is the real
Hilbert space of complex-valued matrices of size N−P×P+1
with centro-Hermitian symmetry, endowed with Frobenius
inner product 〈X,X′〉 =

∑
i,j xi,jx′∗

i,j ; Ω1 is the closed
nonconvex subset of H of matrices with rank at most K; Ω2 is
the linear subspace of H of Toeplitz matrices. The operations
involved in the algorithm are the following:

• PΩ1
corresponds to SVD truncation, according to the

Schmidt-Eckart-Young theorem: if a matrix X has SVD
X = LΣRH, then PΩ1

(X) is obtained by setting to zero
the singular values in Σ, except the K largest.

• The “Toeplitzation” operation PΩ2
simply consists in

averaging along the diagonals of the matrix.
• The cost function is F (X) = 1

2‖X − TP ‖2w, so that
∇F (X) = W ◦ (X − TP ), where ◦ is the entrywise
(Hadamard) product and the matrix W has entries {wi,j}.
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Fig. 2. The signal consists of K = 6 Dirac pulses. We have N = 25
noisy measurements with SNR=25dB. In black: true pulses. In blue and red:
reconstructed positions and amplitudes of the pulses with Cadzow denoising
and the proposed algorithm, respectively. The computation time, with 50
iterations, was 19ms in both cases.

The Lipschitz constant of ∇F is β = max({wi,j}) = 1.

We observed empirically that the proposed algorithm always
converges, for an appropriate choice of µ and γ. Moreover, the
matrix obtained at convergence is always Toeplitz, of rank at
most K , and a local solution to (9); see more details in [14].

We show in Fig. 1 a comparison with Cadzow denoising
for the recovery of K = 2 Dirac pulses from N = 11
measurements. We observe that the estimation error on the
pulses’ locations is about 10% lower in average with our
method. We recognize that this improvement is small for the
simple setting considered here, with ideal Dirac pulses and a
sinc sampling kernel. Our ongoing work is to investigate more
general scenarios, with pulses having real shape and noise
which is not white and Gaussian. We expect the improvement
of our method over Cadzow denoising to be more significant in
such cases. Yet, we emphasize that both methods have essen-
tially the same complexity and convergence speed, dominated
by one SVD per iteration. Another example is given in Fig.2
and experiments with larger size are shown in the extended
version of this paper [14].

V. CONCLUSION

We proposed a new heuristic optimization algorithm to solve
structured low rank approximation problems. For the recovery
of Dirac pulses, this efficient matrix denoising procedure, com-
bined with Prony’s extraction method, yields the maximum-
likelihood parameter estimates, up to some threshold SNR.
Many theoretical questions related to the performances of the
approach are open and currently investigated by the authors.
Especially, stability guarantees similar to the ones recently
developed for a convex relaxation of the problem [8], [24],
are sought after. A Matlab implementation of the proposed
method is available on the webpage of the first author.
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Abstract—In this paper, we present an application of Variable
Pulse Width Finite Rate of Innovation (VPW-FRI) in dealing with
multichannel Electrocardiogram (ECG) data using a common
annihilator. By extending the conventional FRI model to include
additional parameters such as pulse width and asymmetry, VPW-
FRI has been able to deal with a more general class of pulses.
The common annihilator, which is introduced in the annihilating
filter step, shows a common support in multichannel ECG data,
which provides interesting possibilities in compression. A model
based de-noising method will be presented which is fast and non-
iterative. Also, an application to detect QRS complexes in ECG
signals will be demonstrated. The results will show the robustness
of the common annihilator and the QRS detection even in the
presence of noise.

I. INTRODUCTION

The concept of sampling and reconstructing signals at the
rate of innovation was first presented by Vetterli et al. [1].
They showed that non band-limited classes of signals such
as streams of Diracs had a finite number of degrees of
freedom and could be completely defined by their location and
amplitude parameters. These classes of signals were termed
Finite Rate of Innovation (FRI) signals. These FRI signals
could be sampled minimally at the rate of innovation and
perfectly reconstructed.

Variable Pulse Width FRI (VPW-FRI) was developed by
Quick et al. [2] as an extension of the traditional FRI method in
that it added two additional parameters, namely the pulse width
and asymmetry, to the model. This allows it some flexibility
in dealing with pulses of various forms and widens the scope
of its application. It does this by considering roots which fall
inside the unit circle as compared to traditional FRI where the
roots lie on the unit circle.

The generalisation of Diracs in VPW-FRI allowed it to be
used successfully in compression of Electrocardiogram (ECG)
signals [2], [3] where the P, QRS and T waveforms could
be represented by pulses of varying amplitude, width and
asymmetry. This allowed for a compression scheme which
only requires 7 pulses per beat, with 4 parameters per pulse,
which is far below the Nyquist rate of around 200− 250Hz at
which most devices record ECG signals.

Other methods have also been used for compression such
as compressed sensing [7], wavelet methods [8] and finite rate
of innovation [4]. The FRI method in [4] divides the ECG
signal into two parts. The QRS is modelled as a non-uniform
linear spline while the remainder of the signal is considered a
residual signal which is sampled at a low rate of 15Hz. The
difference here is that VPW-FRI considers each waveform, P,

QRS and T, as a pulse and parameterizes them accordingly.
Using VPW-FRI allows for a much lower number of samples
and higher compression ratio.

In this paper, we demonstrate a multichannel approach to
calculating the location parameter. To achieve this, a common
annihilator is used in the reconstruction step to derive the
locations. This aids in the compression of the multichannel
signal and has potential applications such as QRS detection
which we will also present.

Also, VPW-FRI has de-noising capabilities. This is achieved
through a model based de-noising method [5] which is fast
and non-iterative. This is its main advantage especially when
compared to Cadzow [2], [6] denoising which is iterative
and requires oversampling. Most importantly, de-noising is
done without affecting the morphology of the pulses which
is especially important when clinicians examine an ECG
recording.

This paper is organised as follows. Section II will present
some background on FRI theory followed by an explanation
of VPW-FRI. Section III will demonstrate the multichannel
VPW-FRI approach. This will be followed by Section IV
where an application of VPW FRI in ECG wave detection will
be shown. The 12 lead ECG data used and the results will be
presented in Section V. Finally, conclusions will be drawn and
some thoughts on future work will constitute Section VI.

II. VARIABLE PULSE WIDTH FINITE RATE OF INNOVATION

Since VPW-FRI is an extension of the original FRI theory,
we will present a short description of FRI theory followed by
the changes in the VPW-FRI algorithm.

A. FRI

A stream of K Diracs with period τ is defined by

x(t) =
K−1∑

k=0

bkδ(t− tk) (1)

=
∑

m∈Z

1

τ

K−1∑

k=0

bk e
−i(2πmtk)/τ
︸ ︷︷ ︸

um
k︸ ︷︷ ︸

X[m]

ei(2πmt)/τ (2)

where Eq. (2) is the Poisson Summation Formula derivation
of Eq. (1). The signal is then sampled uniformly. The samples,
yn are defined by
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yn = 〈hb(t− nT ), x(t)〉, n = 0, ..., N − 1 (3)

=
M∑

m=−M

X[m]ei(2πmnT/τ), (4)

where T represents the sampling period, N is the number of
samples, B ≥ 2K

τ , M = %Bτ/2& and the sampling kernel
hb(t) = Bsinc(Bt).

In the reconstruction step, the annihilating filter [1] in
Eq. (5) is used to retrieve the uk values




X[−1] . . . X[−K]
X[0] . . . X[−K + 1]

...
. . .

...
X[K − 2] . . . X[−1]




·





A[1]
A[2]

...
A[K]




= 0, (5)

where A[k] represents the annihilating filter coefficients.
A common way of solving for A would be to find the

minimal right singular vector of the Toeplitz matrix in Eq. (5).
Since the filter coefficients are of the form

A(z) =
K∑

k=0

A[k]z−k =
K−1∏

k=0

(1− ukz
−1), (6)

the roots of the filter coefficients would correspond to uk,
defined in Eq. (2), and the locations, tk can be calculated
directly from uk.

The amplitudes, bk, can be resolved using a Vandermonde
system of equations [1].

B. Sampling and Reconstruction of VPW-FRI signals
The Dirac model can be generalised with the addition of

width and asymmetry parameters. This can be used to expand
FRI theory by interpreting the uk and X[m] coefficients
differently. The uk values are defined as

uk = e−2π(ak+itk)/τ , ak ≥ 0 (7)

where ak is the width parameter. The X[m] coefficients are
defined as

X[m] = X(1)[m] +X(2)[m], (8)

where

X(1)[m] =
K−1∑

k=0

cke
−2π(ak|m|+itkm)/τ (9)

and

X(2)[m] = −
K−1∑

k=0

dksgn(m)e−2π(ak|m|+itkm)/τ . (10)

The X(2)[m] coefficients are the Hibert transform of X(1)[m]
and the spectra of X(1)[m] and X(2)[m] are symmetric.

The same annihilating filter in Eq. (5) can be used. For
stability, the annihilating filter roots which lie within the unit
circle are admitted and those which lie outside are rejected.
The tk and ak parameters can be retrieved from the roots of
the annihilating filter coefficients.
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Fig. 1. Symmetric and asymmetric components of a VPW-FRI pulse

The {ck}K−1
k=0 and {dk}K−1

k=0 coefficients, which are the real
and imaginary part of bk respectively, can be solved using
the Vandermonde system [1] over the complex numbers as
compared to the original FRI theory where it is solved over
the real numbers.

The continuous-time signal, x(t) can be recovered by ap-
plying the inverse Fourier Transform,

x(t) =
K=1∑

k=0

xk(t) (11)

=
K−1∑

k=0

∑

n∈Z
ck

ak
π(a2k + (t− tk − nτ)2)

+
K−1∑

k=0

∑

n∈Z
dk

t− tk − nπ

π(a2k + (t− tk − nτ)2)
·

An alternate formula for xk(t) that avoids the infinite sum is
given by:

xk(t) =
ck
τ

1− |zt|2

(1− zt)(1− z∗t )
+

dk
τ

2'{zt}
(1− zt)(1− z∗t )

(12)

where zt = e2π(−ak+i(t−tk))/τ . As can be seen in Equa-
tion (11) and in Fig. 1, the VPW pulse consists of a symmetric
and asymmetric pulse. The symmetric pulse is a Cauchy-
Lorentz function and the asymmetric pulse is the Hilbert
Transform of the symmetric pulse.

III. VPW-FRI ON MULTICHANNEL DATA

When dealing with multichannel data where the pulses
occur at the same locations across all the channels, multi
lead ECG for example, it would make sense to compute the
locations for all the channels simultaneously rather than for
each channel individually. This is achieved using a common
annihilator which is the main mechanism that allows VPW-
FRI to handle multichannel data.

In FRI theory, the annihilating filter would be where the
uk values are determined. However, it only deals with single
channel information. Therefore by modifying the input to the
annihilating filter, we can create a common annihilator for all
the input channels. This can be achieved [11] by stacking the
Toeplitz matrices of each channel vertically and applying the
annihilating filter,
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X1

X2
...

XM




·





A[1]
A[2]

...
A[K]




= 0. (13)

where {Xm}Mm=1 represents the Toeplitz matrices of the
M channels and {A[k]}Kk=1 represents the annihilating filter
coefficients similar to Eq. (6). The roots of the annihilating
filter would yield the common locations of the pulses across
all the channels.

A model based de-noising technique was implemented in
this paper which is based on the subspace based approach
presented in [5]. From Eq. (13), V is used to estimate the
noiseless signal. Therefore,

V = V · ΦH , (14)

where (·) and (·) denote the operation of omitting the first and
last row of (·), respectively. The conjugates of the eigenvalues
of ΦH will yield the roots of the annihilating filter and not
the filter coefficients as seen in Eq. (5). For a detailed proof,
please refer to [5].

The uk values retrieved from the roots of the annihilating
filter can be used to calculate the locations, tk, for the pulses
in all the channels.

This offers an interesting perspective especially when con-
sidering the physiology and the way the heart’s electrical
signals are recorded. The denominator of the filter describes
the common activities such as time of arrival of the electrical
vectors at the electrodes while the numerator captures the
morphological information of the pulse. This could be studied
further especially when developing automated diagnostic or
wave detection tools.

IV. QRS DETECTION

One application of VPW-FRI, besides sampling and re-
construction, is QRS detection in ECG signals. Paired with
the common annihilator method presented in Section III, this
method of QRS detection is workable even in noisy signals.

The QRS complexes present the sharpest transition out
of all the ECG waveforms. Hence, in Eq. (13), the highest
values of diag(S) would correspond to the QRS complexes
due to the fact that it has the highest energy out of all the
pulses. This can also be seen in the roots of the annihilating
filter, as the roots closest to the unit circle would represent
the QRS complexes though the distinction is not as clear. If
we represent An = {S1,1, S2,2, . . . , SN−1,N−1} and Bn =
{S2,2, S3,3, . . . , SN,N},

En = An/Bn, n = 1, . . . , N − 1. (15)

Then the number of QRS complexes can be found by
thresholding En. Empirically, this threshold was found to be
1.2.

By only keeping the subspace associated with these QRS
complexes, the QRS pulses can be accurately identified.
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Fig. 2. Reconstructed signal for ECG leads V2-V4

V. RESULTS

In this section, the ECG data that was used to generate
results will be introduced. This will be followed by results
from the VPW-FRI, common annihilator and QRS detection.

A. Data
The data used was 12 lead Stress ECG data recordings from

Tan Tock Seng Hospital, Singapore. The subjects were patients
who were undergoing treadmill ECG tests as recommended by
their physician. All subjects voluntarily signed an agreement
to have their anonymised data used for research purposes.
The test conducted were under the conditions of the BRUCE
protocol [9] which is a stress ECG protocol where the incline
and speed of the treadmill are increased at intervals of 3mins.

The data was collected using the GE Marquette CASE
Stress System with the T2100 treadmill. This data, collected
from 6 patients, varied in length from 12 mins to 20 mins long
depending on the patient’s fitness level , cardiac health and the
discretion of the physician. The leads recorded are I, II, III,
aVR, aVL, aVF, V1, V2, V3, V4, V5 and V6. A simple and
concise write up about the leads and their significance can be
found in [10]. The data is sampled at 200Hz.

B. Results
The reconstruction error of VPW-FRI used in this paper is

the Signal to Residue Ratio (SRR) which is defined as

SRR = 10log

( ∑N−1
n=0 x[n]2

∑N−1
n=0 (x[n]− x̂[n])2

)
. (16)

A hundred segments of data, each 2s long, were used to
evaluate the performance of the reconstruction. Section V-A.
One segment can be viewed in Fig. 2.

For the VPW-FRI with the common annihilator, the al-
gorithm tested with a mean SRR of µ = 19.41dB with
a standard deviation of σ = 2.28dB as can be seen in
Table I. The low standard deviation shows consistency in
reconstructing all the channels using the common annihilator.
The high SRR coupled with the low standard deviation also
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TABLE I
SRR VALUES ACROSS ALL 12 ECG LEADS

Mean SRR 19.41
Standard Deviation 2.28

Minimum SRR 14.81
Maximum SRR 22.25

proves the theoretical prediction that the common annihilator
would provide information on the common parameters of all
the channels in ECG.

The segments run in this test were good quality signals as
they were relatively free of noise. The purpose of this was to
demonstrate the sampling and reconstruction ability of VPW-
FRI. Seven pulses were used per QRS complex.

The de-noising capability of the algorithm is significant as
can be seen in Fig. 3. Noise in the form of Additive Gaussian
White Noise (AWGN) was added at an SNR of 10dB to
simulate Electromyogram (EMG) or muscle noise. It should
be noted that the Cadzow de-noising [2] performs similarly
but is iterative and therefore more computationally intensive.
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Fig. 3. Denoising on an ECG signal with AWGN at SNR 10dB

The QRS detection also tested well. Again, AWGN at
SNR 0dB was added to test the robustness of the detection
algorithm. The AWGN was added to all 12 channels. The
QRS detector was then applied with only the pulse associated
with the QRS being reconstructed. This was tested on the same
100 sets of signal used earlier in this section. A one second
segment from lead II can be seen in Fig. 4. It was able to detect
the number of QRS complexes and the locations perfectly on
97 of those segments. On the other 3 segments, it missed one
QRS. However, when the SNR is raised to 5dB, it was able
to detect all the QRS complexes in all the segments perfectly.

VI. CONCLUSION

The results demonstrate the robustness of the VPW-FRI
method in compressing signals, in de-noising and also in
wave detection. They also demonstrate that for the case of
multichannel data, the ECG signals share a common support
which translates to having a common denominator in the
VPW-FRI model. This leads to additional opportunities for
compression in the case of multichannel data. Future work

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

í200

0

200

400

600

Time(s)

A
m

p
li
tu

d
e
(m

V
)

Signal with AWGN at SNR 0dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

í200

0

200

400

600

Time(s)

A
m

p
li
tu

d
e
(m

V
)

Original Signal vs Detected QRS pulses
Original Signal

QRS pulses

Fig. 4. QRS detection on ECG signal with AWGN at SNR 0dB

can be in the direction of application of VPW-FRI for feature
detection in ECG as well as testing for compatibility with other
biomedical signals.
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Abstract—Bilevel signal x with maximal local rate of innova-

tion R is a continuous-time signal that takes only two values 0
and 1 and that there is at most one transition position in any time

period of 1/R. In this note, we introduce a recovery method for

bilevel causal signals x with maximal local rate of innovation R

from their uniform samples x⇤h(nT ), n � 1, where the sampling

kernel h is causal and positive on (0, T ), and the sampling rate

⌧ := 1/T is at (or above) the maximal local rate of innovation R.

We also discuss stability of the bilevel signal recovery procedure

in the presence of bounded noises.

I. INTRODUCTION

Let T > 0 and N be a nonnegative integer or infinity, and
denote by �E the indicator function on a set E. In this note,
we consider bilevel causal signals

x(t) :=

NX

i=1

�
[t2i�1,t2i)(t) (1)

with unknown transition values (positions) ti, 1  i  2N ,
satisfying

ti < ti+1

, 1  i < 2N ; (2)

and also a uniform generalized sampling process

x(t) 7�! x ⇤ h(t) 7�! {x ⇤ h(nT )}n�1

(3)

with sampling kernel h being causal and uniform sampling
taken every T seconds. For the bilevel causal signal x in (1),
define its maximal local rate of innovation R by reciprocal
of the maximal positive number �

0

such that there is at most
one transition position ti, 1  i  2N , in any time period
[t, t+ �

0

), t � 0, that is,

R = sup

1i<2N

1

ti+1

� ti
. (4)

The concept of signals with finite rate of innovation was
introduced by Vetterli, Marziliano and Blu [1]. Examples of
signals with finite rate of innovation include streams of Diracs,
piecewise polynomials, band-limited signals, and signals in a
finitely-generated shift-invariant space [1]–[4]. In the past ten
years, the paradigm for reconstructing signals with finite rate
of innovation from their samples has been developed, see for
instance [1], [2] and [4]–[13] and references therein.

Precise identification of transition positions is important to
reach meaningful conclusions in many applications. Vetterli,

Marziliano and Blu show in [1] that a bilevel signal x defined
in (1) can be reconstructed from its samples (3) when the
sampling kernel h is the box spline �

[0,T )

(or the hat spline
(T � |t|)�

[�T,T )

(t)) and the sample rate ⌧ := 1/T is at (or
above) the maximal local rate of innovation R of the signal x.
In this note, we show that bilevel causal signals x defined in (1)
are uniquely determined from their samples x⇤h(nT ), n � 1,
in (3) if the sampling kernel h is causal and positive on (0, T ),
and the sample rate ⌧ is at (or above) the maximal local rate
of innovation R, see Theorem 1. Our numerical simulations
indicate that the bilevel signal recovery procedure from noisy
samples x⇤h(nT )+✏n, n � 1, is stable when there are limited
numbers of transition positions for the bilevel signal x.

II. RECOVERY OF BILEVEL CAUSAL SIGNALS

In this section, we provide a necessary condition on the
sampling kernel h such that bilevel signals x in (1) are
uniquely determined from their samples {x ⇤ h(nT )} in (3).
Also in this section, we propose an algorithm for the bilevel
signal recovery.

The main theorem of this note is as follows:
Theorem 1: Let T > 0 and set ⌧ = 1/T . If h is a causal

sampling kernel with h(t) > 0 on (0, T ), then any bilevel
causal signal x in (1) with maximal local rate of innovation
R being less than or equal to the sampling rate ⌧ can be
recovered from its samples x ⇤ h(nT ), n � 1.

Proof: Let

H(t) =

Z t

0

h(s)ds, 0  t  T. (5)

Then H(0) = 0 and H is a strictly increasing function on
[0, T ) as h is strictly positive on (0, T ). Denote its inverse
function on [0, T ] by H�1

: [0, H(T )] 7�! [0, T ].
Let x be a bilevel causal signal in (1) with transition

positions ti, 1  i  2N , satisfying (2). Then its first sample
y
1

= x ⇤ h(T ) is given by

y
1

=

Z 1

0

x(t)h
�
T � t

�
dt =

Z T

0

x(t)h
�
T � t

�
dt

=

Z T

0

�
[t1,t2)(t)h

�
T � t

�
dt = H

�
max{T � t

1

, 0
 �

,
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where the first two equalities hold by the causality of the signal
x and the sampling kernel h, and the fourth equality follows
from (1) and the observation that

ti � t
2

= (t
2

� t
1

) + t
1

� 1/R+ 0 � 1/⌧ = T, i � 2

by (2), (4) and the assumption that R  ⌧ . Recall that H
is strictly increasing on [0, T ). Then there exists a transition
position in the time range [0, T ) if and only if y

1

= x⇤h(T ) >
0. Moreover, if it exists, it is given by

t
1

= T �H�1

(y
1

). (6)

Thus for a bilevel causal signal, we may determine from
its first sample x ⇤ h(T ) the (non-)existence of its transition
position in the time period [0, T ) and further its transition
position in that time period if there is one.

Inductively, we assume that all transition positions of the
bilevel signal x in the time range [0, nT ) have been determined
from its samples yk = x ⇤ h(kT ), 1  k  n. We examine
four cases to determine its transition position in the time period
[nT, (n+ 1)T ) from the sample yn+1

= x ⇤ h((n+ 1)T ).
Case 1: There is no transition position in [0, nT ).
In this case, following the above argument to determine

transition positions in the time range [0, T ), we have that
there exists a transition position in [nT, (n+1)T ) if and only
if yn+1

> 0. If there is, the transition position is the first
transition position t

1

of the bilevel causal signal x, and

t
1

= (n+ 1)T �H�1

(yn+1

). (7)

Case 2: The last transition position in [0, nT ) is t
2i0�1

for
some i

0

� 1.
In this case, t

2i0 � nT and ti � (n + 1)T for all i > 2i
0

.
Thus

yn+1

=

Z
(n+1)T

0

x(t)h
�
(n+ 1)T � t

�
dt

=

Z
(n+1)T

0

h
�
(n+ 1)T � t

�

⇥
⇣ i0�1X

i=1

�
[t2i�1,t2i)(t) + �

[t2i0�1,(n+1)T )

(t)
⌘
dt

�
Z

(n+1)T

nT
h
�
(n+ 1)T � t

�

⇥�
[min(t2i0 ,(n+1)T ),(n+1)T )

(t)dt.

Hence there exists a transition position t
2i0 in the time range

[nT, (n+ 1)T ) if and only if

ỹn+1

:= �yn+1

+

Z
(n+1)T

0

h
�
(n+ 1)T � t

�

⇥
⇣ i0�1X

i=1

�
[t2i�1,t2i)(t) + �

[t2i0�1,(n+1)T )

(t)
⌘
dt (8)

is positive. Moreover if ỹn+1

> 0, the transition position t
2i0

in the time range [nT, (n+ 1)T ) is determined by

t
2i0 = (n+ 1)T �H�1

(ỹk+1

). (9)

Case 3: The last transition position in [0, nT ) is t
2i0 for

some 1  i
0

< N .
In this case, the (n+1)-th sample yn+1

= x ⇤h((n+1)T )
is given by

yn+1

=

Z nT

0

⇣ i0X

i=1

�
[t2i�1,t2i)(t)

⌘
h
�
(n+ 1)T � t

�
dt

+

Z
(n+1)T

min(t2i0+1,(n+1)T )

h
�
(n+ 1)T � t

�
dt. (10)

Thus there exists a transition value t
2i0+1

2 [nT, (n+1)T ) if
and only if

ỹn+1

:= yn+1

�
Z nT

0

⇣ i0X

i=1

�
[t2i�1,t2i)(t)

⌘
h
�
(n+ 1)T � t

�
dt

(11)
is positive. Also we see that if ỹn+1

> 0, then the transition
value t

2i0+1

can be obtained by

t
2i0+1

= (n+ 1)T �H�1

(ỹn+1

). (12)

Case 4: The last transition position in [0, nT ) is t
2N .

In this case, all transition positions of the bilevel signal x
have been recovered already. Hence the bilevel signal x is
fully recovered.

This completes our inductive proof.

From the above argument of Theorem 1, we can use the
following algorithm to recover a bilevel causal signal x in (1)
from its samples x ⇤ h(nT ), 1  n  K,where K > t

2N⌧ :
Bilevel Signal Recovery Algorithm:

Step 1: If all samples yn = x ⇤ h(nT ), 1  n  K, are
zero, then set x = 0 and stop; else find the first
nonzero sample, say yn0 > 0, the first transition
position of the bilevel signal x is located at t

1

:=

n
0

�H�1

(yn0), and set n = n
0

.
Step 2: Do Step 2a if the last transition position in the

time range [0, nT ) is t
2i0�1

for some i
0

� 1; do
Step 2b elseif the last transition position in the
time range [0, nT ) is t

2i0 for some 1  i
0

< N ;
and do Step 4 else.
– Step 2a: Define t

2i0 as in (9) if ỹn+1

in (8)
is positive, else do Step 3.

– Step 2b: Define t
2i0+1

as in (12) if ỹn+1

in
(11) is positive, else do Step 3.

Step 3: Set n = n + 1. Do Step 2 if n < K, and Step
4 if n = K.

Step 4: Stop as all transition positions ti, 1  i  2N ,
of the bilevel signal x are recovered.

We finish this section with a remark that the requirement
R  ⌧ in Theorem 1 can be relaxed to the following: There
is at most one transition position ti, 1  i  2N , in each
sampling range [nT, (n+ 1)T ), n � 1.
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III. STABLE RECOVERY OF BILEVEL CAUSAL SIGNALS

In this section, we consider the maximal sampling error
supn |x ⇤ h(nT ) � x̃ ⇤ h(nT )| of two bilevel signals x and
x̃ when maximal error of their transition positions are small.
We then present some numerical simulations on recovery of a
bilevel signal x in (1) from its noisy samples {x⇤h(nT )+✏n}
in (3), where ✏n, n � 1, are bounded noises of low levels.

First we notice that sampling procedure from bilevel signals
x to their samples {x ⇤ h(nT )} are stable in bounded norm.

Theorem 2: Let T > 0, h be a bounded filter supported
in [0,MT ), x(t) =

PN
i=1

�
[t2i�1,t2i)(t) be a bilevel causal

signal with maximal local innovation rate R  ⌧ := 1/T , and
x̃(t) =

PN
i=1

�
[t2i�1+�2i�1,t2i+�2i) be a perturbation of the

bilevel signal x with perturbed transition positions {ti+�i}2Ni=1

satisfying
� := sup

1i2N
|˜ti � ti| <

1

2R
.

Then the sample errors between x⇤h(nT ) and x̃⇤h(nT ), n �
1, are dominated by (bMRT c+ 2)khk1�, i.e.,

|x⇤h(nT )�x̃⇤h(nT )| 
�
bMRT c+2

�
khk1�, n � 1, (13)

where khk1 is the L1 norm of the sampling kernel h.
Proof: By the assumption on maximal local innovation

rate R of the bilevel signal x and the maximal transition
position perturbation � between bilevel signals x and x̃, we
have that

|x(t)� x̃(t)| =
2NX

i=1

�ti+[min(�i,0),max(�i,0))(t).

This together with the support assumption for the sampling
kernel h gives that

|x ⇤ h(nT )� x̃ ⇤ h(nT )|

=

���
Z nT

0

(x(t)� x̃(t))h(kT � t)dt
���

 khk1
Z nT

(n�M)T

2NX

i=1

�ti+[min(�i,0),max(�i,0))(t)dt.

Therefore

|x ⇤ h(nT )� x̃ ⇤ h(nT )|
 �khk1#{ti : ti 2 [(n�M)T � �, nT + �)}
 �khk1(b(MT + 2�)/(1/R)c+ 1)

 �khk1(bMRT c+ 2),

where the first inequality holds as ti 2 [(n�M)T � �, nT +

�) if ti + [min(�i, 0),max(�i, 0)) and [(n � M)T, nT ) have
nonempty intersection, the second inequality is true as ti+1

�
ti � 1/R for all 1  i < 2N , and the last inequality follows
from the assumptions that � < 1/(2R) and R  ⌧ . This
proves the sampling error estimate (13) between the bilevel
causal signals x and x̃.

Now we consider the corresponding nonlinear inverse prob-
lem how to recover a bilevel signal x from its noisy samples

{x⇤h(nT )+ ✏n} in (3), where ✏n, n � 1, are bounded noises.
Let us start by looking at two examples.

Example 1: Take x
1

(t) =

P1
i=1

�
[2i�1,2i)(t) as the orig-

inal bilevel signal and h
1

(t) = �
[0,2)(t) as the sam-

pling kernel. For sufficiently small ✏ > 0, define x
1,✏ =P1

i=1

�
[(1+✏)(2i�1),2(1+✏)i)(t). Then for every i � 1, the i-

th transition positions of bilevel signals x
1

and x
1,✏ are i and

i(1+ ✏) respectively (hence their difference is i✏ that could be
arbitrary large for sufficiently large i), but on the other hand,
maximal sampling errors for those two bilevel signals x

1

and
x
1,✏ are bounded by ✏,

|x
1,✏ ⇤ h1

(n)� x
1

⇤ h
1

(n)| = |x
1,✏ ⇤ h1

(n)� 1|  ✏, n � 1.

This leads to instability of the recovery procedure from
samples {x

1

⇤ h
1

(n)} to the bilevel signal x
1

in the presence
of bounded noises.

Example 2: Take x
1

and h
1

in Example 1 as the original
bilevel signal and the sampling kernel respectively. Define
x
2,✏ =

P1
i=1

�
[2i�1+✏,2i+✏)(t) for sufficiently small ✏ > 0.

Then for every i � 1 the difference between i-th transition
positions of bilevel signals x

1

and x
2,✏ is always ✏, and

there is no difference between their n-th samples except
for n = 1. This suggests that the recovery procedure from
samples {x

1

⇤ h
1

(n)} to the bilevel signal x
1

is not locally-
behaved and the reconstruction error on transition positions
could disseminate.

From the above two examples, we see that the nonlinear
recovery procedure from samples {x⇤h(n)} to bilevel signals
x is unstable in the presence of bounded noises and that it
is globally-behaved in general. In this note, we present some
initial numerical simulations with small numbers of transition
positions, sampling rate over maximal local rate of innovation
and very low levels of noise. Detailed noise performance
analysis and stable recovery in the presence of other types
of noises will be discussed in the coming paper.

Take a sampling kernel h
0

(t) = t+1

2

�
[0,1)(t)+(2t�1)�

[1,2),
and a bilevel signal

x
0

(t) = �
[0.3791,1.9885)(t) + �

[3.1306,4.3440)(t)

+�
[5.7552,7.1820)(t) + �

[8.7423,10.1052)(t)

+�
[11.4200,12.6884)(t) (14)

containing 10 transition positions, see Figure 1. Here transition

Fig. 1. Bi-level signal x0 (left) and sampling kernel h0 (right)

positions t0i , 1  i  10, of the bilevel signal x
0

are randomly
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selected so that t0i � t0i�1

2 [1.1, 1.9], 2  i  10. The bilevel
signal x

0

in (14) has 0.8756 as its maximal local rate of
innovation. We sample the convolution x

0

⇤ h
1

between x
0

and h
1

every second, which generates the sampling vector
Y
0

= (x
0

⇤ h(1), . . . , x
0

⇤ h(14)), and then we add bounded
random noise to the sampling vector

Y� = Y
0

+ �(✏
1

, . . . , ✏
14

)

with noise level � � 0, where ✏i 2 [�1, 1], 1  i  14, are
random noises. We apply the bilevel signal recovery algorithm
in Section II with some technical adjustment when the recon-
structed transition position is approximately located at some
sampling positions, and denote the first ten transition positions
of the reconstructed bilevel signal x� by t

1,�, . . . , t10,� . Define
maximal error of first ten transition positions by

P (�) = max

1i10

|ti,� � t0i |.

We perform the bilevel signal recovery algorithm in Sec-
tion II 50 times for every noise level � 2 [0, 0.03]. The
maximal value of P (�) after performing the algorithm 50
times is plotted in Figure 2 with solid line, while the av-
erage value of P (�) plotted with dashed line. Notice that
max

1n14

|x
0

⇤ h
1

(n)| = 0.9796. Thus the maximal error
P (�) of transition positions is less than 10% when the noise
level ✏ = maxn�1

|✏n| is at (or below) 2% of the maximal
sample value maxn�1

|x
0

⇤ h
0

(nT )|, while some transition
positions could not be recovered approximately when the noise
level is above 3%. This indicates that our algorithm to recover
the bilevel signal from its noisy samples is “reliable” only for
low level of bounded noises. We doubt that it is because of the
instability of the nonlinear recovery procedure in the presence
of bounded noises. We will do the detailed noise performance
analysis in the coming paper.

Fig. 2. Maximal transition position error

IV. CONCLUSION

In this note, we show that bilevel causal signals x could
be reconstructed from their samples x ⇤ h(nT ), n � 1, if
the sampling kernel h is causal and positive on (0, T ) and
if the sample rate is at (or above) the maximal local rate of
innovation of the bilevel signal x. We also propose a stable

bilevel signal recovery algorithm in the presence of bounded
noise if the number of transition positions of bilevel signals is
not large. We remark that the bilevel signal recovery algorithm
proposed in this note is applicable when uniform sampling x⇤h
every T second replaced by nonuniform sampling {x⇤h(sn)}
with sampling density supn�1

|sn+1

� sn|  T , and bilevel
causal signal x =

PN
i=1

�
[t2i�1,t2i)(t) with maximal local

rate of innovation R  1/T replaced by box causal signals
x =

PN
i=1

ci�
[t2i�1,t2i)(t) with maximal local rate of innova-

tion R  1/(2T ), where for every 1  i  N , ci is height of
the box located on the time period [t

2i�1

, t
2i).
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Abstract—In recent years, several methods have been developed for

sampling and exact reconstruction of specific classes of non-bandlimited

signals known as signals with finite rate of innovation (FRI). This is

achieved by using adequate sampling kernels and reconstruction schemes,

for example the exponential reproducing kernels of [1]. Proper linear

combinations of this type of kernel with its shifted versions may reproduce

polynomials or exponentials exactly.

In this paper we briefly review the ideal FRI sampling and recon-

struction scheme and some of the existing techniques to combat noise. We

then present an alternative perspective of the FRI retrieval step, based on

moments [1] and approximate reproduction of exponentials. Allowing for

a controlled model mismatch, we propose a unified reconstruction stage

that addresses two current limitations in FRI: the number of degrees

of freedom and the stability of the retrieval. Moreover, the approach is

universal in that it can be used with any sampling kernel from which

enough information is available.

Index Terms—FRI, Sampling, Noise, Matrix Pencil, Approximation

I. INTRODUCTION

Sampling, or the conversion of signals from analog to digital,
provides the connection between the continuous-time and discrete-
time worlds. The acquisition process is usually modelled as a filtering
stage of the input x t with a smoothing function ' t (or sampling
kernel), followed by uniform sampling at a rate fs

1
T

[Hz].
According to this setup, the measurements are given by

yn x t '

t

T

n dt

⌧
x t ,'

t

T

n

�
.

The fundamental problem of sampling is to recover the original
waveform x t using the samples yn. When the signal is bandlimited,
the answer due to the Nyquist-Shannon theorem is well known.
Recently, however, it has been shown [2], [1], [3] that it is possible to
sample and perfectly reconstruct specific classes of non-bandlimited
signals, known as signals with finite rate of innovation (FRI). Perfect
reconstruction is achieved by using a variation of Prony’s method,
called the annihilating filter method [3], [4].

In this paper we introduce the approximate recovery of FRI signals,
from noisy samples taken by an arbitrary kernel. Our analysis follows
the setup of [1], where the key to FRI reconstruction is exact
reproduction of exponentials. We introduce the new property of
approximate reproduction of exponentials by finding proper linear
combinations of the sampling kernel. The main advantages of our
method are that we can increase the number of measurements,
improve the stability of the recovery and generalise the reconstruction
stage.

The outline of the paper is as follows. In Section II we review
the noiseless scenario of [1] and then give an overview of existing
denoising techniques [3], [5]. In Section III we introduce the approx-
imate FRI scenario. We first study the approximate reproduction of
exponentials, and then apply this property to the recovery of FRI
signals. We also propose an iterative algorithm to refine the accuracy
of the reconstruction. Finally, in Section IV we show simulation
results, to then conclude in Section V.

This work is supported by the European Research Council (ERC) starting
investigator award Nr. 277800 (RecoSamp).

II. SAMPLING SIGNALS WITH FRI
A. Perfect reconstruction of a stream of Diracs

We first summarise the main steps needed to sample and perfectly
recontruct a train of K Diracs

x t

K 1

k 0

ak� t tk , (1)

where tk 0, ⌧ , from the samples

yn

⌧
x t ,'

t

T

n

� K 1

k 0

ak'
tk

T

n , (2)

for n 0, 1, . . . , N 1. Here we assume that the sampling period T

is such that ⌧ NT . Moreover, ' t is an exponential reproducing
kernel [1], [6] of compact support that satisfies

n Z
cm,n' t n e

↵mt
, (3)

for proper coefficients cm,n, with m 0, . . . , P and ↵m C.
To begin, we linearly combine the samples yn with the coefficients

cm,n of (3) and obtain the new measurements (exponential moments):

sm

N 1

n 0

cm,nyn, (4)

for m 0, . . . , P . Then, given that the signal x t is a stream of
Diracs (1) and combining (4) with (2) we have [1]:

sm

*
x t ,

N 1

n 0

cm,n'
t

T

n

+
K 1

k 0

xku
m
k , (5)

with xk ake
↵0

tk
T and uk e

�
tk
T . In order for (5) to hold, we

have restricted our analysis to parameters of the form ↵m ↵0

m�, where m 0, . . . , P and ↵0,� C. The reason we use these
parameters is that they are needed for the values sm to have a power
sum series form (5), which is key to the recovery stage.

The new pairs of unknowns uk, xk for k 0, . . . ,K 1 can then
be retrieved from the measurements sm using the annihilating filter
method [2], [1], [3]. Let hm with m 0, . . . ,K denote the filter
with z-transform ˆ

h z

K
m 0 hmz

m K 1
k 0 1 ukz

1 .
Then, hm annihilates the series sm:

hm sm

K

i 0

hism i

K 1

k 0

xku
m
k

K

i 0

hiu
i

k

ĥ uk

0. (6)

The zeros of this filter uniquely define the values uk provided the
locations tk are different. Interestingly, identity (6) can be written in
matrix-vector form as:

Sh 0 (7)

which reveals that the Toeplitz matrix S is rank deficient. The
annihilating filter is therefore in the null space of S. By solving the
above system, we find the coefficients hm, and then retrieve uk from
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the roots of ˆ

h z . Finally, we determine the weights xk by solving
the first K consecutive equations in (5). Notice that the problem can
be solved only when N P 1 2K.

An exponential reproducing kernel is any function ' t that,
together with its shifted versions, can reproduce exponentials, that
is, it satisfies (3). The coefficients cm,n are given by

cm,n e

↵mt
'̃ t n dt cm,ne

↵mn
,

where the function '̃ t is such that h'̃ t n ,' t m i �m n,
and with cm,0 e

↵mx
'̃ x dx.

Any exponential reproducing kernel can be written as ' t

� t �~↵ t [1], [6], where � t is an arbitrary function, even a
distribution, �~↵ t is an E-Spline and ~↵ ↵m

P
m 0. The Fourier

domain representation of an E-Spline of order P 1 is:

ˆ

�~↵ !

P

m 0

1 e

↵m j!

j! ↵m
.

In this paper we work with real valued sampling kernels charac-
terised by � t and �~↵ t being real. Since ↵m ↵0 m� with
m 0, . . . , P this implies � ↵0 ↵0 P . Note that this condition
makes ↵m and sm exist in complex conjugate pairs.

B. Sampling signals with FRI in the presence of noise

Noise is generally present in data acquisition, making the solution
explained so far ideal. Assume the noiseless samples yn are corrupted
by additive noise such that we have access to the measurements ỹn
yn ✏n for n 0, . . . , N 1. In this situation, the moments, given
by the linear combination of samples (4), become noisy:

s̃m

K 1

k 0

xku
m
k

sm

N 1

n 0

cm,n✏n

bm

, (8)

and perfect reconstruction is no longer possible. If ✏n are i.i.d.
Gaussian, then bm are samples of Gaussian noise, but not necessarily
white.

Note that now (7) becomes approximate due to ˜S S B, where
B is a Toeplitz matrix formed from the values bm of (8). Thus, we
need alternative ways of solving (7), for instance by using total least
squares and Cadzow [3] or the matrix pencil method [7], [5]. The
latter can be summarised as follows: obtain the SVD decomposition
˜S U⇤VH , keep the K columns of U corresponding to the
dominant singular values and estimate uk as the eigenvalues of
UKUK . Here, and are operations to omit the last and first
rows of .

In addition, note that the covariance matrix of the noise RB

E BHB may not be a multiple of the identity. In order for SVD
to operate properly it is necessary to pre-whiten the noise [8], for
instance by using a linear transform W R 2

B [9] for A BW
to satisfy that RA E AHA I. Here, 2 denotes the square
root of the pseudoinverse of . In our simulations, we apply pre-
whitening on ˜S such that ˜SW is now contaminated by white noise
A. We then directly use matrix pencil on ˜SW.

In order to analyse the effect of noise on the accuracy with
which FRI signals can be recovered we use the Cramér–Rao lower
bound (CRB). This is a lower bound on the mean square er-
ror (MSE) that applies to any unbiased estimator [4]. A stream
of K Diracs is completely characterised by the vector ⇥

t0, . . . , tK 1, a0, . . . , aK 1
T , of K locations and amplitudes. And

the goal of FRI reconstruction is to estimate ⇥ either from the vector
of N samples ˜y ỹ0, . . . , ỹN 1

T or the vector of P 1 noisy
moments ˜s s̃0, . . . , s̃P

T .
The analysis of the CRB for the estimation problem given ˜y

is detailed in [3]. In our simulations, we compare the estimation
accuracy with this bound, but we consider the CRB for the estimation
from ˜s. Given values sm that exist in complex conjugate pairs, then
any unbiased estimate ˆ

⇥

˜s ˆ

t0, . . . , ˆtK 1, â0, . . . , âK 1
T has a

covariance matrix that is lower bounded by [10]

cov

ˆ

⇥

˜s �

HR 1
�

1
. (9)

Here, H denotes Hermitian transpose. Moreover, provided ✏n are
samples of additive white Gaussian noise, of zero mean and variance
�

2, then R E bbH
�

2CCH , because b is the vector of noise
values bm of (8). The matrix � in (9) takes the form:

a0↵0e↵0t0 . . . aK 1↵0e↵0tK 1 e↵0t0 . . . e↵0tK 1

a0↵1e↵1t0 . . . aK 1↵1e↵1tK 1 e↵1t0 . . . e↵1tK 1

...
. . .

...
...

. . .
...

a0↵P e↵P t0 . . . aK 1↵P e↵P tK 1 e↵P t0 . . . e↵P tK 1

.

III. UNIVERSAL SAMPLING OF SIGNALS WITH FRI

In many practical circumstances we may not be able to choose the
sampling kernel ' t , or even know its exact shape. In such cases
there might not be an easy way of finding coefficients cm,n for the
linear combination of samples (4) to yield a power sum series (5).
And this is key in the FRI setting to map the signal reconstruction
problem to Prony’s method in spectral-line estimation theory.

In this section we consider any function ' t for which the expo-
nential reproduction property (3) is only approximate. We propose to
use the coefficients cm,n for approximate reproduction to build (4)
such that they yield a power sum series (5) from which the FRI
parameters can be retrieved.

A. Approximate reproduction of exponentials

Assume we want to use a function ' t and its integer shifts
to approximate the exponential e

↵t. In other words, we seek the
coefficients cn that best fit:

n Z
cn' t n u e

↵t
. (10)

In order to do so, we directly use cn c0e
↵n. Then, equation (10)

is equivalent to approximating g↵ t c0 n Z e
↵ t n

' t n by
the constant value 1. We also note that g↵ t is a 1-periodic function,
because g↵ t g↵ t 1 . It can therefore be decomposed using
the Fourier series as

g↵ t

l Z
gle

j2⇡lt
, (11)

where

gl

1

0

g↵ t e

j2⇡lt
dt c0

k Z

1

0

e

↵ t k
' t k e

j2⇡lt
dt

a
c0 e

↵x
' x e

j2⇡lx
dx c0'̂ ↵ j2⇡l .

Here, a is due to using x t k and combining the sum over k Z
and the integral dependent on k. Also '̂ s ' x e

sx
dx

denotes the Laplace transform of ' x .
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In general ' t may be any function and we can find different sets
of coefficients cn for (10) to hold. The accuracy of our approximation
is given by:

" t e

↵t
1 c0

l Z
'̂ ↵ j2⇡l e

j2⇡lt
. (12)

Note that if the Laplace transform of ' t decays sufficiently quickly,
very few terms are needed to have an accurate bound for the error.

A natural choice of the coefficients cn c0e
↵n is obtained by

discarding every term in (11) for l 0 and making g0 1, hence
c0 '̂ ↵

1. Interestingly, this is a simplified version of the least-
squares coefficients [11] for the approximation in (10). The main
advantage of using coefficients with c0 '̂ ↵

1 is that they are
very easy to compute, because they only require the knowledge of
the Laplace transform of ' t at ↵.

We conclude with an example. Consider a linear spline that repro-
duces polynomials of orders 0 and 1 exactly, as shown in Figure 1
(a). We want to approximate the complex exponentials ej

⇡
16 2m 7 t

for m 3 and m 0 by using linear combinations of the spline.
This can be done by selecting coefficients cm,n '̂ ↵m

1
e

↵mn

where ↵m j

⇡
16 2m 7 . We illustrate the reproduction of the

real part of the complex exponentials in Figure 1 (b-c). Note how
the one with lower frequency is better approximated. Moreover, we
have seen experimentally that higher order splines tend to improve
the quality of the approximation. Also note there is no fixed number
of exponentials that may be well approximated.

B. Approximate FRI recovery

Consider again the stream of Diracs (1) and samples of the
form (2), now taken by an arbitrary sampling kernel ' t . In order
to retrieve the locations tk and amplitudes ak for k 0, . . . ,K 1,
we first obtain the coefficients cm,n '̂ ↵m

1
e

↵mn for m

0, . . . , P . We only need to know the Laplace transform of ' t at
↵m. Note that P is a free parameter, subject to P 1 2K.

We proceed in the same way as in the case of exact reproduction
of exponentials, but now the exponential moments take the form

sm

*
x t ,

N 1

n 0

cm,n' t n

e↵mt "m t

+
K 1

k 0

xku
m
k ⇣m

where xk ake
↵0tk and uk e

�tk . Here we have used T 1 and
↵m ↵0 m�, with m 0, . . . , P , and ↵0,� C. There is a
model mismatch due to the approximation error "m t of (12), equal
to ⇣m

K 1
k 0 ak"m tk .

The model mismatch depends on the quality of the approximation,
and depends on the coefficients cm,n and the values ↵m and P . We
treat this error as noise, and retrieve the parameters of the signal
using the methods of Section II-B. In close-to-noiseless settings, the
estimation of the Diracs can be refined using the iterative procedure
shown in Algorithm 1.

C. How to select the approximation parameters ↵m

In order to simplify the problem, we restrict the exponential
parameters to be of the form:

↵m j!m j

⇡

L

2m P m 0, . . . , P. (13)

Purely imaginary parameters allow for a more stable retrieval of the
pairs tk, ak from (5). The values to be determined are, therefore,
P and L. We choose the values that minimise the first diagonal term

Algorithm 1 Recovery of a train of K Diracs using approximation
of exponentials

1: Compute the moments s

0
m n cm,nyn and set sim s

0
m, for

m 0, . . . , P .
2: Build the system of equations (6) using s

i
m and retrieve the

annihilating filter hm.
3: Calculate u

i
k from the roots of hm, and t

i
k

1
�
lnu

i
k, for the ith

iteration.
4: Find x

i
k from the first K consecutive equations in (5), and the

amplitudes a

i
k x

i
ke

↵0tk .
5: Recalculate the moments for the next iteration by removing the

model mismatch:

s

i 1
m s

0
m

K 1

k 0

a

i
k"m t

i
k ,

where "m t is given by (12).
6: Repeat steps 2 to 5 until convergence of the values a

i
k, t

i
k .

of (9) when K 1, which corresponds to the error in the recovery
of the location t0. In most cases we have analysed, the best P is
greater or equal than the support of the sampling kernel ' t and L

is in the range P 1 L 4 P 1 .

IV. SIMULATIONS

We take N 31 samples of a train of K Diracs using a B-
Spline kernel, and we corrupt the measurements with additive white
Gaussian noise of variance �

2. This is chosen according to the
required signal-to-noise ratio SNR dB 10 log y 2

N�

2 . We
then obtain the approximation coefficients cm,n '̂ ↵m

1
e

↵mn,
where ↵m is as in (13) with L 2 P 1 and m 0, . . . , P .
Finally, we compute the noisy P 1 moments and retrieve the
innovation parameters tk, ak , for k 0, . . . ,K 1, using the
matrix pencil method. We calculate the standard deviation of the
error in the estimation of the location, over 1000 realisations of the
noise, and compare it to the sample-based and moment-based CRBs
of Section II-B.

Figure 2 shows the deviation in the location of K 6 Diracs. We
compare the performance (a) when we sample with a B-Spline of
order 26 and use the default retrieval based on the reproduction of
polynomials [1], with (b) when we sample with a B-Spline of order 6
and apply the retrieval based on approximation of exponentials, with
26 moments; both aided with pre-whitening. The SNR is 20dB. It is
only in the latter case that we can recover all the Diracs. Moreover,
the accuracy with which the Diracs are recovered is one order of
magnitude better for the approximated FRI.

We show further results when we use the approximate method to
retrieve K 2 Diracs from the samples taken by a B-Spline kernel
of order 6. Even when we fix the order of the kernel, we can use any
number of moments P 1 to improve the performance. Figures 3
(a-d) are for parameters (13) with L

3
2 P 1 and m 0, . . . , P .

As the number of moments P 1 increases, the performance is better
and eventually reaches the sample-based CRB.

V. CONCLUSIONS

We have presented an alternative FRI retrieval approach, based
on the approximate reproduction of exponentials. Allowing for a
controlled model mismatch, we propose a standard reconstruction
stage that is able to increase the stability of existing FRI schemes.

Moreover, in many practical circumstances we may not be able to
choose the sampling kernel or even know its exact shape. However,
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Figure 1. B-Spline kernel reproduction capabilities. Figure (a) shows the exact reconstruction of a polynomial of order 1, by using a proper combination of
shifted versions of a linear spline. Figures (b-c) show the approximation of the real parts of 2 complex exponentials: ej

⇡
16 2m 7 t for m 3, 0, by using a

proper combination of shifted versions of the linear spline. The coefficients are cm,n '̂ ↵m
1e↵mn where ↵m j ⇡

16 2m 7 . We plot the weighted
and shifted versions of the splines with dashed blue lines, the reproduced polynomial and exponentials with red solid lines, and the exact functions with solid
black lines.

we have seen that if we know the Laplace transform of the kernel
at values ↵m, we can find coefficients for the linear combination of
shifted versions of the sampling kernel to approximate exponentials
e

↵mt. Equipped with this property we can sample a stream of K

Diracs and retrieve it from 2K measurements. The accuracy of the
reconstruction depends on the quality of the approximation and the
level of noise.

Future work includes FRI retrieval with partial information on
the sampling kernel, with more challenging existing FRI kernels
(such as the Gaussian), and extensions to more dimensions and
non-uniform sampling. In addition, approximate reconstruction may
also be generalised when we have access to measurements taken by
different kernels, each of which is capable of approximating certain
exponentials.
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Figure 2. B-Spline kernel behaviour. We retrieve K 6 Diracs from N
31 noisy samples: (a) using the polynomial recovery of [1], with a kernel of
order 26 and also P 1 26 moments; (b) using the approximated recovery
with parameters (13) where L 2 P 1 and m 0, . . . , P , with a kernel
of order 6 and P 1 26 moments. The SNR in both cases is 20dB.

BIBLIOGRAPHY

[1] P. L. Dragotti, M. Vetterli, and T. Blu, “Sampling Moments and
Reconstructing Signals of Finite Rate of Innovation: Shannon Meets
Strang-Fix,” IEEE Transactions on Signal Processing, vol. 55, pp. 1741–
1757, May 2007.

[2] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite
rate of innovation,” IEEE Transactions on Signal Processing, vol. 50,
pp. 1417–1428, June 2002.

[3] T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot, “Sparse
Sampling of Signal Innovations,” IEEE Signal Processing Magazine,
vol. 25, no. 2, pp. 31–40, 2008.

[4] P. Stoica and R. L. Moses, Introduction to Spectral Analysis. Englewood
Cliffs, NJ: Prentice-Hall, 2000.

0 5 10 15 20 30
10

−4

10
−3

10
−2

10
−1

SNR

∆
t/
τ

 

 

FRI
y-CRB
s-CRB

(a) P 1 6

0 5 10 15 20 30
10

−4

10
−3

10
−2

10
−1

SNR

∆
t/
τ

(b) P 1 31

Figure 3. Approximated retrieval using a B-Spline. These figures show the
error in the estimation of the first Dirac out of K 2 retrieved using the
approximated FRI recovery. We show how, even when we fix the order of the
kernel to 6, we can reconstruct any number of moments P 1 and improve
the performance. In fact, with the appropriate choice L 3

2 P 1 the
performance improves until the sample-based CRB is reached.

[5] I. Maravic and M. Vetterli, “Sampling and reconstruction of signals with
finite rate of innovation in the presence of noise,” IEEE Transactions on
Signal Processing, vol. 53, pp. 2788–2805, August 2005.

[6] M. Unser and T. Blu, “Cardinal Exponential Splines: Part I—Theory and
Filtering Algorithms,” IEEE Transactions on Signal Processing, vol. 53,
pp. 1425–1438, April 2005.

[7] Y. Hua and T. K. Sakar, “Matrix Pencil Method for Estimating Pa-
rameters of Exponentially Damped Undamped Sinusoids in Noise,”
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 38,
pp. 814–824, May 1990.

[8] B. De Moor, “The Singular Value Decomposition and Long and Short
Spaces of Noisy Matrices,” IEEE Transactions on Signal Processing,
vol. 41, pp. 2826–2838, September 1993.

[9] Y. C. Eldar and A. V. Oppenheim, “MMSE Whitening and Subspace
Whitening,” IEEE Trans. Signal Processing, vol. 49, pp. 1846–1851,
July 2003.

[10] E. Ollila, “On the Cramér-Rao bound for the constrained and uncon-
strained complex parameters,” Sensor Array and Multichannel Signal
Processing Workshop, pp. 414–418, July 2008.

[11] M. Unser, A. Aldroubi, and M. Eden, “Polynomial Spline Signal Ap-
proximations: Filter Design and Asymptotic Equivalence with Shannon’s
Sampling Theorem,” IEEE Transactions on Information Theory, vol. 38,
pp. 95–103, January 1992.

Proceedings of the 10th International Conference on Sampling Theory and Applications

136



Algebraic signal sampling, Gibbs phenomenon and
Prony-type systems
Dmitry Batenkov⇤† and Yosef Yomdin⇤‡

⇤Department of Mathematics,Weizmann Institute of Science, Rehovot 76100, Israel
†Email: dima.batenkov@weizmann.ac.il
‡Email: yosef.yomdin@weizmann.ac.il

Abstract—Systems of Prony type appear in various signal

reconstruction problems such as finite rate of innovation, super-

resolution and Fourier inversion of piecewise smooth functions.

We propose a novel approach for solving Prony-type systems,

which requires sampling the signal at arithmetic progressions. By

keeping the number of equations small and fixed, we demonstrate

that such “decimation” can lead to practical improvements in the

reconstruction accuracy. As an application, we provide a solution

to the so-called Eckhoff’s conjecture, which asked for recon-

structing jump positions and magnitudes of a piecewise-smooth

function from its Fourier coefficients with maximal possible

asymptotic accuracy – thus eliminating the Gibbs phenomenon.

I. INTRODUCTION

The “Prony system” of equations

m

k

=
K

X

j=1

c

j

z

k

j

, c

j

, z

j

2 C, k 2 N (1)

appeared originally in the work of R.Prony [18] in the context
of fitting a sum of exponentials to observed data samples.
He showed that the unknowns {c

j,

z

j

}K
j=1 can be recovered

explicitly from {m0, . . . ,m2K�1} by what is known today
as “Prony’s method”. The system (1) appears in areas such
as frequency estimation, Padé approximation, array process-
ing, statistics, interpolation, quadrature, radar signal detection,
error correction codes, and many more. In modern signal
processing, (1) is of fundamental importance in the field of
sub-Nyquist sampling (related terms are superresolution [9],
[10] and finite rate of innovation [12]). A basic problem there
is to recover an unknown “spike train”, a linear combination
of �-functions

f (x) =
K

X

j=1

b

j

� (x� x

j

) , c

j

2 R, x
j

2 [�⇡,⇡]

from its Fourier samples

b

f (k) =
1

2⇡

ˆ
⇡

�⇡

f (t) e�ıkt d t. (2)

This research was supported by the Adams Fellowship Program of the
Israeli Academy of Sciences and Humanities, ISF Grant No. 639/09 and by
the Minerva foundation.

The resulting system is of course a special case of (1). If a
more general model is considered,

f(x) =
K

X

j=1

`j�1
X

`=0

b

`,j

�

(`)(x� x

j

), b

`,j

2 R, x
j

2 [�⇡,⇡] ,

(3)

then (2) becomes, after a change of variables,

m

k

=
K

X

j=1

z

k

j

`j�1
X

`=0

c

`,j

k

`

, c

`,j

2 C, |z
j

| = 1. (4)

Many research efforts are devoted to stable solution of Prony-
type systems (see e.g. [2], [8], [11], [17], [19] and refer-
ences therein). We propose a novel approach to this problem,
which requires sampling the signal at arithmetic progressions.
By keeping the number of equations small and fixed, we
demonstrate (in Section II) that such “decimation” can lead
to practical improvements in the reconstruction accuracy, to a
certain extent avoiding a well-known numerical instability of
these systems.

In Section III we consider the problem of recovering
a piecewise-smooth function, including the positions of its
discontinuities, from its Fourier samples. The algebraic re-
construction method due to K.Eckhoff in essense required a
solution of a particular instance of the system (4) with the error
in the left-hand side having a certain asymptotic decay rate.
Previously it was shown in [6], [7] that this approach yields a
nonlinear approximation which is “half as accurate” compared
to the best possible bound. As we elaborate in Section III,
applying the decimation technique to the Prony-type system
results in full asymptotic accuracy, thus completely eliminating
the Gibbs phenomenon.

In Section IV we discuss several promising directions for
future research.

II. DECIMATED PRONY-TYPE SYSTEMS

Suppose that the “polynomial Prony model” (4) is to be
fitted to the noisy measurements em0, . . . emM�1. We denote
the number of unknowns by R =

P

K

j=1 (`j + 1). At first
sight, using all the M measurements for fitting should improve
reconstruction accuracy. While this is certainly justified in the
case where the noise statistics are known (as demonstrated in
e.g. [2], [19]), this might backfire if the noise is “adversary”,
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or “worst-case”. Potts & Tasche [17] show that when Prony
system (1) is solved by least squares minimization for all M
equations at once, then even if the nodes {z

j

} are detected very
accurately, the error for magnitudes is amplified by a factor
of

p
MR. This shows that it might actually be productive to

stay with small number of measurements. We are therefore
justified in making a simplifying assumption that the number
of equations used for reconstruction equals the number of
unknowns R. In this case the solution to the reconstruction
problem can be characterized as the exact inversion of the
measurement mapping P

I

: CR ! CR which associates to any
parameter vector x =

�

{c
ij

}, {x
i

}
 

2 CR its corresponding
exact measurement vector y =

�

m

i0 , . . . ,miR�1

�

2 CR

where I = {i0 < i1 < · · · < i

R�1} ⇢ [0,M � 1] is a given
index set. Perhaps the most natural choice for the index sets
I is given by arithmetic progressions

I

t,p

= {t, t+ p, . . . , t+ (R� 1) p} , t > 0, p > 1.

Following [8], we estimate for such I = I

t,p

the (local)
stability of inversion by the Lipschitz constant of P�1

I

at the
regular points of P

I

, which in turn are given by the following
proposition.

Proposition 1. The vector x = ({z
j

, c

i,j

}) 2 CR is a regular
point of P

I

with I = I

t,p

if and only if zp
j

6= z

p

i

for i 6= j,
and c

`j�1,j 6= 0 for all j = 1, . . . ,K.

We have the following upper bound on the accuracy of any
solution method.
Theorem 2. Consider the polynomial Prony system (4) with
a fixed structure

n

K, {`
j

}K
j=1

o

on I = I

t,p

, and let x =

({z
j

, c

i,j

}) 2 CR be a regular point of P
I

. If the error in
each measurement is bounded in absolute value by " ⌧ 1,
then the errors in recovering the components of the original
parameter vector x satisify

|�c

i,j

|  C (i, `
j

)

✓
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p
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✓
1

2
+

R

�

p

◆
`j

t

`j�i

p

i

0
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✓
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���
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where �

p

def
= min

i 6=j

�

�

z

p

j

� z

p

i

�

� and C (i, `
j

) is an explicit
constant (for consistency we take c�1,j = 0 in the above
formula).

This result directly generalizes earlier stability estimates
of [8] for the special case I = I0,1. The proofs of both
Proposition 1 and Theorem 2 are based on factorizing the
Jacobian matrix of the map P

I

along the same lines as in [8],
while adding the analysis of the Jacobian’s dependence on t

and p.
Now suppose that the number of available measurements

M ! 1, while the noise " remains bounded. It is easy to see
that for the index set I = I0,bM

R c we obtain an improvement
in accuracy of recovering the jump z

j

of the order ⇠ M

`j ,
compared with the non-decimated measurement set I0,1.

Remark 3. If initially two nodes are close (say by �), the
decimation improves accuracy up to a certain limit. To see this,
just substitute �

p

⇠ p� into Theorem 2 and get an improvement
by factor of p�R�`j .

Turning to particular solution methods, the decimation is
fairly straightforward to implement. Indeed, taking any algo-
rithm for the standard Prony-type system, one just needs to
make the following modifications (for simplicity we consider
only the recovery of the nodes {z

j

}).

1) Choose the decimation parameter p.
2) Feed the original algorithm with the decimated measure-

ments m0,mp

,m2p . . . , and obtain the estimated node
w

j

.
3) Take z

j

= p
p
w

j

.

We have tested the decimation technique according to the
above procedure on two well-known algorithms for Prony
systems - ESPRIT [2] and nonlinear least squares (LS, imple-
mented by MATLAB’s lsqnonlin). In the first experiment,
we fixed the number of measurements to be 66, and changed
the decimation parameter p, while keeping the noise level
constant. The accuracy of recovery increased with p – see
Figure 1 on page 3. In the second experiment, we fixed the
highest available measurement to be M = 2200, and changed
the decimation from p = 1 to p = 100 (thereby reducing the
number of measurements from 2200 to just 22). The accuracy
of recovery stayed relatively constant – see Figure 2 on page 3.
Note that such a reduction leads to a corresponding decrease in
the running time (calculating singular-value decomposition of
large matrices, as in ESPRIT, is a time-consuming operation).

III. PIECEWISE-SMOOTH FOURIER RECONSTRUCTION

Consider the problem of reconstructing an integrable func-
tion f : [�⇡,⇡] ! R from a finite number of its Fourier
coefficients (2). If f is C

d and periodic, then the truncated
Fourier series F

M

(f)
def
=

P

M

|k|=0 ck(f) e
ıkx approximates f

with error at most C ·M�d�1, which is optimal. If, however,
f is not smooth even at a single point, the rate of accuracy
drops to only M

�1. Still, one can hope to restore the best
accuracy by using the a-priori information to produce some
non-standard summation method. This accuracy problem, also
known as the Gibbs phenomenon, is very important in appli-
cations, such as calculation of shock waves in PDEs. It has
received much attention especially in the last few decades -
see e.g. a recent book [16].

The so-called “algebraic approach” to this problem, first
suggested by K.Eckhoff [13], is as follows. Assume that f has
K > 0 jump discontinuities {x

j

}K
j=1 , and f 2 C

d in every
segment (x

j�1, xj

). We say that in this case f belongs to the
class PC (d,K). Denote the associated jump magnitudes at
x

j

by a

`,j

def
= f

(`)(x+
j

)� f

(`)(x�
j

). Then write the piecewise
smooth f as the sum f =  + �, where  (x) is smooth
and periodic and �(x) is a piecewise polynomial of degree d,
uniquely determined by {x

j

} , {a
`,j

} such that it “absorbs” all
the discontinuities of f and its first d derivatives. In particular,
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(b) LS, d = 3

Figure 1: Reconstruction error as a function of the decimation
with fixed number of measurements (M = 66). The signal
has two nodes with distance � = 10�2 between each other.
Notice that ESPRIT requires significantly higher Signal-to-
Noise Ratio in order to achieve the same performance as LS.

the Fourier coefficients of � have the explicit form

c

k

(�) =
1
2⇡

KX

j=1

e�ıkxj

dX

`=0

(ık)�`�1
a

`,j

, k = 1, 2, . . . . (5)

For k � 1, we have |c
k

(�)| ⇠ k

�1, while |c
k

( )| ⇠ k

�d�2.
Consequently, Eckhoff suggested to pick large enough k

and solve the approximate system of equations (4) where
m

k

= 2⇡ (ık)d+1
c

k

(f), z

j

= e�ıxj and c

`,j

= ı

`

a

d�`,j

.
His proposed method of solution was to use the known values
{m

k

}
k2I

where

I = {M � (d+ 1)K + 1,M � (d+ 1)K + 2, . . . ,M} (6)

to construct an algebraic equation satisfied by the unknowns
{z1, . . . , zK}, and solve this equation numerically. Based on
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Figure 2: Reconstruction error as a function of the decima-
tion, reducing number of measurements from M = 2200 to
M = 22. The signal has two nodes with distance � = 10�2

between each other. The reconstruction accuracy remains
almost constant.

some explicit computations for d = 1, 2; K = 1 and large
number of numerical experiments, he conjectured that his
method would reconstruct the jump locations with accuracy
M

�d�1.
Let us consider the problem in the framework of Prony

type system (4). The error term is of magnitude |"| ⇠ M

�1.
The index set (6) is just I

t,p

with t ⇠ M, p = 1 (i.e. no
decimation). Therefore, by Theorem 2 we get accuracy only
of order |�x

j

| ⇠ M

�1.
Now consider the decimated setting for this problem. By

the above, we can approximate eash jump x

j

up to accuracy
M

�1. Set
N =

�

M

(d+ 2)K

⌫

.

Now take the index set I
t,p

where t = p = N , i.e. I
N,N

=
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Algorithm 1 Full accuracy Fourier reconstruction of piecewise
smooth functions
Let f 2 PC (d,K), and assume that f = �(d) +  where
�(d) is the piecewise polynomial absorbing all discontinuities
of f , and  2 C

d

.

1) Obtain initial approximations for {x1, . . . , xK

} by any
standard method (i.e. Eckhoff’s method of order zero).

2) Localize each x

j

by multiplying with a mollifier (con-
volution in Fourier domain).

3) Solve resulting Prony system with K = 1 and t = p =
j

M

d+2

k

(decimation).
4) Take the final approximation to be

e
f =e�

��
ea
`,j

, ex
j

 �

+
X

|k|M

8
<

:c

k

(f)�
1

2⇡

KX

j=1

e�ıfxjk

dX

`=0

ea
`,j

(ık)`+1

9
=

; eıkx .

{N, 2N, . . . ,M} . As before, |✏| ⇠ M

�1, but now due to
decimation we get accuracy |�x

j

| ⇠ N

�d�1
N

�1 ⇠ M

�d�2
.

In [3], [7] we develop an algorithm (see Algorithm 1) which
in fact attains this accuracy. This result can be summarized as
follows.

Theorem 4. Let f 2 PC (d,K), so that f = �(d)+ where
�(d) is the piecewise polynomial with Fourier coefficients (5),
and  2 C

d

. Assume that there exist constants J,A,B,R

such that

min
i 6=j

|x
i

� x

j

| � J > 0, |c
k

( )|  R · k�d�2
,

|a
`,j

|  A < 1, |a0,j | � B > 0.

Then the approximation e

f obtained by Algorithm 1 satisfies
for M � 1

| ex
j

� x

j

|  C1 (d,K, J,A,B,R) ·M�d�2;

|ea
`,j

� a

`,j

|  C2 (d,K, J,A,B,R) ·M `�d�1
, 0 6 ` 6 d;��� ef (x)� f (x)

���  C3 (d,K, J,A,B,R) ·M�d�1
.

Note that the pointwise bound
�

�

�

f (x)� e

f (x)
�

�

�

is valid “away
from discontinuities”. Some numerical experiments, elaborated
in [3], [7], confirm these theoretical accuracy predictions.

IV. FUTURE WORK

Stable solution of Prony-type systems in the most general
setting must take into account the possibility of colliding
nodes. We believe that a reparametrization of the equations
in the basis of finite differences is a promising approach to
this problem. We have obtained initial results in [5], [20], and
plan to continue in this direction.

The Fourier inversion problem for piecewise-analytic func-
tions is still widely open (see e.g. [1]). While our results
provide spectral convergence in this setting, it is still unknown
if the algebraic method can be pushed to exponential or at least
root-exponential accuracy.

Edge detection from spectral data is a well-researched
problem, see e.g. [14], [15] and references therein. We expect
that the 1D procedure can be generalized to treat the general
case via some form of a “separation”, or “slice reconstruction”
(see e.g. [4] for an example of such a method, dealing with
reconstruction from moments).
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Abstract—We present a pursuit-like algorithm that we call

the “superset method” for recovery of sparse vectors from

consecutive Fourier measurements in the super-resolution regime.

The algorithm has a subspace identification step that hinges on

the translation invariance of the Fourier transform, followed

by a removal step to estimate the solution’s support. The

superset method is always successful in the noiseless regime

(unlike `1 minimization) and generalizes to higher dimensions

(unlike the matrix pencil method). Relative robustness to noise

is demonstrated numerically.

Acknowledgments. LD acknowledges funding from the
Air Force Office of Scientific Research, the National Science
Foundation, and the Alfred P. Sloan Foundation. LD is grateful
to Jean-Francois Mercier and George Papanicolaou for early
discussions on super-resolution.

I. INTRODUCTION

We consider the problem of recovering a sparse vector x0 2
Rn, or an approximation thereof, from m  n contiguous
Fourier measurements

y = Ax0 + e, (1)

where A is the partial, short and wide Fourier matrix A
jk

=

e2⇡ijk/n, 0  j < m, �n/2  k < n/2, n even, and, say,
e ⇠ N(0,�2I

m

).
When recovery is successful in this scenario of contiguous

measurements, we may speak of super-resolution: the spacing
between neighboring nonzero components in x0 can be much
smaller than the Rayleigh limit n/m suggested by Shannon-
Nyquist theory. But in contrast to the compressed sensing
scenario, where the m values of j are drawn at random from
{0, . . . , n � 1}, super-resolution can be arbitrarily ill-posed.
Open questions concern not only recovery bounds, but the
very algorithms needed to define good estimators.

Various techniques have been proposed in the literature to
tackle super-resolution, such as MUSIC [11], Prony’s method
/ finite rate of innovation [8] [1] [13], the matrix pencil method
[9], `1 minimization [7] [5] [3] [2], and greedy pursuits [6].

Prony and matrix pencil methods are based on eigenvalue
computations: they work well with exact measurements, but
their performance is poorly understood in the presence of
noise, and they are not obviously set up in higher dimen-
sions. As for `1 minimization, there is good evidence that

k-sparse nonnegative signals can be recovered from only
2k+1 noiseless Fourier coefficients by imposing the positivity
constraint with or without `1 minimization, see [4] [7] and
[5]. The work of [3] extends this result to the continuous
setting by using total variation minimization. Recently, Candès
and Fernandez-Granda showed that the solution to an `1-
minimization problem with a kA⇤

(y �Ax)k1 misfit will be
close to the true signal, assuming that locations of any two
consecutive nonzero coefficients are separated by at least four
times the super-resolution factor n/m [2]. Such optimization
ideas have the advantage of being easily generalizable to
higher dimensions. On the flip side, `1 minimization super-
resolution is known to fail on sparse signals with nearby
components that alternate signs.

In this paper, we discuss a simple algorithm for solving (1)
based on

• subspace identification as in the matrix pencil method,
but without the subsequent eigenvalue computation; and

• a removal procedure for tightening the active set, remind-
ful of a step in certain greedy pursuits.

This algorithm can outperform the well-known matrix pencil
method, as we show in the numerical section, and it is gener-
alizable to higher dimensions. It is a one-pass procedure that
does not suffer from slow convergence in situations of high
coherence. We also show that the algorithm provides perfect
recovery for the (not combinatorially hard in the Fourier case)
noiseless `0 problem

min

x

|suppx| s.t. Ax = y. (2)

II. NOISELESS SUBSPACE IDENTIFICATION

For completeness we start by recalling the classical unique-
ness result for (2).

Lemma 1. Let x0 2 Rn with support T such that m � 2|T |,
and let y = Ax0. Then the unique minimizer of (2) is x0.

We make use of the following notations. Denote suppx0 by
T , and write A

T

for the restriction of A to its columns in T .
Let T c for the complement of T . Let a

k

for the k-th column
of A. The superscript L is used to denote a restriction of a
matrix to its first L rows, as in AL

T

.
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The “superset method” hinges on a special property that
the partial Fourier matrix A does not share with arbitrary
dictionaries: each column a

k

is translation-invariant in the
sense that any restriction of a

k

to s  m consecutive elements
gives rise to the same sequence, up to an overall scalar. In
other words, exponentials are eigenfunctions of the translation
operator. This structure is important. There is an opportunity
cost in ignoring it and treating (1) as a generic compressed
sensing problem.

A way to leverage translation invariance is to recognize that
it gives access to the subspace spanned by the atoms a

k

for
k 2 T , such that y =

P
k2T

(x0)kak. Algorithmically, one
picks a number 1 < L < m and juxtaposes translated copies
of (restrictions of) y into the Hankel matrix Y = Hankel(y),
defined as

Y =

0

BBB@

y0 y1 · · · y
m�L�1

y1 y2 · · · y
m�L

...
...

...
...

y
L�1 y

L

· · · y
m

1

CCCA
.

The range of Y is the subspace we seek.

Lemma 2. If L � |T |, then the rank of Y is |T |, and

RanY = RanAL

T

.

The lemma suggests a simple recovery procedure in the
noiseless case: loop over all the candidate atoms a

k

for
�n/2  k < n/2 and select those for which the angle

\(aL
k

,RanY ) = 0. (3)

Once the set T is identified, the solution is obtained by solving
the determined system

A
T

x
T

= y, x
T

c
= 0. (4)

This procedure (unsurprisingly) provides a solution to the
noise-free `0 sparse recovery problem (2).

Theorem 3. Let x0 2 Rn with support T such that m > 2|T |,
and let y = Ax0. Consider x defined by (3) and (4), where
the Hankel matrix Y is built with |T |+1  L  m� |T |� 1.
Then x = x0.

The proofs of lemma 2 and theorem 3 hinge on the fact that
A has full spark.

The idea of subspace identification is at the heart of a
different method, the matrix pencil, which seeks the rank-
reducing numbers z of the pencil

Y � zY ,

where Y is Y with its first row removed, and Y is Y with
its last row removed. These numbers z are computed as the
generalized eigenvalues of the couple (Y ⇤Y , Y ⇤Y ). z can
also be found via solving the eigenvalues of the matrix Y †Y .
When |T |  L  m� |T |, the collection of these generalized
eigenvalues includes e2⇡ijk/n for k 2 T , as well as m�L�|T |
zeros. There exist variants that consider a Toeplitz matrix
instead of a Hankel matrix, with slightly better numerical

stability properties. When L = |T |, the matrix pencil method
reduces to Prony’s method, a numerically inferior choice that
should be avoided in practice if possible.

III. NOISY SUBSPACE IDENTIFICATION

The problem becomes more difficult when the observations
are contaminated by noise. In this situation RanAL

T

6= RanY ,
though in low-noise situations we may still be able to recover
T from the indices of the smallest angles \(aL

k

,RanY ).

Proposition 4. Let y = y0 + e with e ⇠ N(0,�2I
m

), and
form the corresponding L ⇥ (m � L) matrices Y and Y0 as
previously. Denote the singular values of Y m�L

0 by s
n,0. Then

there exists positive c1, C1 and c, such that with probability
at least 1� c1m

�C

1 ,

sin\(aL
k

,RanY )  c "1 (5)

for all indices k in the support set and

"1 =

|T |��aL
k

��
2

�
p
L logm

|x0
min

|

s
|x0

max

|
s|T |,0

. (6)

Proof: Here we sketch the proof of this proposition. We
note that aL

k

2 RanY0 when k is in the true support. Thus

sin\(aL
k

,RanY ) =

��
(I � P

Y

)aL
k

��
2��aL

k

��
2

=

��P
Y

?aL
k

��
2��aL

k

��
2

.

Denote the compact singular value decomposition of AL

T

=

USLV ⇤. Recalling that aL
k

2 RanY0 and a well-known fact
that Y0 = AL

T

D(Am�L

T

)

⇤ where D = diag((x0)T ), we can
write aL

k

= U↵ =

P|T |
i=1 ↵i

u
i

. Thus,

sin\(aL
k

,RanY ) 
|T |X

i=1

|↵
i

|
kP

Y

?u
i

k2��aL
k

��
2

. (7)

Next, since Y = Y0 + E = AL

T

D(Am�L

T

)

⇤
+ E, we have

Y [D(Am�L

T

)

⇤
]

†
= AL

T

+ E[D(Am�L

T

)

⇤
]

† where A† is the
pseudo-inverse matrix of A. By multiplying both sides by
(P

Y

?u
i

)

⇤, we get

(P
Y

?u
i

)

⇤Y [D(Am�L

T

)

⇤
]

†
= (P

Y

?u
i

)

⇤ �AL

T

+ E[D(Am�L

T

)

⇤
]

†� .

Since the vector P
Y

?u
i

is orthogonal to RanY , the left hand
side is zero. Thus multiplying both sides by v

i

, the i-th right
singular vector of AL

T

, we have

0 = (P
Y

?u
i

)

⇤AL

T

v
i

+ (P
Y

?u
i

)

⇤E[D(Am�L

T

)

⇤
]

†v
i

.

We can see that (P
Y

?u
i

)

⇤AL

T

v
i

= (P
Y

?u
i

)

⇤sL
i

u
i

=

sL
i

kP
Y

?u
i

k22 where sL
i

is the i-th singular value of AL

T

. We
therefore obtain

sL
i

kP
Y

?u
i

k22 = �(P
Y

?u
i

)

⇤E[D(Am�L

T

)

⇤
]

†v
i

 k(P
Y

?u
i

k2 kEk
��D†�� ��

[(Am�L

T

)

⇤
]

†�� .

This leads to the upper bound

kP
Y

?u
i

k2 
1

sL
i

kEk
��D†�� ��

[(Am�L

T

)

⇤
]

†��

=

kEk
sL
i

1

|x0
min

|
1

sm�L

|T |
, (8)
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where sm�L

|T | is the smallest singular value of Am�L

T

.
Recalling that aL

k

= U↵, we have ↵
i

= u⇤
i

aL
k

. From the
SVD of AL

T

, we see that AL

T

(AL

T

)

⇤
= U(SL

)

2U⇤, so that

U⇤AL

T

(AL

T

)

⇤U⇤
= (SL

)

2.

This identity implies that
��u⇤

i

AL

T

��
2
= sL

i

, and thus, |↵
i

|  sL
i

.
Combining this result with (8) and (7) yields

sin\(aL
k

,RanY )  |T | kEk
sm�L

|T | |x0
min

|
1��aL
k

��
2

. (9)

Using the matrix Bernstein inequality of [12] one obtains
that kEk  �

p
cL logm with high probability. Finally, writing

Y m�L

T

as Y m�L

T

= Am�L

T

D1/2
(D1/2

)

⇤
(Am�L

T

)

⇤, we have

s|T |,0 = min

z

��Am�L

T

D1/2z
��2
2

kzk22
= min

h

��Am�L

T

h
��2
2��D�1/2h

��2
2

 min

h

��Am�L

T

h
��2
2

khk22 smin(D�1
)

 (sm�L

|T | )

2|x0
max

|,

which completes the proof.
There are a few unknown quantities involving ✏1, which can

empirically be controlled. The support size T can be estimated
by a reasonably large constant, say m/2. The dynamic range
of the signal can presumably be known if we know in prior the
type of underlying signal of interest. The singular value s|T |,0
of Y m�L

0 can be replaced by that of Y m�L via the simple
Weyl’s inequality |s

i

� s
i,0|  kHankel(e)k, which can in

turn be controlled as O(�
p
L logm) with high probability.

The subspace identification step now gathers all the values
of k such that

sin\(aL
k

,RanY )  c "1.

The resulting set ⌦ of indices is only expected to be a superset
of the true support T , with high probability.

A second step is now needed to prune ⌦ in order to extract
T . For this purpose, a loop over k is set up where we test
the membership of y in RanA⌦\k, the range of A⌦ with the
k-th column removed. We are now considering a new set of
angles where the roles of y and A are reversed: in a noiseless
situation, k 2 T if and only if

\(y,RanA⌦\k) 6= 0.

When noise is present, we first filter out the noise off ⌦ by
projecting y onto the range of A⌦, then estimate k 2 T only
when the angle is above a certain threshold. It is easier to
work directly with projections ⇧:

k⇧⌦y �⇧⌦\kyk = sin\(⇧⌦y,RanA⌦\k) k⇧⌦yk.

The effect of noise on the left-hand side is as follows.

Proposition 5. Let y = y0+e with e ⇠ N(0,�2I
m

). Let ⇧⌦y
be the projection of y onto RanA⌦, and let �⇧ = ⇧⌦�⇧⌦\k.
Then there exists c > 0 such that, with high probability,

| k�⇧yk � k�⇧y0k |  c "2,

with "2 = �.

Algorithm 1 for the superset method implements the re-
moval step in an iterative fashion, one atom at a time.

Algorithm 1 Superset selection and pruning
input: Partial Fourier matrix A 2 Cm⇥n, y = Ax0 + e,
parameter L, thresholds "1 and "2.
initialization: Y = Hankel(y) 2 CL⇥(m�L)

support identification

decompose:

eQ eR = Y eE, eQ 2 CL⇥r

project: a
k

 A{k} ( for all k)
�
k

 
���a

k

� eQ eQ⇤a
k

��� / ka
k

k
⌦ = {k : �

k

 "1}
while true do

decompose: QR = A⌦E, Q 2 Cm⇥|⌦|

remove: 8k 2 ⌦: Q(k)R(k) = A⌦\kE(k)

�
k

 k(Q(k)Q
⇤
(k) �QQ⇤

)yk2
k0  argmin

k

�
k

if �
k

0

< "2, ⌦ ⌦\k0
else break

end while

output: bx = argmin

x

ky �A⌦xk

IV. EXPERIMENTAL RESULTS

In the first simulation, we fix n = 1000 and m = 120

and construct an n-dimensional signal x0 whose nonzero
components are well separated by at least 4n/m, a distance
equivalent to four times the super-resolution factor n/m.
The spike magnitudes are independently set to ±1/

p
29 with

probability 1/2. The noise vector e is drawn from N(0,�2I
m

)

with � = 10

�3. We fix the thresholds "1 via (6) with c = 1 and
"2 = 10�. Throughout our simulations, we set L = bm/3c.
As can be seen from Fig. 1, top row, the recovered signal from
the superset method is reasonable, with kbx� x0k2 = 0.075,
while the reconstruction via `1-minimization tends to exhibit
incorrect clusters around the true spikes.

Our next simulation considers a more challenging signal
model with a strongly coherent matrix A. For example, with
n = 1000 and m = 120, the coherence of the matrix A with
normalized columns a

i

is µ = max

i 6=j

| ha
i

, a
j

i | = 0.9765.
The signal in this simulation is shown in Fig. 1, bottom
row. It consists of five spike clusters: each of the first two
clusters consists of a single spike, and each of the last four
clusters contains two neighboring spikes. The signs of these
neighboring spikes either agree or differ. We set m,� and "2
as in the previous simulation, and we let the constant c in
the equation (6) of "1 equal to 5. Recovery via the superset
method is accurate, while `1 minimization fails at least with
clusters of opposite-sign spikes.

In the next simulation, we consider a signal of size n =

1000 which contains two nearby spikes at locations [100, 101]
and has magnitudes 1/

p
2 and �1/

p
2. We empirically in-

vestigate the algorithm’s ability to recover the signal from
varying measurements m = {10, 20, ..., 220} and noise levels
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Fig. 1. Original (blue) and recovered (red) signals. Left column: the
superset method. Right column: `1-minimization. Top row: a signal
with well-separated spikes. Bottom row: spike spacing below the
Rayleigh length.

log10� = {�3.5,�3.4, ...,�2}. For each pair (m,�), we
report the frequency of success over 100 random realizations
of e. The greyscale goes from white (100 successes) to black
(100 failures). A trial is declared successful if the recovered
bx satisfies kbx� x0k2 / kx0k2 < 10

�3. The horizontal axis
indicates the noise level � in log scale, and the vertical axis
indicates log10(1� µ) where µ is the coherence as earlier.

We note that the coherence is inversely proportional to the
amount of measurements m and proportional to the super-
resolution factor n/m: increasing m (decreasing the super-
resolution factor) will reduce the coherence µ. On the vertical
axis, smaller values imply higher coherence, or equivalently
smaller amount of measurements. As shown in Fig. 2, for
reasonably small noise, the algorithm is able to recover the
signal exactly even the coherence is nearly 1.

For reference, we also compare the superset method with
the matrix pencil method as set up in [10]. The noise is
filtered out by preparing low-rank approximations of Y and
Y where only the singular values above c�

p
L logL are

kept, for some heuristically optimized constant c. Two more
signals are considered: (1) a 3-sparse signal consisting of three
neighboring spikes, each of magnitude 1/

p
3 with alternating

signs, and (2) a 4-sparse signal with neighboring spikes of
alternating signs and equal magnitude 1/2. Fig. 2 is a good
illustration of the contrasting numerical behaviors of the two
methods: the matrix pencil is often the better method in the
special case of a signal with 2 spikes, but loses ground to the
superset method in various cases of progressively less sparse
signals. Understanding the performance of the matrix pencil
would require formulating a lower bound on the (typically
extremely small) S-th eigenvalues of Y0 where S is the sparsity
of y0.

V. CONCLUSION

Empirical evidence is presented for the potential of the
superset method as a viable computational method for super-

resolution. Further theoretical justifications will be presented
elsewhere.
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Fig. 2. Probability of recovery, from 1 (white) to 0 (black) for the superset
method (left column) and the matrix pencil method (right column). Top row:
2-sparse signal. Middle row: 3-sparse signal. Bottom row: 4-sparse signal.
The plots show recovery as a function of the noise level (x-axis, log10 �) and
the coherence (y-axis, log10(1� µ)).
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Abstract—We study the problem of super-resolving a

superposition of point sources from noisy low-pass data

with a cut-off frequency fc. Solving a tractable convex

program is shown to locate the elements of the support

with high precision as long as they are separated by 2/fc
and the noise level is small with respect to the amplitude

of the signal.

I. INTRODUCTION

The problem of super-resolution is of great im-
portance in applications where the measuring process
imposes a physical limit on the resolution of the
available measurements. It is often the case that the
signal of interest is well modeled as a superposition of
point sources. Motivated by this, we consider a signal

x =

X

j

a

j

�

tj , (I.1)

consisting of a train of Dirac measures with complex
amplitudes a

j

located at different locations {t
j

} in the
unit interval. Our aim is to estimate x from the lower
end of its spectrum in the form of n = 2f

c

+1 Fourier
series coefficients (f

c

is an integer) perturbed by noise,

y(k) =

Z 1

0
e

�i2⇡kt
x(dt) + z(k)

=

X

j

a

j

e

�i2⇡ktj
+ z(k), (I.2)

for k 2 Z, |k|  f

c

. To ease notation, we write (I.2)
as y = F

n

x + z. We model the perturbation z 2 Cn

as having bounded `2 norm,

||z||2  �. (I.3)

The noise is otherwise arbitrary and can be adversarial.
Even if the signal x is very sparse, without further

conditions to ensure that the support of x is not too
clustered the super-resolution problem is hopelessly
ill-posed. This can be checked numerically, but also
formalized thanks to the seminal work of Slepian
[4] on discrete prolate spheroidal sequences (see Sec-
tion 3.2 of [3]). To avoid such extreme ill-posedness,
we impose a lower bound on the minimum separation
between the elements of the support of the signal.

Definition 1.1 (Minimum separation): Let T be the
circle obtained by identifying the endpoints on [0, 1].

For a family of points T ⇢ T, the minimum separation
is the closest distance between any two elements of T ,

�(T ) = inf

(t,t0)2T : t 6=t

0
|t� t

0|. (I.4)

To recover x we propose minimizing the total vari-
ation of the estimate, a continuous analog to the `1

norm for discrete signals (see Appendix A in [3] for
a rigorous definition), subject to data constraints:

min

x̃

||x̃||TV subject to ||F
n

x̃� y||2  �, (I.5)

where the minimization is carried out over the set
of all finite complex measures x̃ supported on [0, 1].
For details on how to solve (I.5) using semidefinite
programming see [2], [3].

Previous work established that if

�(T ) � 2

f

c

:= 2�c (I.6)

TV-norm minimization achieves exact recovery in a
noiseless setting [3]. Additionally, [2] characterized
the reconstruction error for noisy measurements as
the target resolution increases. In this work we study
support detection using this method. If the original
signal contains a spike of a certain amplitude we ask:
How accurately can we recover the position of the
spike? How does the accuracy depend on the noise
level, the amplitude of the spike and the amplitude
of the signal at other locations? These questions are
not addressed by previous work and answering them
requires non-trivial modifications to the arguments
in [2] and [3]. Our main result establishes that convex
programming is in fact a powerful method for support
detection in super-resolution.

Theorem 1.2: Consider the noise model (I.3) and
assume the support T satisfies the minimum-separation
condition (I.6). The solution to problem (I.5)1

x̂ =

X

t̂k2b
T

â

k

�

t̂k

1This solution can be shown to be an atomic measure with discrete
support under very general conditions.
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with support bT obeys the properties

(i):
���a

j

�
X

{t̂l2b
T : |t̂l�tj|c�c}

â

l

���  C1� 8t
j

2 T,

(ii):
X

{t̂l2b
T , tj2T : |t̂l�tj|c�c}

|â
l

|
�
ˆ

t

l

� t

j

�2  C2�
2
c �,

(iii):
X

{t̂l2b
T : |t̂l�tj|>c�c 8tj2T}

|â
l

|  C3�,

where C1, C2 and C3 are positive numerical constants
and c = 0.1649.

Properties (i) and (ii) show that the estimate clusters
tightly around each element of the signal, whereas
(iii) ensures that any spurious spikes detected by the
algorithm have small amplitude. These bounds are
essentially optimal for the case of adversarial noise,
which can be highly concentrated. An intriguing con-
sequence of our result is a bound on the support-
detection error for a single spike that does not depend
on the value of the signal at other locations.

Corollary 1.3: Under the conditions of Theorem 1.2,
for any element t

i

in the support of x such that a
i

>

C1� there exists an element ˆ

t

i

in the support of the
estimate x̂ satisfying

��
t

i

� ˆ

t

i

�� 

s
C2�

|a
i

|� C1�
�

c

.

Despite the aliasing effect of the low-pass filter
applied to the signal, the bound on the support-
detection error only depends on the amplitude of the
corresponding spike (and the noise level). This does
not follow from previous analysis. In particular, the
bound on the weighted L1 norm of the error derived
in [2] does not allow to derive such local guarantees.
A recent paper bounds the support-detection error of
a related convex program in the presence of stochastic
noise, but the bound depends on the amplitude of the
solution rather than on the amplitude of the original
spike [1]. As we explain below, obtaining detection
guarantees that only depend on the amplitude of the
spike of interest is made possible by the existence
of a certain low-frequency polynomial, constructed in
Lemma 2.2. This is the main technical contribution of
the paper.

II. PROOF OF THEOREM 1.2
We begin with an intermediate result proved in

Section II-A.
Lemma 2.1: Under the assumptions of Theorem 1.2

X

t̂k2T̂

|â
k

|min

(
C

a

,

C

b

d

�
ˆ

t

k

, T

�

�

2
c

)
 2�,

where C

a

and C

b

are positive numerical constants and

d (t, T ) := min

ti2T

(t� t

i

)

2
.

Properties (ii) and (iii) are direct corollaries of
Lemma (2.1). To establish property (i) we need the
following key lemma, proved in Section II-B.

Lemma 2.2: Suppose T obeys condition (I.6) and
f

c

� 10. Then for any t

j

2 T there exists a low-pass
polynomial

q

tj (t) =

fcX

k=�fc

b

k

e

i2⇡kt
,

b 2 Cn, such that |q
tj (t)| < 1 for all t 6= t

j

and

q

tj (tj) = 1, q

tj (tl) = 0 t

l

2 T \ {t
j

} ,

|1� q

tj (t)| 
C

0
1 (t� t

j

)

2

�

2
c

for |t� t

j

|  c�c,

(II.1)

|q
tj (t)| 

C

0
1 (t� t

l

)

2

�

2
c

for t

l

2 T \ {t
j

} , |t� t

l

|  c�c,

(II.2)
|q

tj (t)| < C

0
2 if |t� t

l

| > c�c 8 t

l

2 T, (II.3)

where 0 < c

2
C

0
2  C

0
1 < 1.

The polynomial q

tj provided by this lemma is
designed to satisfy

R
T qtj (t)x(dt) = a

j

and vanish on
the rest of the support of the signal. This allows to
decouple the estimation error at t

j

from the amplitude
of the rest of the spikes. Since x and x̂ are feasible
for (I.5), we can apply Parseval’s Theorem and the
Cauchy-Schwarz inequality to obtain

����
Z

T
q

tj (t)x(dt)�
Z

T
q

tj (t)x̂(dt)
����

=

���
fcX

k=�fc

b

k

F
n

(x� x̂)

k

���


����
q

tj

����
L2

||F
n

(x� x̂)||2  2�, (II.4)

where we have used that the absolute value and
consequently the L2 norm of q

tj is bounded by one.
In addition, by Lemmas 2.2 and 2.1 we have
���

X

{k: |t̂k�tj|>c�c}
â

k

q

tj (
ˆ

t

k

) +

X

{k: |t̂k�tj|c�c}
â

k

�
q

tj (
ˆ

t

k

)� 1

� ���


X

{k: |t̂k�tj|>c�c}
|â

k

|
��
q

tj (
ˆ

t

k

)

��

+

X

{k: |t̂k�tj|c�c}
|â

k

|
��
1� q

tj (
ˆ

t

k

)

��


X

t̂k2T̂

|â
k

|min

(
C

0
2,

C

0
1d
�
ˆ

t

k

, T

�

�

2
c

)
 C�, (II.5)

for a positive numerical constant C. Finally,
Lemma 2.2, the triangle inequality, (II.4) and (II.5)
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yield
���a

j

�
X

{k: |t̂k�tj|c�c}
â

k

���

=

�����

Z

T
q

tj (t)x(dt)�
Z

T
q

tj (t)x̂(dt)

+

X

{k: |t̂k�tj|>c�c}
â

k

q

tj (
ˆ

t

k

)

+

X

{k: |t̂k�tj|c�c}
â

k

�
q

tj (
ˆ

t

k

)� 1

�
�����  C

0
�.

for a positive numerical constant C 0.

A. Proof of Lemma 2.1

The proof relies on a low-pass polynomial provided
by Proposition 2.1 and Lemma 2.5 in [3].

Lemma 2.3: Let T obey (I.6). For any v 2 C|T |

such that |v
j

| = 1 for all entries v

j

there exists a low-
pass polynomial q(t) =

P
fc
k=�fc

d

k

e

i2⇡kt, d 2 Cn,
satisfying

q(t

j

) = v

j

, t

j

2 T,

|q(t)| < 1� C

a

, |t� t

j

| > c�c 8t
j

2 T,

|q(t)|  1� C

b

(t� t

j

)

2

�

2
c

, |t� t

j

|  c�c, tj 2 T,

with 0 < c

2
C

b

 C

a

< 1.
We set v

j

= a

j

/ |a
j

|. The lemma implies
Z

T
q(t)x̂ (dt) 

X

k

|â
k

|
��
q(

ˆ

t

k

)

��


X

k

 
1�min

(
C

a

,

C

b

d

�
ˆ

t

k

, T

�

�

2
c

)!
|â

k

| .

(II.6)

The same argument used to prove (II.4) yields
����
Z

T
q(t)x̂(dt)�

Z

T
q(t)x(dt)

����  2�.

Now, taking into account that
R
T q(t)x (dt) = ||x||TV

by construction and ||x̂||TV  ||x||TV, we have
Z

T
q(t)x̂ (dt)

=

Z

T
q(t)x (dt) +

Z

T
q(t)x̂(dt)�

Z

T
q(t)x(dt)

� ||x||TV � 2� � ||x̂||TV � 2� =

X

k

|â
k

|� 2�.

Combining this with (II.6) completes the proof.

B. Proof of Lemma 2.2

We use a low-frequency kernel and its derivative
to construct the desired polynomial exploiting the
assumption that the support satisfies the minimum-
separation condition (I.6). More precisely, we set

q

tj (t) =

X

tk2T

↵

k

K(t� t

k

) + �

k

K

(1)
(t� t

k

), (II.7)

where ↵,� 2 C|T | are coefficient vectors,

K(t) =

2

4
sin

⇣⇣
fc

2 + 1

⌘
⇡t

⌘

⇣
fc

2 + 1

⌘
sin (⇡t)

3

5

4

, t 2 T \ {0},

(II.8)
and K(0) = 1; here, K

(`) is the `th derivative of
K. Note that K, K

(1) and, consequently, q

tj are
trigonometric polynomials of the required degree.

We impose q

tj (tj) = 1 and

q

tj (tl) = 0, t

l

2 T/ {t
j

} , q

0
tj
(t

k

) = 0, t

k

2 T.

We express these constraints in matrix form. Let e
tj 2

R|T | denote the one-sparse vector with one nonzero
entry at the position corresponding to t

j

. Then,

D0 D1

D1 D2

� 
↵

�

�
=


e

tj

0

�
, where

(D0)
lk

= K (t

l

� t

k

) , (D1)
lk

= K

(1)
(t

l

� t

k

) ,

(D2)
lk

= K

(2)
(t

l

� t

k

) ,

and l and k range from 1 to |T |. It is shown in
Section 2.3.1 of [3] that under the minimum-separation
condition this system is invertible. As a result ↵ and
� are well defined and q

tj satisfies q

tj (tj) = 1 and
q

tj (tl) = 0 for t

l

2 T/ {t
j

}. The coefficient vectors
can be expressed as

↵

�

�
=


I

�D

�1
2 D1

�
S

�1
e

tj , S := D0 �D1D
�1
2 D1,

where S is the Schur complement. Let kMk1 denote
the usual infinity norm of a matrix M defined as
kMk1 = maxkxk1=1 kMxk1 = max

l

P
k

|M
lk

|.
We borrow some results from Section 2.3.1 in [3],

||I � S||1  8.747 10

�3
,����

S

�1
����
1  1 + 8.824 10

�3
,

����
I � S

�1
����
1 

����
S

�1
����
1 ||S � I||1  8.825 10

�3
,

����
↵� e

tj

����
1 

����
I � S

�1
����
1

����
e

tj

����
1

 8.825 10

�3
, (II.9)

||�||1  3.294 10

�2
�

c

. (II.10)

Lemma 2.6 in [3] allows to obtain

K (t)  1

(f

c

t)

4  0.333, K

0
(t)  4⇡

f

3
c

t

4
 4.18 f

c

,
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for |t| > c�

c

as long f

c

� 10. By the same lemma, if
we set the minimum separation �min to 2/f

c

X

tk2T\{ta,tb}

|K (t� t

k

)|


1X

l=0

1

�
f

c

�min(
1
2 + l)

�4 +

1X

l=0

1

(f

c

�minl)
4  1.083,

X

tk2T\{ta,tb}

���K(1)
(t� t

k

)

���


1X

l=0

4⇡

f

3
c

�
�min(

1
2 + l)

�4 +

1X

j=0

4⇡

f

3
c

(�minl)
4  1.75 f

c

,

where t

a

and t

b

are the two spikes nearest to t. Let
t

i

be the element of T/ {t
j

} that is nearest to t.
Combining these inequalities with (II.9) and (II.10)
proves that

|q
tj (t)| =

���
X

tk2T

↵

k

K (t� t

k

) +

X

tk2T

�

k

K

(1)
(t� t

k

)

���

 |K (t� t

j

)|+
����
↵� e

tj

����
1

⇣
|K (t� t

j

)|

+ |K (t� t

i

)|+
X

tk2T\{ti,tj}

|K (t� t

k

)|
⌘

+ ||�||1
⇣ ���K(1)

(t� t

j

)

���+
���K(1)

(t� t

i

)

���

+

X

tk2T\{ti,tj}

���K(1)
(t� t

k

)

���
⌘
 0.69,

if |t� t

k

| > c�c for all t

k

2 T so that (II.3) holds.
The proof is completed by two lemmas which prove
(II.1) and (II.2) and |q

tj (t)| < 1 for any t. They rely on
the following bounds borrowed from equation (2.25)
in Section 2 of [3],

K (t) � 0.9539, K

(2)
(t)  �2.923 f

2
c

,���K(1)
(t)

���  0.5595 f

c

,

���K(2)
(t)

���  3.393 f

2
c

,

���K(3)
(t)

���  5.697 f

3
c

,

(II.11)
and on the fact that, due to Lemma 2.7 in [3], for any
t0 2 T and t 2 T obeying |t� t0|  c�

c

,

X

tk2T\{t0}

���K(2)
(t� t

k

)

���  1.06 f

2
c

(II.12)

X

tk2T\{t0}

���K(3)
(t� t

k

)

���  18.6 f

3
c

. (II.13)

Lemma 2.4: For any t such that |t� t

j

|  c�c,

1� 4.07 (t� t

j

)

2
f

2
c

 q

tj (t)  1� 2.30 (t� t

j

)

2
f

2
c

.

Proof We assume without loss of generality that t
j

=

0. By symmetry, it suffices to show the claim for t 2

(0, c�

c

]. By (II.9), (II.10), (II.11), (II.12) and (II.13),
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���+
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.

Similar computations yield |q000 (t)|  4.07 f

2
c

. This
together with q0(0) = 1 and q

0
0(0) = 0 implies the

desired result.

Lemma 2.5: For any t

l

2 T \ {t
j

} and t obeying
|t� t

l

|  c�c, we have

|q
tj (t)|  16.64 (t� t

l

)

2
f

2
c

.

Proof We assume without loss of generality that t
l

= 0

and prove the claim for t 2 (0, c�

c

]. By (II.9), (II.10),
(II.11), (II.12) and (II.13)
���q00

tj
(t)

��� =
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�
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@
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���+
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1

A

+ ||�||1

0

@
���K(3)

(t)

���+
X

tk2T\{0}

���K(3)
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���
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 16.64 f

2
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,

since in the interval of interest
��
K

(2)
(t� t

j

)

�� 
18⇡2

f

2
c (�min�0.16fc)4

 15.67 f

2
c

due to Lemma 2.6 in [3].
This together with q

tj (0) = 0 and q

0
tj
(0) = 0 implies

the desired result.
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Abstract—Compressive sensing is a methodology for the re-
construction of sparse or compressible signals using far fewer
samples than required by the Nyquist criterion. However, many
of the results in compressive sensing concern random sampling
matrices such as Gaussian and Bernoulli matrices. In common
physically feasible signal acquisition and reconstruction scenarios
such as super-resolution of images, the sensing matrix has a
non-random structure with highly correlated columns. Here we
present a compressive sensing recovery algorithm that exploits
this correlation structure. We provide algorithmic justification as
well as empirical comparisons.

I. INTRODUCTION

Consider the problem of image super-resolution, where one
or more low-resolution images of a scene are used to synthe-
size a single image of higher resolution. If multiple images are
used, they are commonly assumed to be subpixel-shifted and
downsampled versions of the original high resolution image
that is to be reconstructed [1]. Alternatively, super-resolution
from a single low resolution image using a dictionary of image
patches and compressive sensing recovery has been proposed
in [2]. The relationship between the available low resolution
and desired high resolution image is commonly modeled by
a linear filtering and downsampling operation. Suppose that
we wish to reconstruct a size N ⇥ N high resolution image
from a lower resolution image, for example of size N

2 ⇥
N
2 , or

smaller. Let x and y represent the vectorized high and low
resolution images respectively. We model the formation of
y from x by the equation y = SHx + ⌘ where ⌘ is the
sensor noise, S is a downsampling matrix of size N

2 ⇤
N
2

by N2, and H is a N2 by N2 matrix that represents the
filtering (antialiasing) operation. In order to consider super-
resolution as a compressive sensing recovery problem we
write x =  c where  is a sparsifying basis for the class
of images under consideration and c is the coefficient vector
corresponding to image x with respect to the basis  . In the
simplest case,  is an N2 ⇥ N2 orthogonal matrix, but can
also be generalized to an overcomplete dictionary. Here we
have y = SH c + ⌘ = �c + ⌘, where � = SH is the
sampling matrix.

Most of the work in the compressive sensing literature
assumes � to be random matrix, such as a partial DFT or one
drawn from a Gaussian or Bernoulli distribution. However,
in this scenario the matrix is not random, but instead has
correlated columns whose structure we wish to exploit to

improve compressive sensing recovery. Here we assume that
H is not a perfect low pass filter, so that it is possible for
� = SH to preserve enough high frequency information for
recovery to be possible; SH and  have sufficient incoherency
to allow c to be recovered with acceptable error.

Compressed sensing provides techniques for stable sparse
recovery [3]–[5], but results for coherent sensing matrices have
been limited [6]–[8].

Organization. The structure we wish to exploit is first
described. Then we present algorithms that take advantage of
this structure for compressive sensing recovery.

II. CORRELATION STRUCTURE

Typical examples of sparsifying bases  for images are
wavelets and blockwise discrete cosine transform bases. Im-
ages exhibit correlation at each scale: neighboring pixels
are heavily correlated except across edges, local averages of
neighboring blocks are heavily correlated except across edges,
and so on. This makes wavelet-like bases, which have locally
restricted atoms, suitable for sparsifying the image. For the
super-resolution setting with the low resolution image of size
N
2 ⇥

N
2 , the rows of SH consist of shifted versions of the

filtering kernel with shifts of 2 horizontally and vertically.
Due to the localized nature of wavelet bases, we expect
columns of � that correspond to spatially distant bases in  
to have little correlation. If  is a tree structured orthogonal
wavelet basis matrix, columns of  that overlap spatially
are orthogonal, however when filtered by H , they result in
significant correlation. Then we expect columns in � to show
significant correlation in tree structured patterns.

We illustrate this with an example. For simplicity we
consider only one-dimensional signals, though the discussion
is equally valid for images. Suppose that  is a 256 ⇥ 256

matrix whose columns consist of the length 256 Haar basis
vectors, and SH is a 128 ⇥ 256 matrix obtained by shifting
the filter kernel h = {0.1, 0.2, 0.4, 0.2, 0.1} by two from one
row to the next. SH represents the filtering and downsampling
operation that generates the low resolution signal y = SHx
from the length 256 signal x. Then � = SH is the sampling
matrix.

Fig. 1 shows the absolute values of the correlation matrix
C = �

⇤
� (here and throughout A⇤ denotes the adjoint of A).

This shows that only a small number of pairs of columns of
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� are strongly correlated to each other. Each filtered wavelet
basis is correlated with other spatially overlapping bases at
coarser and finer scale and in the immediate neighborhood,
but has no correlation with spatially distant bases.

Fig. 1: Absolute values of �⇤
�.

More generally, consider compressive sensing recovery
where the columns of the sampling matrix � can be grouped
into nearly-isolated sets, such that correlation among pairs
of columns within a set may be significant, but correlation
between two columns that belong to different sets is relatively
small. How does one exploit this structure to efficiently
reconstruct the signal?

One of the central results in compressive sensing is that if
matrix � exhibits a property called the Restricted Isometry
Property (RIP) [9], [10], convex optimization can recover the
sparse signal exactly [11], [12] via

min ||c||1 such that y = �c. (1)

However, the sampling matrix � = H described above
does not obey the RIP and these results are not readily appli-
cable. On the other hand, it is commonly found in practical
applications and has a structure that could be exploited.

Before considering the above problem, a simple modi-
fication to CoSaMP [13] is presented that provides some
improvement in recovery performance. This algorithm, called
Partial Inversion (PartInv) and described by Algorithm 1, also
indicates how the above described structure could be exploited.

III. PARTIAL INVERSION

Consider the usual CS setting: Given a length M sample
vector y = �c+⌘ where � is an M⇥N sampling matrix and
c a length N vector with sparsity K < M , we wish to obtain
the best K-sparse approximation ĉ to c. At each step let I be
an index set, so that for example, ĉI represents an estimate of
the components of c corresponding to the column indices in
I . ĉ by itself is an estimate for all the columns {1..N}. Let
L for K  L < M be an adjustable parameter for the size
of the set I . We get good results with L = max{K, 0.8M}.
Let �I denote the matrix of columns from � corresponding to
indices in the set I . Let ˜I = {1..N}\I denote the complement
of I . For any full rank matrix A, define A†

= (A⇤A)

�1A⇤.
For the noiseless case ⌘ = 0, the stopping condition can

be obtained by testing the magnitude of r2 = y � �ĉ at the
start of each iteration. If set I does not vary from one iteration

Algorithm 1 Given y = �c, return best K-sparse approxima-
tion ĉ

1: ĉ  �

⇤y; I0  indices of the L-largest magnitudes of
ĉ; k  0

2: while Stopping condition not met do
3: ĉI(k)  �

†
I(k)y

4: r  y � �I(k) ĉI(k)

5: J (k)  gI(k)
6: ĉJ(k)  �

⇤
J(k)r

7: I(k+1)  indices of the L-largest magnitude compo-
nents of ĉ.

8: k  k + 1

9: end while

to the next, the algorithm cannot progress further and can be
stopped immediately. In practice the inversion of line 3 can be
done efficiently by Richardson’s algorithm (see e.g. Sec. 7.2
of [14]).

This algorithm demonstrates improvement relative to
CoSaMP when the accurate recovery region is considered on
a plot of K

M versus M
N . The motivation is the following (for

simplicity we drop the iteration indicator k) : From line 3,

ĉI = �

†
Iy (2)

= cI + (�

⇤
I�I)

�1
�

⇤
I�ĨcĨ . (3)

Compare this to the estimator ĉI = �

⇤
Ir used in CoSaMP.

When r = y, we have

ĉI = �

⇤
Iy (4)

= �

⇤
I�IcI + �

⇤
I�ĨcĨ (5)

= cI + (�

⇤
I�I � I)cI + �

⇤
I�ĨcĨ (6)

If the index set I contains several nonzero coefficients
(which we hope is true), then (�

⇤
I�I � I)cI , which results

from the mutual interference between the columns of �I ,
is significant and is a source of noise in ĉI . This term is
eliminated in (2). Partial inversion does add (�

⇤
I�I)

�1 to the
remaining noise term, however, the singular values of this term
can be kept from significantly amplifying the noise term by
a conservative choice of L, the size of the index set I (for
example, empirically we find that L = s tends to be a safe
choice, but larger values often lead to noise amplification for
certain types of matrices). The improved estimate ĉI further
produces an improved estimate ĉJ(k) , which leads to a better
selection of nonzero coefficients in the next iteration.

The expression (2) also indicates how the correlation
structure may be used to improve recovery. The noise term
(�

⇤
I�I)

�1
�

⇤
I�ĨcĨ depends upon the correlation between the

sets �I and �Ĩ given by �⇤
I�Ĩ . This correlation is weak if

�I and �Ĩ are sufficiently spread.However, the correlation is
likely to remain large if L is significant compared to M , as
will be the case when K

M is large.
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(a) (d)

(b) (e)

(c) (f)
Fig. 2: Proportion of successes on Gaussian matrices using (a) Part-

Inv, (b) CoSaMP and (c) `1-minimization, and proportion of successes

on correlated column subset matrices using (d) PartInv, (e) CoSaMP

and (f) `1-minimization for various values of � = M
N 2 (0, 1)

(horizontal axis) and ⇢ = K
M 2 (0, 1) (vertical axis).

IV. EXPERIMENTAL COMPARISON

We compare the recovery performance of Partial Inversion
with CoSaMP and convex optimization (1) for two classes of
matrices: Gaussian random matrices, and matrices constructed
to have highly correlated subsets of columns with low corre-
lation across subsets.

In the first case, we construct M by N matrices with
N(0, 1) elements along with the coefficient vector c containing
K nonzero entries taken from a N(0, 1) distribution. The
nonzero locations are selected uniformly at random from
{1...N}. Each column in each matrix is normalized to have
unit l2 norm. We set N = 256 and vary � =

M
N from 0.1

to 0.9 in steps of 0.1. For each � we vary ⇢ =

K
M from 0.1

to 0.9 in steps of 0.1. For each (�, ⇢) point we carry out 25
trials, and declare success if 1

N ||c� ĉ||2 < 10

�5. For PartInv
we considered two cases for the size of subset I : L = S and
L = max{S, 0.8M}. We see better performance in the L = S
case. For l1 minimization we use the l1-magic package [15].
We show the results in Fig. 2.

In the second case, we construct M by N matrices with
N = 256 and variable M and a block diagonal structure.
The columns are divided into 16 column subsets. In each
subset we set M/16 rows to 1. In addition, to every element
of the matrix we add noise drawn from a zero-mean normal
distribution with variance 0.0025. This produces heavy intra-
subset correlation and light correlation across subsets. We let
the coefficient vector c contain S nonzeros elements drawn

from a N(0, 1) distribution. We select 4 of the 16 subsets at
random and in each subset select S

4 of the indices to have
nonzero values, again uniformly at random. If some of the
nonzeros were left over, they are accomodated in a fifth subset.
For PartInv we set L = max{S, 0.8M}. The results are also
depicted in Fig. 2.

V. RECOVERY OF COEFFICIENTS CONCENTRATED ON
WAVELET TREES

We next use Partial Inversion to recover nonzero coeffi-
cients that are concentrated on wavelet trees, which is com-
monly seen when a signal or image with discontinuities is
decomposed in a wavelet basis. When the coefficients are
concentrated on an isolated set (a set of columns that have low
correlation with columns outside the set), a setwise estimator is
especially useful to identify the sets on which the coefficients
are nonzero. Consider the 2D wavelet case. Suppose that I
is the index set of columns of the wavelet basis belonging to
a particular tree rooted at a coarse scale and containing finer
scale coefficients. We have

zI = �

⇤
Iy = �

⇤
I�IcI + �

⇤
I�ĨcĨ . (7)

Because �I is relatively isolated from the columns in �Ĩ ,
the second term is small, and because most of the elements of
cI are nonzero, the first term is large. This is further intensified
by the mutual correlation of the columns of �I which is high
because of the spatial overlap of the support of the wavelet
bases in the tree. This motivates a simple selection criterion
for measuring the strength of the nonzero coefficients in each
wavelet tree I: sI =

P
j2I

|zj |. We use this criterion along with

PartInv to select wavelet trees that are known to be nonzero.
We denote the number of subsets by SETNUM.

We modify the PartInv algorithm to use this estimator.

Algorithm 2 Given y = �c, with K nonzero coefficients con-
centrated on wavelet trees,return best K-sparse approximation
ĉ

1: ĉ �

⇤y;
2: k  �1
3: for j = 1! SETNUM do
4: sj  

P
l2Ij

|ĉl|

5: end for
6: Ik+1  indices of columns contained in the sets with the

largest magnitude sk, to include at least K coefficients.
7: k  k + 1

8: while Stopping condition not met do
9: ĉI(k)  �

†
I(k)y

10: r  y � �I(k) ĉI(k)

11: J (k)  gI(k)
12: ĉJ(k)  �

⇤
J(k)r

13: Repeat lines 3� 6

14: k  k + 1

15: end while
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VI. EXPERIMENTAL RESULTS

To test this algorithm, we use the Daubechies-5 wavelet
basis in two dimensions over 32 ⇥ 32 size patches with 5
levels of decomposition. This gives a size 1024 by 1024 matrix
 . We divide this matrix into 49 sets: 1 set of the coarsest
scale coefficients in a block of size 4⇥ 4 containing the two
coarsest scales, and 48 other sets rooted at the coefficients at
the next finer scale. Each of these sets contains 21 (1+4+16)

coefficients in a quadtree structure. To create matrix � we
first apply a blurring filter H with a symmetric 5 ⇥ 5 kernel
that is close to a delta function. This simulates practical
optical sampling acquisition effects such as diffraction and
helps prevent rank deficiency problems when carrying out
inversion. We use different 2D sampling patterns to carry out
the subsampling operation represented by matrix S. Hence
the acquisition process is represented by y = �c where
� = SH . The sampling patterns are shown in Table I
for each sampling rate � =

M
N used to generate the results.

Each pattern is replicated 8 times in horizontal and vertical
directions to give the 32⇥32 sampling pattern used for matrix
S. The filter kernel is a 5⇥5 kernel with 0.29 at the center and
0.02 in other locations. The signals are generated by uniformly
selecting at random wavelet trees to make the sparsity of the
signal the specified value. The coefficients in these trees are
set to values chosen from a standard normal distribution, and
the rest are set to zero.

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

(a) � = 2
16

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

(b) � = 4
16

1 0 1 0
0 1 0 1
1 0 0 0
0 0 1 0

(c) � = 6
16

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

(d) � = 8
16

0 1 0 1
1 0 1 0
0 1 1 1
1 1 0 1

(e) � = 10
16

1 1 0 1
0 1 1 1
1 1 1 0
1 0 1 1

(f) � = 12
16

1 1 1 1
1 1 0 1
1 1 1 1
0 1 1 1

(g) � = 14
16

TABLE I: Sampling Patterns

(a) (b)
Fig. 3: Proportion of successes with nonzero coefficients concentrated

on wavelet trees from (a) `1-minimization and (b) PartInv.

The results are shown in Fig. 3. For each data point we
carry out 100 trials. We declare success if 1

N ||c� ĉ||2 < 10

�5

where N = 32 ⇥ 32. This shows improvement in selection
performance with the sum estimator.

VII. CONCLUSION

We consider methods of compressive sensing recovery for
sampling matrices that have subsets of columns that are
strongly intra-correlated, but show low correlation with other
subsets. This structure commonly arises in physical sam-
ple acquisition/reconstruction scenarios such as image super-
resolution. We describe Partial Inversion, an algorithm that im-
proves compressive sensing recovery by removing a source of
noise in the initial estimator, and demonstrate its performance
by simulations on Gaussian and correlated column subset
matrices. We consider compressive sensing recovery when the
nonzero coefficients are concentrated on wavelet trees, and
demonstrate a simple estimator that improves selection of the
trees that carry the nonzero coefficients.
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Abstract—We propose and experimentally demonstrate a

method of performing single-shot sub-wavelength resolution Co-

herent Diffractive Imaging (CDI), i.e. algorithmic object recon-

struction from Fourier amplitude measurements. The method is

applicable to objects that are sparse in a known basis. The prior

knowledge of the object’s sparsity compensates for the loss of

phase information, and the loss of all information at the high-

spatial frequencies occurring in every microscope and imaging

system due to the physics of electromagnetic waves in free-space.

I. INTRODUCTION

Coherent Diffractive Imaging (CDI) is an imaging technique
where intricate features are algorithmically reconstructed from
measurements of the freely-diffracting intensity pattern ([1],
[2]). In CDI, an object is illuminated by a coherent plane
wave (LASER light), and the far-field diffraction intensity
is measured. That is, the measurements correspond to the
absolute value squared of the Fourier components. Recent
advances in making lasers in the x-ray regime and in the
extreme ultraviolet have made this technique very important
for a variety of applications, among them structural biology:
mapping out the structure of proteins that cannot be crys-
talized. However, the physics underlying the propagation of
electromagnetic waves acts as a low-pass filter, effectively
truncating high Fourier components, and thereby setting a
fundamental limit on imaging systems: the finest feature that
can be recovered in imaging microscopes is larger than one
half of the optical wavelength (the so-called diffraction limit).
This stringent limit naturally also limits CDI: the resolution
in all current work on CDI is limited by the diffraction limit
[3]. Over the past decades, several techniques were developed
for sub-wavelength imaging, but none of them works as
actual imaging: they all involve scanning or integration over
very many acquired images generated by sub-wavelength light
sources. These methods include Scanning Near-Field Micro-
scope ([4], [5]), scanning a sub-wavelength “hot spot” ([6], [7],
[8]), or ensemble-averaging over multiple experiments with
fluorescent particles ([9], [10], [11], [12]). Due to the nature of
theses technique – which rely on scanning or averaging - they
cannot be used for real-time imaging of dynamics processes

(say, a chemical reaction that evolves with time). On the other
hand, CDI, being a ‘single shot’ imaging technique, is suitable
for ultra-fast imaging, but it lacks sub-wavelength resolution.
Here, we present and demonstrate experimentally a method to
enhance CDI resolution beyond the diffraction limit, based on
prior knowledge that the object is sparse in a known basis.

II. PROBLEM FORMULATION

In a typical, plane-wave CDI setting, an object is illuminated
by a coherent plane wave, and the far field diffraction pattern
intensity is measured. The measured diffraction intensity, in
the paraxial approximation, is proportional to the magnitude
of the object’s Fourier transform, up to the cut-off frequency
1/�, where � is the wavelength of the light [3]. Therefore,
mathematically, the sub-wavelength CDI problem becomes the
problem of recovering a 2D signal from only the magnitude
of its truncated Fourier transform. Up to spatial coordinate
scaling and normalization, the above relation can be written
as:

I(j, k) = |LFb|2(j, k), (1)

where I is the measured far-field intensity, F is the 2D
Fourier transform operator, L is a low-pass filter with a cutoff
frequency of 1/�, and b is the sought 2D object. The operator
| · | here stands for element-wise absolute value.

Inverting Eq.1, i.e. finding b from I, L, F is an ill-posed
problem, both because the high frequency information is lost
due to the coupling of high spatial frequencies to evanescent
waves, and due to the loss of phase information - since only
the far-field (Fourier) magnitude is measured. The problem at
hand, therefore, is phase-retrieval of a 2D object, combined
with bandwidth-extrapolation. In order to invert this ill-posed
problem, some additional information is needed, e.g. prior
knowledge on the sought signal.

In this work, we focus on objects that can be represented
compactly in a known basis, i.e. b = Ax where A is a
known basis and x is a sparse vector, namely, containing a
small number of nonzero elements. In this case, Eq. 1 can
be rewritten as (For simplicity, the indices (j, k) are dropped
from now on):

I = |LFAx|2, (2)
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and the prior knowledge of the sparsity of x adds information
that helps the inversion of Eq. 2. The sparsity prior has been
used for sub-wavelength imaging [13], but only when the
Fourier phase was also known, yielding a linear problem. Since
the measurements in our setting are not linear in the unknown
(but quadratic), standard linear sparse inversion algorithms
cannot be used, and a method to find a sparse solution to
a set of quadratic equations is required.

III. SOLUTION METHOD

The problem of sub-wavelength CDI can be viewed as con-
sisting of two sub-problems: Phase retrieval, and bandwidth
extrapolation. The problem of phase retrieval, i.e. recovering
a signal from the magnitude of its Fourier transform arises
in applications such as holography and crystallography, and
there has been a vast amount of work dealing with it ([14],
[15]). Usually, some prior knowledge about the object is used
(e.g. known support or known real-space megnitude), and the
different constaints are imposed iteratively. These techniques
have been used in the context of CDI [2], but their application
has always been limited to the information contained within
numerical aperture of the system.

Here, we devise a phase-retrieval method that can also deal
with the loss of high-requencies, by using the prior knowledge
that the sought object is sparse in a known basis. The two
problems are not handled separately, but rather solved as a
combined optimization problem. The logic of the technique is
as follows: An iterative thresholding method is used in order to
solve Eq. 2 while using the sparsity information. The method
attempts to find a solution to the following problem:

min ||x||0
subject to

����
I � |LFAx|2

����2
2

 ✏ (3)
x � 0

The non-negativity constraint on corresponds to the assump-
tion that the real-space object contains no phase information,
which is the case we consider in this work. The thresholding
method is described in detail in [16], and briefly below. First,
an initial support of the vector is approximated from the
blurred real-space image. Then, the following two steps are
repeated iteratively:

1. Solve the minimization problem:

min
����
I � |LFAx|2

����2
2

(4)
subject to x � 0

This is a non-convex problem, and in practice we use the
L-BFGS method [17] to find a local minimum.

2. Remove the weakest element of x from the support, i.e.
set it to zero. This element is constrained to remain zero in
the following iterations. Go-to step 1.

The iterations continue as long as the constraint����
I � |LFAx|2

����2
2

 ✏ can be satisfied. Note that this re-
quires knowledge of the noise level ✏ in the measurements,
which might be approximated from knowledge or calibration

Fig. 1. Experimental setup

measurements in the optical system. In addition, a stopping
criterion may be defined by analyzing the reconstruction error����
I � |LFAx|2

����2
2
.

IV. EXPERIMENTAL RESULTS

We demonstrate sparsity based sub-wavelength CDI ex-
perimentally, using the setup shown in Fig. 1. A coherently
illuminated microscope (532nm LASER) is used to image
arrangements of sub-wavelength holes, 100nm in diameter, in a
100nm thick Chrome layer covering a transparent substrate of
fused silica. The imaging setup consists of a water-immersed
objective (NA=1) and a lens imaging onto a 1002 ⇥ 1002
pixel CCD camera. The camera can be moved so that either
the real-space (blurred) magnitude of the object is measured,
or its truncated Fourier magnitude (Fig. 1). Two different
patterns are imaged and recovered experimentally. The first,
a star of David, is shown in Fig. 2. Figure 2a shows the
Scanning-electron-microscope image of the sample. Figure 2b
shows the measured real-space image using our microscope,
featuring the blur caused by the diffraction limit. The measured
truncated Fourier magnitude is shown in Fig. 2c. The basis
for reconstruction is taken as 100nm circles on a grid, and
the reconstructed image is shown in Fig. 2d. The circles
are recovered with the correct locations, and their recovered
amplitude is close to constant - which is consistent with the
illumination used for the imaging, which had approximately
constant intensity across the sample.

In order to demonstrate our ideas on a non-symmetric sam-
ple, exhibiting a truly complex Fourier transform, a second pat-
tern, comprising of a ‘random’ distribution of twelve 100nm
circles, is also recovered. Figure 3a shows the measured
blurred real-space image, and Fig. 3b shows the measured
truncated Fourier spectrum. The sparse sub-wavelength object
is recovered (Fig. 3c) from its truncated Fourier spectrum,
using our method, and the SEM image of the true object is
shown in Fig. 3d. The reconstruction basis used here is the
same as in Fig. 2, namely, 100nm circles on a grid.
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Fig. 2. a) Scanning Electron Microscope (SEM) image of the sample. b)
Real-space imaging, blurred due to diffraction limit. c) Measured Fourier
magnitude. d) Sparse reconstruction

Fig. 3. a) Real-space imaging, blurred due to diffraction limit. b) Measured
Fourier magnitude c) Sparse reconstruction d) Scanning Electron Microscope
(SEM) image of the sample.

V. CONCLUSION

In this work, we have presented a technique facilitating the
reconstruction of sub-wavelength features, along with phase
retrieval, at an unprecedented resolution for single-shot exper-
iments. This work opens the way for ultrafast sub-wavelength
coherent diffractive imaging: ultrafast phase retrieval at the
sub-wavelength scale. Fundamentally, sparsity-based concepts
can be implemented in all imaging systems and achieve sub-
wavelength resolution without additional hardware, given only
that the image is sparse in a known basis. For example,
sparsity-based methods could considerably improve the CDI
resolution with x-ray free electron laser [18], without hardware
modification.
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Place du Maréchal De Lattre De Tassigny,

75775 Paris Cedex 16, France.
Email: {vaiter,peyre}@ceremade.dauphine.fr

Jalal Fadili
GREYC, CNRS-ENSICAEN-Université de Caen,
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Abstract—In this paper, we establish robustness to noise perturbations
of polyhedral regularization of linear inverse problems. We provide a
sufficient condition that ensures that the polyhedral face associated to
the true vector is equal to that of the recovered one. This criterion also
implies that the `2 recovery error is proportional to the noise level for a
range of parameter. Our criterion is expressed in terms of the hyperplanes
supporting the faces of the unit polyhedral ball of the regularization.
This generalizes to an arbitrary polyhedral regularization results that
are known to hold for sparse synthesis and analysis `1 regularization
which are encompassed in this framework. As a byproduct, we obtain
recovery guarantees for `1 and `1 � `1 regularization.

I. INTRODUCTION

A. Polyhedral Regularization

We consider the following linear inverse problem

y = �x0 + w, (1)

where y 2 RQ are the observations, x0 2 RN is the unknown true
vector to recover, w the bounded noise, and � a linear operator which
maps the signal domain RN into the observation domain RQ. The
goal is to recover x0 either exactly or to a good approximation.

We call a polyhedron a subset P of RN such that P =

�

x 2 RN | Ax 6 b
 

for some A 2 RNH⇥N and b 2 RNH , where
the inequality 6 should be understood component-wise. This is
a classical description of convex polyhedral sets in terms of the
hyperplanes supporting their (N � 1)-dimensional faces.

In the following, we consider polyhedral convex functions of the
form

JH(x) = max

16i6NH

hx, hii,

where H = (hi)
NH
i=1 2 RN⇥NH . Thus, PH =

�

x 2 RN | JH(x) 6 1

 

is a polyhedron. We assume that PH

is a bounded polyhedron which contains 0 in its interior. This
amounts to saying that JH is a gauge, or equivalently that it is
continuous, non-negative, sublinear (i.e. convex and positively
homogeneous), coercive, and JH(x) > 0 for x 6= 0. Note that it is
in general not a norm because it needs not be symmetric.

In order to solve the linear inverse problem (1), we devise the
following regularized problem

x? 2 argmin

x2RN

1

2

||y � �x||2 + �JH(x), (P�(y))

where � > 0 is the regularization parameter. Coercivity and convexity
of JH implies the set of minimizers is non-empty, convex and
compact.

In the noiseless case, w = 0, one usually considers the equality-
constrained optimization problem

x? 2 argmin

�x=y
JH(x). (P0(y))

B. Relation to Sparsity and Anti-sparsity

Examples of polyhedral regularization include the `1-norm, anal-
ysis `1-norm and `1-norm. The `1 norm reads

JH1(x) = ||x||1 =

N
X

i=1

|xi|.

It corresponds to choosing H1 2 RN⇥2N where the columns of H1

enumerate all possible sign patterns of length N , i.e. {�1, 1}N . The
corresponding regularized problem (P�(y)) is the popular Lasso [1]
or Basis Pursuit DeNoising [2]. It is used for recovering sparse vec-
tors. Analysis-type sparsity-inducing penalties are obtained through
the (semi-)norm JH(x) = ||Lx||1, where L 2 RP⇥N is an analysis
operator. This corresponds to using H = L⇤H1 where ⇤ stands for
the adjoint. A popular example is the anisotropic total variation where
L is a first-order finite difference operator.

The `1 norm

JH1(x) = ||x||1 = max

16i6N
|xi|

corresponds to choosing H1 = [IdN ,�IdN ] 2 RN⇥2N . This
regularization, coined anti-sparse regularization, is used for instance
for approximate nearest neighbor search [3].

Another possible instance of polyhedral regularization is the group
`1 � `1 regularization. Let B be a partition of {1, . . . , N}. The
`1 � `1 norm associated to this group structure is

JH1
B
(x) =

X

b2B

||xb||1.

This amounts to choosing the block-diagonal matrix H1
B 2

RN⇥
Q

b2B 2|b| such that each column is chosen by taking for each
block a position with sign ±1, others are 0. If for all b 2 B, |b| = 1,
then we recover the `1-norm, whereas if the block structure is
composed by one element, we get the `1-norm.

C. Prior Work

In the special case of `1 and analysis `1 penalties, our criterion is
equivalent to those defined in [4] and [5]. To our knowledge, there is
no generic guarantee for robustness to noise with `1 regularization,
but [6] studies robustness of a sub-class of polyhedral norms obtained
by convex relaxation of combinatorial penalties. Its notion of support
is however completely different from ours. The work [7] studies nu-
merically some polyhedral regularizations.In [8], the authors provide
an homotopy-like algorithm for polyhedral regularization through
a continuous problem coined adaptive inverse scale space method.
The work [9] analyzes some particular polyhedral regularizations
in a noiseless compressed sensing setting when the matrix � is
drawn from an appropriate random ensemble. Again in a compressed
sensing scenario, the work of [10] studies a subset of polyhedral
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regularizations to get sharp estimates of the number of measurements
for exact and `2-stable recovery.

II. CONTRIBUTIONS

Definition 1. We define the H-support suppH(x) of a vector x 2 RN

to be the set

suppH(x) = {i 2 {1, . . . , NH} | hx, hii = JH(x)} .

This definition suggests that to recover signals with H-support

suppH(x), it would be reasonable to impose that � is invertible on
the corresponding subspace KerH⇤

suppH (x). This is formalised in the
following condition.

Definition 2. A H-support I satisfies the restricted injectivity con-
dition if

Ker� \KerH⇤
I = {0}, (CI )

where HI is the matrix whose columns are those of H indexed by I .

When it holds, we define the orthogonal projection �I on
�KerH⇤

I :

MI = (U⇤
�

⇤
�U)

�1 and

(

�I = �UMIU
⇤
�

⇤

�

?
I = Id� �I .

where U is (any) basis of KerH⇤
I . The symmetric bilinear form on

RN induced by �

?
I reads

hu, vi�?
I
= hu, �?

I vi,

and we denote its associated quadratic form || · ||2
�?
I

.

Definition 3. Let I be a H-support such that (CI ) holds. The

Identifiability Criterion of I is

ICH(I) = max

zI2KerHI

min

i2I
(

˜

�

⇤
I�

?
I
˜

�III + zI)i

where II 2 R|I|
is the vector with coefficients 1, and

˜

�I = �H+,⇤
I 2

RQ⇥|I|
where

+
stands for the Moore–Penrose pseudo-inverse.

ICH(I) can be computed by solving the linear program

ICH(I) = max

(r,zI )2R⇥R|I|
r subj. to

(

8i 2 I, r 6 (

˜

�

⇤
I�

?
I
˜

�III + zI)i

HIzI = 0.

A. Noise Robustness

Our main contribution is the following result.

Theorem 1. Let x0 2 RN \ {0} and I its H-support such that (CI )
holds. Let y = �x0 + w. Suppose that

˜

�III 6= 0 and ICH(I) > 0.

Then there exists two constants cI , c̃I satisfying,

||w||2
T

<
c̃I
cI

where T = min

j2Ic
JH(x0)� hx0, hji > 0,

such that if � is chosen according to

cI ||w||2 < � < T c̃I ,

the vector x? 2 RN
defined by

x?
= µH+,⇤

I II + UMIU
⇤
�

⇤
(y � µ˜�III)

where U is any basis of KerH⇤
I and

0 < µ = JH(x0) +

h˜�III , wi�?
I
� �

||˜�III ||2�?
I

(2)

is the unique solution of (P�(y)), and x?
lives on the same face as

x0, i.e. suppH(x?
) = suppH(x0).

Observe that if � is chosen proportional to the noise level, then
||x? � x0||2 = O(||w||2). The following proposition proves that the
condition ICH(I) > 0 is almost a necessary condition to ensure
the stability of the H-support. Its proof is omitted for obvious space
limitation reasons.

Proposition 1. Let x0 2 RN \{0} and I its H-support such that (CI )
holds. Let y = �x0+w. Suppose that

˜

�III 6= 0 and ICH(I) < 0. If

||w||
�

< 1
cI

then for any solution of (P�(y)), we have suppH(x0) 6=
suppH(x?

).

B. Noiseless Identifiability

When there is no noise, the following result, which is a straightfor-
ward consequence of Theorem 1, shows that the condition ICH(I) >
0 implies signal identifiability.

Theorem 2. Let x0 2 RN \ {0} and I its H-support. Suppose that

˜

�III 6= 0 and ICH(I) > 0. Then the vector x0 is the unique solution

of (P0(y)).

III. PROOFS

A. Preparatory Lemmata

We recall the definition of the subdifferential of a convex function
f at the point x is the set @f(x) is

@f(x) =
n

g 2 RN | f(y) > f(x) + hg, y � xi
o

.

The following lemma, which is a direct consequence of the properties
of the max function, gives the subdifferential of the regularization
function JH .

Lemma 1. The subdifferential @JH at x 2 RN
reads

@JH(x) = HI⌃I

where I = suppH(x) and ⌃I is the canonical simplex on R|I|
:

⌃I =

n

vI 2 R|I| | vI > 0, hvI , IIi = 1

o

.

A point x? is a minimizer of minx f(x) if, and only if, 0 2
@f(x?

). Thanks to Lemma 1, this gives the first-order condition for
the problem (P�(y)).

Lemma 2. A vector x?
is a solution of (P�(y)) if, and only if, there

exists vI 2 ⌃I such that

�

⇤
(�x� y) + �HIvI = 0,

where I = suppH(x).

We now introduce the following so-called source condition.
(SCx): For I = suppH(x), there exists ⌘ and vI 2 ⌃I such that:

�

⇤⌘ = HIvI 2 @JH(x).

Under the source condition, a sufficient uniqueness condition can
be derived when vI lives in the relative interior of ⌃I which is

ri⌃I =

n

vI 2 R|I| | vI > 0, hvI , IIi = 1

o

.

Lemma 3. Let x?
be a minimizer of (P�(y)) (resp. (P0(y))) and

I = suppH(x?
). Assume that (SCx?

) is verified with vI 2 ri⌃I ,

and that (CI ) holds. Then x?
is the unique solution of (P�(y))

(resp. (P0(y))).

The proof of this lemma is omitted due to lack of space. Observe
that in the noiseless case, if the assumptions of Lemma 3 hold at x0,
then the latter is exactly recovered by solving (P0(y)).
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Lemma 4. Let x? 2 RN
and I = suppH(x?

). Assume (CI ) holds.

Let U be any basis of KerH⇤
I . There exists zI 2 KerHI such that

U⇤
�

⇤
(�x? � y) = 0

vI = zI +
1

�
H+

I �

⇤
(y � �x?

) 2 ⌃I ,

if, and only if, x?
is a solution of (P�(y)). Moreover, if vI 2 ri⌃I ,

then x?
is the unique solution of (P�(y)).

Proof: We compute

�

⇤
(�x? � y) + �HIvI

=�

⇤
(�x? � y) + �HI

✓

zI +
1

�
H+

I �

⇤
(y � �x?

)

◆

=(Id�HIH
+
I )�

⇤
(�x? � y) = projH⇤

I
(�

⇤
(�x? � y)) = 0,

where projH⇤
I

is the projection on KerH⇤
I . Hence, x? is a solution

of (P�(y)). If vI 2 ri⌃I , then according to Lemma 3, x? is the
unique solution.

The following lemma is a simplified rewriting of the condition
introduced in Lemma 4.

Lemma 5. Let x? 2 RN
, I = suppH(x?

) and µ = JH(x?
).

Assume (CI ) holds. Let U be any basis of KerH⇤
I . There exists

z 2 KerHI such that

vI = zI +
1

�
˜

�

⇤
I�

?
I (y � µ˜�III) 2 ⌃I ,

if, and only if, x?
is a solution of (P�(y)). Moreover, if vI 2 ri⌃I ,

then x?
is the unique solution of (P�(y)).

Proof: Note that any vector x 2 RN such that the condition (CI )
holds, where I is the H-support of x, is such that

x = µH+,⇤
I II + U↵ where µ = JH(x),

for some coefficients ↵ and U any basis of KerH⇤
I . We obtain

U�

⇤
(�x? � y) = µU�

⇤
�H+,⇤

I II � U�

⇤y + U�

⇤
�U↵ = 0

Since (CI ) holds, we have

↵ = (U�

⇤
�U↵)�1U�

⇤
⇣

y � µ˜�III
⌘

.

Hence,
�U↵ = �I

⇣

y � µ˜�III
⌘

.

Now since, x?
= µH+,⇤

I II + U↵, one has

�x?
= µ˜�III + �I

⇣

y � µ˜�III
⌘

= µ�?
I
˜

�III + �Iy.

Subtracting y and multiplying by ˜

�

⇤
I both sides, and replacing in the

expression of vI in Lemma 4, we get the desired result.

B. Proof of Theorem 1

Let I be the H-support of x0. We consider the restriction
of (P�(y)) to the H-support I .

x?
= argmax

x2RN

suppH (x)✓I

1

2

||y � �x||22 + JH(x). (P�(y)I )

Thanks to (CI ), the objective function is strongly convex on the set
of signals of H-support I. Hence x? is uniquely defined. The proof is
divided in five parts: We give (1.) an implicit form of x?. We check
(2.) that the H-support of x? is the same as the H-support of x0.
We provide (3.) the value of JH(x?

). Using Lemma 5, we prove (4.)
that x? is the unique minimizer of (P�(y)).

1. Expression of x?. One has x?
= µH+,⇤

I II + U↵ where µ =

JH(x?
). Hence,

U⇤
�

⇤
(�x� y) = µU⇤

�

⇤
�H+,⇤

I II + (U⇤
�

⇤
�U)↵� U⇤

�

⇤y = 0.

Thus,
U↵ = UMIU

⇤
�

⇤
(y � µ�H+,⇤

I II).

Now, since y = �x0 + w, with suppH(x0) = I , then

x?
= µH+,⇤

I II + UMIU
⇤
�

⇤
(y � µ�H+,⇤

I II)
= µH+,⇤

I II + UMIU
⇤
�

⇤
((µ0 � µ)�H+,⇤

I II + w) + U↵0

= x0 � (µ0 � µ)H+,⇤
I II + UMIU

⇤
�

⇤
((µ0 � µ)�H+,⇤

I II + w),

where µ0 = JH(x0). Hence, x? is satisfying

x?
= x0+(µ0�µ)[UMIU

⇤
�

⇤
��Id]H+,⇤

I II+UMIU
⇤
�

⇤w. (3)

2. Checking that the H-support of x? is I . To ensure that the
H-support of x? is I we have to impose that

8i 2 I, hhi, x
?i = JH(x?

) = µ

8j 2 Ic, hhj , x
?i < JH(x?

) = µ.

The components on I of x? are satisfying H⇤
I x

?
= µII . Since JH

is subadditive, we bound the components on Ic by the triangular
inequality on (3) to get

max

j2Ic
hhj , x

?i 6max

j2Ic
hhj , x0i

+ (µ0 � µ)||H⇤
Ic [UMIU

⇤
�

⇤
�� Id]H+,⇤

I II ||1
+ ||H⇤

IcUMIU
⇤
�

⇤w||1.

Denoting

C1 = ||H⇤
Ic [UMIU

⇤
�

⇤
�� Id]H+,⇤

I II ||1,

C2 = ||H⇤
IcUMIU

⇤
�

⇤||2,1,

T = µ0 �max

j2Ic
hhj , x0i,

we bound the correlations outside the H-support by

max

j2Ic
hhj , x

?i 6 µ0 � T + (µ0 � µ)C1 + C2||w||.

There exists some constants c1, c2 satisfying c1||w|| < c2T + � such
that

0 6 µ0 � T + (µ0 � µ)C1 + C2||w|| < µ (4)

Under this condition, one has

max

j2Ic
hhj , x

?i < µ,

which proves that suppH(x?
) = I .

3. Value of µ = JH(x?
). Using Lemma 5 with H = U⇤H , since

x? is a solution of (P�(y)I ), there exists zI 2 KerHI such that

vI = zI +
1

�
˜

�

⇤
I�

?
I (y � µ˜�III) 2 ⌃I . (5)

We decompose x0 as

x0 = µ0H
+,⇤
I II + U↵0.

Since y = �x0 + w, we have

�

?
I y = �

?
I (µ0

˜

�III + �U↵0 + w).

Now since

�I�U↵0 = �U(U⇤
�

⇤
�U)

�1U⇤
�

⇤
�U↵0 = �U↵0,
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one obtains
�

?
I y = µ0�

?
I
˜

�III + �

?
I w.

Thus, equation (5) equivalently reads

vI = zI +
1

�
˜

�

⇤
I�

?
I

⇣

(µ0 � µ)˜�III + w
⌘

.

In particular, hvI , IIi = �. Thus,

� = h�vI , IIi = h�z̃I , IIi+ h˜�⇤
I�

?
I ((µ0 � µ)˜�III + w, IIi.

Since z̃I 2 KerHI , one has hzI , IIi = 0.

� = h˜�⇤
I�

?
I ((µ0 � µ)˜�III + w, IIi

= (µ0 � µ)||˜�III ||2�?
I
+ h˜�III , wi�?

I
.

Thus the value of µ is given by

µ = µ0 +

h˜�III , wi�?
I
� �

||˜�III ||2�?
I

> 0. (6)

4. Checking conditions of Lemma 5. Consider now the vector
ṽI defined by

ṽI = z̃I +
1

�
˜

�

⇤
I�

?
I

⇣

(µ0 � µ)˜�III + w
⌘

,

where

z̃I =

1

µ� µ0

✓

argmax

zI2KerHI

min

i2I
(

˜

�

⇤
I�

?
I
˜

�III + zI)i

◆

Under condition (4), the H-support of x? is I , hence we only have
to check that ṽI is an element of ri⌃I . Since hz̃I , IIi = 0, one has

hṽI , IIi

=hzI +
1

�
˜

�

⇤
I�

?
I

⇣

(µ0 � µ)˜�III + w
⌘

, IIi+ hz̃I � zI , IIi

=hvI , IIi+ 0 = �.

Plugging back the expression (6) of (µ0 �µ) in the definition of ṽI ,
one has

ṽI = z̃I +
1

�

0

@

˜

�

⇤
I�

?
I w +

h˜�III , wi�?
I
� �

||˜�III ||2�?
I

˜

�

⇤
I�

?
I
˜

�III

1

A .

For some constant c3 such that c3||w||� ICH(I) · � > 0, one has

8i 2 I, vi > 0.

Combining this with the fact that hṽI , IIi = � proves that ṽI 2 ri⌃I .
According to Lemma 5, x? is the unique minimizer of (P�(y)).

C. Proof of Theorem 2

Taking w = 0 in Theorem 1, we obtain immediately

Lemma 6. Let x0 2 RN \ {0} and I its H-support such that (CI )
holds. Let y = �x0. Suppose that

˜

�III 6= 0 and ICH(I) > 0. Let

T = min

j2Ic
JH(x0)� hx0, hji > 0 and � < T c̃I . Then,

x?
= x0 +

�

||˜�III ||2�?
I

[UMIU
⇤
�

⇤
�� Id]H+,⇤

I II ,

is the unique solution of (P�(y)).

The following lemma shows that under the same condition, x0 is
a solution of (P0(y)).

Lemma 7. Let x0 2 RN \ {0} and I its H-support such that (CI )
holds. Let y = �x0. Suppose that

˜

�III 6= 0 and ICH(I) > 0. Then

x0 is a solution of (P0(y)).

Proof: According to Lemma 6, for every 0 < � < T c̃I ,

x?
� = x0 +

�

||˜�III ||2�?
I

[UMIU
⇤
�

⇤
�� Id]H+,⇤

I II ,

is the unique solution of (P�(y)).
Let x̃ 6= x0 such that �x̃ = y. For every 0 < � < T c̃I , since x?

�

is the unique minimizer of (P�(y)), one has
1

2

||y � �x?
�||22 + JH(x?

�) <
1

2

||y � �x̃||22 + JH(x̃).

Using the fact that �x̃ = y = �x0, one has JH(x?
�) < JH(x̃). By

continuity of the mapping x 7! JH(x), taking the limit for � ! 0

in the previous inequality gives

JH(x0) 6 JH(x̃).

It follows that x0 is a solution of (P0(y)).
We now prove Theorem 2.

Proof of Theorem 2: Lemma 7 proves that x0 is a solution
of (P0(y)). We now prove that x0 is in fact the unique solution. Let
z̃I be the argument of the maximum in the definition of ICH(I).
We define

ṽI =

1

||˜�III ||2�?
I

⇣

z̃I + ˜

�

⇤
I�

?
I
˜

�III
⌘

.

By definition of ICH(I), for every i 2 I, ṽI > 0 and hṽI , IIi = 1.
Thus, HI ṽI 2 ri(@JH(x0)). Moreover, since z̃I 2 KerHI , one has

HIvI = HIH
+,⇤
I �

⇤
�

?
I
˜

�III = �

⇤⌘ where ⌘ = �

?
I
˜

�III .

Thanks to Lemma 3, x0 is the unique solution of (P0(y)).
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Abstract—In this short paper we survey recent results char-

acterizing the fundamental draws and limitations of adaptive

sensing for sparse signal inference. We consider two different

adaptive sensing paradigms, based either on single-entry or

linear measurements. Signal magnitude requirements for reliable

inference are shown for two different inference goals, namely

signal detection and signal support estimation.

I. INTRODUCTION

In this short paper we survey recent results characterizing
the fundamental draws and limitations of adaptive sensing.
One of the key aspects of adaptive sensing is that the data
collection process is sequential and adaptive. In different
fields these sensing/experimenting paradigms are known by
different names, such as sequential experimental design in
statistics and economics (see [1], [2], [3], [4], [5]), active
learning or adaptive sensing/sampling in computer science,
engineering and machine learning (see [6], [7], [8], [9], [10],
[11], [12], [13], [14]). An essential aspect of adaptive sensing
is the intricate coupling between data analysis and acquisition,
which creates a powerful feedback structure. This is a double-
edged sword: it is key to harness the power of sequential
experimental design but also raises challenges in the analysis
of such methodologies – indeed it creates complicated and
strong dependencies in the data sequence.

We consider a model where the signal of interest is rep-
resented by a sparse vector x 2 Rn, meaning that most
entries of x are zero and only few of the entries are non-
zero. Specifically let S be a subset of {1, . . . , n} of non-
zero entries of x, and assume that for all i 2 {1, . . . , n}
such that i /2 S we have xi = 0. We refer to S as the
signal support set and this is our main object of interest. We
consider two distinct classes of problems: (i) signal detection,
where we want to test if S belongs to a particular class
of subsets of {1, . . . , n}, and (ii) support estimation, where
we desire to actually estimate S. The signal x in naturally
assumed to be unknown, but we can collect partial informa-
tion about it through noisy measurements. In particular we
consider generalizations of the normal means model allowing
for multiple and sequential measurements, therefore enabling
adaptive sensing strategies. Our focus is primarily on single-
entry observations, but in Section III we discuss also a different
(and statistically more powerful) sensing model which allows
for linear measurements of the signal - in what is often referred
to as Compressive Sensing (CS).

II. SINGLE-ENTRY MEASUREMENTS

This sensing model was first proposed in [15]. Measure-
ments are of the form

Yk = xAk + �

�1/2
k Wk , k = 1, 2, . . . ,

where Ak,�k are taken to be functions of {Yi, Ai,�i}k�1

i=1

,
and Wk are standard normal random variables, independent of
{Yi}k�1

i=1

and also independent of {Ai,�i}ki=1

. In words, each
measurement corresponds to a single signal entry corrupted
with additive Gaussian noise, and the choice of entry and
noise level can be controlled. However, there is a total sensing
budget constraint that must be satisfied, namely

1X

k=1

�k  m , (1)

where m > 0. In the above model Ak should be viewed as
the sensing action taken at time k, and �k is the precision
of the corresponding measurement. We have control over
both quantities. Informally stated, measurements are collected
sequentially, and for each measurement we can choose which
entry of x to observe, and what is the precision (i.e. accuracy)
of the measurement. We are allowed to collect as many
measurements as desired provided the cumulative precision
used satisfies the budget (1). Note that in this model we
are allowed to collect an infinite (but countable) number of
measurements, provided the precision �k converges to zero as
k grows. Although this might seem strange at first, it is not
entirely unreasonable in practice - in many sensing modalities
the precision is directly proportional to the amount of time
necessary to collect a measurement, and therefore (1) can
be viewed simply as a time constraint. This is the case in
various imaging modalities (e.g. in astronomy) where long
exposure times are used to reduce the noise level, which is
inversely proportional to the exposure time. It is important
to note that there are also settings where the actual number
of measurements is limited, and there is little control on the
precision level. In that case (1) might represent a constrain
on the total number of measurements, provided �k is not a
function of k. The results in the latter setting are similar to the
ones presented in the current paper, especially when studying
asymptotics (when both n and m grow).

It is important to note that we can consider both deter-
ministic sequential designs or random sequential designs. In
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the latter we allow the choices Ak and �k to incorporate
extraneous randomness, which is not explicitly described in the
model. The collection of conditional distributions of Ak,�k

given {Yi, Ai,�i}k�1

i=1

for all k is referred to as the sensing
strategy. Note that, within the sensing paradigm above we can
also consider non-adaptive sensing, meaning that the choice of
sensing actions and corresponding precision is made before
collecting any data. Formally this means that {Ak,�k}k2N
is statistically independent from {Yk}k2N. Note that a non-
adaptive design can still be random.

The case m = n is of particular interest, allowing a
direct comparison between adaptive and non-adaptive sensing
methodologies. When m = n we allow on average one unit
of precision per each of the signal entries. So, if there is no
reason to give preference to any particular entry of x, the
natural optimal non-adaptive sensing strategy should simply
measure each entry of x exactly once, with precision one.
This corresponds to the well studied normal means model.

For simplicity of presentation we consider only signals of
the form

xi =

⇢
µ if i 2 S
0 if i /2 S

,

where µ > 0 is called the signal amplitude. This restriction
is also considered in [16], [17] in the non-adaptive sensing
context and does not substantially hinder the generality of the
results presented in this manuscript.

As stated before we consider two different inference prob-
lems: (i) signal detection and (ii) support estimation. For the
detection problem (i) the goal is to determine if a signal
is present or absent. We formulate the problem as a binary
hypothesis testing, and test a simple null hypothesis against a
composite alternative. In particular the null hypothesis H

0

is
simply S = ;, and the alternative hypothesis H

1

is S 2 C,
where C is some class of non-empty subsets of {1, . . . , n}.
For simplicity of presentation we assume that all the sets in
C have the same cardinality s. A test procedure based on the
(adaptive) measurements is described by a binary test function
ˆ� ({Ai,�i, Yi}1i=1

) 2 {0, 1}, and a natural way to measure the
performance of such a test function is the worst case risk

R(

ˆ�) = P;(ˆ� 6= 0) + max

S2C
PS(

ˆ� 6= 1) ,

where PS denotes the joint probability distribution of
{Ai,�i, Yi}1i=1

for a given support set S. Characterizing the
relation between R(

ˆ�), n, m, µ, and C is our main objective.
The goal of the estimation problem (ii) is (statistically) more

ambitious, as we seek to actually identify the support set S. An
estimation procedure is a function ˆS mapping {Ai,�i, Yi}1i=1

to a subset of {1, . . . , n}. There are several sensible ways to
measure “closeness” between ˆS and the true support set S,
for instance the worst case probability of making any errors

max

S2C
PS [

ˆS 6= S] .

A somewhat more stringent metric is the worst case expected
number of errors maxS2C ES [| ˆS�S|], and clearly PS [

ˆS 6=
S]  ES [| ˆS�S|]. We will focus mainly on the first metric in

this manuscript, but remark that the two metrics are essentially
equivalent in several cases.

A. Single-entry Measurements: Results

In this section we present the fundamental tradeoffs for the
inference problems presented above. Clearly these results bear
some dependency on the class of sets C:

Definition II.1 (symmetric class). Let S be a random set,
drawn uniformly at random from C. If for all i 2 {1, . . . , n}
we have P(i 2 S) = s/n the class C is said to be symmetric.

In words, in a symmetric class of sets there is no reason to
give a priori preference to any individual entry. Many classes
C of interest satisfy this mild symmetry, for instance all the
classes in [16]. Of particular interest is the maximal class of all
the subsets of {1, . . . , n} with cardinality s, which corresponds
to lack of structure in the sparsity pattern S. If the class C is
smaller then we say the sparsity patterns S have structure. An
example of a structured class is presented later.

Theorem II.1 ([18]). Let C be a symmetric class, and let ˆ

�

be an arbitrary adaptive sensing testing procedure. For any
0 < ✏ < 1, if R(

ˆ

�)  ✏ then necessarily

µ �
r

2n

sm
log

1

2✏
.

As argued before, the case m = n is of particular interest,
as it allows for comparison between adaptive and non-adaptive
sensing performance: in that case the above bound is of
the order

p
2/s. It is remarkable that the extrinsic signal

dimension n plays no role in this bound, and only the intrinsic
signal dimension s is relevant. This is in stark contrast to what
is known for the same problem if one restricts to the classical
setting of non-adaptive sensing, as in [19], [20], [17]. For
instance, for the class of all subsets with cardinality s the
non-adaptive sensing lower bound is of the order

p
log(n/s2)

if s < o(
p
n). Therefore signals need to be much stronger in

order to be reliably detected when using non-adaptive sensing.
The above adaptive sensing lower bound is valid for any

symmetric class, and in particular for the maximal class of all
subsets S with cardinality s. For this class there is a adaptive
sensing methodology able to nearly achieve the lower bound.

Proposition II.1 ([18]). Let sn > log log log n and consider
the class C of all subsets with cardinality sn. Furthermore
let µ >

q
32 log log logn

sn
. There is an adaptive sensing testing

strategy for which
R(

ˆ

�) ! 0 ,

as n ! 1.

The mentioned procedure is based on the idea of distilled
sensing [15], but it does require some simple modifications
to attain the desired bound (see [18]). Note that the order
of the bound matches the one of the lower bound up to a
factor log log log n. It is conjectured that this is an artifact of
the specific procedure, however, there are currently no known
procedures able to tighten this gap. Perhaps more noteworthy
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is the fact that extra structure in the class C is not helpful in
the adaptive sensing detection scenario! This is quite different
than in the non-adaptive sensing case, where the structure of
the set C can play a very prominent role as well documented
in [16], [21], [22], for instance.

The estimation problem exhibit similar trends, but structure
of the set C can give important cues on the design of adaptive
sensing methodologies. We focus first on the unstructured
case where C is the class of all subsets of {1, . . . , n} with
cardinality s.

Theorem II.2 ([18]). Let C be the class of all subsets with
cardinality s, and let ˆS be an arbitrary adaptive sensing
support estimator. For any 0 < ✏ < 1, if maxS2C PS [

ˆS 6= S] 
maxS2C ES [| ˆS�S|]  ✏ then necessarily

µ2 �

s
2n

m

✓
log s+ log

n� s

n+ 1

+ log

1

2✏

◆
.

Again, focusing on the case m = n and assuming also the
signal is sufficiently sparse (meaning sn = o(n)), we see that
µ needs to be on the order of

p
2

n
m log(sn) to ensure the

probability of making any errors goes to zero as n increases.
This result is again in stark contrast with what is possible with
non-adaptive sensing, where the signal magnitude µ needs
to be on the order of

p
2 log n to ensure the probability of

error goes to zero. Furthermore the above lower bound is
tight, as there is a procedure that allows for exact support
recovery with probability approaching 1 provided the signal
amplitude is of the order 2

p
log sn + log log n (see [23], [24]).

The log log n term and the “wrong” constant in the bound
are artifacts of their method (which is parameter adaptive and
agnostic about sn), and can be avoided when considering a
different approach - running in parallel n entry-wise properly
calibrated sequential likelihood ratio tests, which require the
knowledge of the sparsity level sn. Such a procedure achieves
precisely the lower bound in the theorem.

It is interesting to notice that, unlike for detection, structure
in the class C can be extremely helpful for estimation. This is
the case both for adaptive and non-adaptive sensing. Perhaps
the simplest type of structure to consider is when the set S
is an “interval”, meaning all the entries of S are contiguous
(e.g. S = {i, i + 1, i + sn � 1} for some i). Then adaptive
sensing can successfully recover the support with probability
approaching 1 provided the signal magnitude is of the orderp

2 log(sn)/sn, and this is the optimal rate (unpublished
work). Adaptive sensing under other structural constrains (e.g.,
cliques in a complete graph, paths in a graph) have to the
best of our knowledge not been thoroughly studied yet, and
therefore remain an important direction for future work.

III. LINEAR MEASUREMENTS AND COMPRESSED SENSING

The sensing model described in the previous section can be
modified to allow for linear measurements, in lieu of single-
entry samples. Formally the sensing model becomes

Y = Ax+W ,

where Y 2 Rl denotes the observations, A 2 Rl⇥n is
the design/sensing matrix, x 2 Rn is the unknown signal,
and W 2 Rl is a normal multivariate vector with zero
mean an identity covariance matrix. The rows of A can be
designed sequentially, and the ith row (denoted by Ai·) can
depend explicitly on {Yj ,Aj·}i�1

j=1

. Note that Wi is a normal
random variable independent of {Yj ,Aj·,Wj}i�1

j=1

and also
independent of Ai·. This setting is particularly interesting
when we impose norm constrains on A, namely

E
⇥
kAk2F

⇤
 m , (2)

where k · kF is the Frobenius matrix norm. Like (1), this
sensing budget condition is very natural and the issue of noise
is otherwise irrelevant. The norm of each row of A plays here
the role of the precision parameters �k in (1).

Inference based on linear measurements is at the heart of
compressed sensing. Most existing literature focused on the
non-adaptive sensing paradigm, and identified strategies to
recover signals from a small number of measurements, see for
instance [25], [26], [27]. In our setting this means l is chosen
to be as small as possible, while making the restriction l = m.
In the results described below we consider only the sensing
budget restriction (2) and assume the number of measurements
l can be potentially infinite.

As linear measurements are more powerful/general than
entry-wise ones, we might expect some performance improve-
ment in both the detection and estimation inference tasks. The
detection problem was been carefully studied in [28] and the
author has shown that for reliable detection it is necessary
and sufficient for the signal magnitude to be of the order
1

sn

p
n/m. Although this result is somewhat similar to the

one in Theorem II.1 we notice that the dependency on the
sparsity level sn is better, and therefore weaker signals can
be detected using linear measurements. Perhaps surprisingly
adaptive sensing is of no help in this scenario, and detection
procedures achieving the optimal performance can be non-
adaptive. Furthermore, the structure of the class C does not
help, provided the class is symmetric. This means that, like
in the single-entry measurement case, structure is of no
use for detection. However, this statement is true both for
adaptive and non-adaptive sensing paradigms, meaning that
the extra flexibility of adaptive sensing provides no advantage
for detection using linear measurements.

For the estimation problem the story is a bit different:
adaptive sensing can exhibit an advantage over non-adaptive
sensing, as documented in [29], [30], [31]. Furthermore struc-
tural information about S can be extremely helpful. In [18]
it is shown that for the unstructured case the same lower
bound as in Theorem II.2 applies in the context of linear
measurements (although the proof of the result requires a few
small modifications). Procedures achieving (or nearly achiev-
ing) this bound exist, namely [31], [32]. For the non-adaptive
sensing paradigm information theoretical lower bounds have
also been shown, namely the signal amplitude must exceed
a constant times

p
n
m�2

log n, as shown for instance in [33].
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The factor of n/m is the sensing energy per dimension andp
log n is needed to ensure that the signal is larger than

the largest noise contribution. Therefore adaptive sensing is
advantageous, especially in the typical case when the signal
dimension n is very large.

If the sparsity patterns exhibit some structure there are
also results contrasting adaptive and non-adaptive sensing, but
the story is far from complete. In [34] the authors devise
an algorithm that can identify the support set S with high
probability when S is an “interval” (see the last paragraph
of Section II) provided the signal magnitude is of the orderp

(n/m)(log(sn)/s2n). Furthermore they prove a lower bound
of the form

p
(n/m)/s2n, which matches the upper bound

apart from the
p
log sn factor (which does not appear to be an

artifact of the algorithm). Again, note that linear measurements
are advantageous over entry-wise ones, for which signal mag-
nitude must scale like

p
(n/m)(log(sn)/sn) for this problem.

IV. FINAL REMARKS

In this brief note we surveyed existing results over adaptive
sensing of sparse signals. We considered both entry-wise
and linear measurements and clarified in which situations
can adaptive sensing yield interesting gains over non-adaptive
designs. A clear picture exists for the unstructured scenario,
where one assumes only that the support set S is sparse. If
in addition one can make structural assumptions over S than
it is clear that support estimation is possible for even weaker
signals. With so few results available along those lines this
remains an interesting avenue for future research.
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Abstract—We analyze the sampling of solutions to the
Helmholtz equation (e.g. sound fields in the harmonic
regime) using a least-squares method based on approxima-
tions of the solutions by sums of Fourier-Bessel functions
or plane waves. This method compares favorably to others
such as Orthogonal Matching Pursuit with a Fourier
dictionary. We show that using a significant proportion
of samples on the border of the domain of interest
improves the stability of the reconstruction, and that using
cross-validation to estimate the model order yields good
reconstruction results.

I. INTRODUCTION

Sampling an acoustical field (i.e. the spatial and tem-
poral behavior of sound pressure) or a mechanical field
(e.g. distribution of velocities on a vibrating membrane)
is an ubiquituous task in experimental acoustics and
mechanics. Usually, these fields are sampled on a uni-
form grid with density chosen according to the sampling
theorem. However, in the particular cases mentionned
above, the fields are known to satisfy the wave equation

�u� 1

c2
@2u

@t2
= 0, (1)

or, in the harmonic regime, the Helmholtz equation

�u+ k2u = 0, (2)

in two or three dimensions, where c is the wave velocity,
and k the wavenumber. This fact allows to sample such
fields with a reduced number of samples, with a least-
squares method described in section 2. Of interest here
is the choice of the repartition of the sampling points on
the domain of interest, and the choice of the order of
approximation used in the least-squares reconstruction.
In section 3, we recall the results given in [1] on the
stability of the reconstruction in function of the sampling
scheme for the case of the disk, and extend it to the 3D-
ball. We also gives numerical evidence for the case of

the square, further showing that sampling on the border
of the domain as well as inside improves the stability of
the reconstruction. Finally, we give results of numerical
simulations using cross-validation for the determination
of the model order in section 4.

II. RECONSTRUCTION METHOD

Our goal here, given a solution to the Helmholtz
equation (2) in a domain D ⇢ Rd, d = 2 or 3, is to
reconstruct it in a domain ⌦ ⇢ D from a limited number
of punctual measurements, without knowing the shape of
D or the boundary conditions on @D. The reconstruction
scheme we use is based on the Vekua theory and least-
squares approximations, and has already been shown to
compare favorably with existing methods such as OMP
using sparsity in the Fourier domain [1], and to give
good results in experimental settings [2].

The Vekua theory [3], in its general formulation,
allows to build approximations of solutions to general
elliptic partial differential equations, by building opera-
tors mapping these solutions to harmonic functions and
reciprocally. Approximation of harmonic functions by
harmonic polynomials can then be translated as approx-
imation of solutions of the PDE by the images of the
polynomials. The particular case of the Helmholtz equa-
tion in 2 and 3 dimensions has been analyzed by Moiola
et al. [4]. In this case, the images of the polynomials
are the so-called generalized harmonic polynomials. In
two dimensions, the space of generalized harmonic poly-
nomials of order L is given in polar coordinates (r, ✓)
by

HPk,L = span

l=�L,··· ,L
eil✓Jl(kr)

where Jl is the l-th Bessel function. In three dimensions,
these spaces are defined in spherical coordinates (r, ✓,�)
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by
HPk,L = span

l=0,··· ,L
m=�l,··· ,l

Ylm(✓,�)jl(kr)

where Ylm are the spherical harmonics, and jl the
spherical Bessel functions. Note that in two dimensions,
the dimension of HPk,L is 2L+ 1, while it is (L+ 1)

2

in three dimensions.
Their main result, given here in a simplified form and

for convex domains, is as follows:

Theorem 1. [4] Let u 2 HK
(⌦),K � 1 be a solution

to the Helmholtz equation in the convex domain ⌦ 2
Rd, d = 2, 3. Then, for j < K, there exists a generalized
harmonic polynomial ũL of order L such that, in two
dimensions,

ku� ũLkHj  C

✓
L

logL

◆K�j

kukHK ,

and in three dimensions,

ku� ũLkHj  CL�(K�j)kukHK ,

where � depends only on the shape of ⌦.

The result also holds for star-shaped domains, with a
slower convergence. Identical results are also available
for approximation by plane waves.

To reconstruct a solution u to the Helmholtz equation
using n samples, we fix an order of approximation L
such that m = dimHPk,L  n, and estimate u by the
function ũ 2 HPk,L minimizing the sum of the squares
of the errors between values uj sampled at the points
xj and ũ(xj), the sampling points being drawn using a
predefined density on ⌦:

ũ = min

û2HPk,L

nX

j=1

|û(xj)� uj |2.

Such a reconstruction scheme is not always stable. A
theorem, from Cohen et al [5], gives indication whether
the reconstruction ũ in a m-dimensional subspace using
n samples drawn with probability density ⌫ is stable.
With (Lj)j=1···m an orthogonal basis(with respect to the
scalar product defined by the density ⌫) of the subspace,
we define

K(m) = max

x2⌦

mX

j=1

|Lj(x)|2 .

The result is as follows:

Theorem 2. [5] Let r > 0 be arbitrary but fixed and let
 :=

1�log 2

2+2r . If m is such that

K(m)  
n

log n
, (3)

then, one has

E(ku� ũk2)  (1 + ✏(n))�m(u)2 + 8M2n�r, (4)

where ✏(n) :=

4
logn ! 0 as n ! +1, �m(u) is the

best approximation error, M a upper bound of |u| and
ũ the least square approximation of u thresholded such
that |ũ|  M .

This suggests that the slowest K(m) increases, the
largest m can be, allowing a better reconstruction. The
choice of the density ⌫ is here important, as K is
dependent on it. This means that choosing a adequate
density allows to use a lower number of samples that,
e.g. the uniform density. Note however that the choice
of the density ⌫ also affects the norm used in theorem 2
to measure the error, which can be different than the
norm we are interested in. We are here interested in the
stability for the standard L2 norm. We thus choose a
density of the form ⌫ = (1� ↵)�+ ↵⌫ 0 where � is the
uniform density, and ⌫ 0 an arbitrary fixed density. The
choice of the density ⌫ 0 and the parameter ↵ is discussed
in the next section for some particular cases.

III. CHOICE OF THE SAMPLE DISTRIBUTION

Here, we will concentrate on measures ⌫ = (1 �
↵)� + ↵�, where the support of � is the boundary of
⌦. This heuristic is supported by the following results
on the disk and the ball. For these two cases, we will
give estimations of K for particular values of m, i.e.
the size of the spaces HPk,L, m = 2L + 1 in 2D and
m = (L+ 1)

2 in 3D.
For the case of the disk with densities ⌫↵ = (1 �

↵)�+↵� where � is the uniform measure on the circle,
the Fourier-Bessel functions, after normalization, form
an orthogonal basis for these measures. Using properties
of the Bessel functions, we can estimate the behaviour
of K(m) in function of ↵:

Theorem 3. [1] For the approximation by generalized
harmonic polynomials on the unit disk, one has for
sufficiently large m

K(2L+ 1) � c
0

+ c
1

L2

when ↵ = 0 for any c
1

< 1/4 and where c
0

depends on
c
1

and �, and

K(2L+ 1)  C +

2L+ 1

↵
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Fig. 1. Reconstruction error in function of the order model for 400
measurements, with different proportions ↵ of samples on the border.

when ↵ > 0, and C depends on � and ↵.

A similar result is available for plane waves approxi-
mations. This theorem shows that using samples on the
border needs a number of samples proportionnal to the
dimension of HPk,L to ensure stability, while sampling
only inside the disk needs more samples.

The effect of the coefficient ↵ is shown on figure 1,
where the approximation error in function of ↵ and the
order of the model is given, for the recovery of a solution
of the Helmholtz equation with k = 12, using n = 400

measurements. We see that a large proportion of samples
on the border allows a large order model, which improve
the reconstruction result. However, using samples on the
border only (↵ = 1) is detrimental to the reconstruction
error, as in this case, theorem 2 controls the error in the
norm defined by ⌫

1

which is the L
2

-norm on the circle
only.

We compare on figure 2 the results of the least-
squares method with Fourier-Bessel functions, OMP
with a large dictionary of Fourier modes defined on a
square containing the disk, and the least-squares method
with a smallest dictionary. The reconstruction of the
least-squares method combined with the Fourier-Bessel
approximation are clearly better than the two other tested
methods.

A slightly modified proof, using properties of the
spherical Bessel functions and of the spherical harmon-
ics, yields the following result for the 3D case, with �
the uniform measure on the sphere:

Theorem 4. For the approximation by generalized har-
monic polynomials on the unit ball, one has for suffi-
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Fig. 2. Reconstruction error in function of the number of measure-
ments for least square with Fourier-Bessel function, Fourier modes,
and Orthogonal Matching Pursuit with a dictionnary of Fourier modes

ciently large L

K((L+ 1)

2

) � c
0

+ c
1

L3

when ↵ = 0 for any c
1

< 1/9 and where c
0

depends on
c
1

and �, and

K((L+ 1)

2

)  C +

(L+ 1)

2

↵

when ↵ > 0, where C depends on � and ↵.

In this case, the number of measurements needed
to ensure stability grows faster than the dimension of
HPk,L for the uniformly dense sampling, while being
proportional to this dimension when using additional
samples on the border.

We now turn to the case of the square. As neither the
Fourier-Bessel functions, nor the plane waves, form an
orthogonal basis, we constuct one by orthogonalizing the
plane waves, using the Gram matrix of the plane waves
families which can be computed exactly in the case of
the measures described below.

We numerically compute K(m) for three differents
distributions:

• ⌫
0

= �, the uniform distribution on the square
• ⌫↵ = (1 � ↵)� + ↵�, where � is the uniform

distribution on the boundary of the square
• ⌫ 0↵ = (1 � ↵)� + ↵�0, where �0 is the measure

on the boundary with weight 1/4⇡
p
1� s2 where

s = min(x, y).
The estimated values of K(m) for ⌫

0

, ⌫
1/2 and ⌫ 0

1/2
are given on figure 3. Here, sampling on the border of
the square improves the stability of the reconstruction
compared to the uniform case, but still needs a high
number of samples.

Using the non-uniform sampling on the border, with
more samples in the sections of the boundary furthest
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Fig. 3. Numerical evaluation of K for three different samples
distribution on the square.

from the origin, makes the behaviour of K(m) compa-
rable to m, which is the best case possible.

IV. CHOICE OF THE MODEL ORDER

Once the number of samples and their distribution are
fixed, the model order used in the reconstruction has to
be chosen. While a sufficient number of plane waves or
Fourier-Bessel functions are needed (physical arguments
recommend a number proportionnal to the product of the
wavenumber and the diameter of the domain), using a too
large order can result in overfitting, as visible figure 1.

A way to estimate the best order m to use is the cross-
validation. Given m samples, we reconstruct f from a
subset of m0 samples, and compute the reconstruction
error on the remaining m�m0 samples. We then repeat
with different subsets, and chose the order for which the
average error is minimal. Figure 4 compares the best
reconstruction error knowing f , and the reconstruction
error using the order estimated using the cross-validation.

V. CONCLUSION

The sampling of solutions to the Helmholtz equation is
interesting both for its experimental applications as well
as for theoretical developments. We showed here that a
careful choice of the density of the samples can improve
the stability of the reconstruction, with theoretical results
in simple cases, and numerical simulations in more
general settings. We also show that using cross-validation
to estimate the model order yields good results.

A general sampling strategy, i.e. a choice of the sample
density, dependent on the shape of the domain of interest
and of the frequency k, and possibly on the order m is
yet to be designed.
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Fig. 4. Comparison of the reconstruction using the generalized cross
validation to estimate the order model, and the best reconstruction
error.
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Abstract—In an effort to extend the classical Lagrangian
interpolation tools, new interpolating methods that use general
interpolating functions are explored. The Generalized Empirical
Interpolation Method (GEIM) belongs to this class. It generalizes
the plain Empirical Interpolation Method [1] by replacing the
evaluation at interpolating points by application of a class
of interpolating linear functions. Since its efficiency depends
critically on the choice of the interpolating functions (that are
chosen by a Greedy selection procedure), the purpose of this
paper is therefore to provide a priori convergence rates for the
Greedy algorithm that is used to build the GEIM interpolating
spaces.

I. INTRODUCTION

The extension of the Lagrangian interpolation process is an
old problem that is still currently subject to active research
(see, e.g. [1] and also the activity concerning the kriging [2],
[3] in the stochastic community). While this classical method
approximates general functions by finite sums of well chosen,
linearly independent interpolating functions (e.g. polynomial
functions) and the optimal location of the interpolating points
is well documented (and completely solved in one dimension),
the question remains on how to approximate general functions
by finite expansions involving general interpolating functions
and how to optimally select the interpolation points in this
case.
One step in this direction is the Empirical Interpolation

Method (EIM, [4], [5], [1]) that has been developed in the
broad framework where the functions f to approximate belong
to a compact set F of a Banach space X . The set F is
supposed to be such that any f ∈ F is approximable by
linear combinations of small size. In particular, this is the
case when the Kolmogorov n−width of F in X is small.
Indeed, the Kolmogorov n−width of F in X is defined by
dn(F,X ) := inf

Xn⊂X
dim(Xn)=n

sup
x∈F

inf
y∈Xn

‖x − y‖X (see [6]) and

measures the extent to which F can be approximated by
finite dimensional spaces Xn ⊂ X of dimension n. The
Empirical Interpolation Method builds simultaneously the set

of interpolating functions and the associated interpolating
points by a greedy selection procedure (see [4]).
A recent generalization of this interpolation process consists

in replacing the evaluation at interpolating points by appli-
cation of a class of interpolating continuous linear functions
chosen in a given dictionary Σ ⊂ L(F ) and this gives rise
to the so-called Generalized Empirical Interpolation Method
(GEIM, [7]). In this newly developed method, the particular
case where the space X = L2(Ω) is considered, with Ω being
a bounded spatial domain of Rd and F being a compact set
of L2(Ω).
In the present work, we analyze the quality of the finite

dimensional subspaces Xn contained in the span of F built
by the greedy selection procedure of GEIM together with the
properties of the associated interpolation operator. For this pur-
pose, the accuracy of the approximation in Xn of the elements
of F will be compared to the best possible performance which
is the Kolmogorov n− width dn(F,L2(Ω)).
The methodology developed in this paper is in the spirit of

the greedy reduced basis method. Alternative approaches exist
like POD and gappy POD or even Adaptive Cross Approxi-
mation. We refer to the review paper [8] for a comparative
presentation of all these sampling approaches.
The proceeding is organized as follows: after a brief recall

of GEIM’s Greedy algorithm (section II), we will analyze
in sections III and IV some convergence decay rates of the
generalized empirical interpolation error as the dimension n
of Xn increases and when dn(F,L2(Ω)) has a polynomial or
an exponential decreasing behavior.

II. THE GENERALIZED EMPIRICAL INTERPOLATION
METHOD

In the following, we assume that the dimension of the
vectorial space spanned by F is of dimension ≥ N .
In a similar procedure as in the Empirical Interpolation

Method (EIM) [4], [5], [1], the Generalized EIM allows
to define simultaneously the set of interpolating functions
recursively chosen in F together with the associated linear
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functions selected from a dictionary of continuous linear forms
Σ ⊂ L(F ), with norm 1 in L2(Ω). The dictionary has the
additional property that if ϕ ∈ F is such that σ(ϕ) = 0 for any
σ ∈ Σ, then ϕ = 0. The selection of the interpolating functions
and linear forms is based on a greedy selection procedure as
outlined in [7].
The first interpolating function is, e.g.: ϕ0 =

arg supϕ∈F ‖ϕ‖L2(Ω). The first interpolating linear form
is σ0 = arg supσ∈Σ |σ(ϕ0)|. We then define the first basis
function as q0 =

ϕ0

σ0(ϕ0)
. The second interpolating function is

ϕ1 = arg supϕ∈F ‖ϕ−σ0(ϕ)q0‖L2(Ω). The second interpolat-
ing linear form is σ1 = arg supσ∈Σ |σ(ϕ1−σ0(ϕ1)q0)| and the

second basis function is defined as q1 =
ϕ1 − σ0(ϕ1)q0

σ1(ϕ1 − σ0(ϕ1)q0)
.

We then proceed by induction : assume that we have
built the set of interpolating functions {q0, q1, . . . , qN−1}
and the set of associated interpolating linear forms
{σ0,σ1, . . . ,σN−1}, for 1 ≤ N ≤ Nmax, with Nmax ≤ N
being an upper bound fixed a priori. For N ≤ 1, we first solve
the interpolation problem: find {αN

j (ϕ)}j such that: ∀i =

0, . . . , N −1, σi(ϕ) =
N−1
∑

j=0
αN
j (ϕ)σi(qj). We then compute

JN [ϕ] =
N−1
∑

j=0
αN
j (ϕ)qj and evaluate εN(ϕ) = ‖ϕ −

JN [ϕ]‖L2(Ω), ∀ϕ ∈ F . We define ϕN = arg supϕ∈F εN(ϕ)
and σN = arg supσ∈Σ |σ(ϕN − JN [ϕN ])|. The next basis

function is then qN =
ϕN − JN [ϕN ]

σN (ϕN − JN [ϕN ])
We finally set XN+1 ≡ span {qj , j ∈ [0, N ]} =

span {ϕj, j ∈ [0, N ]}. It has been proven in [7]:
Lemma 1: For any N ≤ N , the set {qj, j ∈ [0, N −

1]} is linearly independent and XN is of dimension N . The
generalized empirical interpolation procedure is well-posed in
L2(Ω) and ∀ϕ ∈ F , the interpolation error satisfies:

‖ϕ− JN [ϕ]‖L2(Ω) ≤ (1 + ΛN ) inf
ψN∈XN

‖ϕ− ψN‖L2(Ω)

where ΛN is the Lebesgue constant in the L2 norm: ΛN :=

sup
ϕ∈F

‖JN [ϕ]‖L2(Ω)

‖ϕ‖L2(Ω)
.

Remark 1: In a similar way as in the classical Lagrangian
interpolation, the Lebesgue constant ΛN defined in our gener-
alized interpolation procedure depends both on set F and on
the choice of the dictionary of continuous linear forms Σ but
no detailed analysis of the behavior of ΛN as a function of F
or Σ has been carried out so far.
Remark 2: In practice the selection of the interpolation

functions in F and the interpolating elements in the dictionary
can be done by discretizing both F and Σ as is the case for
standard greedy approximations like in [5], [6]; an alternative
approach is [9] where the selection is done through a contin-
uous algorithm based on an iterative sequence of optimization
problems (solved by Newton methods) that seek to maximize
the error between the RB approximation and the underlying
true solution. The interpolants can be efficiently computed
recursively as outlined in [10].

III. PRELIMINARY NOTATIONS AND BASIC PROPERTIES

In what follows, we denote by (ϕ∗
n)n≥0 the orthonormal

system obtained from (ϕn)n≥0 by Gram-Schmidt orthogonal-
ization.
For any n ≥ 1, we define the orthogonal projector Pn from

X onto Xn which is given by Pn(f) =
n−1
∑

j=0
< f,ϕ∗

j > ϕ∗
j ,

∀f ∈ F , where < ., . > is the L2(Ω) scalar product. In

particular: ϕn = Pn+1(ϕn) =
n
∑

j=0
an,jϕ∗

j , with an,j :=<

ϕn,ϕ∗
j >, 0 ≤ j ≤ n.

Finally, let us denote τ0(F )L2(Ω) := d0(F,L2(Ω)) and, for
any n ≥ 1: τn := τn(F )L2(Ω) := maxf∈F ‖f − Pn(f)‖L2(Ω)

and by γn the constant γn = 1/(1 + Λn).
We begin by proving the two following lemmas:
Lemma 2: For any n ≥ 1, ‖ϕn − Pn(ϕn)‖L2(Ω) ≥

γnτn(F ).
Proof: From lemma 1 applied to ϕ = ϕn we have

‖ϕn − Pn(ϕn)‖L2(Ω) ≥ γn‖ϕn − Jn(ϕn)‖L2(Ω). But ‖ϕn −
Jn(ϕn)‖L2(Ω) ≥ ‖ϕ−Jn(ϕ)‖L2(Ω) for any ϕ ∈ F according
to the definition of ϕn. Thus ‖ϕn −Pn(ϕn)‖L2(Ω) ≥ γn‖ϕ−
Jn(ϕ)‖L2(Ω) ≥ γn‖ϕ− Pn(ϕ)‖L2(Ω).
Lemma 3: Let A be the lower triangular matrix defined by

A := (ai,j)∞i,j=0 (ai,j := 0, j > i). A has two important
properties:

• P1: γnτn ≤ |an,n| ≤ τn.

• P2: For every m ≥ n,
m
∑

j=n

a2m,j ≤ τ2n.

Proof:

• P1: ∀f ∈ F : Pn(f) =
n−1
∑

j=0
< f,ϕ∗

j > ϕ∗
j . In particular:

ϕn−Pn(ϕn) = an,nϕ∗
n ⇒ ‖ϕn−Pn(ϕn)‖2L2(Ω) = a2n,n.

The upper bound is thus obvious and Lemma 2 gives the
lower bound.

• P2: For every m ≥ n:
m
∑

j=n

|am,j |2 = ‖ϕm −

Pn(ϕm)‖2L2(Ω) ≤ maxf∈F ‖f − Pn(f)‖2 = τ2n.

IV. A PRIORI CONVERGENCE RATES OF THE GEIM
GREEDY METHOD

In order to get convergence decay rates in the generalized
interpolation error of our method, we first note that lemma 2
shows that the GEIM’s Greedy algorithm is what is called in
[11] a ”weak Greedy algorithm” of parameter γn = 1/(1+Λn)
that depends on the dimension of Xn.
Thanks to this observation, we shall derive convergence

decay rates in the sequence (τn)n≥0. This task consists in
extending the proofs of [11] where the constant case γn = γ
was addressed and where the following two results were
proven in Corollary 3.3:

i) If dn(F ) ≤ C0n−α for n ≥ 1, then τn ≤
C025α+1γ−2n−α for n ≥ 1.

ii) If dn(F ) ≤ C0e−c0n
α

for n ≥ 1, then τn ≤√
2C0γ−1e−c1n

α

for n ≥ 1, where c1 := 2−1−2αc0.
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In order to extend i) and ii) to the more general case where
γ depends on the dimension n, the following preliminary
theorem is required:
Theorem 4: For any N ≥ 0, consider the weak Greedy

algorithm with constant γN in L2(Ω) associated with the
compact set F . We have the following inequalities between
τN and dN := dN (F,L2(Ω)) : for any K ≥ 1, 1 ≤ m < K

K
∏

i=1

τ2N+i ≤
1

K
∏

i=1
γ2N+i

(

K

m

)m (

K

K −m

)K−m

τ2mN+1d
2(K−m)
m .

Proof: This result is an extension of Theorem 3.2 of [11]
to the case where the parameter of the weak Greedy algorithm
(γN ) depends on the dimension of the reduced space XN . Its
proof is a slight modification to the one provided in [11] using
γN and the properties P1 and P2 stated in Lemma 3.
Using theorem 4, convergence rates in the sequence (τn)n≥0

when (dn)n≥0 has a polynomial or an exponential decay can
be inferred and lead to lemmas 5 and 6:
Lemma 5 (Polynomial decay of (dn)n≥0): For any n ≥ 1,

let n = 4( + k (where ( ∈ {0, 1, . . .} and k ∈ {0, 1, 2, 3}).
Assume that there exists a constant C0 > 0 such that ∀n ≥ 1,
dn(F,L2(Ω)) ≤ C0n−α, then τn ≤ C0βnn−α, where β1 = 2

and for n ≥ 2: βn = β4%+k :=
√

2β%1
1

%2
∏

i=1
γ

1
"2

%1−' k

4 (+i

(2
√
2)α

and (1 = 2(+ + 2k
3 ,, (2 = 2

(

(+ -k
4 .
)

.
Proof: The proof is done by recurrence over n. We

initialize the reasoning by proving that τ1 ≤ 2C0 and then
prove the general statement for n ≥ 2.
Case n = 1: We recall that ϕ0 = arg supϕ∈F ‖ϕ‖L2(Ω)

and that P1 is the projector operator onto span {ϕ0}. We
set: f1 = arg τ1 = argmaxf∈F ‖f − P1(f)‖L2(Ω) and let
µ ∈ F span the one dimensional subspace of F for which
d1 ≥ ‖f − Pµ(f)‖L2(Ω) for any f ∈ F (Pµ being the
projector operator onto span {µ}). We have: τ1 = ‖f1 −
P1(f1)‖L2(Ω) = ‖f1 − Pµ(f1) + Pµ(f1) − P1(f1)‖L2(Ω) =
‖f1−Pµ(f1)−P1 (f1 − Pµ(f1))+Pµ(f1)−P1Pµ(f1)‖L2(Ω) ≤
d1 + ‖Pµ(f1)− P1Pµ(f1)‖L2(Ω).

We have: ‖Pµ(f1) − P1Pµ(f1)‖L2(Ω) = ‖< f1, µ > µ

‖µ‖2L2(Ω)

−

〈< f1, µ > µ,ϕ0〉ϕ0

‖µ‖2L2(Ω)‖ϕ0‖2L2(Ω)

‖L2(Ω) =
| < f1, µ > |
‖µ‖L2(Ω)

‖ µ

‖µ‖L2(Ω)
−

< ϕ0, µ > ϕ0

‖µ‖L2(Ω)‖ϕ0‖2L2(Ω)

‖L2(Ω).

Since for any x, y ∈ F with norm 1 we have
‖x− < x, y > y‖L2(Ω) = ‖y− < x, y > x‖L2(Ω),
we deduce that : ‖Pµ(f1) − P1Pµ(f1)‖L2(Ω) =
| < f1, µ > |
‖µ‖L2(Ω)

‖ ϕ0

‖ϕ0‖L2(Ω)
− < ϕ0, µ > µ

‖µ‖2
L2(Ω)‖ϕ0‖L2(Ω)

‖L2(Ω).

Hence: τ1 ≤ d1 +
| < f1, µ > |

‖µ‖L2(Ω)‖ϕ0‖L2(Ω)
‖ϕ0 −

< ϕ0, µ > µ

‖µ‖2
L2(Ω)

‖L2(Ω) ≤ d1

(

1 +
| < f1, µ > |

‖µ‖L2(Ω)‖ϕ0‖L2(Ω)

)

≤ 2d1.

Remark 3: In the case where ‖ϕ0‖L2(Ω) ≥ γ0‖f‖L2(Ω) for
any f ∈ F (0 < γ0 ≤ 1), we would have obtained τ1 ≤
d1

(

1 + 1
γ0

)

.

Case n ≥ 2 : Let n = N + K for any N ≥ 0,
K ≥ 2. If i ≤ K , we have τn = τN+K ≤ τN+i

from the monotonicity of (τn)n≥0. By combining this in-
equality with theorem 4, if 1 ≤ m < K , we derive

that τn ≤ 1
K
∏

i=1
γ

1
K

N+i

√

(

K

m

)
m

K
(

K

K −m

)1−m

K

τ
m

K

N+1d
1−m

K
m ≤

1
K
∏

i=1
γ

1
K

N+i

√
2τ

m

K

N+1d
1−m

K
m , since x−x(1− x)x−1 ≤ 2 for any x,

0 < x < 1. We now use that dm ≤ C0m−α and the recurrence
hypothesis in N +1 < n : τN+1 ≤ C0βN+1(N +1)−α which

yields: τN+K ≤ C0

√
2

1
K
∏

i=1
γ

1
K

N+i

β
m

K

N+1ξ(n)
α(N+K)−α where

ξ(n) =
n

m

(

m

N + 1

)
m

K

.

Any n ≥ 2 can be written as n = 4(+ k with ( ∈ {0, 1, . . .}
and k ∈ {0, 1, 2, 3}. If k = 1, 2 or 3, it can easily be proven
that ξ(n) ≤ 2

√
2 by setting N = 2(− 1, K = 2( + 2, m =

( + 1 if k = 1 and ( ≥ 1, N = 2(, K = 2(+ 2, m = ( + 1
if k = 2 and ( ≥ 0 and N = 2(+1, K = 2(+2, m = (+1
if k = 3 and ( ≥ 0. These choices of N, K and m combined
with the upper bound of ξ yield the result τn ≤ C0βnn−α in
the case k = 1, 2 or 3.
In the case n = 4( (( ≥ 1), using the fact that τN+1 ≤ τN ,

we can derive that τn ≤ 1
K
∏

i=1
γ

1
K

N+i

√
2τ

m

K

N d
1−m

K
m . If we choose

N = K = 2( and m = (, the previous inequality directly

yields τ4% ≤ C0
√
2β2%

1
2%
∏

i=1
γ

1
2"
2%+i

(2
√
2)α(4()−α.

Lemma 6 (Exponential decay in (dn)n≥0): Assume
that there exists a constant C0 > 0 such that ∀n ≥ 1,
dn(F,L2(Ω)) ≤ C0e−c1n

α

, then τn ≤ C0βne−c2n
α

,

where βn :=
1

'n

2 (
∏

i=1
γ

1
!n
2 "

)n

2 *+i

√

2β)n

2 * for n ≥ 2, β1 = 2 and

c2 := 2−1−3αc1.

Proof: The proof is done by recurrence over n.
The case n = 1 is addressed by following the same lines as
in lemma 5.
In the case n = 2, we have: τ2 ≤ τ1 ≤ 2C0.

For n ≥ 3, we start from τN+K ≤ 1
K
∏

i=1
γ

1
K

N+i

√
2τ

m

K

N+1d
1−m

K
m

and treat the cases n = N+K = 2( and n = N+K = 2(+1
separately (( ≥ 1).
If n = N +K = 2(, we choose N = K = ( and m = +K

2 ,.
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The inequality yields τ2% ≤
1

%
∏

i=1
γ

1
"

%+i

√
2τ%e−c2(2%)

α

.

In a similar procedure, the desired result can be inferred for
n = N +K = 2( + 1 if we choose N = (, K = ( + 1 and
m = +K

2 ,.
Remark 4: 1) In the case where γn is constant γn = γ,
lemmas 5 and 6 yield results that are similar to the ones
obtained in [11] (see results i) and ii) above).

2) In the case where (γn)n≥1 is a monotonically decreasing
sequence, the following bounds can be derived for τn:

• If dn(F,L2(Ω)) ≤ C0n−α for any n ≥ 1,
then τn ≤ C0βn−α for n ≥ 1, with β :=
23α+1 (min1≤j≤n γj)

−2 = 23α+1γ−2
n .

• If dn(F,L2(Ω)) ≤ C0e−c1n
α

for any n ∈
{1, 2, . . .}, then τn ≤ C0βe−c2n

−α

for n ≥ 1, with
β := 2 (min1≤j≤n γj)

−2 = 2γ−2
n .

Lemmas 5 and 6 are the keys to derive the decay rates of
the interpolation error of the GEIM Greedy algorithm. This is
the purpose of the following theorem:
Theorem 7: 1) Assume that dn(F,L2(Ω)) ≤ C0n−α

for any n ≥ 1, then the interpolation error of the GEIM
Greedy selection process satisfies for any ϕ ∈ F the
inequality ‖ϕ − Jn[ϕ]‖L2(Ω) ≤ C0(1 + Λn)βnn−α,
where the parameter βn is defined as in lemma 5.

2) Assume that dn(F,L2(Ω)) ≤ C0e−c1n
α

for any n ≥ 1,
then the interpolation error of the GEIM Greedy se-
lection process satisfies for any ϕ ∈ F the inequality
‖ϕ − Jn[ϕ]‖L2(Ω) ≤ C0(1 + Λn)βne−c2n

α

, where βn
and c2 are defined as in lemma 6.
Proof: It can be inferred from lemma 1 that, ∀ϕ ∈

F, ‖ϕ − Jn[ϕ]‖L2(Ω) ≤ (1 + Λn)‖ϕ − Pn(ϕ)‖L2(Ω) ≤
(1 + Λn)τn according to the definition of τn. We conclude
the proof by bounding τn thanks to lemmas 5 and 6.
Remark 5: If (Λn)n≥1 is a monotonically increasing se-

quence, then the sequence (γn)n≥1 in the GEIM procedure
is monotonically decreasing. Using remark 4, the following
decay rates in the generalized interpolation error can be
derived:

• For any ϕ ∈ F , if dn(F,L2(Ω)) ≤ C0n−α for any
n ≥ 1, then the interpolation error of the GEIM Greedy
selection process can be bounded as ‖ϕ−Jn[ϕ]‖L2(Ω) ≤
C023α+1(1 + Λn)3n−α.

• For any ϕ ∈ F , if dn(F,L2(Ω)) ≤ C0e−c1n
α

for any
n ≥ 1, then the interpolation error of the GEIM Greedy
selection process can be bounded as ‖ϕ−Jn[ϕ]‖L2(Ω) ≤
C02(1 + Λn)3e−c2n

α

.

Remark 6: The evolution of the Lebesgue constant ΛN

as a function of N is a subject of great interest. From the
theoretical point of view, crude estimates exist and provide
an exponential upper bound that is far from being what we
get in the applications. As is shown in ( [4], [5], [1]), the
growth is lower than linear in N in the EIM situations. Our
first numerical experiments with the GEIM reveal cases where
it is uniformly bounded when evaluated in the L(L2) norm

(see [7], [10] for an illustration of this topic as well as for an
application of the method to data assimilation coupled with
simulation). We do not pretend that this is universal, but it
only shows that the theoretical exponentially increasing upper
bound is far from being optimal in a class of sets F that have
a small Kolmogorov n-width.

V. CONCLUSION

In this work, it has been proven that the approximation
properties of the generalized interpolating spaces Xn lead
to an error that has the same qualitative decay as the best
possible choice and that is distant by a (multiplicative) factor
(1 + Λn)βn from it. This has been proven in the case of a
polynomial or exponential convergence in the n−width and is
a first step towards the explanation of efficiency of this method
in practice (as outlined in [7]).
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Abstract—Consider a large database of questions that test
the knowledge of learners (e.g., students) about a range of
different concepts. While the main goal of personalized learning
is to obtain accurate estimates of each learner’s concept under-
standing, it is additionally desirable to reduce the number of
questions to minimize each learner’s workload. In this paper, we
propose a novel method to extract a small subset of questions
(from a large question database) that still enables the accurate
estimation of a learner’s concept understanding. Our method
builds upon the SPARse Factor Analysis (SPARFA) framework
and chooses a subset of questions that minimizes the entropy of
the error in estimating the level of concept understanding. We
approximate the underlying combinatorial optimization problem
using a mixture of convex and greedy methods and demonstrate
the efficacy of our approach on real educational data.

I. INTRODUCTION

There has been a recent surge in providing free and high-
quality online education through ventures, such as Coursera,
Udacity, and edX.1 Among the key challenges of such systems
is in the estimation of each learner’s concept understanding.
Such information is essential in order to automatically rec-
ommend remediation about concepts each learner has weak
knowledge of (see, e.g., [6] for the details). In practice,
accurate estimates for each learner’s concept understanding
can be extracted automatically by analyzing responses to large
sets of questions about the concepts underlying the given
class. To minimize each learner’s workload, however, it is of
paramount importance to reduce the test-size (compared to
the size of the entire question database), while still enabling
accurate estimates of each learner’s concept understanding. We
refer to this problem as test-size reduction (TeSR).

In this paper, we propose a novel algorithm for test-size
reduction (TeSR), i.e., the problem of selecting a small number
of questions from a large dataset, while enabling the accurate
estimation of conceptual understanding of each learner. Our
approach builds upon the SPARse Factor Analysis (SPARFA)
framework proposed in [6] to automatically estimate the latent
concepts associated with each question. Then, using theory
of maximum likelihood (ML) estimators, we formulate the
TeSR problem as a combinatorial optimization problem that
minimizes the entropy of the asymptotic error in estimating
the concept understanding of each learner. We show how the
optimization problem can be solved approximately using a
combination of convex and greedy methods. We then highlight
the advantages of the proposed method by carrying out an
experiment with real educational data.

∗Also affiliated with the Institute for Mathematics and its Applications,
University of Minnesota - Twin Cities, USA.

1https://www.coursera.org ; https://www.udacity.com ; https://www.edx.org

Prior work on selecting a subset of questions mainly use
statistical models that rely on a single parameter that captures
the concept understanding of a learner [3]. In contrast, the
SPARFA model used in this work assumes that there are
multiple concepts involved in a database of questions. This
scenario is more realistic in practice, since it is often the
case that questions test knowledge from multiple concepts
simultaneously. Several authors have considered the problem
of selecting questions in an adaptive manner, see, e.g., [2],
[7]. All these adaptive algorithms require a set of starting
questions to gauge the adaptive process. Our proposed method
can be used for this purpose and is designed to minimize
the error of the initial concept understanding estimates, which
eventually improves the performance of adaptive methods. We
finally note that the problem of selecting questions is related
to the problem of sensor selection [5]. The main difference
is that the data in sensor network problems is typically real
valued, whereas the SPARFA model focuses on binary-valued
measurements (i.e., right and wrong answers to questions).

II. PROBLEM FORMULATION

We begin by reviewing the SPARFA model [6] for extracting
relationships between questions and concepts from graded
question responses. We then detail the TeSR problem to select
“good” subsets of questions for concept estimation.

A. The SPARFA Framework in a Nutshell
Suppose we have a total of Q questions that test knowledge

from K concepts. For example, in a signal processing course,
questions can test knowledge on concepts like convolution,
the sampling theorem, or the Fourier transform. For each
question i = 1, . . . , Q, let wi ∈ RK×1 be a column vector that
represents the association of question i to all concepts. Note
that a question can test knowledge from multiple concepts.
For example, a question on the convolution theorem (i.e.,
the Fourier transform of a convolution is the product of
Fourier transforms of the two signals to be convoluted) in
signal processing may test the learner’s knowledge on both
convolution and the Fourier transform.

The j th entry in wi, which we denote by wij , measures
the association of question i to concept j. In other words, if
question i does not test any knowledge from concept j, then
wij = 0. Let W = [w1, . . . ,wQ]T be a sparse Q×K matrix
with non-negative entries so that each question only tests a
subset of all concepts. Let µi ∈ R be a scalar that represents
the intrinsic difficulty of a question. A larger (smaller) µi cor-
responds to an easier (harder) question. Let µ = [µ1, . . . , µQ]T

be a Q × 1 column vector that represents the difficulty of
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Notation Description

W A sparse non-negative matrix that
characterizes the relationship between
questions and knowledge concepts

µ A vector that specifies the intrinsic
difficulty of each question

c∗ A vector that represents a learner’s
concept knowledge

TABLE I
MAIN PARAMETERS OF THE SPARFA MODEL.

each question. Finally, let c∗ ∈ RK be a column vector that
represents the concept understanding of a particular learner. It
is this parameter vector that personalized learning systems are
naturally interested in estimating accurately.

To model the interaction between W, µ, and c∗, we use
the SPARFA framework proposed in [6]. Let Yi be a binary
random variable that indicates whether question i has been
answered correctly or not, indicated by 1 and 0, respectively.
More specifically, we assume that Yi ∈ {0, 1} admits the
following distribution:

Pr(Yi = 1 |wi, µi, c
∗) = Φ(wT

i c
∗ + µi) , (1)

where Φ(·) is an appropriate link function. In this paper, we
consider the logistic link function, i.e., Φ(x) = 1/(1 + e−x).
Assuming that all the random variables Y1, . . . , YQ are inde-
pendent of each other, the joint probability distribution of the
random vector Y = [Y1, . . . , YQ]T can be written as

Pr(Y = y |W,µ, c∗) =
Q∏

i=1

exp(yi(wT
i c

∗ + µi))

1 + exp(wT
i c

∗ + µi)
, (2)

where y = [y1, . . . , yQ]T ∈ {0, 1}Q is the response of a
learner to all the questions. Given graded question responses
from multiple learners, the problem of computing the factors
W, µ, and the concept understanding vector for each learner
can be solved using either the SPARFA-M or SPARFA-B
algorithm proposed in [6].

B. Problem Statement: Test-size Reduction (TeSR)

The problem we consider here is to select an appropriate
subset of q < Q questions so that c∗, the unknown concept
understanding vector of a learner, can be estimated accurately.
We assume that prior data, a binary-valued matrix Ỹ, is
known such that an entry Ỹi,j refers to whether a learner
j answered question i correct or incorrect. This data matrix
can be easily obtained in real educational settings by looking
at past offerings of a course, for example. As mentioned in
Section II-A, we can compute W for all the Q questions in
the database using Ỹ.

Suppose, hypothetically, that we choose a subset I of q < Q
questions and we are given a response vector yI . Using the
model in (2), the maximum likelihood (ML) estimate ĉ can

be computed as follows:

ĉ = arg max
c∈RK

log Pr(YI = yI |W,µ, c)

= arg max
c∈RK

∑

i∈I

[
yi(w

T
i c+ µi)−log(1 + ew

T
i c+µi)

]
. (3)

Given yI , the result of (3) can be solved via standard convex
optimization algorithms [1]. Our main objective is to find
a subset I so that |I| = q and the ML estimate ĉ is as
close to the ground truth c∗ as possible. To do this, we make
use of the following asymptotic normality property of ML
estimators (see, e.g., [4] for the details). First, define the Fisher
information matrix as follows:

F(WI ,µI , c
∗)) =

∑

i∈I

exp(wT
i c

∗ + µi)

(1 + exp(wT c∗ + µi))2
wiw

T
i , (4)

where the notation WI refers to the rows of W indexed by I
and µI refers to the entries in µ indexed by I.

Theorem II.1. Let Ir for r = 1, . . . , q be a fixed se-
quence of q subsets of size r. Assume that there exists a
q0 < q such that F(WIq ,µIq , c

∗)) is invertible for all
r > q0. Then, the random vector √

q(ĉ − c∗) converges in
distribution to a multivariate normal vector with mean zero
and covariance F(WIq ,µIq , c

∗))−1, i.e., √
q(ĉ − c∗)

d→
N (0,F(WIq ,µIq , c

∗))−1).

Theorem II.1 states that as the number of questions q
gets large, the covariance of the error √

q(ĉ − c∗) can be
approximated by the inverse of the Fisher information ma-
trix. This motivates a natural strategy to choose a subset
of questions I that minimizes the differential entropy2 of
a multivariate normal random vector with mean zero and
covariance F(WI ,µI , c∗))−1, which intuitively minimizes
the uncertainty in the error √

q(ĉ − c∗). Consequently, the
optimization problem considered in the remainder of the
paper, referred to as the test-size reduction (TeSR) problem,
corresponds to

(TeSR) Î = arg max
I⊂{1,...,Q},|I|=q

log det(F(WI ,µI , c
∗)) .

The main challenges in solving (TeSR) are (i) the TeSR
problem is a combinatorial optimization problem and (ii) the
concept knowledge vector c∗ is unknown, so the objective
function cannot be evaluated exactly. In the next section,
we outline a data-driven approach for approximating the
(TeSR) objective function. We then develop a computationally
efficient algorithm that delivers good approximations to the
combinatorial TeSR problem.

III. TEST-SIZE REDUCTION ALGORITHM

We start by noting that the scalar term in the summation
in (4) is equivalent to the variance of the random variable Yi

2Note that the differential entropy of X = (X1, . . . ,Xq) ∼ N (0,Σ) is
given by log

(
(2πe)q det(Σ)

)
.
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Algorithm 1: Nonadaptive test-size reduction (NA-TeSR)
Step 1) First choose K questions by solving

Î[K] = arg max
I⊂{1,...,Q},|I|=K

log det
(
WT

I V̂WI

)
(5)

using the convex optimization method in (8). The entries
of the diagonal matrix V̂ are defined as V̂kk = v̂k,
where v̄k specified in (6).
Step 2) Select questions K+1, . . . , q in a greedy manner:

Îj+1 = arg max
i∈{1....,Q}\Î[j]

v̂iw
T
i

(
WT

I[j]
V̂I[j]

WI[j]

)−1
wi .

conditioned on c∗, i.e.,

Var[Yi|c∗] =
exp(wT

i c
∗ + µi)

(1 + exp(wT c∗ + µi))2
. (6)

The variance Var[Yi|c∗] captures the variability of a learner in
answering the ith question. By defining V as a Q×Q diagonal
matrix with entries Vii = Var[Yi|c∗], the TeSR problem can
be rewritten in matrix form as

(TeSR) Î = arg max
I⊂{1,...,Q},|I|=q

log det(WT
IVIWI) .

We first address the problem of approximating the objective
function using a graded question response matrix Ỹ acquired
in, e.g., a previous offering of a course. Since the vector c∗

is not known, we need to make some assumptions on Ỹ so
that the objective function can be estimated. As it turns out,
a natural, and convenient, assumption is for the prior data to
be chosen in such a way that the concept understanding of
the learners in the response matrix Ŷ is roughly equal to c∗.
Using this assumption, we can easily estimate Var[Yi|c∗] to
be the sample variance of the data Ỹ:

v̂i = Var[Yi|c∗] =
1

N

N∑

j=1



Ỹij −
1

N

N∑

j=1

Ỹij



 , (7)

where Ỹij is the (i, j)th entry of Ỹ. Using the sample variance,
(TeSR) can be rewritten as

(TeSR) Î = arg max
I⊂{1,...,Q},|I|=q

log det(WT
I V̂IWI) ,

where V̂ is a diagonal matrix with entries V̂kk = v̂k. In the
above formulation, there is no longer any dependence on c∗.

Algorithm 1 summarizes a nonadaptive method for solving
the TeSR problem. The first step is to find the “best” K ques-
tions, where K is the number of concepts in the Q questions.
Next, we select the remaining questions K + 1, . . . , q in an
iterative manner. Note that selecting less than K questions
would inhibit estimating the K-dimensional concept knowl-
edge vector.

For any subset I, let I[K] denote the first K elements. To
select the initial K questions Î[K], we use methods in [5] to

formulate the combinatorial optimization problem in (5) as a
convex optimization problem. More specifically, we can obtain
an approximate solution to (5) by solving the following convex
optimization problem:

maximize log det
(
WT

I V̂ZWI

)

subject to diagonal matrix Z with Zkk = zk
∑

zk = K and 0 ≤ zk ≤ 1

(8)

Once (8) has been computed, Î[K] can be approximated as
the indices corresponding to the top K largest values of the
diagonal elements Zkk = zk of the matrix Z.

The second step in Algorithm 1 chooses the remaining q−K
questions in a greedy manner. Using the identity

det(X+ bbT ) = det(X)(1 + bTX−1b),

where X is a square matrix and b is a column vector, the
quantity log det(WT

I[j+1]
V̂I[j+1]

WI[j+1]
) can be rewritten as

log det(WT
I[j]

V̂I[j]
WI[j]

) + log(1 + F ) (9)

with the definition

F = V̂Ij+1,Ij+1w
T
Ij+1

(WT
I[j]

V̂I[j]
WI[j]

)−1wIj+1 . (10)

Thus, once j questions Î[j] have been selected, the next ques-
tion, Îj+1, can be selected so that the quantity F defined above
is maximized.

Remark 1: The computational complexity of Step 1 of Al-
gorithm 1 is rather low when using the convex optimiza-
tion relaxation approach outlined in (TeSR). We refer to [5]
for iterative methods that solve (8). We note that although
Step 2 requires computing an inverse of a K × K matrix
multiple times, this inverse can be computed recursively once
(WT

I[K]
V̂WI[K]

)−1 has been computed. Finally, we can di-
rectly solve (TeSR) using the convex relaxation in (8). How-
ever, the computational complexity of this approach can be
large, especially when q is large.

Remark 2: Note that when W is a Q × 1 vector of all
ones, the SPARFA model reduces to the Rasch model [9].
In this case, (TeSR) reduces to a problem of maximizing the
sum of the variance terms over the selected questions. Thus,
all the questions can be selected independently of the others
when using the Rasch model. On the other hand, when using
SPARFA, since we account for the statistical dependencies
amongst questions, the questions can no longer be chosen
independently as it is evident from Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, we assess the performance of our algorithms
for test-size reduction (TeSR) using synthetic and real educa-
tional datasets.

Baseline algorithms: We compare NA-TeSR to three baseline
algorithms. The first, referred to as NA-Rasch, uses the Rasch
model [9] and selects questions in a non-adaptive manner
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Fig. 1. TeSR and baseline methods for synthetic data and real data.

(see Remark 2). The second, referred to as Greedy, iteratively
selects a question from each concept until the required number
of q questions has been selected. If all questions from a given
concept have been exhausted, then Greedy skips to the next
concept to select a question. Note that this approach com-
pletely ignores the variability of a learner in answering various
questions. Finally, we also compare to an oracle algorithm,
referred to as Oracle, that uses the true underlying (but in
practice unknown) vector c∗ to solve the TeSR problem. Note
that the oracle algorithm is not practical and is only used to
characterize the performance limits of TeSR.

Performance measure: We assess the performance of the
algorithms using the root mean-square error (RMSE), defined
as RMSE = ‖ĉ − c∗‖2, where ĉ is the estimate delivered
by each method and c∗ is the ground truth. Although c∗ is
known for synthetic experiments, for real data, we assume that
the ground truth is the concept vector estimated when asking
all Q available questions.

Methods: In the experiments shown next, we assume that
a matrix Y is given that contains graded responses of Q
questions from M students. As mentioned in Section 2, for real
data, we use SPARFA-M [6] to estimate W and the ground
truth concept values of each learner. For each learner, we apply
the baseline and our proposed TeSR algorithms using W and
a training data Ỹ obtained after removing the responses of the
learner from the matrix Y. To show the performance of our
TeSR algorithms, we report the mean and standard deviation
of the RMSE evaluated over all M learners.

MLE convergence: It turns out that the maximum likelihood
estimate (MLE) may not converge for certain patterns of the
response vectors. In the case of inexistent ML estimates, we
make use of the sign of the ML estimates to compute the
RMSE. We then assign each entry in ĉ to the worst (for −∞)
or best (for +∞) value obtained from a prior set of learners
who have taken the course. In our simulations, these worst and
best concept values are computed using the training data Ỹ.

Results: We generated a sparse 50 × 5 matrix W that maps
50 questions to 5 concepts. There were roughly 30% non-
zero entries in W with the non-zero entries chosen from an
exponential random variable with parameter λ = 2/3. Each
entry in the intrinsic difficulty vector µ was generated from a
standard normal distribution. We assumed 25 learners whose

concept understanding vectors were again generated from a
standard normal distribution. For each Y, we computed the
reduced test-size with q = 5, 6, . . . , 44. Fig. 1 shows the mean
value of the RMSE over 100 randomly generated response
vectors Y. Note that the mean RMSE is taken over all 25
learners. We observe that NA-TeSR is superior to all practical
baseline algorithms. This observation suggests that the Rasch
model is not an appropriate model for selecting questions for
the purpose of test-size reduction in courses having more than
one underlying concept.

Fig. 1(b) shows results on real educational dataset corre-
sponding to graded response data obtained from the ASSIST-
ment system [8]. The original data contained responses from
4354 learners on 240 questions. There is a large number of
missing responses in this dataset, i.e., not every learner an-
swered all problems. In order to get a dataset with a sufficient
number of observed entries, we focused on a subset of 219
questions answered by 403 learners. The resulting trimmed
Y matrix has roughly 75% missing values. Fig. ??(b) shows
the associated results and we observe similar trends as for
synthetic data set. The main difference is that the performance
of the Greedy algorithm is almost as good as the NA-TeSR
algorithm in certain domains. This may be a result of the
several missing values present in the dataset that does not
allow for accurate computations of the variability in answering
each question. We note that we have extended the NA-TeSR
algorithm in [10] to an adaptive algorithm where each question
selected by the greedy step in NA-TeSR uses prior responses
to form an estimate of ĉ. This method leads to results that
are closer to the Oracle algorithm. We refer to [10] for more
details.

REFERENCES

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[2] S. Buyske. Applied optimal designs, chapter Optimal design in educa-
tional testing, pages 1–16. John Wiley & Sons Inc, 2005.

[3] H. Chang and Z. Ying. Nonlinear sequential designs for logistic item
response theory models with applications to computerized adaptive tests.
The Annals of Statistics, 37(3):1466–1488, Jun. 2009.

[4] L. Fahrmeir and H. Kaufmann. Consistency and asymptotic normality
of the maximum likelihood estimator in generalized linear models. The
Annals of Statistics, 13(1):342–368, 1985.

[5] S. Joshi and S. Boyd. Sensor selection via convex optimization. IEEE
Transactions on Signal Processing, 57(2):451–462, 2009.

[6] A. S. Lan, A. E. Waters, C. Studer, and R. G. Baraniuk. Sparse factor
analysis for learning and content analytics. Journal of Machine Learning
Research, Nov. 2012, submitted.

[7] W. J. Linden and P. J. Pashley. Elements of adaptive testing, chapter
Item selection and ability estimation in adaptive testing, pages 3–30.
Springer, 2010.

[8] Z. Pardos and N. Heffernan. Modeling individualization in a Bayesian
networks implementation of knowledge tracing. User Modeling, Adap-
tation, and Personalization, pages 255–266, 2010.

[9] G. Rasch. Probabilistic Models for Some Intelligence and Attainnment
Tests. Studies in mathematical psychology. Danmarks paedagogiske
Institut, 1960.

[10] D. Vats, C. Studer, A. Lan, L. Carin, and R. Baraniuk. Test-size reduction
for concept estimation. In International Conference on Educational Data
Mining (EDM), 2013.

Proceedings of the 10th International Conference on Sampling Theory and Applications

175



Special Frames
Luis Daniel Abreu

Acoustic Research Institute
Austrian Academy of Sciences

Email: daniel@mat.uc.pt

Abstract—Three classes of special frames are presented: special
Fourier-type frames, special Gabor frames and special wavelet
frames. Known information about density of Fourier-Bessel
frames, Gabor (super)frames with Hermite functions and wavelet
(super)frames with Laguerre functions will be outlined.

I. INTRODUCTION

Given a Hilbert space H, a vector g 2 H and a family of
operators {⇡

�

g}
�2⇤, the special frame problem consists of the

following question:
• What conditions one should impose on a discrete set ⇤,

such that {⇡
�

g}
�2⇤ is a frame for H?

More precisely, we want to find constants A,B > 0 such
that, for every f 2 H,

A kfk2 
X

�2⇤

|hf,⇡
�

giH|2  B kfk2 . (1)

The term special refers to a viewpoint: rather than looking
at general properties of frames, we want to know detailed
information about a specific example of a frame with particular
interesting structure. We will consider three classes of frames.

1) Fourier Frames: H = L2
(�⇡,⇡), g(x) = eix and

⇡
�

g(x) = g(�x). For g other that eix we will talk about
Fourier-type frames.

2) Gabor frames: H = L2
(R) and ⇡

�=(�1,�2)g(x) =

e2⇡i�2tg(t� �1). Several choices of g are possible.
3) Wavelet frames (positive frequencies): H = H2

(C+
)

and ⇡
�

g(t) = �
� 1

2
1 g(��1

1 (t � �2)), t 2 R. Several
choices of g are possible.

II. SPECIAL FOURIER-TYPE FRAMES

While the Fourier orthogonal basis is of the form
{eikx}

k2Z

, Fourier frames are of the form {ei�x}
�2⇤, allow-

ing the set ⇤ to be nonuniform and redundant. The orthogonal
basis case ⇤ = Z works as a threshold for Fourier frames:
we know that frames requires ⇤ to be “denser than Z” [16].
We can think of Fourier frames as being made out of the
special function f(x) = ex. Frames of the form {f(�x)}

�2⇤

will be called Fourier-type frames. To keep intact the rich set
up of the Fourier frames we want to be able to transfer our
Fourier-type frames to a Paley–Wiener-type space using some
Fourier-type transform. Moreover, we are interested in cases
displaying a second order differential operator commuting with
the respective concentration operators. In the case of Fourier
frames, the existence of such an operator is regarded as a
“fortunate accident”, according to Daubechies exposition in

[9, page 22]. In the work of Tracy and Widom about the local
statistics of the asymptotics of certain random matrices [19],
[18], one can find two more instances where this “fortunate
accident” occurs. This motivated our investigation of Fourier-
Bessel frames [5] and Airy frames [6]. Let us say a bit more
about the results in [5].

Let J
↵

(x) be the Bessel function of order ↵ > �1/2 and
j
n,↵

its nth zero. While the Fourier-Bessel orthogonal basis is
of the form {x 1

2 J
↵

(j
n,↵

x)}1
n=0, Fourier-Bessel frames are of

the form {(�x) 1
2 J

↵

(�x)}
�2⇤, allowing the set ⇤ to be nonuni-

form and redundant. To obtain the definition of a Fourier-
Bessel frame, choose in (1) H = L2

[0, 1], g(x) = (x)
1
2 J

↵

(x)
and (⇡

�

g)(x) = g(�x). In [5], we have considered a more
general situation than frames and obtained analogues of the
Landau conditions [16] for interpolation and sampling. As a
particular case we obtain precise necessary density conditions
for Fourier Bessel frames. Let n

a

(r) denote the number of
points of ⇤ ⇢ (0,1) to be found in [a, a+ r]. Then the lower
density of ⇤ is given by D�

(⇤) = lim

r!1 inf inf

a�0
na(r)

r

.
The main result in [5] is the following Landau-type necessary
condition for sampling in spaces of functions B

↵

(S) whose
Hankel transform (the analogue of the Fourier transform in
this context) is supported on a set S of bounded measure:

Theorem [5]: Let S be a measurable subset of (0,1) and
↵ > �1/2. If a separated set ⇤ is of sampling for B

↵

(S),
then

D�
(⇤) � 1

⇡
m(S). (2)

III. SPECIAL GABOR (SUPER)FRAMES

The investigation of special Gabor frames has been a
topic of high interest in the last twenty years. See the
recent paper [13] and the outline in the Introduction. We
can construct Gabor superframes with Hermite functions,
which are useful in the multiplexing of non-stationary sig-
nals. Consider the Hilbert space L2

(R,Cn

) of vector-valued
functions �!

f = (f0, ..., fn�1) together with the inner productD�!
f ,�!g

E

H
=

P
0kn�1 hfk, gkiL2(R). To obtain the defi-

nition of a Gabor superframe for the vector valued system
G(�!g ,⇤) = {⇡

�

�!g }
�2⇤, choose in (1) H = L2

(R,Cn

),
g =

�!g and, given a point � = (�1,�2) in R2, define ⇡
�

as the time-frequency shift ⇡
�

g(t) = e2⇡i�2tg(t� �1), t 2 R.
There is a characterization of all lattices generating Gabor

superframes with Hermite functions h
n

[12], which is equiv-
alent to a sampling problem in a Fock space of polyanalytic
functions [1].
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Theorem [12] Let �!h
n

= (h0, ..., hn�1) be the vector of the
first n Hermite functions. Then G(�!h

n

,↵Z + i�Z) is a frame
for L2

(R,Cn

), if and only if ↵� < 1
n+1 .

For a special frame generated by a single Hermite function,
the characterization is still an open problem. Nevertheless,
some interesting results are known. If ↵� < 1

n+1 then
G (h

n

,↵Z + i�Z) is a frame [11] but if ↵� = 1 � 1
j

then
G (h1,↵Z + i�Z) is not [14]. Supported by their results and
by some numerical evidence, the authors of [14] conjectured
that if ↵� < 1 and ↵� 6= 1 � 1

j

, then G (h1,↵Z + i�Z) is a
frame.

IV. SPECIAL WAVELET (SUPER)FRAMES

We can also construct wavelet superframes which are useful
in the multiplexing of non-stationary signals of positive fre-
quencies, leading to a sampling problem in certain (Bergman)
spaces of polyanalytic functions. We should emphasize again
that our viewpoint of wavelet frames is different of those ones
documented in [9] and in the more recent monograph [15].
For a vector g = (g1, ..., gn) such that the Fourier transforms
of any two functions g

i

and g
j

are orthogonal in L2
(R+, t�1

),
define ⇡

z

pointwise as ⇡
z

g = (⇡
z

g1, ...,⇡z

g
n

). To obtain the
definition of a wavelet superframe for the vector valued system
W(

�!g ,⇤) = {⇡
�

�!g }
�2⇤, let in (1) H = H2

(C+, Cn

) be
the inner product space whose vector components belong to
H2

(C+
), the standard Hardy space of the upper half-plane,

g =

�!g and, given a point � = (�1,�2) in R2, define ⇡
�

as
the time-scale shift ⇡

�

g(t) = �
� 1

2
1 g(��1

1 (t� �2)), t 2 R.
We consider wavelet superframes with analyzing wavelets�!

�

↵

n

= (

�↵
0

c�↵
0

, ...,
�↵

n
c�↵

n

), where c2�↵
n
=

�(n+↵+1)
n! is the admis-

sibility constant of the vector component �

↵

n

defined via its
Fourier transform as

F�

↵

n

(t) = t
1
2 l↵

n

(2t), with l↵
n

(t) = t
↵
2 e�

t
2L↵

n

(t), (3)

where L↵

n

(t) is the standard notation for the Laguerre polyno-
mial.

The problem of, given a wavelet g, to characterize the sets
of points ⇤ such that W(g,⇤) is a wavelet frame (and the
corresponding problem for the superframes defined above), is
more difficult than the corresponding one for Gabor frames.
The only characterization known so far concerns the case
n = 0 in (3). In this case, the problem can be reduced to the
density of sampling in the Bergman spaces, which has been
completely understood in [17]. An important research problem
is to understand how Seip’s results extend to the whole family
{�↵

n

}. The only thing known to the present date is a necessary
condition obtained in [2] in terms of a set of points known
as the “hyperbolic lattice” �(a, b) = {ambk, am}

k,m2Z

. The
quantity b log a replaces the time-frequency ↵� for purposes
of measuring frame density.

Theorem [2]: If W(�

2↵�1
n

,�(a, b)) is a wavelet frame for
H2

(C+
), then b log a < 2⇡ n+1

↵

.
Using the polyanalytic structure of the underlying Bergman

spaces [3] one can also prove a result which shows that it is
necessary to oversample by a rate of n to obtain superframes.
This matches what one would expect from [10].

Theorem [4]: If W(

����!
�

2↵�1
n

,�(a, b)) is a wavelet superframe
for H2

(C+, Cn

), then b log a < 2⇡
n+↵

.
Actually in [4] we obtain a much stronger result using Seip´s

density [17], as part of our sampling results in polyanalytic
Bergman spaces.
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Abstract—Mellin analysis is of extreme importance in appro-
ximation theory, also for its wide applications: among them, for
example, it is connected with problems of Signal Analysis, such as
the Exponential Sampling. Here we study a family of Mellin-type
integral operators defined as

(Twf)(s) =

Z

RN
+

Kw(t)f(st)
dt
hti , s 2 RN

+ , w > 0, (I)

where {Kw}w>0 are (essentially) bounded approximate identities,
hti :=

QN

i=1
ti, t = (t1, . . . , tN ) 2 RN

+ , and f : RN
+ ! R is a

function of bounded '�variation. We use a new concept of multi-
dimensional '�variation inspired by the Tonelli approach, which
preserves some of the main properties of the classical variation.
For the family of operators (I), besides several estimates and a
result of approximation for the '�modulus of smoothness, the
main convergence result that we obtain proves that

lim
w!+1

V '[µ(Twf � f)] = 0,

for some µ > 0, provided that f is '�absolutely continuous.
Moreover, the problem of the rate of approximation is studied,
taking also into consideration the particular case of Fejér-type
kernels.

I. INTRODUCTION

An important topic in approximation theory is the study
of convergence of classes of integral operators in the frame of
BV�spaces, namely spaces of functions of bounded variation.
This problem was faced in the literature from several points
of view, using different families of operators and different
notions of variation, such as the classical variation ([4]), the
distributional variation ([7]), the Cesari variation ([16]) or the
Musielak-Orlicz '�variation ([26], [15], [24], [28], [13], [17],
[5]). An important direction of this research is the multidimen-
sional case, in particular in view of the application of such
results in several fields, such as image reconstruction. Results
in this sense can be found, for example, in [10], [4] in the case
of Tonelli variation and in [6], where the authors introduce
a new multidimensional concept of '�variation and give
approximation results for functions of bounded '�variation
by means of the classical convolution integral operators. The
nonlinear case was explored in [3].

An interesting development of the theory is the case
of Mellin-type integral operators. Mellin operators are well
known and widely used in approximation theory (see, e.g.,

[23], [19]), also because of their important applications in
various fields, for example in Signal Processing. Indeed,
Mellin analysis is strictly connected to Signal Analysis, in
particular to the Exponential Sampling. A seminal paper in
this sense is [20], where the authors establish a Sampling
Theorem in which the samples are not equally spaced, as in
the classical Shannon Sampling Theorem, but exponentially
spaced, by means of Mellin transform methods. This theory
has important applications, for example in optical physics
and engineering (see, e.g., [22], [18]), in problems in which
information accumulates near time t = 0. With this respect, to
develop a theory about Mellin-type operators becomes useful
and interesting. Results in this sense can be also found, for
example, in [11], [12].

Here we consider a family of Mellin-type integral operators
of the form

(T
w

f)(s) =

Z

RN
+

K
w

(t)f(st)

dt

hti , s 2 RN

+ , w > 0 (I)

and we develop an approximation theory in the frame of
BV�spaces. In particular, f : RN

+ ! R will be a function of
bounded '�variation on RN

+ and {K
w

}
w>0 will be a family

of (essentially) bounded approximate identities (see Section
IV). Here ' is a convex '�function (see Section II) such that
u�1'(u) ! 0 as u ! 0

+. The above operators (I) allow
us to obtain, as particular cases, several classes of integral
operators well-known and used in approximation theory, such
as, for example, the moment-type or average operators, the
Gauss-Weierstrass-type operators and others.

The new multidimensional concept of variation that we will
use is inspired to the Tonelli approach ([29]) (see also [27] and
[30]). Such concept of variation was introduced in [8], and it
was adapted to the setting of RN

+ from the multidimensional
'�variation defined in [6] in the case of RN endowed with the
Lebesgue measure. Indeed, in order to treat the Mellin case, it
is natural to frame the theory in RN

+ endowed with the Haar
measure µ(A) :=

R
A

hti�1 dt, where A is a Borel subset of

RN

+ and hti :=

NY

i=1

t
i

, t = (t1, . . . , tN ) 2 RN

+ . We recall that,

in the case of the Lebesgue measure, similar approximation
results were obtained in [2], [9], while the one-dimensional
case was explored in [15] and [14] (nonlinear case).
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In order to get convergence of the family {T
w

f}
w>0 to f ,

a crucial tool is to prove that

lim

�!0+
!(f, �) = 0, (1)

where !(f, �) denotes the modulus of smoothness of f . It is
well known that (1) holds if and only if f is absolutely contin-
uous working with the classical (Jordan or Tonelli) variation
(see, e.g., [21], [10], [4]). On the contrary, dealing with the
'�variation, due to the lack of an integral representation of
'�variation in terms of '�absolute continuity, the result is no
more trivial. In particular, working with the Musielak-Orlicz
'�variation, the result can be obtaind by means of a direct
construction (see, e.g., [26], [5]). In the multidimensional
setting, the situation becomes more delicate. The result was
obtaind in [8] where, through an approximation technique by
means of step-type functions, we proved that

lim

�!0+
!'

(�f, �) = 0, (2)

for some � > 0, provided that the function f is '�absolutely
continuous. Here !'

(�f, �) := sup|1�t|�

V '

[�(⌧tf � f)]

(⌧tf(s) = f(st), s, t 2 RN

+ is the dilation operator and 1 is
the unit vector of RN

+ ) represents the natural reformulation of
the classical modulus of smoothness in terms of '�variation
(see, e.g., [25], [13]). The above result proves that the situation
is analogous to the one-dimensional case (see [15], [14]) and
to the case of the Lebesgue measure (see, e.g., [1], [2]).

In this paper we develop a new theory about convergence
and rate of approximation for the operators (I). In particular we
first obtain several estimates for {T

w

f}
w>0. Then, by means

of such results and using (2), we are able to prove the main
convergence theorem, which states that there exists a constant
µ > 0 such that

lim

w!+1
V '

[µ(T
w

f � f)] = 0,

whenever f 2 AC'

(RN

+ ) (the space of '�absolutely continu-
ous functions). Introducing suitable Lipschitz classes, we also
study the problem of the rate of approximation. Moreover, in
the particular case of Fejér-type kernels, we obtain that all the
assumptions for the rate of approximation are implied by the
classical condition that the absolute moments of order ↵ of
the kernels are finite.

We finally point out that the case of the classical variation
can be also treated, by using a direct approach: indeed, taking
the identity function instead of the '�function ', it is possible
to obtain a new multidimensional version of the classical
Jordan variation in the sense of Tonelli for functions defined
on RN

+ equipped with the logarithmic measure.

II. NOTATIONS AND DEFINITIONS

We denote by � the class of all the functions ' such that
1) ' is a convex '�function, where a '�function is a

nondecreasing continuous function ' : R+
0 ! R+

0

such that '(0) = 0, '(u) > 0 for u > 0 and
lim

u!+1 '(u) = +1;
2) u�1'(u) ! 0 as u ! 0

+.

From now on we will assume that ' 2 �.
Given f : RN

+ ! R and x = (x1, . . . , xN

) 2 RN

+ , N 2 N,
if we are interested in particular in the j�th coordinate, j =

1, . . . , N , we will write

x0
j

= (x1, . . . , xj�1, xj+1, . . . , xN

) 2 RN�1
+ ,

so that x = (x0
j

, x
j

) and f(x) = f(x0
j

, x
j

). For a fixed

interval I =

NY

i=1

[a
i

, b
i

], we will denote by [a0
j

, b0
j

] the

(N � 1)�dimensional interval obtained deleting by I the j�th
coordinate, so that

I = [a0
j

, b0
j

]⇥ [a
j

, b
j

].

Moreover, given two vectors s, t 2 RN

+ , we put st =

(s1t1, . . . , sN

t
N

).
In order to define the multidimensional '�variation, the

first step is to compute the Musielak-Orlicz '�variation of the
j�th section of f , i.e., V '

[aj ,bj ]
[f(x0

j

, ·)], and then to consider
the (N � 1)�dimensional integrals

�

'

j

(f, I) :=

Z
b

0
j

a

0
j

V '

[aj ,bj ]
[f(x0

j

, ·)]
dx0

j

hx0
j

i ,

where by hx0
j

i we denote the product
Q

N

i=1,i 6=j

x
i

. We recall
that the '�variation of a function g : [a, b] ! R is defined as

V '

[a,b][g] := sup

D

nX

i=1

'(|g(s
i

)� g(s
i�1)|),

where D = {s0 = a, s1, . . . , sn

= b} is a partition of [a, b]
([26], [25]), and g is said to be of bounded '�variation (g 2
BV '

([a, b])) if V '

[a,b][�g] < +1, for some � > 0.
Let now �

'

(f, I) be the Euclidean norm of the vector
(�

'

1 (f, I), . . . ,�'

N

(f, I)), namely

�

'

(f, I) :=

(
NX

k=1

[�

'

k

(f, I)]

2

) 1
2

.

We set �

'

(f, I) = +1 if �

'

k

(f, I) = +1 for some k =

1, . . . , N .
We define the multidimensional '�variation of f on an

interval I ⇢ RN

+ as

V '

[f, I] := sup

mX

i=1

�

'

(f, J
i

),

where the supremum is taken over all the finite families of
N�dimensional intervals {J1, . . . , Jm

} which form partitions
of I .

The '�variation of f over the whole space RN

+ is defined
as

V '

[f ] := sup

I⇢RN
+

V '

[f, I],

where the supremum is taken over all the intervals I ⇢ RN

+ .
By BV '

(RN

+ ) we denote the space of functions of bounded
'�variation over RN

+ , i.e.,

BV '

(RN

+ ) = {f 2 L1
µ

(RN

+ ) : 9� > 0 s.t. V '

[�f ] < +1}.
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We will say that a function f : RN

+ ! R is locally
'�absolutely continuous (f 2 AC'

loc

(RN

+ )) if f is (uniformly)
'�absolutely continuous in the Tonelli sense: this means that

for every I =

NY

i=1

[a
i

, b
i

] ⇢ RN

+ and for every j = 1, 2, . . . , N ,

the j�th sections of f , f(x0
j

, ·) : [a
j

, b
j

] ! R, are (uniformly)
'�absolutely continuous for almost every x0

j

2 [a0
j

, b0
j

], i.e.,
for every " > 0 there exists � > 0 for which

nX

i=1

'(�|f(x0
j

, �i

)� f(x0
j

, ↵i

)|) < ",

for a.e. x0
j

2 [a0
j

, b0
j

] and for all finite collections of non-
overlapping intervals [↵i, �i

] ⇢ [a
j

, b
j

], i = 1, . . . , n, such

that
nX

i=1

'(�i � ↵i

) < �.

By AC'

(RN

+ ) we will denote the subspace of BV '

(RN

+ ) of
the '�absolutely continuous functions, namely all the func-
tions of bounded '�variation which are locally '�absolutely
continuous.

III. RESULTS ABOUT THE MULTIDIMENSIONAL
'�VARIATION

Our multidimensional '�variation satisfies similar proper-
ties to the Musielak-Orlicz '�variation and to the Jordan
variation. In particular we prove that BV '

(RN

+ ) is a vector
space, namely, ↵f1 + �f2 2 BV '

(RN

+ ) whenever f1, f2 2
BV '

(RN

+ ), ↵,� 2 R. Indeed this is a consequence of the
following property ([8])

V '

[�(f1 + f2)] 
1

2

⇣
V '

[2�f1] + V '

[2�f2]

⌘
, � > 0,

and of the trivial consideration that V '

[�f ]  V '

[µf ], if
0 < �  µ.

Another classical property of variation which is preserved
by our definition is the lower semicontinuity with respect to
pointwise convergence. Indeed, in this paper we prove that, if
(f

k

)

k2N is pointwise convergent to f , then

V '

[f ]  lim inf

k!+1
V '

[f
k

].

Finally it is also possible to prove results about additivity
on intervals which are quite similar to the classical ones.
Nevertheless we recall that a crucial difference with the Jordan
variation is that, in the frame of '�variation, even in the one-
dimensional case, we don’t have at our disposal an integral
representation of '�variation for absolutely continuous func-
tions.

IV. MELLIN OPERATORS AND CONVERGENCE RESULTS

We will study the following family of Mellin-type integral
operators of the form

(T
w

f)(s) =

Z

RN
+

K
w

(t)f(st)

dt

hti , w > 0, s 2 RN

+ , (I)

for f 2 BV '

(RN

+ ), where {K
w

}
w>0 is a family of bounded

approximate identities, i.e.,

Kw.1) K
w

: RN

+ ! R is a measurable essen-
tially bounded function such that K

w

2 L1
µ

(RN

+ ),
kK

w

k
L

1
µ
 A for an absolute constant A > 0 andR

RN
+

K
w

(t)hti�1dt = 1, for every w > 0,
Kw.2) for every fixed 0 < � < 1,R

|1�t|>�

|K
w

(t)|hti�1dt! 0, as w ! +1.
We point out that, since K

w

is essentially bounded, if f 2
BV '

(RN

+ ), (T
w

f)(s) is well-defined for every s 2 RN

+ and
w > 0.

We first obtain two estimates for our integral operators (I).
The first one proves that {T

w

}
w>0 map BV '

(RN

+ ) into itself.
Proposition 1: Let f 2 BV '

(RN

+ ) and let {K
w

}
w>0 be

such that K
w

.1) holds. Then there exists � > 0 such that

V '

[�(T
w

f)]  V '

[⇣f ], (3)

where ⇣ > 0 is the constant for which V '

[⇣f ] < +1.
Therefore, T

w

: BV '

(RN

+ ) ! BV '

(RN

+ ).
The second estimate will be the main tool in or-

der to prove the convergence result. By !'

(�f, �) :=

sup|1�t|�

V '

[�(⌧tf � f)], where ⌧tf(s) := f(st), s, t 2
RN

+ is the dilation operator, we denote the '�modulus of
smoothness of f .

Proposition 2: Let f 2 BV '

(RN

+ ) and let {K
w

}
w>0 be

such that K
w

.1) is satisfied. Then for every � > 0, � 2]0, 1[

and w > 0,
V '

[�(T
w

f � f)]  !'

(�Af, �)

+ A�1V '

[2�Af ]

Z

|1�t|>�

|K
w

(t)|hti�1 dt.

This estimate links the '�variation of the error of ap-
proximation (T

w

f � f) to the '�modulus of smoothness,
hence the convergence result will follow by the assumptions
on kernel functions and by the following result of convergence
for !'

(f, �) ([8]):
Theorem 1: Let f 2 AC'

(RN

+ ). Then there exists � > 0

such that lim

�!0+ !'

(�f, �) = 0.
By means of Propositions 1 and 2, and using Theorem 1,

we can therefore prove the main convergence result:
Theorem 2: Let f 2 AC'

(RN

+ ) and let {K
w

}
w>0 be

such that K
w

.1) and K
w

.2) are satisfied. Then there exists
a constant µ > 0 such that

lim

w!+1
V '

[µ(T
w

f � f)] = 0.

We also obtain results about the order of approximation,
with suitable singularity assumptions on kernels, for functions
which belong to the Lipschitz class V 'Lip

N

(↵), ↵ > 0,
defined as

V 'Lip
N

(↵) := {f 2 BV '

(RN

+ ) : 9µ > 0 s.t.
V '

[µ�tf ] = O(| log t|↵), as |1� t| ! 0},

where �tf(x) := (⌧tf�f)(x) = f(xt)�f(x), for x, t 2 RN

+ ,
and log t := (log t1, . . . , log t

N

).
We point out that, in the particular case of Fejér-type

kernels, namely kernels of the form

K
w

(t) = wNK(t

w

), t 2 RN

+ , w > 0,
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where K 2 L1
µ

(RN

+ ) is essentially bounded and such thatR
RN

+
K(t)hti�1 dt = 1, it is possible to prove that all the

assumptions of the results about the rate of approximation are
implied by the classical condition that the absolute moments
of order ↵ of K are finite.

V. THE PARTICULAR CASE OF BV (RN

+ )

It is immediate to see that assumption 2) on the '�functions
implies that the identity function does not belong to the class
�. Nevertheless all the theory can be developed also for the
space BV (RN

+ ), i.e., taking '(u) = u, u 2 R+
0 , in the

definition of the variation, and hence replacing everywhere
the Musielak-Orlicz '�variation with the Jordan variation.
In this setting we obtain a new multidimensional concept of
variation in the sense of Tonelli in the frame of Mellin theory
and approximation results for Mellin-type integral operators
in BV (RN

+ ). Indeed assumption 2) on the '�function, that
now fails, is just used to prove the convergence result for
the '�modulus of smoothness (Theorem 1) and it replaces
the lack of the integral representation of '�variation. On the
contrary, working with the classical variation, we have at our
disposal the integral representation for absolutely continuous
functions, and the convergence of the modulus of smoothness
can be derived from it: hence, by means of different tech-
niques, we prove the following

Theorem 3: If f 2 AC(RN

+ ), then lim

�!0+ !(f, �) = 0.
Here AC(RN

+ ) and !(f, �) denote the space of the absolutely
continuous functions and the modulus of smoothness, respec-
tively, in the case '(u) = u, u 2 R+

0 .
The other results (estimates, convergence and rate of ap-

proximation) can be proved in a similar fashion, and therefore
we obtain new results also in the case of the classical multi-
dimensional variation in the present setting.
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Abstract— In this paper, two methods are proposed which address
the random sampling and compressed sensing recovery problems.
The proposed random sampling recovery method is the Iterative
Method with Adaptive Thresholding and Interpolation (IMATI).
Simulation results indicate that the proposed method outperforms
existing random sampling recovery methods such as Iterative Method
with Adaptive Thresholding (IMAT). Moreover, the suggested method
surpasses compressed sensing recovery methods such as Orthogonal
Matching Pursuit (OMP) in terms of recovery performance. We
propose a compressed sensing recovery method, named Iterative
Method with Adaptive Thresholding for Compressed Sensing recov-
ery (IMATCS). Unlike its counterpart, Iterative Hard Thresholding
(IHT), the thresholding function of the proposed method is adaptive
i.e. the threshold value changes with the iteration number, which
enables IMATCS to reconstruct the sparse signal without having any
knowledge of the sparsity number. The simulation results indicate
that IMATCS outperforms IHT and OMP in both computational
complexity and quality of the recovered signal.

I. INTRODUCTION

Sparse recovery methods have found broad applications in various
areas such as imaging systems, multipath channel estimation, spectral
estimation, and coding. Depending on various kinds of sparsity
(low pass, high pass, or random) and various sampling techniques
(uniform or random), different methods have been suggested in the
literature for reconstruction of sparse signals [1]. When the location
of sparsity is known, the number of samples required for exact
reconstruction equals the sparsity number. Some of the recovery
methods in this case are suggested in [1]. When the location of
the sparsity is unknown, the number of samples must be at least
twice the sparsity number to identify both the locations and the
values of the coefficients[2]. More sophisticated recovery methods
are required in this case which can be grouped based on the sampling
strategy. One sampling strategy is to take linear combinations of
the signal entries which is the focus of the Compressed Sensing
(CS) techniques. The second sampling scheme is to take random
samples of the signal entries. In CS [3, 4], linear combinations of the
signal coefficients are taken instead of directly sampling the signal.
Many compressed sensing recovery algorithms have been proposed,
ranging from convex relaxation techniques to greedy approaches such
as Orthogonal Matching Pursuit (OMP) [5] to iterative thresholding
schemes such as Iterative Hard Thresholding (IHT) [6, 7]. IHT is
proposed for compressed sensing recovery of sparse signals when
the sparsity number of the signal is known. In [8], normalized
IHT algorithm is proposed which is a stabilized version of IHT. In
[2, 9], the Iterative Method with Adaptive Thresholding (IMAT) is
proposed to recover the signal from its random samples. The random
samples in this case are random selection of the signal entries. The
IMAT recovers the underlying sparse signal by alternating projections
between the information domain and the sparsity domain (the domain

in which the signal is sparse). In order to take advantage of the
sparsity of the embedded signal, IMAT thresholds adaptively the
signal (by decreasing or increasing the threshold levels) in such a
way that the coefficients are picked up gradually after some iterations.
In this paper, two methods are proposed which address the random
sampling and CS recovery problems. The proposed random sampling
recovery method is the Iterative Method with Adaptive Thresholding
and Interpolation (IMATI) which is a modified version of the IMAT.
At each iteration, a crude reconstruction of the signal based on
linear interpolation is obtained. The adaptive thresholding scheme
is exploited to promote sparsity. The proposed compressed sensing
recovery method is Iterative Method with Adaptive Thresholding for
Compressed Sensing recovery (IMATCS). We note that IMATCS is
closely related to IHT method [6, 7], except that the thresholding
function is adaptive, i.e., the threshold value changes with the
iteration number, which enables IMATCS to reconstruct the sparse
signal without having any knowledge of the sparsity number. The
simulation results indicate that the IMATI method outperforms the
IMAT method. Also, we conclude that random sampling recovery
(using IMAT or IMATI) is a good choice for signal compression com-
pared to CS recovery techniques such as Orthogonal Matching Pursuit
(OMP), and there is no need to add more complexity to take linear
combination of the signal coefficients. However, in some applications
the linear combinations of the signal coefficients are imposed by the
problem. In such cases, the compressed sensing recovery techniques
are the only solution. The simulation results indicate that IMATCS
provides better and faster reconstruction compared to normalized IHT,
although IHT has an extra information of the sparsity number. Also,
the recovery performance of IMATCS is better than that of OMP
with less computational complexity.

The rest of the paper is organized as follows: The IMATCS method
is proposed in Section II. The proposed IMATI method is presented
in section III. The simulation results are given in Section IV. Finally,
Section V concludes this work.

II. ITERATIVE METHOD FOR COMPRESSED SENSING RECOVERY
(IMATCS)

In this section, the proposed Iterative Method for Compressed
Sensing recovery (IMATCS) is illustrated. Let S be M⇥1 signal and
� be L⇥M (LhM) measurement matrix. The problem is to recover
S from its measurement vector Y=� ⇥ S with the constraint that S
is sparse in the  domain, S= ⇥X . In other words, the coefficient
vector X has a small number of non-zero entries. The transformation
matrix, can be DCT, DWT or DFT. The IMATCS method can be
considered as a variant of IHT based on adaptive thresholding. The
mathematical formulation of the method is as follows:

xk+1 = T (xk + ⇥A

H(Y �A⇥ xk)) (1)
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A = �⇥ (2)

Srecovered =  ⇥ xitermax (3)

� is the relaxation parameter which controls the convergence of
the algorithm. T is the thresholding function decreased iteration by
iteration in an exponential manner as follows:

T = T0 ⇥ exp(�↵⇥K) (4)

where K is the iteration number and � indicates the threshold step
and is determined empirically. The algorithm starts from zero initial
value, x0 = 0. After a number of iterations, indicated by itermax,
the coefficient vector is recovered as xitermax. The adaptivity of the
threshold enables us to recover the embedding signal from its linear
measurements without any knowledge of the sparsity number of the
signal.

III. ITERATIVE METHOD WITH ADAPTIVE THRESHOLDING AND
INTERPOLATION (IMATI)

Another problem which is addressed here is the recovery of the
sparse signal from a random selection of its entries, i.e. random
sampling. The proposed method in this case is IMATI which rely
on some modifications to the well-known iterative method [10]. The
conventional iterative method has originally been proposed in the field
of non-uniform sampling recovery for low pass or high pass signals
(a special kind of sparse signals). In order to promote sparsity, a
thresholding operator is used at the end of each iteration. In random
sampling, the measurements are a subset of signal entries. Hence,
the random sampling measurement matrix, �R, consists of a random
selection of the rows of the identity matrix. The formulation of the
IMATI method is given as:

xk+1 = T (xk + ⇥ Interpl(Y �AR ⇥ xk)) (5)

AR = �R ⇥ (6)

Srecovered =  ⇥ xitermax (7)

The above formulation of IMATI shows the analogy of the two
proposed methods, IMATCS and IMATI. A crude reconstruction
scheme is used successively and the recovered signal at each iteration
is sparsified using an adaptive threshold. In IMATCS method, the
measurements are linear combinations of the signal entries and the
iterated recovery is based on the transpose of the matrix, i.e. AH.
In IMATI, a random selection of the signal entries is available as
measurements and the crude reconstruction scheme is based on linear
interpolation. Furthermore, in order to promote sparsity, exponential
adaptive thresholding is used in the proposed methods. The IMATI
method can be implemented in a more efficient way according to the
block diagram depicted in Figure 1.

The G operator applies the sampling and interpolation. The ran-
dom sampling scheme can be implemented by an inner product
of the image with a binary sampling mask. Moreover, the linear
interpolation can be applied to the sampled image using a sliding
interpolating window. Therefore, the above implementation enables
IMATI to process the whole image at once.

IV. SIMULATION RESULTS

In this part, the simulation results are reported. The parameters
of IMATI method are set as: T0 = 66363, ↵ = 0.6, � = 1.8
,itermax=35. The parameters of IMATCS are set as follows: T0 =
900,↵ = 0.2 , � = 0.3 , itermax=100.

Two kinds of interpolators have been exploited in IMATI method:
• Linear interpolation using sliding window 3⇥ 3

Fig. 1. Block diagram of IMATI method.

The missing pixel is replaced by a weighted average of the
3⇥ 3 neighbors. The IMATI method in this case is named
IMATLI.

• Sample and hold interpolation
the missing pixels are replaced by their neighboring samples
in the top or left. The IMATI method in this case is called
IMATSH.

In the case of random sampling recovery methods such as IMAT,
IMATSH and IMATLI, the whole of the image is processed at once
without dividing it into small blocks, while 8⇥8 blocks of the image
are processed separately for compressed sensing recovery methods
such as OMP, normalized IHT and IMATCS. The performances of
IMATLI, IMATSH, IMAT and OMP methods are compared in Figure
2.

Fig. 2. comparison of IMATI method with IMAT and OMP

According to Figure 2, the IMATLI method has better recovery
performance than the IMATSH and both of them outperform IMAT.
The OMP method has the worst recovery performance among the all.
The simulation time of the methods are compared in Figure 3 as a
trustable complexity measure.

Comparing the simulation times of the methods, we observe that
IMAT is much more complex than IMATLI and IMATSH especially
for lower sampling rates. Furthermore, the IMATSH is faster than
IMATLI. The simulation time of OMP goes up as the sampling
rate increases and its complexity is more than those of IMAT and
IMATSH especially for higher sampling rates. The IMATCS method
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Fig. 3. simulation time of IMATLI, IMATSH, IMAT and OMP

is compared to some well known compressed sensing recovery
methods such as OMP [5] and normalized IHT [8] in the case of
natural image recovery. As the IHT method requires the signal to be
k-sparse for efficient performance, we sparsify the image in the DCT
domain up to 20 %. However, for the other two simulated methods
(OMP and proposed IMATCS), the original (non-sparse) image is
used. The efficiency of the recovery methods for various sampling
rates are compared at Figure 4.

Having a look at Figure 4, we understand that the performance

Fig. 4. recovery performance of IMATCS, OMP and normalized IHT

of IMATCS is similar to that of OMP and much better than that
of normalized IHT for various sampling rates. To compare the
complexities of the methods, the simulation time is shown in Figure
5.

According to Figure 5, the simulation time of normalized IHT is
more than 50 times those of OMP and IMATCS. Furthermore, simu-
lation time of OMP increases with the sampling rate while IMATCS
has an approximately steady low simulation time. Consequently, the
complexity of IMATCS is low and does not change for various
sampling rates which can be an excellent characteristic from practical
point of view, since a fixed and flexible implementation test bed can
be used for various sampling rates.

Fig. 5. simulation time of IMATCS, OMP and normalized IHT

V. CONCLUSION

In the case of IMATI method, the linear interpolation performs
slightly better than sample and hold interpolation at the cost of
more complexity. The IMATSH and IMATLI methods reconstruct
the signal better than what IMAT does at the cost of more simu-
lation time. Furthermore, the random sampling recovery techniques
including IMAT and IMATI methods, outperform OMP (CS recovery
technique) in both simplicity and recovery performance. Also, they
exploit the spatial correlations in the 2-D image by taking 2-D DCT
transform of the image and it is unnecessary to divide the whole
image into small blocks as required in OMP. As a result, for the
purpose of signal compression, one does not need a compressive
matrix to take linear measurements of the signal coefficients and
it is shown in this work that direct random sampling recovery
(using IMAT and IMATI) performs better than compressive sampling
recovery using OMP. However, when we are faced with an ill-posed
system of equations (which inherently has the linear combinations
of signal coefficients for example, in MRI imaging), compressed
sensing recovery techniques are the only solutions. The simulation
results indicate that the proposed CS recovery technique, IMATCS,
outperforms IHT in both recovery performance and computational
complexity without any need to have knowledge of the sparsity
number. Moreover, IMATCS surpasses OMP in terms of recovery
performance and convergence speed.
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Abstract—In this paper we give a review of recent results on the

invertibility of frame multipliers Mm,�, . In particular, we give

sufficient, necessary or equivalent conditions for the invertibility

of such operators, depending on the properties of the sequences

 , � and m. We consider Bessel sequences, frames, and Riesz

bases.

I. INTRODUCTION

Certain mathematical objects appear in a lot of scientific dis-
ciplines, like physics [2], signal processing [16] and certainly
mathematics [13]. In a general setting they can be described
as frame multipliers, consisting of analysis, multiplication by
a fixed sequence (called the symbol), and synthesis:

Mm,�, f =
X

k

mk hf, ki�k.

They are not only interesting mathematical objects [4], [7], [9],
[12], [17], but also important for applications, for example for
the realization of time-varying filters [8], [15], [24]. Therefore,
for some applications it is important to find the inverse of a
multiplier if it exists.

Here we collect results from [3], [20], [21], [23] about the
invertibility of such operators.

II. PRELIMINARIES AND NOTATIONS

Throughout the paper, H denotes an infinite-dimensional
Hilbert space, � (resp.  ) denotes a sequence (�n)1n=1 (resp.
( n)1n=1) with elements from H, m denotes a complex scalar
sequence (mn)1n=1, m = (mn)1n=1, and m = (mn n)1n=1.
The sequence m is called semi-normalized if 0 < infn |mn| 
supn |mn| < 1. When the index set is omitted, N should
be understood as the index set. A multiplier Mm,�, is
the operator given by Mm,�, h =

P1
n=1 mnhh, ni�n. If

not stated otherwise, M denotes any one of the multipliers
Mm,�, and Mm, ,�. The identity operator on H is denoted
by IH. An operator T : H ! H is called invertible if it
is a bounded bijection. Depending on the sequences �, ,
and m, the multiplier Mm,�, might be well defined or not
well defined, as well as invertible or not invertible. In [22]
an extensive collection of examples for all those cases can be
found.

Recall that � is called a Bessel sequence (in short, Bessel)
in H with bound B� if B� > 0 and

P |hh,�ni|2  B�khk2
for every h 2 H. A Bessel sequence � in H with bound B�
is called a frame for H with bounds A�, B�, if A� > 0 and
A�khk2 

P |hh,�ni|2 for every h 2 H. For a given frame �

for H, its frame operator S� is given by S�h =
Phh,�ni�n,

h 2 H. When � is a frame for H, there exist frames �d =
(�d

n) satisfying h =
Phh,�d

ni�n =
Phh,�ni�d

n for every
h 2 H. Such frames �d are called dual frames of �.

The sequence � is called a Riesz basis for H with bounds
A�, B�, if � is complete in H, A� > 0, and A�

P |cn|2 
kP

cn�nk2  B�
P |cn|2, 8(cn) 2 `2. Every Riesz basis

for H with bounds A,B is a frame for H with bounds A,B.
For standard references for frame theory and related topics see
[10], [11], [14].

The notion of frame multipliers is naturally connected to
the one of weighted frames [6], [19]. Frames can also be
used for the representation of operators [5]. In this setting
multipliers are those operators that can be represented with
diagonal matrices.

III. SUFFICIENT AND NECESSARY CONDITIONS FOR
INVERTIBILITY OF MULTIPLIERS FOR RIESZ BASES

We start with the case of Riesz bases, where we can give
equivalent conditions for the invertility of multipliers. We start
with an easy result:

Proposition 3.1: [3] If � and  are Riesz bases and m
is semi-normalized, then Mm,�, is invertible and its inverse
can be written as M(1/mn),e ,e�, where e and e� are the unique
biorthogonal sequences to  and �, respectively.

Even more, it can be shown, that if two of those three
assumptions are assumed, the third one is equivalent to the
invertibility of M :

Theorem 3.2: [20] Let � be a Riesz basis for H. Then the
following holds.
(i) If  is a Riesz basis for H, then M is invertible if and

only if m is semi-normalized.
(ii) If m is semi-normalized, then M is invertible if and only

if  is a Riesz basis for H.
More detailed, we can distinguish the cases of well-

definedness, invertibility, injectivity, and surjectivity of mul-
tipliers for Riesz bases:

Proposition 3.3: [23] Let � be a Riesz basis for H. The
following equivalences hold.
(a) M is well defined if and only if m is a Bessel sequence

in H.
(b) M is invertible if and only if m is a Riesz basis for H.

(c1) Mm,�, is injective if and only if m is a complete
Bessel sequence in H.
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(c2) Mm, ,� is injective if and only if the synthesis operator
Tm , given by Tm (cn) =

P
cnmn n for (cn) 2 `2, is

injective.
(d1) Mm,�, is surjective if and only if m is a Riesz basis

for its closed linear span.
(d2) Mm, ,� is surjective if and only if m is a frame for

H.
As seen above, when at least one of � and  is not a Riesz

basis or m is not semi-normalized, then M does not need to
be invertible. In such cases the multiplier M even does not
need to be well defined (one can give simple examples, see
e.g. [22]).

IV. SUFFICIENT CONDITIONS FOR INVERTIBILITY OF
MULTIPLIERS FOR FRAMES

In this section we consider the more general case, where it is
assumed that � is a frame. We give four sufficient conditions
for the invertibility of multipliers, give representations of the
inverses as operator sums and give the corresponding n-term
error:

Proposition 4.1: [20] Let � be a frame for H. Assume that
P1: 9µ 2 [0, A2

�
B�

) such that
P |hh, n � �ni|2  µkhk2,

8h 2 H.
For every positive (or negative) semi-normalized sequence m,
satisfying

supn |mn|
infn |mn|

p
µ <

A�p
B�

,

it follows that  is a frame for H, M is invertible,

M�1 =
1X

k=0

[S�1
(
p

mn�n)(S(
p

mn�n) �M)]kS�1
(
p

mn�n),

if mn > 0,8n 2 N, and

M�1 = �
1X

k=0

[S�1

(
p
|mn|�n)

(S
(
p
|mn|�n)

+ M)]kS�1

(
p
|mn|�n)

,

if mn < 0,8n 2 N,
where the n-term error is bounded by the constant
(b
p

µB�)n+1

aA��b
p

µB�

⇣
1

aA�

⌘n+1
.

Proposition 4.2: [20] Let � be a frame for H and P1 hold.
Let m satisfy

|mn � 1|  � <
A� �

p
µB�

B� +
p

µB�
, 8n 2 N, (1)

for some �. Then  is a frame for H, Mm,�,� and M are
invertible,

M�1
m,�,� =

1X

k=0

[S�1
� (S� �Mm,�,�)]kS�1

� ,

where the n-term error is bounded by 1
A���B�

⇣
�B�
A�

⌘n+1
,

and

M�1 =
1X

k=0

[M�1
m,�,�(Mm,�,� �M)]kM�1

m,�,�,

where the n-term error is bounded by the constant
1

A���B��(�+1)
p

µB�

⇣
(�+1)

p
µB�

A���B�

⌘n+1
.

Proposition 4.3: [20] Let � be a frame for H and �d =
(�d

n) be a dual frame of �. Let M denote any one of Mm,�,�d

and Mm,�d,�, and m be such that |mn � 1|  � < 1p
B�B�d

,
8n 2 N, for some �. Then M is invertible,

M�1
m,�d,� =

1X

k=0

(M(1�mn),�d,�)k,

and the n-term error is bounded by
�
� ·pB�B�d

�n+1

1� � ·pB�B�d

.

Proposition 4.4: [20] Let � be a frame for H. Assume that
P2: 9µ 2 [0, 1

B�
) such that

P |hh, mn n � �d
ni|2  µkhk2,

8 h 2 H,
for some dual frame �d = (�d

n) of �. Let M denote any one
of Mm,�, and Mm, ,�. Then m is a frame for H, M is
invertible,

M�1 =
1X

k=0

(IH �M)k,

and the n-term error is bounded by (pµB�)n+1

1�pµB�
.

V. INVERTIBILITY OF MULTIPLIERS FOR EQUIVALENT
FRAMES

Two frames � and  are called equivalent [1], [10], if there
exists a bounded bijective operator G, such that  n = G�n

for every n 2 N.
Proposition 5.1: [20] Let � and  be equivalent frames for

H. Let m be semi-normalized and satisfy one of the following
three conditions:

• mn > 0 for every n 2 N;
• mn < 0 for every n 2 N; or
• there exists � with |mn � 1|  � < A�/B�, 8n 2 N.

Then M and Mm,�,� are invertible, M�1
m,�, =

(G�1)⇤M�1
m,�,�, and M�1

m, ,� = M�1
m,�,�G�1.

VI. NECESSARY CONDITIONS FOR INVERTIBILITY OF
MULTIPLIERS FOR BESSEL SEQUENCES

In this section we generalize the assumptions, considering
the invertibility of multipliers for Bessel sequences.

Let one of the sequences � and  be a Bessel sequence
in H. If the multiplier Mm,�, is invertible, then the other
sequence does not need to be a Bessel sequence. The next
statement contains necessary conditions for invertibility con-
cerning the other sequence. In particular, it shows that if � and
 are Bessel sequences and m is bounded, then the multiplier
Mm,�, can be invertible only if � and  are frames for H.

Proposition 6.1: [20] Let Mm,�, be invertible.
(i) If  (resp. �) is a Bessel sequence in H with bound B,

then m� (resp. m ) satisfies the lower frame condition
for H with bound 1

B kM�1
m,�, k2

.
(ii) If  (resp. �) and m� (resp. m ) are Bessel sequences

in H, then they are frames for H.
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(iii) If  (resp. �) is a Bessel sequence in H and m 2 `1,
then � (resp.  ) satisfies the lower frame condition for
H.

(iv) If  and � are Bessel sequences in H and m 2 `1, then
 , �, m�, and m are frames for H.

VII. UNCONDITIONALLY CONVERGENT INVERTIBLE
MULTIPLIERS

The previous results contain conclusions for both of the
multipliers Mm,�, and Mm, ,� (under the same assumptions
in each statement). This leads naturally to the question for
a connection between the multipliers Mm,�, and Mm, ,�.
Note that Mm,�, being invertible is not equivalent to Mm, ,�

being invertible, see Example 2.2 in [21]. The next statement
gives an equivalence of the invertibility of those operators
when unconditionally convergent multipliers Mm,�, and
Mm, ,� are considered.

Proposition 7.1: [21] For any �, and m, the following
holds.
(i) Let Mm,�, be invertible and let Mm, ,� be well

defined. Then Mm, ,� is invertible and M�1
m, ,� =

(M�1
m,�, )⇤.

(ii) Mm,�, is unconditionally convergent and invertible ,
Mm, ,� is unconditionally convergent and invertible.

Below we consider a necessary condition for certain classes
of multipliers to be both unconditionally convergent and in-
vertible. Among these multipliers we consider the cases when
Gabor or Wavelet frames are used. Consider the condition
P3: 9 (cn) and (dn) so that Mm,�, can be written as

M(1),(cn�n),(dn n), where the summands are kept and
(cn�n) and (dn n) are frames for H.

Proposition 7.2: [21] Let � and  be Gabor (or wavelet)
systems and let m satisfy infn |mn| > 0. If Mm,�, is
unconditionally convergent and invertible, then P3 holds.

Proposition 7.3: [21] Let � be minimal. If Mm,�, is
unconditionally convergent and invertible, then P3 holds.

Proposition 7.4: If Mm,�,� is unconditionally convergent
and invertible, then (

p
mn�n) is a frame for H (where

p
mn

denotes one (any one) of the two complex square roots of mn,
n 2 N) and P3 holds.

VIII. CONCLUSION

In this paper we have considered the invertibility of frame
multipliers and reviewed analytical results.

In the future we will investigate the numerics of the inver-
sion of multipliers (using the LTFAT toolbox [18]) and classify
the cases when the inverse of a multiplier is again a multiplier,
i.e. generalizations of Prop. 3.1.
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Boston, 2003.

[12] M. Dörfler and B. Torrésani, Representation of operators in the time-
frequency domain and generalized Gabor multipliers, J. Fourier Anal.
Appl. 16 (2010), no. 2, 261–293.

[13] H. G. Feichtinger and K. Nowak, A first survey of Gabor multipliers,
ch. 5, pp. 99–128, Birkhäuser, Boston, 2003.
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Abstract—Imaging mass spectrometry (IMS) is a technique

to visualize the molecular distributions from biological samples

without the need of chemical labels or antibodies. The underlying

data is taken from a mass spectrometer that ionizes the sample

on spots on a grid of a certain size. Mathematical postprocessing

methods has been investigated twice for better visualization

but also for reducing the huge amount of data. We propose

a first model that applies compressed sensing to reduce the

number of measurements needed in IMS. At the same time we

apply peak picking in spectra using the `1-norm and denoising

on the m{z-images via the TV-norm which are both general

procedures of mass spectrometry data postprocessing, but always

done separately and not simultaneous. This is realized by using

a hybrid regularization approach for a sparse reconstruction of

both the spectra and the images. We show reconstruction results

for a given rat brain dataset in spectral and spatial domain.

I. INTRODUCTION

A. Mass spectrometry

Mass spectrometry is a technique of analytical chemistry for
the determination of the elemental composition of a biolog-
ical or chemical sample. The way this task is accomplished
is through experimental measurement of the mass-to-charge
ratio of gas-phase ions produced from molecules from the
underlying analyte.

As an example for a mass spectrometer we will now shortly
describe the main principles of the so-called matrix-assisted
laser desorption/ionization time-of-flight (MALDI-TOF) mass
spectrometer. In MALDI mass spectrometry the sample or
compound to be analyzed is dissolved in a so-called matrix
with crystallized molecules. Next, the ionization of the sample
is triggered by intense laser pulses over a short duration. The
ions are then accelerated by an electrostatic field. Since the
velocity of the ions depends on the mass-to-charge ratio it is
possible to measure the time-of-flight (TOF) to find the mass-
to-charge ratio.

Most applications of mass spectrometry can be found in
biology and medicine. But generally, mass spectrometry is not
limited to the analysis of organic molecules. In principle any
ionizable element can be analyzed with this technique.

B. Imaging mass spectrometry

The imaging mass spectrometry (IMS) is a technique used
in mass spectrometry to visualize the spatial distribution of
e.g. proteins or other chemical compounds. Given a thin

sample, usually a tissue section, in MALDI-IMS mass spectra
at discrete spatial points across the sample surface are acquired
independently, providing a so-called datacube or hyperspectral
image, with a mass spectrum measured at each pixel [1], see
Figure 1. A mass spectrum represents the relative abundances
of ionizable molecules with various mass-to-charge ratios
(m{z), ranging for MALDI-IMS from several hundred up
to a few tens of thousands m{z. A channel of a MALDI
datacube corresponding to an m{z-value is called an m{z- or
molecular image and expresses the relative spatial abundances
of a molecular ion with this m{z-value. MALDI-IMS data

(B) optical image(A) (C) m/z 4966

(D) m/z 6717
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Fig. 1. Mass spectrometry data on an example of a rat brain tissue, taken
from [2]. Each spot on the x, y-grid on the sample in (B) corresponds to one
spectrum (A). Fixing an m{z-value yields to m{z-images representing the
spatial distribution of the corresponding m{z-value, (C) and (D).

is large with a typical dataset comprising 10, 000 - 100, 000
spectra where an individual spectrum represents intensities
measured at 10, 000 - 25, 000 m{z-bins.

In order to reduce the number of spectra required for
reconstructing the hyperspectral IMS datacube we will make
use of the compressed sensing (CS) idea: Instead of measuring
spectra independently for each pixel we assume a setup that
enables us to acquire some multiple sets of spectra at different
points on the data which are then each summed up to a
measurement-mean spectrum. Each measurement-mean spec-
trum then corresponds to one measurement and we would like
to reconstruct the full dataset based on these measurements.

C. Compressed sensing and its applications to hyperspectral
imaging

The combination of classical Shannon-Nyquist sampling
and compression steps is one of the main ideas of CS. It turns
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out that it is possible to represent or reconstruct given data
with sampling rates much lower than the Nyquist rate [3], [4].
Mathematically spoken it means that given a signal, we do
not need to acquire n periodic samples to get the discretized
signal x P Rn. Instead, it suffices to take m ! n linear
measurements y

k

P R using linear test functions '
k

P Rn,
i.e. y

k

“ x'
k

, xy ` z
k

with some additive noise z
k

P R. In
matrix notation this reads

y “ �x ` z,

where � is called the measurement matrix whose rows are
filled with the linear functionals '

k

. Using the a-priori infor-
mation that the signal x is S-sparse in a basis  , i.e. x “  �
with }�}

`0 :“ |suppp�q| § S ! n, we are then interested in
recovering the data x from only few taken measurements y.
This can, e.g., be done with the basis pursuit approach, i.e. by
solving the following convex optimization problem

argmin

�PRn

}�}1 s.t. }y ´ � �}2 § ". (1)

One of the many applications of CS can be found in hyper-
spectral imaging. A hardware realization of CS in that situation
applying the single-pixel camera [5] has been studied in, for
example, [6]. From the theoretical point of view mathematical
models has been studied for CS reconstruction under certain
priors [7]–[9]. Suppose that we have hyperspectral datacube
X P Rn

x

ˆn

y

ˆc whereas n
x

ˆn
y

denotes the spatial resolution
of each image and c the number of channels. By concatenating
each image as a vector we have X P Rnˆc with n :“ n

x

¨n
y

.
In the context of CS one aims to take m ! n measurements
for each spectral channel 1 § j § c [8], [9] and to formulate
a reconstruction strategy based on hyperspectral data priors.
For example in [9] the authors assume the hyperspectral
datacube to have low rank and piecewise constant channel
images. Therefore the following convex optimization problem
is presented

argmin

X̃PRnˆc

}

˜X}˚ ` �
cÿ

j“1

}

˜X
j

}

TV

s.t. }Y ´ �

˜X}

F

§ ", (2)

where } ¨ }˚ denotes the nuclear norm (i.e. the sum of the
singular values), } ¨ }

TV

denotes the TV norm and the linear
operator � is a measurement matrix as described above.

Another application of CS in hyperspectral imaging is the
idea of calculating a compressed matrix factorization or a
(blind) source separation of the data X P Rnˆc, i.e. X “

SHT , where S P Rnˆ⇢ is a so called source matrix, H P Rcˆ⇢

is a mixing matrix and ⇢ denotes the number of sources in the
data which are supposed to be known. This model has been
studied in the case of known mixing parameters H of the data
X in [10] and with both matrices to be unknown in [7]. In
case of the matrix H to be known and under the assumption
that the columns of S are sparse or compressible in a basis
 , the problem being solved in [10] becomes

argmin

�PR⇢n

}�}1 s.t. }Y ´ �

¯H �}2 § ", (3)

where ¯H “ HbI
n

and b denotes the usual matrix Kronecker
product and I

n

the n ˆ n identity matrix. The authors in
[10] also studied the case where the `1-norm in (3) is re-
placed by the TV-norm with respect to the columns of S,
i.e.

∞
⇢

j“1 }S
j

}

TV

. However, as a result of (3) one has a
decomposition of the data X as in two matrices S and H
where the columns of S contain of the ⇢ most representative
images of the hyperspectral datacube and those of H of the
corresponding pseudo spectra.

In this work we investigate a hybrid reconstruction model
for hyperspectral data similar to (2) and (3), but with special
motivation for imaging mass spectrometry data X P Rnˆc

` and
formulated as a Tikhonov functional:

argmin

X̃PRnˆc

`

1

2

}Y ´ D�, p

˜Xq}

F

` ↵
cÿ

j“1

}

˜X
j

}

TV

` �}

˜X}1. (4)

Furthermore, we are interested in reconstructing the full
dataset X P Rnˆc

` while extracting its main features.
Since we know a-priori that mass spectra in IMS are

typically nearly sparse or compressible we use the `1-norm as
one regularization term. The second, i.e. the TV-term, comes
from the fact that the m{z-images are supposed to have sparse
image gradients.

II. COMPRESSED SENSING MODEL FOR IMAGING MASS
SPECTROMETRY

A. Imaging mass spectrometry data

IMS data is a hyperspectral datacube X P Rn

x

ˆn

y

ˆc

` with c

channels and m{z-images Xp¨,¨;kq P Rn

x

ˆn

y

` for k “ 1, . . . , c.
By concatenating each image as a vector, the hyperspectral
data becomes a matrix X P Rnˆc

` where n :“ n
x

¨ n
y

.

B. The compressed sensing process

A part of the measurement process in IMS consists of the
ionization of the given sample. In MALDI-MS, for instance,
the tissue is ionized by a laser beam, which shoots on each of
the n pixel of a predefined grid. This yields n independently
measured spectra. In order to reduce the number of spectra
needed for the reconstruction we make use of CS [4], [11].

In the context of compressed sensing, each entry y
ij

of
the measurement vectors y

i

P Rc for i “ 1, . . . ,m and j “

1, . . . , c is the result of an inner product between the data
X P Rnˆc

` and a test function '
i

P Rn with components '
ik

,
i.e.

y
ij

“ x'
i

, Xp¨,jqy. (5)

The results y
i

for i “ 1, . . . ,m are in our IMS context so
called measurement-mean spectra since they are calculated by
the mean intensities on each channel. This can be seen by
rewriting (5) as

yT
i

“ 'T

i

X “

nÿ

k“1

'
ik

Xpk,¨q, (6)

which directly shows that the measurement vectors yT
i

are
linear combinations of the original spectra Xpk,¨q.
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We are looking for a reconstruction of the data X based on
m measurement-mean spectra, each measured by one linear
function '

i

. In matrix form (5) becomes

Y “ �X P Rmˆc

` , (7)

where � P Rmˆn is the measurement matrix. By incorporating
noise Z P Rmˆc

` that arises during the mass spectrometry
measurement process, (7) becomes

Y “ �X ` Z P Rmˆc

` , (8)

at which }Z}

F

§ ". By this we explicitly assume to have
inherent Gaussian noise in the data and we will keep this for
the rest of our analysis.

C. First assumption: compressible spectra

Within IMS data acquisition process for each pixel on the
sample we gain a mass spectrum whose entries can be seen
as positive real numbers, i.e. Xpk,¨q P Rc

`, k “ 1, . . . , n. As
our first assumption we take into account that we know that
these spectra are sparse or compressible in spectral domain.
Therefore we assume that these spectra are well presented
by a suitable choice of functions  

i

P Rc

` for i “ 1, . . . , c.
More precisely this means that there exists a matrix  P Rcˆc

`
such that for each spectrum Xpk,¨q there is a coefficient vector
�
k

P Rc

` with }�
k

}0 ! c, such that XT

pk,¨q “  �
k

. In matrix
form this sparsity property can be written as

XT

“  ⇤, (9)

where ⇤ P Rcˆn

` is the coefficient matrix or feature matrix,
see Figure 2. In light of the sparse spectra, our aim should
be to minimize the columns ⇤p¨,iq of ⇤ with respect to the l0
”norm”, i.e.

nÿ

i“1

}⇤p¨,iq}0. (10)

Putting (8) and (9) together leads to

Y “ �⇤

T

 

T

` Z. (11)

D. Second assumption: sparse image gradients

By keeping one m{z-value i0 P t1, . . . , cu fixed we get an
m{z-image Xp¨,i0q P Rn

` (one column of the data X) that
represents the spatial distribution of the fixed mass m0 in
the measured biological sample. Another a priori knowledge
takes into account the sparsity of these m{z-images with
respect to their gradient. Besides this, we are also aware of
the large variance of noise variance in each m{z-image. To
handle both, we want to make use of the total variation (TV)
model introduced by Rudin, Osher and Fatemi [12]. So as a
second statement, we want each m{z-image to be minimized
with respect to its TV semi-norm. By taking into account the
coefficient matrix ⇤ in (9), it arises to minimize its rows ⇤pi,¨q
for i “ 1, . . . , c since each of them corresponds to an m{z-
image, i.e.

cÿ

i“1

}⇤pi,¨q}

TV

. (12)

0 1, 000 2, 000 3, 000 4, 000 5, 000 6, 000
0

0.5

1.0

m/z-value (Da)

R
el
.
in
te
n
si
ty

(a
rb
.u
.)

Fig. 2. Illustration of peak picking approach in mass spectrometry. Instead
of finding a minimizer ⇤̃ and multiply it with a convolution operator  , we
aim to recover the features ⇤̃. Dashed line (- - -): Reconstruction of the i-th
spectrum, i.e. X̃T

p¨,iq “ p ⇤̃qp¨,iq. Solid line (—): Only the main features of
the i-th spectrum ⇤̃p¨,iq, i.e. the main peaks, are extracted.

As in the first assumption and also explained in Figure 2, we
aim to extract the main features such as the main peaks in the
data. For incorporating also the spatial domain information in
each channel, we again only use the coefficient matrix in (12).

E. The final model

Putting it all together, we are now able to formulate our
model for CS in IMS. Since minimizing with respect to the `0
”norm” is NP-hard, it is common to obviate this by replacing
it with the `1-norm. Our minimization problem then finally
becomes

argmin

⇤PRcˆn

`

1

2

}Y ´ �⇤

T

 

T

}

2
F

` ↵
cÿ

i“1

}⇤pi,¨q}

TV

` �
nÿ

i“1

}⇤p¨,iq}1.

(13)

III. NUMERICAL RESULTS

The algorithm we are using to solve (13) is based on the
parallelizable primal-dual splitting algorithm presented in [13].

The test data X P Rnˆc

` is made of a well-studied rat brain
coronal section [2] (see Figure 1) which consists of c “ 2, 000
channels with m{z-images of spatial resolution 121 ˆ 202

and therefore n “ 24, 442 pixel. The spectra were normalized
using total ion count (TIC) normalization which is nothing else
than a division by the `1-norm of each spectrum. Furthermore,
they were baseline-corrected using the TopHat algorithm with
a minimal baseline with set to 10%. We assume the mass
spectra to be sparse with respect to shifted Gaussians [14]

 
k

pxq “

1

⇡1{4�1{2 exp

ˆ
´

px ´ kq

2

2�2

˙
. (14)

In (14), the variance should be set data dependent [15]. The
measurement matrix � is randomly filled with numbers from
an i.i.d. Gaussian distribution with zero mean and variance
one. For our results we have further set the regularization
parameters in (13) by hand as ↵ “ 1.6 and � “ 1.4 and
applied 100 iterations.

First we present the mean spectrum, i.e. the sum over all
pixel spectra ⇤pi,¨q for i “ 1, . . . , n of the rat brain data
as well as the mean spectrum of the reconstructed datacube,
see Figure 4. The reconstruction is based on 40% taken
measurements. We can see is that the main peaks from the
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Fig. 3. Reconstruction results of four m{z-images based on 40% taken measurements of spectra.
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Fig. 4. Mean spectrum from the rat brain dataset (black) and its compressed
reconstruction (blue), based on 40% taken measurements. As part of the
reconstruction, also main peaks within the spectrum were detected (triangles).

original mean spectrum are recovered while the rest of the
m{z-values are set to zero. At second we show four different
m{z-images which all belong to a peak in the mean spectrum
in Figure 4. We clearly see the influence of both the TV
and the `1 penalty term. Where there are regions of high
intensity pixels, total varations effects smoothing those ones
while preserving the edges. In addition we see that due to
`1 minimization other non-high intensity pixels were set to
(nearly) zero.

IV. CONCLUSION

We have proposed a first CS model for imaging mass
spectrometry. While reconstructing the data from fewer mea-
surements we apply peak picking in mass spectra as well
as TV-denoising on the m{z-images at the same time. Our
results look promising and motivates for further research in
this direction. Future work might be done by replacing the
Gaussian noise model with a Poisson statistics approach which
is supposed to be more suitable for MALDI-TOF spectrometry
[15].
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Abstract—We address the problem of quantifying the number

of samples that can be obtained through a level crossing sampling

procedure for applications to mobile systems. We specially

investigate the link between the smoothness properties of the

signal and the number of samples, both from a theoretical and

a numerical point of view.

I. INTRODUCTION

An important issue in the design of mobile systems is to
increase their autonomy and/or reduce their size and weight.
This can be achieved by reducing their power consumption
by processing signal with a smaller number of samples. For
a large class of signals, especially sporadic signals, non-
uniform sampling leads to a reduced number of samples,
compared to a Nyquist sampling [7], [9], [10], [13]. A way
to obtain such samples is to use specific system architectures
(e.g. event-driven). These architectures take samples each time
some specific event occurs, typically specific voltage levels
are crossed. We can therefore design simple analog circuits,
with low power consumption, to acquire information, possibly
at high speed. Here we consider a system where amplitudes
are selected thanks a M -bit asynchronous analog-to-digital
converter (AADC) and 2

M levels are predefined in the voltage
range.

In this article we want to understand on which signal charac-
teristics the number of samples depend. An intuitive look at the
problem indicates that the more the signal is oscillating locally
the higher the number of samples is. The number of samples
at the neighborhood of some point may then be related to the
local smoothness of the signal, that is to its so–called Hölder
regularity. To put in evidence this relationship, we consider toy
models of signals whose smoothness properties are perfectly
known at each point. We then perform numerical simulations
and link the sample reduction rate with this regularity. The
next step, which will be the purpose of a forthcoming paper,
will then be to consider signals whose regularity may change
from point to point such as multifractional or multifractal
signals. We then intend to apply our results to biological
signals such as EEG signals or fMRI data which are well-
known to be both highly irregular and non stationary signals,
and which provide interesting ranges of application for non-
uniform signal processing.

II. ALGORITHM

In the event-driven systems, the signals are not sampled
at totally arbitrary times. Indeed there are local clocks that
measure the time elapsed since the previous sample was taken.
Therefore we can consider that the samples are taken at some
multiples of some basis time tb. The mathematical algorithm
that is used to mimic the AADC is the following:

• Step 1: generate uniform samples on [0, 1] with sampling
interval tb;

• Step 2: for each sample replace the amplitude by the
value of the level just below;

• Step 3: decimate the samples so as to keep only one (the
last) sample when consecutive samples have the same
amplitude.

III. MATHEMATICAL INTERPRETATION

Up to some time re-scaling we suppose that the precision
of the local clock that measures time delays is tb = 2

�j , for
j 2 N. At best we only know the function f by its samples
at times k2

�j , k 2 Z. At scale 2

�j , we define the intervals

Ij,k = [k2

�j , (k + 1)2

�j
[.

A. Faber–Schauder hierarchical basis

We define the Faber–Schauder hierarchical basis as defined
in [5]. Let Vj be the space of continuous functions, which
are affine on intervals Ij,k, k 2 Z. We can uniquely define
the linear interpolation fj of f at scale 2

�j by fj(k2

�j
) =

f(k2

�j
), for all k 2 Z. Let '(x) = max{0, 1�|x|}. A natural

basis for Vj is given by the functions 'j,k = '(2

j ·�k), k 2 Z.
In this basis, we have the unique representation

fj =

X

k2Z
f(k2

�j
)'j,k.

B. Interpretation

We now suppose that f is compactly supported in [0, 1]. In
the previous notations we will only need k = 0, . . . , 2j � 1.
We assume that levels are uniformly spaced by some quan-
tum 2

�M . The level crossing algorithm can be described as
follows.
Step 1: approximation in Vj . We only know fj(k2

�j
) =

f(k2

�j
).
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Step 2: level crossing. We denote bxc the integer part of x,
namely bxc = inf{n 2 N, x  n}. We then define

˜fj =

X

k2Z
2

�M
⌅
2

Mf(k2

�j
)

⇧
'j,k.

Step 3: decimation of ˜fj . We only keep a subsequence of
k = 0, . . . , 2j � 1, defined by induction: k0 = 0 and

ki+1 = min{k � 1 + ki/
⌅
2

Mf(k2

�j
)

⇧
6=

⌅
2

Mf(ki2
�j

)

⇧
}.

To be able to reconstruct ˜fj , we only store the couples (�ti, ai)

where �ti = (ki � ki�1)2
�j , i � 1 is the delay since the last

sample, and ai = 2

�M
⌅
2

Mf(ki2
�j

)

⇧
) is the amplitude of

the sample. There is no approximation in Step 3, we only do
not store redundant data.

IV. MATHEMATICAL PROPERTIES

We now want to illustrate through numerical experiments
that the properties of our algorithm can be related to smooth-
ness properties of the sampled signal.

A. MonoHölderian functions
Definition 1 (Hölder space C↵): Let ↵ 2 (0, 1). The func-

tion f belongs to the Hölder space C↵
([0, 1]) if there exists a

constant C such that for all (x, y) 2 [0, 1]

2,

|f(x)� f(y)|  C|x� y|↵ .

The following definition has been introduced in [12].
Definition 2 (Anti-Hölderian functions): Let ↵ 2 (0, 1).

The function f is said to be uniformly anti-Hölderian with
exponent ↵, if there exists a constant C such that for all
(x, y) 2 [0, 1]

2,

sup

(u,v)2[x,y]2
|f(u)� f(v)| � C|x� y|↵ .

The set of uniformly anti-Hölderian functions is denoted
I↵

([0, 1]).
Definition 3: Let ↵ 2 (0, 1). If the function f both belongs

to C↵
([0, 1]) and I↵

([0, 1]) then f is said to be monoHölderian
with exponent ↵.

B. Approximation properties
As already mentioned, only step 1 and 2 lead to approxima-

tions. If f 2 C↵
([0, 1]), it is well–known [6], [11] that there

exists a constant C (which depends on f but not on the scale
j) such that

kf � fjkL1  C2

�j↵,

whereas, if the function f is assumed to be uniformly
monoHölderian, one deduces from [4] that there exists a
constant C (which depends on f but not on the scale j) such
that for any ✏ > 0

kf � fjkL1 � Cj�(2↵+✏)
2

�j↵.

Note that the last condition is much weaker than uniform anti–
Hölderianity (see [4]) since it involves the modulus of continu-
ity of f � fj on the whole interval [0, 1], whereas oscillations
of uniformly anti-Hölderian functions can be bounded from

below at any point. The approximation made at step 2 clearly
does not depend on the regularity of function f , and we have

kfj � ˜fjkL1  2

�M .

C. Theoretical number of samples in the case of a monotonous
function

If f is a monoHölderian function with exponent ↵, by
definition there exists C1, C2 > 0 and for any scale j � 0

and 0  k  2

j � 1

C12
�j↵  sup

(u,v)2[k/2j ,(k+1)/2j ]2
|f(u)� f(v)|  C22

�j↵.

If the function is additionally supposed to be monotonous, we
have further that

sup

(u,v)2[k/2j ,(k+1)/2j ]2
|f(u)�f(v)| = |f((k+1)/2

j
)�f(k/2

j
)|.

Hence

C12
j(1�↵)  |f(1)� f(0)|

=

2j�1X

k=0

|f(

k + 1

2

j
)� f(

k

2

j
)|  C22

j(1�↵).

Such a signal crosses equi-spaced levels with quantum 2

�M

at most C2

M+(1�↵)j times. With our algorithm, we also take
at most 2

j samples (since we use the initial samples). For
large values of M (or small values of ↵), we indeed keep
almost all the 2

j samples. Otherwise we can expect some
reduction of the number of samples. For C = 1, the threshold
is M ' ↵j. Observe that the proof is based on the fact, that
in the monotonous, we can estimate in a very simple way the
oscillations

sup

(u,v)2[k/2j ,(k+1)/2j ]2
|f(u)� f(v)|

of the function. Of course in the general case, the situation
can be much more complicated. Nevertheless, generic results
in the sense of prevalence as stated in [2] are expected to hold.
In what follows, we illustrate through numerical simulations
what may happens.

D. Numerical simulations
1) Test functions: We test level crossing on two toy models:

sample paths of fractional Brownian motion BH and the
Weierstrass function WH . Here H 2]0, 1[ is called the Hurst
index. In each of these two cases, the smoothness properties
of the function are well–known and related to the Hurst index.

The fractional Brownian motion (fBm) BH is the unique
Gaussian H–self-similar process with stationary increments.
It can be defined from its covariance function

E
⇥
BH(x)BH(y)

⇤
=

1
2

�
|x|2H

+ |y|2H � |x� y|2H
�

for all (x, y) 2 [0, 1]

2. For H = 1/2, we recover the
classical Brownian motion. We recall that the sample paths
of fBm are well-known to be almost surely continuous.
Further, the Hurst index H of fBm is directly related to the
roughness of its sample paths. More precisely, almost surely,
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Fig. 1. Three realizations of fractional Brownian motions for H = 0.5 (blue
plot), H = 0.7 (red plot), H = 0.9 (green plot)

Fig. 2. The Weierstrass function for H = 0.5 (blue plot), H = 0.7 (red
plot), H = 0.9 (green plot)

BH 2 CH�"
([0, 1])\IH+"

([0, 1]) (classical law of the iterated
logarithm). Roughly speaking, a.s. for all (x, y) 2 [0, 1]

2,
sup(u,v)2[x,y]2 |BH(u)�BH(v)| ⇠ |x�y|H . Figure 1 presents
three realizations of sample paths of fractional Brownian
motions for H = 0.5, H = 0.7, H = 0.9 and 1024 samples
(j = 10).

We also use the Weierstrass function defined as

WH(x) =

1X

j=0

2

�jH
cos(2

jx).

The Weierstrass function WH is a classical example of
monoHölderian function with exponent H as proved in [8].
Hence for all (x, y) 2 [0, 1]

2, sup(u,v)2[x,y]2 |WH(u) �
WH(v)| ⇠ |x � y|H . Figure 2 present some graphs of
Weierstrass functions for H = 0.5, H = 0.7, H = 0.9 and
1024 samples (j = 10).

Fig. 3. Average number n of samples in terms of the Hurst number in the
log scale (log2(n) is represented on the y-axis). Four cases are plotted (solid
lines) corresponding to j = 10 and 13 and M = 4 and 5. The dotted lines
correspond to the worst case M + (1�H)j.

M = 4 M = 5

j = 10 0.4 0.5
j = 13 ⇠ 0.3 ⇠ 0.4

TABLE I
“CRITICAL” VALUES OF THE HURST NUMBER.

2) Test cases: The tests are performed within the SPASS
Matlab toolbox [1]. To generate fractional Brownian motions,
we make use of the genFBMJFC.m function [3].

We use two values of j (10 and 13) and two values of
M (4 and 5). These small values of M are sufficient for most
mobile applications. Our output is the number of samples after
decimation (Step 3). For the fractional Brownian motion, we
perform 1000 realizations and average the number of samples
obtained for each realization to obtain an average number n.

We perform this for values of the Hurst number H in the
]0, 1[ range and obtain the curves in Figure 3. We also plot the
number of samples computed in the worst case (monotonous
function i.e. maximum total variation) for C = 1: 2

M+(1�H)j .
The plots are given in the semi-log scale: log2(n) and M +

(1 � H)j. This allows to distinguish the two regimes below
some value of the Hurst number H ⇠ M/j the algorithm
more or less keeps all the original samples, above this value
the decimation is efficient and yields a significant reduction
of the number of samples.

For the different curves these “critical” values of H are
given in Table I.

We perform the same tests on the Weierstrass function. The
plots associated to fBm are much more regular because there
are obtained by an averaging procedure. We expect that the
critical value of M holds in an asymptotical way. Our results
are then expected to improve when j tends to infinity.
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Fig. 4. Number of samples in terms of the Hurst number in the log scale
(log2(n) is represented on the y-axis). Four cases are plotted (solid lines)
corresponding to j = 10 and 13 and M = 4 and 5. The dotted lines
correspond to the worst case M + (1�H)j.

V. CONCLUSION

We have first shown numerically that there is strong rela-
tionship between the smoothness properties of a signal and the
number of samples that can be obtained by the crossing level
algorithm presented in this paper. We also proved this result in
the case of monotonous monoHölderian functions. We intent
to address this problem in more general cases. It will be the
purpose of a forthcoming paper.
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Abstract—We consider the reconstruction of multi-dimensional

signals from noisy samples. The problem is formulated within the

framework of the theory of continuous-domain sparse stochastic

processes. In particular, we study the fractional Laplacian as the

whitening operator specifying the correlation structure of the

model. We then derive a class of MAP estimators where the priors

are confined to the family of infinitely divisible distributions.

Finally, we provide simulations where the derived estimators are

compared against total-variation (TV) denoising.

Index Terms—Innovation models, fractional Laplacian, frac-

tals, invariance, self-similarity, sparse stochastic processes, MAP

estimation.

I. INTRODUCTION

Consider the signal denoising problem where the goal is
to estimate the unknown signal s 2 RK from the noisy
measurement

y = s + n, (1)

where the vector n 2 RK represents the noise that is assumed
to be i.i.d. Gaussian with variance �

2.
We consider the statistical formulation of the denoising

problem based on the prior knowledge of the distribution of
the signal and concentrate on MAP estimators. To that end,
we first specify a continuous-domain signal model by using
the theory of sparse stochastic processes [1]. The model has
two fundamental elements: an innovation process governing
the sparsity pattern and the whitening operator determining
the correlation structure of the underlying signal.

The contribution of this work is to extend our previous
line of work [2], [3] by using fractional-order Laplacians
(��)

�/2 with � > 0 as our whitening operator. The unique
feature of these operators is their invariance to translation,
scaling, and rotation [4]. They also have been associated
with 1/k!k�-type power spectrum that appears in natural
images [5], [6]. In this prospective, the derived estimators
are suitable for removing noise from fractal-like images. We
perform simulations and show that the derived estimators can
improve upon TV denoising for particular images.

II. MATHEMATICAL FOUNDATIONS

We assume that the underlying signal s is the discretized
version of a stochastic process s(r) in Rd that is defined as
the solution of the stochastic differential equation

Ls = w, (2)

I�,p

fractional integration

s

w

innovation

process

self-similar

process

(��)

�/2

fractional Laplacian

fractional integration

fractional Laplacian

self-similar
process

innovation
process

Fig. 1. Continuous-domain innovation model.

where w is a continuous-domain white noise that is not
necessarily Gaussian and L is a suitable differential operator.
What (2) implies is that the formal solution (if it exists) is
given by s = L

�1
w. Therefore, the correlation structure of s

is determined by the mixing operator L

�1, while its sparsity
pattern is characterized by w that we shall call the innovation
process (see Section II-A).

In the sequel, we restrict L to be in the subclass of fractional
Laplacians (Section II-B). Our goal is to define a general
class of self-similar processes (Section II-C) as illustrated in
Figure 1.

A. Innovation processes

We define continuous-domain innovation processes in the
framework of generalized functions of Schwartz [7]. In the
one-dimensional setting, they are the weak derivative of the
family of Lévy processes. As a member of the family of
generalized stochastic processes, w is a random generalized
function that is observed through scalar-products with test
functions ' in the space S of smooth and rapidly decreasing
functions. Hence, for fixed ', the linear observation hw, 'i is
a real random variable.

The innovation process w is a stationary stochastic process
with independent value at every point. Its statistical properties
are characterized by its characteristic functional (the infinite-
dimensional generalization of the characteristic function of
random variables) cPw(') = E[e

jhw,'i
]. The characteristic

functional of w has the general form

cPw(') = exp

✓

Z

Rd

f('(r))dr

◆

, (3)

where f(·) is called the Lévy exponent of w. The set of
admissible Lévy exponents, and thus of innovation processes,
is described in [7].

It is important to note that Lévy exponents are also in one-
to-one correspondence with the so-called infinitely divisible
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(i.d.) distributions. Indeed, the characteristic functions of i.d.
random variables are precisely of the form e

f(!) [8]. Equiva-
lently, an innovation process is characterized by its canonical
pdf defined by pi.d. = F�1

�

e

f(!)
 

, where F denotes the
Fourier transform.

B. Fractional Laplacian operators and their inverses

As mentioned earlier, we choose L to be a member of the
class of fractional Laplacian operators (��)

�/2 for � > 0.
These isotropic differential operators defined in Fourier do-
main by

F
n

(��)

�/2
'

o

(!) = |!|�F {'} (!),

where ' 2 S .
The fractional Laplacian is a linear, self-adjoint, and con-

tinuous operator with translation-, rotation-, and scaling-
invariance properties. Its inverse operator is the Riesz potential
I� for � < d and is extended for all non-integer � > d in
Sun and Unser [4]. It has been also observed that the natural
translation-invariant inverse I� of the fractional Laplacian
operator can be unstable.

In accordance with this previous work, we define I�,p as the
unique corrected version of the inverse mapping from S to the
space L

p of functions with finite p-norm
�R

Rd |f(r)|pdr

�1/p.
The L

p stability comes with the cost of losing the translation-
invariance for the inverse operator.

C. Self-similar processes

We now would like to define the process s. As we consider
processes s such that (��)

�/2
s = w is an innovation process,

one formally writes

hs, 'i = hI�,pw, 'i = hw, I

⇤
�,p'i,

where I�,p is the corrected inverse operator of (��)

�/2

defined above.
To satisfy the admissibility conditions required between the

Lévy exponent f(·) of w and the stability property of the in-
verse operator [1], one needs p = 1 for the Laplace innovations
and p = 2 for the Gaussian ones. The characteristic functional
of s is then given by

cPs(') = exp

✓

Z

Rd

f

�

I

⇤
�,p'(r)

�

dr

◆

. (4)

The resulting process s is called self-similar (in a stochastic
sense) because an application of a similarity transformation
such as scaling does not change its statistical behavior (up to
some possible renormalization).

III. MAP ESTIMATION

After explaining that the process s is mathematically well-
defined, we now concentrate on developing practical algo-
rithms.

fractional integration

fractional Laplacian

self-similar
process

innovation
process

sampling

whitening

self-similar
process

discrete innovation
process (i.i.d.)

observation

Gaussian noise

u

s

n

y

Monday, April 29, 2013

Fig. 2. Observation model.

A. Discrete innovation model

The discrete counterpart of innovation model (2) is obtained
by introducing the discrete version L of the operator L [9].
Since we are only given the sampled version of s in real-
world applications, one can think of formulating the discrete
innovation model by applying L to the sampled process s[k] =

s(r = k) for k being in a suitable discrete space ⌦. In the case
of fractional Laplacian operator, L� is efficiently implemented
in Fourier domain via FFT operation. In effect, we define the
discretized version of (2) as

u = L�s (5)

where u is called the discrete innovation process whose first-
order pdf pU is proven to be an infinitely divisible distribu-
tion [3].

As shown in [3], it is equivalent to define the discrete
counterpart (��)

�/2
d of the operator (��)

�/2 such that
u[k] =

n

(��)

�/2
d s

o

(r = k). In other terms, we have

u[k] = (��,p ⇤ w)(r = k),

where ��,p 2 L

1 is a polyharmonic B-spline and is the impulse
response of the operator (��)

�/2
d I�,p. We note that the

primary statistical features of u is related to the continuous-
domain innovation process w.

Proposition 1. If pi.d. = F�1
�

e

f(!)
 

is symmetric ↵-stable
(in particular Gaussian case), then the same is true for pU . If
pi.d. is symmetric, unimodal with exponential decay, then the
same is true for pU .

B. MAP estimation

We now formulate the MAP estimators for the denoising
problem given in (1) under the assumption that the components
(u[k])k2⌦ are i.i.d. random variables. We then get the posterior
distribution pS|Y from the Bayes’ rule

pS|Y (s|y) / pN (y � s)pU (u)

/ exp

✓

� ||y � s||22
2�

2

◆

Y

k2⌦

pU (L�s[k]).

We define the potential function �U (x) = � log pU (x).
Then, the MAP estimator sMAP = arg maxs pS|Y (s|y) is
given by,

sMAP = arg min

s

1

2

ky � sk2
2 + �

2
X

k2⌦

�U (u[k])

subject to u = L�s. (6)
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By using the previous definitions and the inverse Fourier
transform, we arrive at

�U (x) = � log

✓

Z

R
exp

✓

Z

Rd

f(��,p(r)!)dr + j!x

◆

d!

2⇡

◆

.

(7)
We now characterize the asymptotical form of �U using the

Lévy exponent of the underlying innovation process.

Theorem 1. There exist constants A1, A2, A3, B1, B2 and B3

depending on the parameter of the considered innovation such
that

⌅ If f(!) = ��

2
0!

2 (Gaussian case),

�U (x) = A1x
2

+ B1

⌅ If f(!) = �s|!|↵ (↵-stable case),

�U (x) ⇠ A2 log(|x|) + B2

⌅ If f(!) = log

⇣

�2

�2+!2

⌘

(Laplace case),

�U (x) ⇠ A3|x| + B3

where f ⇠ g denotes that f � g ! 0.

Since the computation of the exact potential function (7)
is challenging in the case of Laplacian innovation, we use its
simplified asymptotic form �U (x) = A3|x| + B3. Note that
the constants in Theorem 1 are irrelevant for the optimization
task.

IV. NUMERICAL EXAMPLES

We perform a simple simulation that compares the esti-
mation performance of different estimators specified by our
formalism. Particulary, we concentrate on denoising of a
natural texture-type and a biological image that are shown
in Figure 3. We consider two innovation processes (Gaussian
and Laplacian). We also consider two different whitening
operators: fractional Laplacian and the discrete gradient. For
the latter case, we note that one obtains Tikhonov and TV
denoising.

In the experiments, the noise-free images are degraded
with various levels of AWGN where the noise variance �

2 is
specified to match some given input SNR. For denoising, we
use FISTA [10] for 250 iterations without any stopping criteria.
The multiplicative factors are optimized for all the estimators
by using an oracle to obtain the highest-possible SNR. This
optimization is done in a joint way for the � parameter of the
fractional Laplacian operator. The denoising results (output
SNR in dB) are reported in Table I.

The results reported in Table I illustrate that the self-
similarity assumption is well-suited for the particular images
considered. For the clouds, it is coherent with the fact that the
self-similar processes present a fractal-type statistical behavior.
Moreover, the stem cells image is seemed to be appropriate
for our model as corroborated by the results. For both images,
it is observed that the performance of the self-similar models
outperform TV denoising.

a) Clouds

Monday, April 29, 2013

b) Stem Cells

Thursday, February 14, 2013

Fig. 3. Images used in the experiments.
TABLE I

DENOISING PERFORMANCE OF DIFFERENT MAP ESTIMATORS.
Input SNR (dB) 0 10 20 30
Estimator Clouds
Gaussian (discrete gradient) 20.44 24.68 29.93 35.31
Gaussian (fractional Laplacian) 21.01 25.70 31.41 36.45
Laplace (discrete gradient) 19.77 24.03 29.29 34.93
Laplace (fractional Laplacian) 20.22 25.29 31.16 36.75
Estimator Stem cells
Gaussian (discrete gradient) 11.16 15.85 22.13 30.40
Gaussian (fractional Laplacian) 11.57 16.82 23.51 31.32
Laplace (discrete gradient) 11.12 16.09 22.63 30.74
Laplace (fractional Laplacian) 11.20 16.70 23.52 31.30

V. CONCLUSION

The purpose of this work has been to drive MAP esti-
mators that are suitable for reconstructing self-similar multi-
dimensional signals from noisy samples. Our experiments
showed that these estimators can outperform TV denoising
for certain type of images.
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Abstract—Since its discovery over the last decade, Compressed

Sensing (CS) has been successfully applied to Magnetic Reso-

nance Imaging (MRI). It has been shown to be a powerful way

to reduce scanning time without sacrificing image quality. MR

images are actually strongly compressible in a wavelet basis,

the latter being largely incoherent with the k-space or spatial

Fourier domain where acquisition is performed. Nevertheless,

since its first application to MRI [1], the theoretical justification

of actual k-space sampling strategies is questionable. Indeed, the

vast majority of k-space sampling distributions have been heuris-

tically designed (e.g., variable density) or driven by experimental

feasibility considerations (e.g., random radial or spiral sampling

to achieve smoothness k-space trajectory). In this paper, we try to

reconcile very recent CS results with the MRI specificities (mag-

netic field gradients) by enforcing the measurements, i.e. samples

of k-space, to fit continuous trajectories. To this end, we propose

random walk continuous sampling based on Markov chains and

we compare the reconstruction quality of this scheme to the state-

of-the art.

I. INTRODUCTION

Compressed Sensing [2], [3] is a theoretical framework
which gives guarantees to recover sparse signals (signals
reprensented by few non-zero coefficients in a given basis)
from a limited number of linear projections. In some appli-
cations, the measurement basis is fixed and the projections
should be selected amongst a fixed set. For instance, in MRI,
the signal is sparse in the wavelet basis, and the sampling
is performed in the spatial (2D or 3D) Fourier basis (called
k-space). Possible measurements are then projections on the
lines of matrix A = F ⇤

 , where F ⇤ and  denote the Fourier
and inverse wavelet transform, respectively.

Recent results [4], [5] give bounds on the number of
measurement m needed to exactly recover s-sparse signals in
Cn or Rn in the framework of bounded orthogonal systems.
The authors have shown that for a given s-sparse signal, the
number of measurements needed to ensure its perfect recovery
is O(s log(n)). This methodology, called variable density sam-

pling, involves an independent and identically distributed (iid)
random drawing and has already given promising results in
reconstruction simulations [1], [6]. Nevertheless, in real MRI,
such sampling patterns cannot be implemented, because of
the limited speed of magnetic field gradient commutation.
Hardware constraints require at least continuity of the sam-
pling trajectory, which is not satisfied by two-dimensional

iid sampling. In this paper, we introduce a new Markovian
sampling scheme to enforce continuity. Our approach relies on
the following reconstruction condition introduced by Juditski,
Karzan and Nemirovki [7]:

Theorem 1 ([7]). If A satisfies:

�(A) = min

Y 2Rn⇥m
kI

n

� Y TAk1 <
1

2s
.

All s-sparse signals x 2 Rn

are recovered exactly by solving:

argmin

Amw=Amx

kwk1 (1)

which can be seen as an alternative to the mutual coher-

ence [3]. We will show that this criterion makes it possible to
obtain theoritical guarantees on the number of measurements
necessary to reconstruct s sparse signals, using variable density
sampling or markovian sampling. Unfortunately the bounds we
obtain are in O(s2). This phenomenon is due to the quadratic

bottleneck described in [4]. We are currently trying to obtain
O(s) results using different proof strategies.

Notation

A signal x 2 Rn is said to be s-sparse if it has at most s non-
zero coefficients. x is measured through the acquisition system
represented by a matrix A0. Downsampling the measurements
consists of deriving a matrix A composed of m lines of A0

and observing y = Ax 2 Rm.

II. THEORETICAL RESULT

A. Independent Sampling

We aim at finding A
m

2 Rm⇥n composed of m rows of A,
and Y

m

2 Rm⇥n such that kI
n

�Y T

m

A
m

k1 < 1
2s , for a given

positive integer s. Following [8], we set ⇥
i

=

aia
T
i

⇡i
and use

the decomposition I
n

= ATA =

P
n

i=1 ⇡i

⇥

i

. We consider
a sequence of m random i.i.d. matrices Z1, . . . , Zm

, taking
value ⇥

i

with probability ⇡
i

. We set ⇡
i

= ka
i

k21/L, where
L =

P
n

i=1 kaik21, so that kZ
l

k1 is equal to L. Let us denote
W

m

=

1
m

P
m

l=1 Zl

. Then W
m

may be written as Y T

m

A
m

.

Lemma 1. 8t > 0

P(kI
n

�W
m

k1 > t)  n(n+1) exp

⇣
� mt2

2L2
+ 2Lt/3

⌘
. (2)
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Proof: Bernstein’s concentration inequality [9] states that
if X1, . . . , Xm

are independent zero-mean random variables
such that for all i, |X

i

|  ↵ and �2
=

X

i

E
�
X2

i

�
< 1, then

8t > 0

P
 
|

mX

i=1

X
i

| > t

!
 2 exp

✓
� t2

2(�2
+ ↵t/3)

◆
.

For 1  a, b  n, let M (a,b) denote the (a, b)th entry of
a matrix M 2 Rn⇥n. The random variable (I

n

� Z
l

)

(a,b)

is centered since
P

n

i=1 ⇡i

⇥

i

= I
n

. Moreover, |(I
n

�
Z
l

)

(a,b)|  L. Applying Bernstein’s inequality to the sequence
1
m

�
(I

n

� Z
l

)

(a,b)
�
1lm

gives

P
⇣
|(I

n

�W
m

)

(a,b))| > t
⌘
 2 exp

✓
� mt2

2L2
+ 2Lt/3

◆
.

Finally, using a union bound and the symmetry property of
matrix (I

n

�W
m

), we get:

P (kI
n

�W
m

k1 > t) 
X

1abn

P
⇣
|I

n

�W
m

|(a,b) > t
⌘
.

Since P
�
|I

n

�W
m

|(a,b) > t
�

is independent of (a, b), we
obtain Eq. (2).

Remark 1. Setting t = 4L
q

2 ln(2n2)
m

in lemma 1, the bound

given by Juditsky et al. in [8] is P (kI
n

�W
m

k1 � t) 
1
2 . This bound is obtained by upper-bounding the mean

of kI
n

� W
m

k1 and using Markov inequality. Setting the

same t value in Eq. (2), and assuming t  L, we obtain

P (kI
n

�W
m

k1 � t)  1
2n4 . This huge difference comes

from inability of Markov inequality to capture large deviations

behaviors.

From lemma 1, we can derive the immediate following
result by setting t = 1/2s:

Proposition 1. Let A
m

be a measurement matrix designed by

drawing m lines of A under the distribution ⇡. Then, with

probability 1� ⌘, if

m > 5L2s2 log(n2/⌘), (3)

every s-sparse signal x is the unique solution of the `1
problem:

argmin

Amw=Amx

kwk1

B. Markovian sampling

Sampling patterns obtained using the strategy presented in
Section II-A are not usable for many practical devices. A
common constraint met on many hardwares (e.g. MRI) is the
proximity of successive measurements. A simple way to model
dependence between successive samples consists of introduc-
ing a Markov chain X1 . . . Xm

on the set {1, . . . , n} that
represents locations of possible measurements. The transition
probability to go from location i to location j is positive if and
only if sampling i and j successively is possible. We denote
W

m

=

1
m

P
m

l=1⇥Xl .

In order to use a concentration inequality, W
m

should satisfy
E (W

m

) = I
n

. We thus need (i) to set the stationary distribu-
tion of the Markov chain to ⇡ and (ii) to set up the chain with
its stationnary distribution ⇡. These two conditions ensure that
the marginal distribution of the chain is ⇡

i

at any time. The
issue of designing such a chain is widely studied in the frame
of Markov chain Monte Carlo (MCMC) algorithms.

A simple way to build up the transition matrix P =

(P
ij

)1i,jn

is the Metropolis algorithm [10]. Let us now
recall a concentration inequality for finite-state Markov
chains [11].

Theorem 2. Let (P,⇡) be an irreductible and reversible

Markov chain on a finite set G of size n. Let f : G ! R be

such that

P
n

i=1 ⇡i

f
i

= 0, kfk1  1 and 0 <
P

n

i=1 f
2
i

⇡
i


b2. Then, for any initial distribution q, any positive integer m
and all 0 < t  1,

P
⇣
1

m

mX

i=1

f(X
i

) � t
⌘
 e

✏(P )
5 N

q

exp

⇣
� mt2✏(P )

4b2(1 + h(5t/b2))

⌘

where N
q

= (

P
n

i=1(
qi

⇡i
)

2⇡
i

)

1/2
, �1(P ) is the second largest

eigenvalue of P , and ✏(P ) = 1��1(P ) is the spectral gap of

the chain. Finally h is given by h(x) = 1
2 (
p
1 + x�(1�x/2)).

Using this theorem, we can guarantee the following control
of the term kI

n

�W
m

k1:

Lemma 2. 8 0 < t  1,

P (kI
n

�W
m

k1� t)n(n+1)e
✏(P )

5
exp

⇣
�mt2✏(P )

12L2

⌘
. (4)

Proof: By applying Theorem 2 to a function f and then
to its opposite �f , we get:

P
⇣���

1

m

mX

i=1

f(X
i

)

��� � t
⌘
 2e

✏(P )
5 N

q

exp

⇣
� mt2✏(P )

4b2(1 + h(5t/b2))

⌘
.

Then we set f(X
i

) = (I
n

�⇥
Xi)

(a,b)/(1+L). The Markov
chain is constructed such that

P
n

i=1 ⇡i

f(X
i

) = 0. Since we
have kfk1  1, b = 1, and since t 6 1, 1 + h(5t) < 3.
Moreover, since the initial distribution is ⇡, q

i

= ⇡
i

, 8i and
thus N

q

= 1. Again, resorting to a union bound (II-A) enables
us to extend the result for the (a, b)th entry to the whole
infinite norm of the n⇥ n matrix I

n

�W
m

(4).

Then we can quantify the number of measurements needed
to ensure exact recovery:

Proposition 2. Let A
m

be a measurement matrix designed by

drawing m lines of A under the Markovian process described

above. Then, with probability 1� ⌘, if

m > 12L2

✏(P )

s2 log(2n2/⌘), (5)

Proceedings of the 10th International Conference on Sampling Theory and Applications

201



every s-sparse signal x is the unique solution of the `1
problem:

argmin

Amw=Amx

kwk1

Remark 2. The spectral gap ✏(P ) takes its value between

0 and 1 and describes the mixing properties of the Markov

chain. The closer the spectral gap to 1, the fastest the

convergence to the mean.

Remark 3. All the results above can be extended to the

complex case using a slightly different proof.

III. RESULTS AND DISCUSSION

In order to cover a larger domain of k-space, we consider the
following chain: P (↵)

= (1�↵)P+↵ ˜P , where ˜P corresponds
to an independent drawing ˜P

ij

= ⇡
j

, 8i, j. This chain has ⇡ as
invariant distribution, and fulfills the continuity property while
enabling a jump with probability of ↵.

Weyl’s Theorem [12] ensures that ✏(P (↵)
) > ↵. This

bound is useful because of the dependence of ✏(P ) with
respect to the problem dimension, which would have weakened
condition (5).

Sampling scheme obtained by these methods are composed
of 1/↵-average length random walks on the k-space. All
our experiments consist of reconstructing a two-dimensional
image from a sampled k-space by solving an `1 minimization
problem. Constrained `1 minimization (Eq. (1)) is performed
using the Douglas-Rachford algorithm [13]. In each case,
only twenty percent of the Fourier coefficients are kept,
which corresponds to an acceleration factor of r = 5. Since
the schemes are obtained by a random process, we run
each experiment 10 times independently, and compared the
mean value of the reconstruction results in terms of Peak

Signal-to-Noise Ratio (PSNR).

In Fig. 1, it is shown that the image reconstruction quality
degrades when ↵ decreases. These results can be explained
by the spatial confinement of the continuous parts of a given
Markov chain, except for large values of ↵. There seems to
be a compromise between the number of discontinuities of
the chain (linked to the hardware constraints in MRI) and
the k-space coverage. Nevertheless, accurate reconstruction
results can be observed with reasonable average mean length
of connected subparts (↵ = 0.01 or 0.001).

The mixing properties of the chain (through its spectral gap)
seem to have a strong impact on the quality of the scheme,
as shown in Proposition 2. Unfortunately, the spectral gap is
strongly related to the problem dimension n and can tend
to zero if n goes to infinity. This proves to be a theoretic
limitation of this method. Nevertheless, we obtained reliable
reconstruction results which cannot be explained by the pro-
posed theory. Since the design process is based on randomness,
we can even expose a specific scheme which provides accurate
reconstruction results instead of considering the mean behavior
(Fig. 2). We currently aim at deriving a stronger result on

k
y

(a) (b)

k
y

(c) ↵ = 1 (d) mean-PSNR=33.4dB

k
y

(e) ↵ = 0.1 (f) mean-PSNR=32.4dB

k
y

k
x

(g) ↵ = 0.001 (h) mean-PSNR=30.3dB

Fig. 1: First line: reference image used in our experiments
(a) and ⇡ distribution (b). Lines 2 to 4, left: different
sampling patterns (with an acceleration factor r = 5). right:

reconstruction results. From line 2 to bottom: independent
drawing from distribution ⇡ (c), corresponding to ↵ = 1. (e)
(resp (g)) represents a sampling scheme designed with the
presented markovian process with transition matrix P (↵) for
↵ = 0.1) (resp. ↵ = 0.001).

the number of measurements needed, involving a O(s) bound.
Meanwhile, we are developing second order chains which can
ensure more regularity of the trajectories and for which we
have already observed good reconstruction results (Fig. 3).
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k
y

k
x

(a) ↵ = 0.01 (b) PSNR=34.2dB

Fig. 2: Sampling scheme obtained setting ↵ = 0.01 and r = 5

(a) and its corresponding reconstructed image (b).

k
y

k
x

(a) ↵ = 0.01 (b) PSNR=33.4dB

Fig. 3: Preliminary results for second order Markov chain:
sampling scheme obtained setting ↵ = 0.01 and r = 5 (a) and
its corresponding reconstructed image (b).

IV. CONCLUSION

We proposed a novel approach combining compressed
sensing and Markov chains to design continuous sampling
trajectories, required for MRI applications. Our work may
easily be extended to a 3D framework by considering a
different neighbourhood of each k-space location. Existing
continuous trajectories in CS-MRI only exploit 1D or 2D
randomness for 2D or 3D k-space sampling, respectively. In
the latter case, the points are randomly drawn in the plane
defined by the partition and phase encoding directions so as
to maintain continuous sampling in the orthogonal readout
direction (frequency encoding). Here, the novelty relies both

on the use of randomness in all k-space dimensions, and the
establishment of compressed sensing results for continuous
trajectories, based on a concentration result for Markov chains.
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Abstract—In this work we carry out some results in sampling
theory for U -invariant subspaces of a separable Hilbert space H,
also called atomic subspaces:

Aa =
�X

n2Z
anU

na : {an} 2 `2(Z)
 
,

where U is an unitary operator on H and a is a fixed vector
in H. These spaces are a generalization of the well-known shift-
invariant subspaces in L2(R); here the space L2(R) is replaced
by H, and the shift operator by U . Having as data the samples of
some related operators, we derive frame expansions allowing the
recovery of the elements in Aa. Moreover, we include a frame
perturbation-type result whenever the samples are affected with
a jitter error.

I. INTRODUCTION

Our work is motivated by the generalized sampling problem
in shift-invariant subspaces of L2

(R). Namely, assume that our
functions (signals) belong to some shift-invariant space of the
form:

V 2

' := spanL2
(R)

�

'(t� n), n 2 Z
 

,

where the generator function ' belongs to L2

(R) and the
sequence {'(t�n)}n2Z is a Riesz sequence for L2

(R). Thus,
the shift-invariant space V 2

' can be described as

V 2

' =

n

X

n2Z
↵n '(t� n) : {↵n} 2 `2(Z)

o

. (1)

On the other hand, in many common situations the available
data are samples of some filtered versions f ⇤hj of the signal f
itself, where the average function hj reflects the characteristics
of the adquisition device.
Suppose that s convolution systems (linear time-invariant
systems or filters in engineering jargon) Ljf = f ⇤ hj ,
j = 1, 2, . . . , s, are defined on V 2

' . Assume also that the
sequence of samples {(Ljf)(kr)}k2Z; j=1,2,...,s , where r 2 N,
is available for any f in V 2

' .
Mathematically, the generalized sampling problem consists of
the stable recovery of any f 2 V 2

' from the above sequence
of samples, i.e., to obtain sampling formulas in V 2

' having the
form

f(t) =

s
X

j=1

X

k2Z

�Ljf
�

(kr)Sj(t� kr) , t 2 R , (2)

such that the sequence of reconstruction functions {Sj(· �
kr)}k2Z; j=1,2,...,s is a frame for the shift-invariant space V 2

'

(see, for instance, [3], [5], [6], [7], [9], [10], [15], [16], [17]).

In the present work we provide a generalization of the
above problem in the following sense: Let {U t}t2R denote
a continuous group of unitary operators in H containing our
unitary operator U (see Section C) below). For a fixed a 2 H,
we consider the subspace of H given by

Aa := span

�

Una, n 2 Z
 

.

In case that the sequence {Una}n2Z is a Riesz sequence in
H (see, for instance, a necessary and sufficient condition in
[13]) we have

Aa =

n

X

n2Z
↵nU

na : {↵n} 2 `2(Z)
o

.

On the other hand, for bj 2 H, j = 1, 2 . . . , s we consider
the linear operators x 2 H 7! Ljx 2 C(R) defined on R as

�Ljx
�

(t) := hx, U tbjiH, t 2 R . (3)

These operators Lj can be seen as a generalization of the
previous convolution systems.

II. GOALS AND PROCEDURE

Given bj 2 Aa, j = 1, 2 . . . , s, our aim is to recover
any x 2 Aa, in a stable way, by means of the sequence of
generalized samples

��Ljx
�

(kr)
 

k2Z; j=1,2,...,s
,

obtained from (3) (here r denotes a fixed number in N). In
order to do this we only deal with the discrete group {Un}n2Z
completely determined by U , but we might be in presence of a
time jitter error, and then, the study of the continuous group of
unitary operators {U t}t2R becomes essential. Having as data
a perturbed sequence of samples

��Ljx
�

(kr + ✏kj)
 

k2Z; j=1,2,...,s
,

with errors ✏kj 2 R, again we want to recover x 2 Aa.
In order to attack these problems we have proceeded in the
following steps:
(a) The study of when the sequence

�

Ukrbj
 

k2Z; j=1,2,...,s
is a complete system, a Bessel sequence, a frame or a
Riesz basis for Aa.

(b) In the frame case, search for a family of dual frames of
the form

�

Ukrcj
 

k2Z; j=1,2,...,s
, where cj 2 Aa, j =
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1, 2 . . . , s, allowing to recover any x 2 Aa by means of
the sampling formula

x =

X

k2Z

s
X

j=1

�Ljx
�

(kr)Ukrcj in H . (4)

(c) Using the standard perturbation theory of frames (see Ref.
[4]) and the group of unitary operators theory [2], [18],
to find a condition on the error sequence {✏kj} allowing
the recovery of any x 2 Aa by means of a sampling
expansion as

x =

s
X

j=1

X

k2Z

�Ljx
�

(kr + ✏kj)C
✏
k,j in H , (5)

where the sequence {C✏
k,j}k2Z; j=1,2,...,s is a frame for

Aa.
At stages (a) and (b) we have used some borrowed ideas from
[13]; mainly related to the stationary properties of a sequence
of the form {Unb}n2Z, b 2 H, and the spectral measure
associated with the (auto)-covariance function of b.

III. MAIN RESULTS

A. The study of the sequence
�

Ukrbj
 

k2Z; j=1,2,...,s

If for every j = 1, 2, . . . s the spectral measure in the
integral representation of the (cross)-covariance function of
the sequences {Uka}k2Z, {Ukbj}k2Z has no singular part,
we have the following representation

hUka, Unrbji = 1

2⇡

Z ⇡

�⇡
ei(k�rn)✓�a,bj (e

i✓
)d✓.

where �a,bj stands for the cross spectral density of the
stationary correlated sequences {Uka}k2Z and {Ukbj}k2Z.
Consider the s⇥ 1 matrices of functions defined on the torus
T := {ei✓ : ✓ 2 [�⇡,⇡)}

�a,b(e
i✓
) :=

0

B

B

B

@

�a,b1(e
i✓
)

�a,b2(e
i✓
)

...
�a,bs(e

i✓
)

1

C

C

C

A

,

and

 

l
a,b(e

i✓
) := (DrS

�l
�a,b)(e

i✓
) , l = 0, 1, . . . , r � 1 ,

where Dr : L2

(T) ! L2

(T) denotes the decimation operator
X

k2Z
ake

ik✓ Dr7�!
X

k2Z
arke

ik✓

and S : L2

(T) ! L2

(T) denotes the (left) shift operator
X

k2Z
ake

ik✓ S7�!
X

k2Z
ak+1

eik✓ .

Finally, defining the s⇥ r matrix of functions on the torus T

 a,b(e
i✓
) :=

�

 

0

a,b(e
i✓
)  

1

a,b(e
i✓
) . . . r�1

a,b (ei✓)
�

, (6)

and its related constants,

A
 

:= ess inf

⇣2T
�
min

⇥

 

⇤
a,b(⇣) a,b(⇣)

⇤

;

B
 

:= ess sup

⇣2T
�
max

⇥

 

⇤
a,b(⇣) a,b(⇣)

⇤ (7)

we have the following result:
Theorem 3.1: Let bj be in Aa for j = 1, 2, . . . , s and let

 a,b be the associated matrix given in (6) and its related
constants (7). Then, the following results hold:

i) The sequence
�

Urkbj
 

k2Z; j=1,2,...s
is a complete sys-

tem in Aa if and only the rank of the matrix  a,b(⇣) is
r a.e. ⇣ in T.

ii) The sequence
�

Urkbj
 

k2Z; j=1,2,...s
is a Bessel se-

quence for Aa if and only the constant B
 

< 1.
iii) The sequence

�

Urkbj
 

k2Z; j=1,2,...s
is a frame for Aa

if and only if constants A
 

and B
 

satisfy 0 < A
 


B
 

< 1. In this case, A
 

and B
 

are the optimal
frame bounds for

�

Urkbj
 

k2Z; j=1,2,...s
.

iv) The sequence
�

Urkbj
 

k2Z; j=1,2,...s
is a Riesz basis for

Aa if and only if it is a frame and s = r.

B. The frame expansion

Define the r ⇥ s matrix � of functions on T as

�(ei✓) :=
X

k2Z
�ke

ik✓
= [ 

⇤
a,b(e

i✓
) a,b(e

i✓
)]

�1

 

⇤
a,b(e

i✓
).

(8)
Note that †

a,b(e
i✓
) := [ 

⇤
a,b(e

i✓
) a,b(e

i✓
)]

�1

 

⇤
a,b(e

i✓
) stands

for the Moore-Penrose left-inverse. In case that condition iii)
in Theorem 3.1 is satisfied, we can define,

ean :=

0

B

B

B

@

Unra
Unr+1a

...
Unr+r�1a

1

C

C

C

A

and
0

B

B

B

@

c
1

c
2

...
cs

1

C

C

C

A

:=

X

k2Z
�

>
k eak .

Note that, under condition iii) in Theorem 3.1, the matrix
�(ei✓) has entries in L1

(T).
Then, the sequences {Ukrcj}k2Z; j=1,2,...,s and
{Ukrbj}k2Z; j=1,2,...s are a pair of dual frames for Aa.
Hence we obtain the following recovery formula in Aa: For
any x 2 Aa, the expansion

x =

s
X

j=1

X

k2Z
hx, UkrbjiUkrcj in H

holds.
The analysis done provides a whole family of dual frames;
in fact, everything works if we choose in (8) a matrix of the
form

�U(e
i✓
) :=  

†
a,b(e

i✓
) + U(ei✓)

⇥

Is � a,b(e
i✓
) 

†
a,b(e

i✓
)

⇤

,

Proceedings of the 10th International Conference on Sampling Theory and Applications

209



where U(ei✓) denotes any r⇥s matrix with entries in L1
(T),

and  †
a,b the Moore-Penrose left pseudo-inverse.

Notice that if s = r,  †
a,b =  

�1

a,b which implies that � is
unique and we are in presence of a pair of dual Riesz basis.

Remark: In Theorem 3.1 we have assumed that bj belongs
to Aa for each j = 1, 2, . . . , s since we want the sequence
�

Urkbj
 

k2Z; j=1,2,...s
to be contained in Aa. In case that some

bj /2 Aa, the sequence
�

Urkbj
 

k2Z; j=1,2,...s
is not necessarily

contained in Aa. However, whenever 0 < A
 

 B
 

< 1,
the inequalities

A
 

kxk2 
s
X

j=1

X

k2Z
|hx, Urkbji|2  B

 

kxk2 for all x 2 Aa

hold, and conversely. Hence, the sequence
�

Urkbj
 

k2Z; j=1,2,...s
is a pseudo-frame for Aa (see

Refs. [11], [12]).
Denoting by PAa the orthogonal projection onto Aa, since

for each x 2 Aa we have

hx, Urkbji =
⌦

x, PAa

�

Urkbj
�↵

, k 2 Z and j = 1, 2, . . . , s ,

and, as a consequence, Theorem 3.1 can be reformulated in
terms

�

PAa

�

Urkbj
� 

k2Z; j=1,2,...s
, a sequence in Aa.

C. The study of the time jitter error

In Sections A) and B) it is not strictly necessary to have a
group of unitary operators {U t}t2R to obtain the announced
results. However, in order to deal with the time-jitter error this
formalism becomes essential in our approach.
Let {U t}t2R denote a continuous group of unitary operators
in H containing our unitary operator U , i.e., say for instance
U := U1. Recall that {U t}t2R is a family of unitary operators
in H satisfying (see Ref. [2, vol. 2; p. 29]):

1) U t U t0
= U t+t0 ,

2) U0

= IH ,
3) hU tx, yiH is a continuous function of t for any x, y 2 H.

Note that (U t
)

�1

= U�t, and since (U t
)

⇤
= (U t

)

�1, we
have (U t

)

⇤
= U�t.

Classical Stone’s theorem [14] assures us the existence of a
self-adjoint operator T (possibly unbounded) such that U t ⌘
e

itT . This self-adjoint operator T , defined on the dense domain
of H

DT :=

�

x 2 H such that
Z 1

�1
w2 dkEwxk2 < 1 

,

admits the spectral representation T =

R1
�1 w dEw which

means:

hTx, yi =
Z 1

�1
w dhEwx, yi for any x 2 DT and y 2 H ,

where {Ew}w2R is the corresponding resolution of the iden-
tity, i.e., a one-parameter family of projection operators Ew

in H such that
1) E�1 := lim

w!�1Ew = OH, E1 := lim

w!1Ew = IH,

2) Ew�
= Ew for every �1 < w < 1,

3) Eu Ev = Ew where w = min{u, v}.
Recall that kEwxk2 and hEwx, yi, as functions of w, have
bounded variation and define, respectively, a positive and a
complex Borel measure on R.

Furthermore, for any x 2 DT we have that

lim

t!0

U tx� x

t
= iTx and the operator T is said to be

the infinitesimal generator of the group {U t}t2R. For each
x 2 DT , U tx is a continuous differentiable function of t.
Notice that, whenever the self-adjoint operator T is bounded,
DT = H and e

itT can be defined as the usual exponential
series; in any case, U t ⌘ e

itT means that

hU tx, yi =
Z 1

�1
e

iwtdhEwx, yi , t 2 R ,

where x 2 DT and y 2 H.

The following result on frame perturbation, which proof can
be found in [4, p. 354] has been used:

Lemma 3.2: Let {xn}1n=1

be a frame for the Hilbert space
H with frame bounds A, B, and let {yn}1n=1

be a sequence
in H. If there exists a constant R < A such that

1
X

n=1

|hxn � yn, xi|2  Rkxk2 for each x 2 H ,

then the sequence {yn}1n=1

is also a frame for H with bounds
A
�

1�p

R/A
�

2 and B
�

1+

p

R/B
�

2. If {xn}1n=1

is a Riesz
basis, then {yn}1n=1

is a Riesz basis.

Thus, we have the following result:
Theorem 3.3: Assume that for some bj 2 DT , i.e.,

R1
�1 w2dkEwbjk2 < 1 for each 1  j  r, the sequence
{Ukrbj}k2Z; j=1,2,...,r is a Riesz basis for Aa with Riesz
bounds 0 < A

 

 B
 

< 1. For a sequence ✏ :=

{✏kj}k2Z, j=1,2,...,r of errors, let R be the constant given by

R := k✏k2 max

j=1,2,...,r

n

Z 1

�1
w2dkEwbjk2

o

,

where k✏k denotes the `2s-norm of the sequence ✏.
If R < A

 

, then the sequence {Ukr+✏kj bj}k2Z; j=1,2,...,r is a
Riesz sequence in H with Riesz bounds A

 

�

1 �p

R/A
 

�

2

and B
 

�

1 +

p

R/B
 

�

2.

Next, we deal with the problem of the recovery of any x 2
Aa in a stable way from the perturbed sequence

{�Ljx
�

(kr + ✏kj)}k2Z; j=1,2,...,s ,

where ✏ := {✏kj}k2Z; j=1,2,...,s denotes a sequence of real
errors.
Taking into account the L2

(0, 1) functions

gj(w) :=
X

k2Z
ha, UkbjiH e

2⇡ikw , j = 1, 2, . . . , s , (9)

we can define the s⇥ r matrix

G(w) :=



gj

⇣

w +

k � 1

r

⌘

�

j=1,2,...,s
k=1,2,...,r
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and its related the constants ↵G and �G are given by

↵G := ess inf

w2(0,1/r)
�
min

[G⇤
(w)G(w)],

�G := ess sup

w2(0,1/r)
�
max

[G⇤
(w)G(w)] .

It is worth to mention that in [9] was proved that the sequence
{gj(w) e2⇡irnw}n2Z; j=1,2,...,s is a frame for L2

(0, 1) if and
only if 0 < ↵G  �G < 1. The idea is to consider the
sequence

�

gm,j(w) e
2⇡irmw

 

m2Z; j=1,2,...s
as a perturbation

of the above frame in L2

(0, 1), where

gm,j(w) :=
X

k2Z
ha, Uk+✏mj bjiH e

2⇡ikw , j = 1, 2, . . . , s .

For |�| < 1/2, define the functions,

Ma,bj (�) :=
X

k2Z
max

t2[��,�]
|ha, Uk+tbji � ha, Ukbji| ,

and

Na,bj (�) :=

max

k=0,1,...,r�1

X

m2Z
max

t2[��,�]
|ha, Urm+k+tbji � ha, Urm+kbji| .

Notice that Na,bj (�)  Ma,bj (�) and for r = 1 the equal-
ity holds. Moreover, assuming that the continuous functions
'j(t) := ha, U tbji, j = 1, 2, . . . , s, satisfy a decay condition
as 'j(t) = O

�|t|�(1+⌘j)
�

when |t| ! 1 for some ⌘j > 0,
we deduce that the functions Na,bj (�) and Ma,bj (�) are
continuous near to 0.

Theorem 3.4: Assume that for the functions gj , j =

1, 2, . . . , s, given in (9) we have 0 < ↵G  �G < 1.
For an error sequence ✏ := {✏mj}m2Z; j=1,...,s, define the
constant �j := supm2Z |✏mj | for each j = 1, 2, . . . , s. Then
the condition

Ps
j=1

Ma,bj (�j)Na,bj (�j) < ↵G/r implies that
there exists a frame {C✏

m,j}m2Z; j=1,2,...,s for Aa such that,
for any x 2 Aa, the sampling expansion

x =

s
X

j=1

X

m2Z
hx, Urm+✏mj bjiH C✏

m,j in H , (10)

holds. Moreover, when r = s the sequence
{C✏

m,j}m2Z; j=1,2,...,s is a Riesz basis for Aa, and the
interpolation property

⌦

C✏
n,j , U

rm+✏mlbl
↵

H = �j,l �n,m holds.

Sampling formula (10) is useless from a practical point
of view: it is impossible to determine the involved frame
{C✏

m,j}m2Z; j=1,2,...,s. As a consequence, in order to re-
cover x 2 Aa from the sequence of inner products
�hx, Urm+✏mj bjiH

 

m2Z; j=1,2,...,s
we could implement a

frame algorithm in `2(Z). Another possibility is given in the
recent Ref. [1].

IV. CONCLUSION

By way of conclusion we may say that we have
obtained a complete characterization of the sequence
�

Ukrbj
 

k2Z; j=1,2,...,s
in Aa, where bj 2 Aa, 1  j  s.

We have found a necessary and sufficient condition ensuring

that it is a complete system, a Bessel sequence, a frame or a
Riesz basis for Aa.

In the case that this sequence is a frame for Aa we can
give an explicit family of dual frames allowing to recover any
x 2 Aa by means of a sampling formula like (4).

Concerning the perturbation framework, we have found a
condition related to the `2-norm of ✏ = {✏kj}k2Z; j=1,2,...,s

and the max

j=1,2,...,s

n

Z 1

�1
w2dkEwbjk2

o

such that the sequence
�

Ukr+✏kj bj
 

k2Z; j=1,2,...,s
is a Riesz sequence in H and we

have obtained a sampling expansion allowing us to recover
any x 2 Aa in a stable way from the perturbed sequence of
samples {�Ljx

�

(kr + ✏kj)}k2Z; j=1,2,...,s .
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Abstract—Recovering signals that have sparse representations under a
given dictionary from a set of linear measurements got much attention in
the recent decade. However, most of the work has focused on recovering
the signal’s representation, forcing the dictionary to be incoherent and
with no linear dependencies between small sets of its columns. A series
of recent papers show that such dependencies can be allowed by aiming
at recovering the signal itself. However, most of these contributions focus
on the analysis framework. One exception to these is the work reported
in [1], proposing a variant of the CoSaMP for the synthesis model, and
showing that signal recovery is possible even in high-coherence cases. In
the theoretical study of this technique the existence of an efficient near
optimal projection scheme is assumed. In this paper we extend the above
work, showing that under very similar assumptions, a variant of IHT
can recover the signal in cases where regular IHT fails.

I. INTRODUCTION

Recovering a sparse signal from a given set of linear measurements
has been a major subject of research in recent years. In the basic
setup, an unknown signal x0 ∈ Rd passes through a given linear
transformation M ∈ Rm×d with an additive noise e ∈ Rm providing
a set of linear measurements y = Mx0+e. The signal x0 is assumed
to have a k-sparse representation α0 ∈ Rn under a given dictionary
D ∈ Rd×n, i.e. x0 = Dα0, ‖α0‖0 ≤ k and k $ d, where ‖·‖0 is
the “!0-norm” that counts the number of non-zero entries in a vector.
The sparsity prior results with the following minimization problem

min
α

‖y −MDα‖2 s.t. ‖α‖0 ≤ k, (1)

in which we pursue the representation α in order to recover the
original signal x0 from y. Given a reconstructed representation α̂,
the estimation for the signal is simply given by x̂ = Dα̂.

Solving (1) is a NP-hard problem and many approximation tech-
niques has been proposed for it [2]. One of these is the iterative
hard thresholding (IHT) algorithm [3]. This approach, summarized
in Algorithm 1, recovers the representation in an iterative way
using two repeating steps: (i) Gradient step: moving in the optimal
gradient direction for minimizing ‖y −MDα‖2; (ii) Projection step:
ensuring that the representation estimate is k-sparse. The operator
supp(·, k) returns the support of the largest k elements in a given
vector and the subscript T for a vector/matrix means taking the
entries/columns corresponding to the indices in T .

In order to evaluate the performance of IHT, the restricted isometry
property (RIP) [4] of the matrix MD is used. A matrix A ∈ Rd×n

satisfies the RIP with a constant δk if for any k sparse vector α ∈ Rn

(1− δk) ‖α‖22 ≤ ‖MDα‖22 ≤ (1 + δk) ‖α‖22 . (2)

With this definition in hand it has been shown that if δ2k ≤ 1/4 or
δ3k ≤ 1/

√
3 then IHT recovers the representation stably, i.e.,

‖α̂IHT −α0‖2 ≤ cIHT ‖e‖2 , (3)

where cIHT > 2 is a function of δ2k and δ3k [3], [5], [6]. Note that with
no prior on the noise distribution only a stable recovery is guaranteed

Algorithm 1 Iterative hard thresholding (IHT)
Require: k,M,D,y where y = MDα0 + e, k is the cardinality

of α0 and e is an additive noise.
Ensure: α̂IHT: k-sparse approximation of α0.

Initialize representation α̂0 = 0 and set t = 0.
while halting criterion is not satisfied do

t = t+ 1.
Perform a gradient step: αg = α̂t−1+µtMD∗(y−MDα̂t−1)
Find a new support: T t = supp(αg, k)
Calculate a new representation: α̂t = (αg)T t .

end while
Form the final solution α̂IHT = α̂t.

with no noise reduction effect. The latter can be achieved by adding
an assumption on the noise distribution [7]. This work deals only
with the former case where e is an adversarial bounded noise.

Note that in the case where D contains k correlated columns we
have δk ≥ 1. Then the above recovery conditions fail and (3) does not
hold. The reason for this is that in the presence of linear dependencies
between a small group of columns from D, the representation is no
longer unique [8] and the solution of (1) is no longer stable [4].
Though the recovery of the representation is not achievable in the
presence of correlations within D, we should keep in mind that our
task is to estimate the signal and not the representation. Recovering
the wrong support of α, but one that is closely related to the original
signal may suffice for our needs.

This key point is contained in the union of subspaces literature
[9], [10], [11]. However, it has been pointed out more clearly in a
series of contributions for the analysis framework [12], [13], [14],
[15], [16], assuming a different sparse model. As such, correlations
in the analysis dictionary were found to pose no problem and it has
been demonstrated that such are even an advantage [14], [15], [16].

The analysis results serve as a clue that the same may happen in
the synthesis model when the signal is the objective. In particular,
the condition in [12] are presented in terms of the D-RIP, which is
a property of the measurement matrix M for the synthesis model.
However, as indicated in [15], the results in [12] essentially hold true
for signals emerging from the analysis model.

The work reported in [1] is very different from all the above, in
addressing the synthesis model, providing signal recovery guarantees
using the D-RIP. This work presents a modified version of CoSaMP,
Signal space CoSaMP (SSCoSaMP), that aims at recovering the
signal, showing empirically that unlike the regular CoSaMP, the
modified version gets a good recovery even in the presence of
linear dependencies in D. The authors of [1] use a similar proof
technique to the one in [15] that was derived for the analysis CoSaMP
(ACoSaMP). Just like [15], the work in [1] relies on the availability of
near-optimal projection (this property will be defined clearly in the
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next section). Another recent paper that exploits the D-RIP in the
context of the synthesis model is the one reported in [17], studying
the basic synthesis !0-minimization problem.

In this work we continue with the same assumption as in [1] –
the existence of a near optimal projection scheme1 – and use the
D-RIP too. In Section II we present notations, and the definitions of
the D-RIP and the near-optimality of a projection. In Section III we
introduce the signal space IHT (SSIHT) method for signal recovery
and in Section IV we propose theoretical guarantees for it, relying on
ideas taken from [15]. The SSIHT emerges from IHT as SSCoSaMP
emerges from CoSaMP. The novelty of this work is by its theoretical
study which relies on [15] and differs from [1]. Note that the proof
technique used here can be adopted to develop new theoretical results
for SSCoSaMP that differ from those in [1] and resemble those of
ACoSaMP [15]. Section V presents some numerical results showing
the advantage of SSIHT over IHT for the task of signal recovery.

II. PRELIMINARIES

We start with the definition of the D-RIP. As indicated in [12],
many types of random matrices satisfy this property with a small δk2.

Definition 2.1: A matrix M obeys the D-RIP with a constant δDk ,
if δDk is the smallest constant that satisfies

(1− δDk ) ‖z‖22 ≤ ‖Mz‖22 ≤ (1 + δDk ) ‖z‖22 (4)

for any z ∈ Rd such that z = Dα and ‖α‖0 ≤ k.
Another definition we need is the one of a near optimal projection.

In SSIHT we face the following problem: Given a general vector
z ∈ Rd, we seek the closest vector to it, in the !2-norm sense, that
has a k-sparse representation. Note that given a support set T , the
closest vector is computed simply by using an orthogonal projection
PT = DTD

†
T onto it. Thus, the problem of finding the closest vector

turns into the problem of finding its support, using the scheme

S∗
k(z) = argmin

T,|T |≤k
‖z−PT z‖22 , (5)

where the closest vector with k-sparse representation for z is simply
given by PS∗

k(z)z. We should remark that for the task of projecting
a given representation vector to the same domain (k-sparse vectors),
a simple hard thresholding as done in IHT gives the ideal solution.
However, finding the optimal support in the signal case seems to be a
NP-hard problem as its equivalent form in analysis context is known
to be so [18]. Thus an approximation procedure is needed. For this
purpose we introduce the definition of a near-optimal projection [15].

Definition 2.2: A procedure Ŝk implies a near-optimal projection
PŜk(·) with a constant Ck if for any z ∈ Rd

∥∥∥z−PŜk(z)z
∥∥∥
2

2
≤ Ck

∥∥∥z−PS∗
k(z)z

∥∥∥
2

2
. (6)

In [1], a slightly different definition was used:
Definition 2.3: A procedure Ŝk implies a near-optimal projection

PŜk(·) with constants Ck,1 and Ck,2 if for any z ∈ Rd

∥∥∥(PS∗
k(z) −PŜk(z)

)z
∥∥∥
2

(7)

≤ min
{
Ck,1

∥∥∥PS∗
k(z)z

∥∥∥
2
, Ck,2

∥∥∥z−PS∗
k(z)z

∥∥∥
2

}
.

Having these definitions we recall the problem we aim at solving:

1Our projection definition follows the one in [15], which is slightly different
from the one used in [1].

2In this paper we shall use the brief notation δk to denote both RIP and
D-RIP, and the meaning should be understood from the context.

Definition 2.4 (Problem P): Consider a measurement vector y ∈
Rm such that y = Mx0 + e where x0 ∈ Rd has a k-sparse
representation under D, M ∈ Rm×d is a degradation operator and
e ∈ Rm is a bounded additive noise. The largest singular value of
M is σM and its D-RIP constant is δk. The dictionary D ∈ Rp×d

is given and fixed. A procedure Ŝk is assumed to be available. Our
task is to recover x0 from y. The recovery result is denoted by x̂.

The following guarantee has been proposed in [1] for SSCoSaMP.
Theorem 2.5 (Theorem 2.1 in [1]): Consider the problem P and

assume Ŝk implies a near optimal projection with constants Ck,1 and
Ck,2. After t iterations of SSCoSaMP, its signal estimate x̂t obeys

∥∥x̂t − x0

∥∥
2
≤ c1

∥∥x̂t−1 − x0

∥∥
2
+ c2 ‖e‖2 , (8)

where c1 = ((2 + Ck,1)δ4k + Ck,1)(2 + Ck,2)
√

1+δ4k
1−δ4k

and c2 =
(2+Ck,2)((2+Ck,1)(1+δ4k)+2)√

1−δ4k
.

Assuming Ck,1 = 0.1 and Ck,2 = 1 like in Corollary 2.1 in [1], a
condition for c1 < 1 is δ4k < 0.096 which guarantees that after a
finite number of iterations we have

‖x̂SSCoSaMP − x0‖2 ≤ cSSCoSaMP ‖e‖2 , (9)

where cSSCoSaMP is a function of c1, c2 and δ4k. The bound in (9)
implies a stable recovery of SSCoSaMP.

In this paper we show that under similar assumptions on the near
optimality constant Ck of definition 2.2 and the maximal singular
value of M, σM, the condition δ2k < 0.289 guarantees a stable signal
reconstruction for SSIHT. Note that in the condition of SSCoSaMP,
two near optimality constants are involved. The second one is related
to Ck as both of them measure the projection error and it is easy to
show that they obey the inequality (Ck,2−1)2 ≤ Ck ≤ (1+Ck,2)

2.
The first constant Ck,1 measures the energy kept in the projection.
This constant’s relation to the other two depends on the initial norm
of the projected signal. Since there is no direct relation between Ck

and Ck,1, it is natural that another constant of the system would
appear in our recovery conditions and indeed σM takes this role.

The existence of a general near-optimal projection scheme for any
given dictionary is still an open problem and is left for future work.
It is likely that there are non-trivial examples for which an efficient
procedure exists as has been shown in [15] for the analysis case.
In practice, any sparse recovery algorithm can be used in order to
determine the support for the projection scheme. In this work we
use a simple thresholding rule: For a given signal z it chooses the
support to be the largest entries in D∗z. We show empirically that
with this scheme we recover signals using SSIHT that cannot be
recovered using the regular IHT. Note that thresholding does not have
any known (near) optimality guarantee except for unitary operators.

III. SIGNAL SPACE ITERATIVE HARD THRESHOLDING

SSIHT is presented in Algorithm 2. Its main difference from
the regular IHT is the projection scheme. As IHT works in the
representation domain, its projection is performed also there and as
mentioned in the previous section, the projection is optimal in this
case. For SSIHT that works in the signal domain no general projection
procedure with an optimality guarantee is known.

The stopping criterion and the step size can be selected in the same
way as in the regular IHT [19]. For the step size we consider three
options: (i) Constant step-size selection µt = µ in all iterations;
(ii) Optimal changing step-size selection µt in each iteration by
minimizing

∥∥y −Mx̂t
∥∥
2
; and (iii) Adaptive changing step-size
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selection that has a closed-form solution and uses

µt := argmin
µ

∥∥y −M(x̂t−1 + µPT̃M
∗(y −Mx̂t−1))

∥∥2

2
, (10)

where T̃ = T̂ t−1 ∪ Ŝk(M
∗(y −Mx̂t−1)). More details appears in

[15], [19]. In our theoretical study we analyze the first two options. In
the experimental part we use the third one as it works better than the
first, and approximates the second that has no closed-form solution.

Algorithm 2 Signal space iterative hard thresholding (SSIHT)
Require: k,M,D,y where y = MDα0 + e, k is the cardinality

of α0 and e is an additive noise.
Ensure: x̂SSIHT: k-sparse approximation of x0.

Initialize estimate x̂0 = 0 and set t = 0.
while halting criterion is not satisfied do
t = t+ 1.
Perform a gradient step: xg = x̂t−1 + µtM∗(y −Mx̂t−1)
Find a new support: T t = Ŝk(xg)
Project to get a new estimate: x̂t = DT tD†

T txg .
end while
Form the final solution x̂SSIHT = x̂t.

IV. ALGORITHMS GUARANTEES

A uniform guarantee for the idealized version of SSIHT that has an
access to the optimal projection and uses a constant step size µt = µ,
is presented in [11]. The work in [11] deals with a general union of
subspaces, A, where in our case A = {x|x = Dα, ‖α‖0 ≤ k}.
Using our notation Theorem 2 from [11] reads3:

Theorem 4.1 (Theorem 2 in [11]): Consider the problem P with
Ŝk = S∗

k and apply SSIHT with a constant step size µ. If 1+ δ2k ≤
1
µ < 1.5(1− δ2k) then after a finite number of iterations t∗

∥∥∥x̂t∗ − x0

∥∥∥
2
≤ c3 ‖e‖2 , (11)

where the constant c3 is a function of δ2k and µ.
In our work we extend the above in several ways: First, we refer

to the case where an optimal projection is not known, and show
that the same flavor guarantees apply for a near-optimal projection4.
The price we seemingly have to pay is that σM enters the game.
Second, we also consider the optimal step size and show that the
same performance guarantees hold true in that case.

Theorem 4.2: Consider the problem P and apply SSIHT with a
constant step size µ or an optimal changing step size. For any positive
constant η > 0, let b1 := η

1+η and b2 :=
(Ck−1)σ2

Mb21
Ck(1−δ2k) . Suppose b2

b21
<

1, 1
µ ≤ σ2

M and 1 + δ2k ≤ 1
µ <

(
1 +

√
1− b2

b21

)
b1(1− δ2k). Then

for t ≥ t∗ !
log

(
η‖e‖22
‖y‖22

)

log

(
(1+ 1

η )2( 1
µ(1−δ2k)

−1)Ck+(Ck−1)(µσ2
M−1)+

Ck
η2

) ,5

∥∥x̂t − x0

∥∥2

2
≤ (1 + η)2

1− δ2k
‖e‖22 . (12)

3Theorem 2 in [11] is more general and deals also with the case where Ŝk
is near-optimal up to an additive constant factor (in our definitions the factor
is multiplicative). The error bound in the theorem has an additional constant
factor that depends on the projection’s near-optimality additive constant.

4Our work in fact improves the condition of the idealized case in [11] to
be δ2k ≤ 1

3 instead of δ2k ≤ 1
5 .

5For an optimal changing step-size the theorem conditions turn to be b2
b21

<

1 and 1+ δ2k < (1+
√

1− b2
b21

)b1(1− δ2k) and we set µ = 1
1+δ2k

in t∗.

This theorem is a variant of Theorem 6.5 in [15] for AIHT and
Theorem 2.1 in [20] for IHT. If, for example, σ2

M = 5 and Ck =
1.05 then the conditions of Theorem 4.2 turn to be δ2k ≤ 0.289
as mentioned before. For a better understanding of the nature of the
theorem we refer the reader to the remarks after Theorems 6.2 and 6.5
in [15]. Briefly we comment on the selection of µ and η. For the step-
size selection, note that an optimal changing step-size has the same
theoretical guarantees as the optimal constant step-size µ = 1

1+δ2k
.

The advantage of the changing step-size method is that it does not
need to compute (or estimate) the value of δ2k. However, this comes
at the cost of an additional complexity. Regarding the constant η, it
gives a trade-off between satisfying the theorem conditions and the
amplification of the noise. In particular, one may consider that the
above theorem proves the convergence result for the noiseless case by
taking η to infinity. This result is included in Lemma 4.4, which we
present later, that guarantees in the case e = 0 that Mx̂t converges
geometrically to Mx0. Due to the uniqueness property that appears
in [17], this implies that x̂t converges to x0.

We prove the theorem by presenting two key lemmas. The proofs
rely on the ones in [15] that adopted ideas from [20] and [11]. Recall
that the iterative algorithm tries to reduce the objective

∥∥y −Mx̂t
∥∥2

2
over iterations t. Thus, the progress of the algorithm can be indirectly
measured by how much the objective

∥∥y −Mx̂t
∥∥2

2
is reduced at

each iteration t. The two lemmas that we present capture this idea.
The first lemma relates

∥∥y −Mx̂t
∥∥2

2
to

∥∥y −Mx̂t−1
∥∥2

2
and similar

quantities at iteration t−1. We remark that the constraint 1
µ ≤ σ2

M in
Theorem 4.2 may not be necessary and it is added only for having a
simpler derivation of the results in this theorem. Furthermore, this is a
very mild condition compared to 1

µ <
(
1 +

√
1− b2

b21

)
b1(1− δ2k)

and can only limit the range of values that can be used with the
constant step size version of the algorithm.

Lemma 4.3: Consider the problem P and apply SSIHT with a
constant step size µ satisfying 1

µ ≥ 1+ δ2k or an optimal step size6.
Then, at the t-th iteration, the following holds:

∥∥y −Mx̂t
∥∥2

2
−

∥∥y −Mx̂t−1
∥∥2

2
≤ Ck ‖y −Mx0‖22 (13)

−Ck

∥∥y −Mx̂t−1
∥∥2

2
+ (Ck − 1)µσ2

M

∥∥y −Mx̂t−1
∥∥2

2

+Ck

(
1

µ(1− δ2k)
− 1

)∥∥M(x̂t−1 − x0)
∥∥2

2
.

The proof of the above lemma is exactly the same as the proof
of Lemma 6.6 in [15] with the change that here we use the D-RIP
instead of the Ω-RIP and the near-optimal projection scheme for
synthesis instead of the one for analysis. The second lemma shows
that once the objective

∥∥y −Mx̂t−1
∥∥2

2
at iteration t − 1 is small

enough, then we are guaranteed to have small
∥∥y −Mx̂t

∥∥2

2
as well.

Given the presence of noise, this is quite natural; one cannot expect
it to approach 0 but may expect it not to become worse. Moreover,
the lemma also shows that if

∥∥y −Mx̂t−1
∥∥2

2
is not small, then the

objective in iteration t is necessarily reduced by a constant factor.
Lemma 4.4: Suppose that the same conditions of Theorem 4.2

holds true. If
∥∥y −Mx̂t−1

∥∥2

2
≤ η2 ‖e‖22, then

∥∥y −Mx̂t
∥∥2

2
≤

η2 ‖e‖22. Furthermore, if
∥∥y −Mx̂t−1

∥∥2

2
> η2 ‖e‖22, then

∥∥y −Mx̂t
∥∥2

2
≤ c4

∥∥y −Mxt−1
∥∥2

2
, (14)

where c4 < 1 and

c4 :=

(
1 +

1
η

)2 ( 1
µ(1− δ2k)

− 1

)
Ck+(Ck−1)(µσ2

M−1)+
Ck

η2
.

6For an optimal step size the bound is achieved with the value µ = 1
1+δ2k

.
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The Lemma’s proof is similar to the one of Lemma 6.7 in [15]. The
needed adaptations are similar to those done for Lemma 4.3. Having
the two lemmas above, the proof of the theorem is straightforward.

Proof of Theorem 4.2: Since x̂0 = 0, ‖y‖22 =
∥∥y −Mx̂0

∥∥2

2
.

Assuming that ‖y‖2 > η ‖e‖2 and applying Lemma 4.4 repeat-
edly, we obtain

∥∥y −Mx̂t
∥∥2

2
≤ max(ct4 ‖y‖22 , η

2 ‖e‖22). Since
ct4 ‖y‖22 ≤ η2 ‖e‖22 for t ≥ t∗, we have

∥∥y −Mx̂t
∥∥2

2
≤ η2 ‖e‖22 (15)

for t ≥ t∗. If
∥∥y −Mx̂0

∥∥
2
= ‖y‖2 ≤ η ‖e‖2 then according to

Lemma 4.4, (15) holds for every t > 0. Finally, we observe
∥∥x̂t − x0

∥∥2

2
≤ 1

1− δ2k

∥∥M(x̂t − x0)
∥∥2

2
(16)

and by the triangle inequality,
∥∥M(x̂t − x0)

∥∥
2
≤

∥∥y −Mx̂t
∥∥
2
+ ‖e‖2 . (17)

By plugging (15) into (17) and then the resulting inequality into (16),
the claim of the Theorem follows. "

V. NUMERICAL PERFORMANCE

We turn to check numerically whether SSIHT can recover signals
in scenarios where IHT cannot. We perform a synthetic test similar to
the one in [17] for signals that are sparse under a dictionary which is
highly coherent and with linear dependencies between its columns.
We generate a dictionary D = [D1,D2] where D1,D2 ∈ Rd×d,
d = 200, D1 contains sparse columns with 2 non-zero entries which
are 1 or −1 with probability 0.5 and D2 contains columns which
are linear combinations of random 3 columns from D1 with random
zero-mean white Gaussian weights. Each entry of the measurement
matrix M ∈ Rm×d is distributed according to a normal Gaussian
distribution, where m=)γd* and γ is the sampling rate – a value in the
range (0, 1]. We set k to be )ρm* (ρ $ 1) and measure the recovery
rate of the representation α and the signal x for various values of
γ ∈ {0.1, 0.2, . . . , 0.9} and ρ ∈ {0.01, 0.02, . . . , 0.05}. We compare
SSIHT also to SSCoSaMP, where both use projection by thresholding.
The adaptive changing step-size selection rule is used for IHT and
SSIHT. Similar to what is done in [15], by uniqueness conditions it
is better to apply the algorithms with sparsity k̃ = max(k,m/2).

Figure 1 presents the recovery performance over 100 realizations
per each parameter setting. As expected, IHT fails almost always
in recovering the signal since it focuses on the representation,
while SSIHT and SSCoSaMP succeed in several cases and their
performance are similar. At a first glance, some would think that the
SSIHT phase diagram implies that for a fixed k/m (e.g. 0.03) one
may improve the recovery result if he uses less samples, i.e. smaller
m/d. However, this observation misses the fact that for a fixed k/m,
k is reduced together with m. Note that the recovery results of SSIHT
and SSCoSaP can be improved by using other techniques for the
projection, rather than thresholding, as done in [1] for SSCoSaMP.

VI. CONCLUSION

In this paper we have proposed a variant of the IHT algorithm –
the Signal-Space IHT (SSIHT) – for recovering signals with sparse
representations under highly coherent dictionaries. We have shown
that IHT fails in recovering such signals, as it operates in the
representation domain. SSIHT, on the other hand, targets the signal. A
uniform recovery guarantee has been derived for the SSIHT, assuming
the availability of a near optimal projection. Numerical simulations
show that SSIHT succeeds in recovering signals for which IHT fails,
even when the projection is not near-optimal.
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Fig. 1. IHT (left), SSIHT (middle) and SSCoSaMP (right) recovery rates
for the synthetic experiment described in Section V. Color attribute: fraction
of realizations in which a perfect recovery is achieved.
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Abstract—In this paper, we develop a method to construct
non-redundant directional wavelet filter banks. Our method
uses a special class of filters called Neville filters and can
construct non-redundant wavelet filter banks in any dimension
for any dilation matrix. The resulting filter banks have directional
analysis highpass filters, thus can be used in extracting directional
contents in multi-D signals such as images. Furthermore, one can
custom-design the directions of highpass filters in the filter banks.

I. INTRODUCTION

In the last couple of decades, wavelets have been a popular
and useful tool in many applications such as signal and image
processing. One of important remaining challenges in wavelets
is to construct multi-D directional wavelet systems or wavelet
filter banks.

There has been a lot of attempts to develop such wavelet
systems or their variants for 2-D or 3-D signals, such as
curvelets, contourlets, shearlets, etc. Despite many benefits
of these existing systems, most of them are redundant with
possibly huge redundancy factors, and they do not have a
trivial generalization to higher dimensions. Although a re-
cent study by the authors provides the construction of non-
redundant wavelet filter banks with directional highpass filters
for any dimension [1], it only deals with the dyadic dilation
matrices. Other approaches based on anisotropic wavelet bases
have also been proposed (see, for example, [2], [3], [4] and the
references therein). However, these wavelets are designed in
continuous domain and implementing them in discrete setting
is not trivial.

In this paper, we develop a new method to construct non-
redundant wavelet filter banks that can capture the directional
information in multi-D signals. Our method is a general
designing recipe in the sense that it can work in any dimension
for any dilation matrix. In the design, one can even specify
the number of directions and which directions to consider.

II. PRELIMINARIES

In this section, we review some basic concepts and notations
about wavelet filter bank construction. In particular, we review
the concept of Neville filters and how to use Neville filters to
build multi-D wavelet filter banks.

This work was supported in part by the National Science Foundation under
Grant DMS-1115870.

A. Notation
In this paper, we use boldface to indicate vectors and

matrices. A filter f is a a linear time-invariant operator
characterized by its impulse response {f(k) 2 R|k 2 Zd}.
The z-transform of a filter is a Laurent polynomial

F (z) =
P

k f(k)z
�k

where z = (z1, z2, . . . , zd) and zk :=
Qd

i=1 z
ki
i . In this

paper, we refer to both the z-transform F (z) and the impulse
response f(k) as the filter, and sometimes we omit z and k in
the parentheses for convenience. Define the adjoint of a filter
as [F (z)]⇤ := F (1/z). Throughout this paper, we assume all
filters have finite impulse response.

A dilation matrix D is a d⇥d integer matrix with | detD| :=
m > 1. Given a dilation matrix D, the set Zd of integer grids
can be split into m disjoint subsets

Zd =
Sm�1

i=0 (DZd + ti), ti 2 Zd

where t0 = 0. We call {t1, t2, . . . , tm�1} as a set of (nonzero)
distinct coset representatives of the dilation matrix D.

A filter bank (FB) consisting of an analysis bank and a
synthesis bank is a set of filters. For a given dilation matrix
D, a filter in the analysis bank {Ai, i = 0, . . . , l � 1} and
a filter in the synthesis bank {Si, i = 0, . . . , l � 1} can be
written as the sum of m polyphase components

Ai(z) =
Pm�1

j=0 ztjAi,j(zD), ai,j(k) := ai(Dk� tj) (1)

Si(z) =
Pm�1

j=0 z�tj
Si,j(zD), si,j(k) := si(Dk+ tj) (2)

where zD := (zD1
, zD2

, . . . , zDd), Di is the ith column vector
of D. Then the pair of matrices

A(z) := [Ai,j(z)]i=0,...,l�1;j=0,...,m�1

S(z) := [Sj,i(z)]j=0,...,m�1;i=0,...,l�1

is called the polyphase matrix representation [5] of the FB.
A FB satisfies the perfect reconstruction condition if the

polyphase matrices satisfy S(z)A(z) = Im, which can happen
only when l � m. A FB is called non-redundant if l = m.

In this paper, we are only interested in non-redundant FBs
satisfying the perfect reconstruction condition, and we assume
there are exactly one lowpass filter A0 in the analysis bank
and one lowpass filter S0 in the synthesis bank. The rest,
A1, . . . , Am�1, S1, . . . , Sm�1, are all highpass filters.
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We use ⇧N to denote the set of all polynomials of total
degree less than N . We say a FB has N 2 N vanish-
ing moments [6] if, for any highpass filter f in the FB,
(f ⇤0 ⇡)(Zd) = 0, 8⇡ 2 ⇧N , or equivalently,

P
k f(�k)kn = 0, 8n 2 Nd

0, |n| < N

where n := (n1, n2, . . . , nd), N0 := N[ {0} and |n| := n1 +
n2+. . .+nd. Here we used (f⇤0⇡)(·) :=

P
k2Zd f(k)⇡(·�k).

B. Neville Filters and Their Use in Wavelet FB Construction
In [7], Kovačević and Sweldens introduce a class of filters

called Neville filters (Definition 1) and their characterization
(Result 1). When applied to a sampled polynomial, they result
in the same polynomial but shifted by a shift parameter ⌧ 2
Rd.

Definition 1. A filter f is a Neville filter of order N with shift
⌧ if (f ⇤0 ⇡)(Zd) = ⇡(Zd + ⌧ ), for any ⇡ 2 ⇧N .

Result 1 (Proposition 4 in [7]). A filter f is a Neville filter
of order N with shift ⌧ if and only if f satisfies

P
k f(�k)kn = ⌧n

, 8n 2 Nd
0, |n| < N. (3)

In 1-D case, the construction of Neville filters of order
N is straightforward. Once we fix the positions of N filter
taps, we obtain a linear system with an N ⇥ N coefficient
matrix from (3). Since the coefficient matrix in this case is a
Vandermonde matrix, it is always solvable. In multi-D case,
the solvability of the linear system not only depends on the
number of filter taps but also on the geometric shape of the
filter. Hence it is more challenging to construct a multi-D
Neville filter with a prescribed order and shift. An approach
based on an algorithm in [8] to solve this problem is proposed
in [7], but it is highly non-trivial to control the shape of the
filters using that approach.

Using the property of Neville filters, Kovačević and
Sweldens propose a method for constructing wavelet FBs
based on lifting scheme [9]. They use two lifting steps: predict
(cf. Ri) and update (cf. Ui), as shown in (4) and (5) to build
the wavelet FB with desirable vanishing moments:

A =

2

664

1 U1 · · · Um�1

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

3

775

2

664

1 0 · · · 0
�R1 1 · · · 0

...
...

. . .
...

�Rm�1 0 · · · 1

3

775

=

2

6666664

1�
m�1X

i=1

UiRi U1 · · · Um�1

�R1 1 · · · 0
...

...
. . .

...
�Rm�1 0 · · · 1

3

7777775
(4)

S =

2

664

1 0 · · · 0
R1 1 · · · 0
...

...
. . .

...
Rm�1 0 · · · 1

3

775

2

664

1 �U1 · · · �Um�1

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

3

775

=

2

664

1 �U1 · · · �Um�1

R1 1�R1U1 · · · �R1Um�1

...
...

. . .
...

Rm�1 �Rm�1U1 · · · 1�Rm�1Um�1

3

775 , (5)

where Ri are called predict filters, Ui are called update filters,
and m = | detD|. More precisely, the following is a variant of
the result they prove in [7], written in terms of our terminology.

Result 2. Let {t1, t2, . . . , tm�1} be a set of distinct coset
representatives of the d ⇥ d dilation matrix D. For i =
1, · · · ,m � 1, let Ri be a d-D Neville filter of order N with
shift ⌧ i = D�1ti, and Ui be the filter obtained by multiplying
1/m to the adjoint of a d-D Neville filter of order N with
shifts ⌧ i. Then the analysis polyphase matrix constructed as
(4) and the synthesis polyphase matrix constructed as (5) form
a wavelet FB with N vanishing moments.

This construction works for any dilation matrix D in any
dimension. It uses d-D Neville filters with prescribed orders
and shifts to construct d-D wavelet FBs.

III. DIRECTIONAL WAVELET FB DESIGN USING 1-D
NEVILLE FILTERS

In this section, we introduce a method to design directional
wavelet FBs using 1-D Neville filters and the lifting based
wavelet construction method reviewed in Section II-B. Let us
first define an operator that maps 1-D filters to d-D filters.

Definition 2. Define the operator that maps a 1-D filter F to
a d-D filter Mt(F ) along direction t 2 Zd as

Mt(F )(z) := F (zt).

The following simple lemma, which says that the operator
Mt preserves the order of Neville filters is a key ingredient
of our directional wavelet FB construction.

Lemma 1. If F is a 1-D Neville filter of order N with shift
⌧ 2 R, then the d-D filter Mt(F ) is a Neville filter of order
N with shift ⌧t, t 2 Zd.

Proof: Let G := Mt(F ), and let g be the impulse
response of G. Then, we have

g(k) =

⇢
f(k), if k = kt for some k 2 Z ,
0, for all other k 2 Zd.

where f is the impulse response of F . Therefore
P

k g(�k)kn =
P

k f(�k)(kt)n =
P

k f(�k)k|n|tn

= ⌧

|n|tn = (⌧t)n,

for any n 2 Nd
0, |n| < N , where the second last equation

holds because F is a 1-D Neville filter of order N with shift
⌧ . Thus G is a d-D Neville filter of order N with shift ⌧t.

Example 1: Mapping 1-D Neville Filter to 2-D. F (z) =
1/3z+2/3 is a 1-D Neville filter of order 2 with shift ⌧ = 1/3.
Then mapping it to 2-D along direction t = (1, 1) results in
Mt(F )(z) = 1/3z1z2 + 2/3. It can be easily checked that
Mt(F ) is a Neville filter of order 2 with shift ⌧t = (1/3, 1/3).
Figure 1 shows the impulse response of F and Mt(F ).

From Example 1, we see that the multi-D Neville filter
constructed by the operator Mt is directional along direction
t. We now discuss how to use these directional multi-D Neville
filters to construct directional wavelet FB.
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Fig. 1. Mapping 1-D Neville filter to 2-D. The impulse response of F and
Mt(F ) in Example 1. Underlined position is the origin.

Let us first look at a simple case when the dilation matrix
D = cId where c 2 Z, c > 1 and Id is the identity matrix. In
this case, D�1 = (1/c)Id. The multi-D Neville filters used
to construct predict and update filters in Result 2 need to
have shift parameters ⌧ i = D�1ti = (1/c)ti. Therefore, it
is possible to construct all these multi-D Neville filters by
mapping a single 1-D Neville filter with shift ⌧ = 1/c but with
different directions ti. In this way, we can avoid constructing
multi-D Neville filters directly, which is often difficult to do.
Moreover, it can be shown that the highpass filters built on
these multi-D Neville filters are also directional.

To generalize this idea to a general dilation matrix D, let us
consider the shift parameters ⌧ i = D�1ti again. In this case,
if we factor out ⌧ = 1/m as the shift parameter for 1-D Neville
filters, then ⌧ i = ⌧ t̃i, where t̃i = mD�1ti 2 Zd, hence we
can map a single 1-D Neville filter with shift ⌧ = 1/m along
different directions t̃i. For example, for dilation matrix

D =


2 �1
1 2

�
(6)

a set of distinct coset representatives of D are t1 =
(0, 1), t2 = (1, 1), t3 = (0, 2), t4 = (1, 2). The shift param-
eters of Neville filters needed to construct wavelet FB are
⌧ 1 = (1/5, 2/5), ⌧ 2 = (3/5, 1/5), ⌧ 3 = (2/5, 4/5), ⌧ 4 =
(4/5, 3/5). Therefore, we can construct all these multi-D
Neville filters by mapping one 1-D Neville filter with shift
1/5 along directions t̃1 = (1, 2), t̃2 = (3, 1), t̃3 = (2, 4), t̃4 =
(4, 3).

In fact, we can factor out any ⌧ = 1/s, where s 2 Z, as
the shift parameter for 1-D Neville filters, as long as ⌧ i = ⌧ t̃i
and t̃i = sD�1ti 2 Zd. In the simple case when D = cId,
s := c can be chosen, while in other cases such as (6), s :=
m can be chosen. Therefore, we have the following theorem.
For a general d-D dilation matrix D with | detD| = m, we
can construct a directional wavelet FB with analysis highpass
filters presenting at most m�1 different directions as follows.

Theorem 1. Let {t1, t2, . . . , tm�1} be a set of distinct coset
representatives of D. Let s be an integer such that sD�1ti 2
Zd. For i = 1, · · · ,m � 1, let Pi and Qi be the 1-D Neville
filters of order N with shift 1/s. Set t̃i = sD�1ti. Let d-
D filter Ri := Mt̃i(Pi) and Ui := (1/m)[Mt̃i(Qi)]⇤. Then
the analysis polyphase matrix given by (4) and the synthesis
polyphase matrix given by (5) form a directional FB with N

vanishing moments and the analysis highpass filters are placed
along directions ti.

Proof: Since Pi (resp. Qi) is a 1-D Neville filter of
order N with shift 1/s, by Lemma 1, Ri = Mt̃i(Pi)
(resp. Mt̃i(Qi)) is a d-D Neville filter of order N with
shift (1/s)t̃i = (1/s)sD�1ti = D�1ti. Thus Ui =
(1/m)[Mt̃i(Qi)]⇤ is 1/m times the adjoint of Neville filter

of order N with shift D�1ti. By Result 2, we see that (4) and
(5) form a wavelet FB with N vanishing moments.

To prove the directionality of analysis highpass filters,
consider the ith analysis highpass filter denoted by Ai. Since

Ri(z) = Mt̃i(Pi)(z) = P (zt̃i) = P (zsD
�1ti),

from (1) and (4), we see that Ai(z) is equal to

�Ri(z
D) + zti = �Pi(z

DsD�1ti) + zti = �Pi(z
sti) + zti .

If we replace zti with z in the last equation on the right
hand side, we get a 1-D filter �Pi(zs) + z. Thus Ai can be
understood as the result of taking the 1-D filter �Pi(zs) + z

and placing it in d-D space along direction ti.

Remark 1. In Theorem 1, a single 1-D Neville filter of order
N and shift 1/m can be used for all of Pi and Qi, or different
1-D Neville filters can be used. In fact Pi and Qi can have
different orders if we invoke more generalized version of
Result 2 from [7]. In this case, if Pi’s order is Ñi and Qi’s
order is Ni, then the vanishing moments of the FB is given
as min{Ñ1, . . . , Ñm�1, N1, . . . , Nm�1}.

Remark 2. The analysis highpass filters Ai of the FB in The-
orem 1 are placed along directions ti 2 Zd

, i = 1, . . . ,m� 1
(not t̃i = mD�1ti). Therefore, by carefully choosing the
distinct coset representatives of D, one can custom-design the
directions of the filters (cf. Example 2). There are at most
m�1 different directions that can be presented by the analysis
highpass filters.

In the next example, we illustrate how to use Theorem 1 to
construct directional wavelet FB.
Example 2: 2-D Directional Wavelet FB with 2 Van-
ishing Moments. For dilation matrix D = 3I2, since
| detD| = 9, there are 9 � 1 = 8 distinct coset representa-
tives {t1, t2, . . . , t8} that we can choose. We know that the
directions of coset representatives are exactly the directions
of resulting analysis highpass filters. Here we want to choose
directions that divide the 2-D plane as equally as possible.
Thus we choose t1 = (1, 0), t2 = (�1, 0), t3 = (0, 1), t4 =
(0,�1), t5 = (2, 1), t6 = (1, 2), t7 = (�2, 1), t8 = (�1, 2).
Then the resulting analysis highpass filters will present 6
different directions in the 2-D plane: approximately, 0� (t1,
t2), 30� (t5), 60� (t6), 90� (t3, t4), 120� (t8) and 150� (t7)
from the positive x-axis.

Next we pick a single 1-D Neville filter of order 2 with
shift 1/3 for all Pi and Qi: Pi(z) = Qi(z) = 1/3z+2/3, for
i = 1, . . . , 8. Theorem 1 says that if we choose, for each i,

Ri(z) = Pi(z
ti) = 1/3zti + 2/3

Ui(z) = (1/m)[Qi(z
ti)]⇤ = (1/9)(1/3z�ti + 2/3)

then we get the wavelet FB with 2 vanishing moments, whose
polyphase matrices are A and S in (4) and (5). Using formula
(1) and (2), we can read off the corresponding filters. For
example, the resulting synthesis lowpass filter S0 is

S0(z) = 1 +
P8

i=1 z
�ti

Ri(zD)
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(i) A8 : t8 = (�1, 2)

Fig. 2. 2-D directional wavelet FB with 2 vanishing moments in Example
2: (a) synthesis lowpass filter, (b)-(i) directional analysis highpass filters with
each direction along the coset representatives: ti, i = 1, . . . , 8 .

and the resulting analysis highpass filter associated with coset
representative t5 = (2, 1) is

A5(z) = �R5(z
D) + zt5 = �(1/3z61z

3
2 + 2/3) + z

2
1z2.

Figure 2 shows the synthesis lowpass filter S0 and the analysis
highpass filters Ai, i = 1, . . . , 8.

IV. EXPERIMENTAL RESULT

We did an experiment using the 2-D directional wavelet
FB constructed in Example 2. For an original image “circle”
(Figure 3(a)), we did a 1-level-down decomposition using the
analysis highpass filters obtained in Example 2 (as shown
in Figure 2(b)-(i)). The images after passing through each
highpass filter (wavelet coefficients) are shown in Figure 3(b)-
(i). The result shows that different directional components
of the circle are captured by different directional highpass

(a) original

(b) A1 (1, 0) (c) A2 (�1, 0) (d) A3 (0, 1) (e) A4 (0,�1)

(f) A5 (2, 1) (g) A6 (1, 2) (h) A7 (�2, 1) (i) A8 (�1, 2)

Fig. 3. (a) The original image “circle”, (b)-(i) the images after passing
highpass filters A1, . . . , A8.

filters. A highpass filter with direction t can mainly capture
the directional content that is orthogonal to the direction t.

V. CONCLUSION

In this paper, we developed a method to use 1-D Neville
filters to build multi-D directional wavelet FBs. The resulting
FB is a non-redundant FB which can capture the directional
information in multi-D signals.
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[7] J. Kovačević and W. Sweldens, “Wavelet families of increasing order in
arbitrary dimensions,” Image Processing, IEEE Transactions on, vol. 9,
no. 3, pp. 480–496, 2000.

[8] C. de Boor and A. Ron, “On multivariate polynomial interpolation,”
Constructive Approximation, vol. 6, no. 3, pp. 287–302, 1990.

[9] W. Sweldens, “The lifting scheme: A custom-design construction of
biorthogonal wavelets,” Appl. Comput. Harmon. Anal., vol. 3(2), pp. 186–
200, 1996.

Proceedings of the 10th International Conference on Sampling Theory and Applications

219



Sparse Approximation of Ion-Mobility Spectrometry
Profiles by Minutely Shifted Discrete B-splines

Masaru Kamada
Department of Computer and Information Sciences

Ibaraki University
Hitachi, Ibaraki 316–8511, Japan

m.kamada@cis.ibaraki.ac.jp

Masakazu Ohno
Graduate School of Science and Engineering

Ibaraki University
Hitachi, Ibaraki 316–8511, Japan

Abstract—Employing discrete B-splines instead of the Gaussian
distribution, we construct an algorithm for the analysis of ion-
mobility spectrometry profiles. The algorithm is suitable for
hardware implementation because the discrete B-splines are
supported by a simple digital filter to compute their weighted
sum and their correlations with a given signal. Minutely shifted
discrete B-splines are deployed of which weighted sum is to
approximate a given profile with non-negative weights. Closely
neighboring discrete B-splines are almost linearly dependent so
that they may cause numerical instability in the approximation
process. But numerical experiments deny this anxiety at least
for the final results. Varying the width of discrete B-splines, we
obtain a number of different approximations. Out of sufficiently
precise approximations, we choose the sparse one in the sense
that it comprises few discrete B-splines with large weights.

I. INTRODUCTION

Ion-mobility spectrometry [1] is a method of discriminating
chemical molecules in the atmosphere. Its capability of identi-
fying tiny amounts of various chemicals has made it possible
to analyze odor and flavor and to detect poisons, drugs and
explosives. The analysis is mainly composed of physical and
computational processes.

The physical process proceeds in this way: (i) Chemical
molecules are ionized and injected near the cathode as shown
in Fig. 1(a). (ii) The ions move toward the anode with the ac-
celeration proportional to their charge-mass-ratio as illustrated
in Fig. 1(b). Light ions reach the anode earlier than the heavier
ones on the average. The ions bump and bounce against air
and other molecules during their travel so that even ions of the
same kind arrive at the anode in different traveling times. (iii)
The ions give their charges to the anode which constitute the
electric current called profile like the curve in Fig. 2(a). The
profile is modeled as a weighted sum of several distributions
as schematized in Fig. 2(b). Each distribution is traditionally
supposed to be Gaussian because any random displacements
of ions by their collision with other molecules amount to a
Gaussian distribution if they happen infinitely many times.

The computational process identifies each different distribu-
tion in a given profile. Its weight and average tell, respectively,
how much and what kind of ions are present. The standard
algorithm employs the steepest descent method to search for
locally optimal values of unknown parameters such as average,
variance and weight of an unknown number of Gaussian

distributions. This search has to be conducted sequentially so
that it consumes much time even on the latest fast CPUs.

While a tiny chip from Owlstone Nanotech [2] and a system
solution from ATONARP [3] have already made it possible
to complete the physical process in a few milliseconds, the
computational algorithm is still sequentially searching for local
optima at much computational cost. In this paper, we shall
approach a new algorithm which matches up to the compact
and fast physical system. This approach is characterized by
the following four features:

(i) Instead of the Gaussian distribution, we use the B-spline
[4] of order m that is defined as the m-fold convolution inte-
gral of a uniform distribution and represents the distribution
of ion position after m collisions if one causes a uniformly
random displacement. The B-spline is a good substitute since
it tends to the Gaussian at the limit m → ∞. We can even
say that the Gaussian was not the perfect choice because it has
infinitely long tails that never exist in reality. We had better
take a large m but do not have to make it infinity.

(ii) For the sake of simpler computation, the B-splines are
further replaced by their discrete version1 defined as the m-
fold discrete convolution of the uniform discrete distribution
over n sampling points. The discrete B-splines can be gen-
erated by only additions and subtractions [6]. There is also

(a) Initial state (b) Analyzing process

Fig. 1. Schematics of the ion-mobility spectrometry

time

current

time

current

(a) Profile (ion current) (b) Composite model

Fig. 2. Ion-mobility spectrometry profile

1The discrete B-splines tend to the original B-splines when n → ∞ [5].
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a fast digital filter to compute their correlations with a given
signal [7].

(iii) We dare to deploy the discrete B-splines shifted by a
minute interval as analyzing components of which weighted
sum is to approximate a given profile even though we risk
numerical instability in the approximation process due to the
almost linear dependency among the overcrowding compo-
nents. Otherwise, the algorithm would fall back to the slow
sequential search for an unknown number of arrival times. The
weights are constrained to be non-negative since ion counts
cannot be negative numbers.

(iv) The other unknown parameter n, which represents how
widely the arrival times distribute, is sought exhaustively.
Since the above approximation process is rather simple and
suitable for hardware implementation, we can try approxima-
tions with various values of n in parallel to find its best value.
Among the values of n that result in good approximations
with sufficiently small errors, we shall choose the one giving
a sparse approximation in the sense that the approximation
comprises few discrete B-splines with large weights.

The algorithm is a sort of sparse approximation method
that arose from this particular application field. It works
empirically fine. A proper formulation within the general
theory of sparse approximation is yet to be established.

II. SUMMARY OF DISCRETE B-SPLINES

The B-spline of order m is defined as the m-fold con-
volution integral of a rectangle function [4]. It tends to the
Gaussian distribution at the limit m → ∞ by the central limit
theorem. The discrete B-spline to be used in this paper is
defined recursively by

bm[k] = (bm−1 ∗ b1)[k] =
∞∑

l=−∞
bm−1[k − l]b1[l] (1)

as the m-fold discrete convolution of a sampled rectangle

b1[k] =
{

1, k = 0, 1, 2, · · · , n − 1
0, otherwise. (2)

It tends to the original B-spline at the limit n → ∞ [5]. The
z-transform of bm[·] is

Bm(z) =
∞∑

k=−∞
bm[k]z−k =

(
1 − z−n

1 − z−1

)m

. (3)

The inner product or correlation of two discrete B-splines
bm[·−r] and bm[·−l] can be rearranged in the form of discrete
convolution

〈bm[·− r], bm[·− l]〉 =
∞∑

k=−∞
bm[k − r]bm[k − l]

=
∞∑

k=−∞
bm[k]bm[−(l − r − k)]

=
∞∑

k=−∞
bm[k]b̃m[l − r − k]

= (bm ∗ b̃m)[l − r],

where we have set b̃m[·] = bm[−·]. By its z-transform

Bm(z)Bm(z−1)zl−r

=
(

1 − z−n

1 − z−1

)m (
1 − zn

1 − z

)m

zl−r

=
(

1 − z−n

1 − z−1

)m (
1 − z−n

1 − z−1

)m

z(n−1)m+l−r

=
(

1 − z−n

1 − z−1

)2m

zm(n−1)+l−r,

we know that

〈bm[·− r], bm[·− l]〉 = b2m[l − r + m(n − 1)]. (4)

Given weighting coefficients c[·] of which z-transform is

C(z) =
∞∑

l=−∞
c[l]z−l,

we can express the weighted sum of discrete B-splines bm[·−l]
in the form of a discrete convolution

q[k] =
∞∑

l=−∞
c[l]bm[k − l] = (c ∗ bm)[k] (5)

of which the representation by the transfer functions is

C(z)Bm(z) = C(z)
(

1 − z−n

1 − z−1

)m
. (6)

So we can generate q[·] as the output of a digital filter
having the transfer function

(
1−z−n

1−z−1

)m
for the input c[·].

This digital filter can be implemented in two steps: the m-th
order accumulation

(
1

1−z−1

)m
and the m-th order difference

(1 − z−n)m. Although the accumulation may overflow in the
first step, it has been known that the final output q[·] stays
correct as long as we use the integer arithmetic in the 2’s
complement representation of which bit-length is long enough
to accommodate the theoretical range of q[·] [6]. Since the
amplitude of the final output q[·] is bounded by

sup
k

|q[k]| ≤ sup
l

|c[l]|
∞∑

k=−∞
|bm[k]|

= sup
l

|c[l]|
∞∑

k=−∞
bm[k]

= sup
l

|c[l]|B(1)

= sup
l

|c[l]|nm, (7)

it cannot be magnified more than nm times the amplitude of
the input c[·]. So it suffices for correct computation to add
guard bits of the length m(log2 n).

For a given profile p[·], let

P (z) =
∞∑

k=−∞
p[k]z−k.
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Then its inner products or correlations with bm[· − l] can be
represented in the form of discrete convolution

〈p[·], bm[·− l]〉 =
∞∑

k=−∞
p[k]bm[k − l] (8)

=
∞∑

k=−∞
p[k]bm[−(l − k)]

= (p ∗ b̃m)[l] (9)

of which the representation by the transfer functions is

P (z)Bm(z−1)zl = P (z)
(

1 − zn

1 − z

)m
zl

= P (z)
(

1 − z−n

1 − z−1

)m
z(n−1)m+l. (10)

So we can compute the inner products by inputting p[·] to
a digital filter having the transfer function

(
1−z−n

1−z−1

)m
and

sampling its output at (n − 1)m + l. This transfer function
is the same as the one for generating weighted sums and can
also be implemented efficiently in the two steps.

III. ALGORITHM

We have to approximate a given profile p[·] by a weighted
sum of the discrete B-splines bm[·− l] deployed by the most
minute interval 1 under the constraint that the weights should
be non-negative.

A. Digital filter to compute inner products 〈p[·], bm[·− l]〉
The inner products 〈p[·], bm[·− l]〉 of a given profile p[·] and

the discrete B-splines bm[·− l] should usually be evaluated by
the standard multiply-and-add architecture according to their
definition (8). But, by virtue of (9) and (10), we can do the
same only by using the digital filter depicted in Fig. 3.

The first half of the filter in Fig. 3 represents the m-fold
accumulation free from the parameter n so that this part has
to be operated just once for a given profile. We can evaluate
the inner product for different n only by operating the second
half. Its computational cost is almost only m subtractions per
an inner product on the average.

The mutual inner products 〈bm[·− r], bm[·− l]〉 among the
discrete B-splines can be precomputed by (4) and stored in a
data table.

B. Non-negative least-square approximation
From the inner products, we are to determine the weighting

coefficients c[·] so that the weighted sum

q[k] =
L−1∑

l=0

c[l]bm[k − l] (11)

Fig. 3. Digital filter to compute 〈p[·], bm[·− l]〉 at (n− 1)m+ l from p[k]

of the discrete B-splines bm[·− l] approximate the profile p[·]
best in the sense

E = 〈p[·] − q[·], p[·] − q[·]〉
=

∑

k

(p[k] − q[k])2 −→ min. (12)

Such coefficients can be determined by solving the normal
linear equations

L−1∑

l=0

c[l] 〈bm[·− r], bm[·− l]〉 = 〈p[·], bm[·− l]〉 ,

r = 0, 1, 2, ..., L − 1. (13)

The resulting coefficients c[·] may be negative whereas they
should be constrained to be non-negative.

The least-square approximation under this constraint can be
solved by overwriting the negative coefficients by zero, dis-
carding the coefficients and corresponding discrete B-splines
from the linear equations, and solving the linear equations
repeatedly until all the coefficients get non-negative [8].

Although all the four arithmetic operations in the floating
point representation are required to solve the linear equations,
this process is not so slow since the discrete B-splines are
locally supported to make the equations banded and because
the number of involved discrete B-splines decreases during the
iterations.

The only and major concern is numerical instability in
solving the linear equations. The minutely shifted discrete B-
splines are so crowded that they are almost linearly dependent.
The numerically obtained initial approximation result is quite
imprecise despite the mathematical fact that the initial approx-
imation must theoretically be an exact interpolation having no
errors at all. It has been empirically observed that neighboring
discrete B-splines are likely to have coefficients of opposite
signs. Since the discrete B-splines with negative coefficients
should be discarded, the discrete B-splines get sparser in the
next iteration. The non-negativity constraint happened to bring
in such a nice side effect. In that way, all the numerical
experiments up to now with test data taken from real profiles
finished successfully at the end.

C. Evaluation of mean square error

It follows from (5) that the approximate profile q[·] can be
computed from c[·] by the digital filter depicted in Fig. 4. The
mean square error is evaluated from the output q[·] and the
original profile p[·] by

E1 =

√∑
k(p[k] − q[k])2∑

k(p[k])2
. (14)

Fig. 4. Digital filter to compute q[k] from c[k]
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D. Evaluation of sparsity
Among a number of approximations obtained by the above

processes A, B and C for various values of n, we choose the
best one that has sufficiently small errors and is composed of
few discrete B-splines with large weights.

In the case that the mean square error E2 is very small,
the absolute difference

∑
k |p[k] − q[k]| is also small and the

sums
∑

k p[k] and
∑

k q[k] of the original and approximate
profiles are close to each other because both p[·] and q[·] are
non-negative. In this case, the modified coefficients nmc[l] for
the discrete B-splines 1

nm bm[· − l] normalized by its sum∑
k bm[k − l] = nm satisfy

q[k] =
L−1∑

l=0

(nm c[l])
(

1
nm

bm[k − l]
)

(15)

and
L−1∑

l=0

nmc[l] =
∑

k

q[k] ≈
∑

k

p[k] = constant. (16)

In this situation, sparsity in the sense that the approximation
q[·] should comprise few large portions is translated into that
the coefficients nmc[l] should comprise few and large ones
because

∑
l n

mc[l] is constant and nmc[l] is non-negative. An
index to evaluate this sparsity is

E2 =

√√√√
K−1∑

l=0

(nmc[l])2. (17)

We take the sparsest approximation giving the largest E2 out
of the good approximations having the mean-square error E1

smaller than a threshold among various approximations for
different values of n.

IV. NUMERICAL RESULT

The algorithm was applied to test data taken from real
profiles. Figure 5 shows approximations of a profile within a
short window of 128 sampling points. The order of the discrete
B-splines is fixed as m = 4. The original profile p[·] is plotted
in black, its approximations q[·] for various n is in red. The
green curves represent the discrete B-splines weighted by their
coefficients to compose the approximation.

The cases for n ≤ 12 cleared the precision bar conditioned
by E1 < 0.1. The case n = 12 gave the largest E2 to be
selected as the sparsest among the precise approximations.

Figure 6 shows a whole profile. The best n gets larger as the
time passes so that it was sought within each short window.
The best n is 12 for the two left hills and 14 for the right one.

V. CONCLUSIONS

The discrete B-splines were employed to construct an al-
gorithm for the analysis of ion-mobility spectrometry profiles.
This application field requested modification of the standard
B-spline approximations in two aspects: the deployment of
B-splines by a minute shift interval and the non-negativity
constraint on coefficients. The former put us in danger of
numerical instability and the latter pulled us out of it.
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n = 10 n = 14
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13247

0.2439

14977
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Fig. 5. Approximations of a partial sample profile

Fig. 6. Approximation of a whole sample profile

A next step is to come up with a single index to balance
the approximation error and the sparsity. We may probably
have to reformulate the problem within the general theory of
sparse approximation. Before a large scale test of the algorithm
against various profile data, we should see by simulations
whether an artificial profile built up of discrete B-splines is
identified in the noise-free and noisy cases.
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Abstract—The standard Kalman filter performs optimally for

conventional signals but tends to fail when it comes to recovering

dynamic sparse signals. In this paper a method to solve this prob-

lem is proposed. The basic idea is to model the system dynamics

with a hierarchical Bayesian network which successfully captures

the inherent sparsity of the data, in contrast to the traditional

state-space model. This probabilistic model provides all the

necessary statistical information needed to perform sparsity-

aware predictions and updates in the Kalman filter steps. A set

of theorems show that a properly scaled version of the associated

cost function can lead to less greedy optimisation algorithms, un-

like the ones previously proposed. It is demonstrated empirically

that the proposed method outperforms the traditional Kalman

filter for dynamic sparse signals and also how the redesigned

inference algorithm, termed here Bayesian Subspace Pursuit

(BSP) greatly improves the inference procedure.

I. INTRODUCTION

The Kalman filter has been the workhorse approach in the
area of linear dynamic system modelling in both practical
and theoretic scenarios. The escalating trend towards sparse
signal representation has rendered this estimator to be useless
when it comes to tracking dynamic sparse signals. It is easy
to verify that the estimation process behind the Kalman filter
is not fit for sparse signals. Intuitively, the Gaussian prior
distribution placed over the system’s observations does not
place any sparsity constraints over the space of all possible
solutions.

The Kalman filter was externally modified in the bibli-
ography to admit sparse solutions. The idea in [1] and [2]
is to enforce sparsity by thresholds. Work in [3] adopts a
probabilistic model but signal amplitudes and support are
estimated separately. Finally, the techniques presented in [4]
use prior sparsity knowledge into the tracking process. All
these approaches typically require a number of parameters to
be pre-determined. It also remains unclear how these methods
perform towards model and parameter mismatch.

For a single time instance of the sparse reconstruction
problem, the Relevance Vector Machine (RVM) introduced
in [10] was used with great success in Compressed Sens-
ing applications [5] and basis selection [6]. The hierarchical
Bayesian network behind the RVM achieves highly sparse
models for the observations not only providing estimates for
sparse signals but on their full posterior distributions as well.

The authors would like to acknowledge the European Commission for
funding SmartEN ITN (Grant No. 238726) under the Marie Curie ITN FP7
programme.

This is of great importance since it provides all the necessary
statistical information to use in the prediction step of the
tracking process. Additionally, the inference procedure used
in this framework allows for automatic determination of the
active components hence the need for a pre-determined level
of sparsity is eliminated. This is an appealing attribute for an
on-line tracking algorithm.

In this work the aforementioned Bayesian network is em-
ployed to extend the state-space model adopted in the tra-
ditional Kalman filter. This way the problem of modelling
sparsity is tackled efficiently. The resulting statistical infor-
mation from the inference procedure is then incorporated in
the Kalman filter steps thus producing sparsity-aware state
estimates.

A set of theorems dictate that a proper scaling of the cost
function associated with the inference procedure can lead to
more efficient inference algorithms. The techniques initially
proposed are greedy methods at heart. By scaling the cost
function with the noise variance, and by using knowledge
gained from well known compressed sensing algorithms, it
is possible to redesign these methods to admit better quali-
ties. The gains are two fold. Firstly, the improved inference
mechanism bears far better qualities than the one previously
proposed. Secondly, the proposed method outperforms the
traditional Kalman filter in terms of reconstruction error when
it comes to dynamic sparse signals.

In Section II we present the basic idea for amalgamating the
Bayesian network of the RVM in the Kalman filter, termed
here Hierarchical Bayesian Kalman filter (HB-Kalman). In
Section III we present as set of theorems and explain the
motivation to improve upon previous techniques. Additionally
we provide the steps for a revised inference algorithm based
on the Subspace Pursuit (SP) reconstruction algorithm in [8],
termed here Bayesian Subspace Pursuit (BSP). In Section IV
we demonstrate the performance of the proposed methods in
some synthetic scenarios.

II. HIERARCHICAL BAYESIAN KALMAN FILTER

The system model is described by the following equations:

x

t

= F

t

x

t�1 + z

t

, (1)
y

t

= �
t

x

t

+ n

t

. (2)

where vectors x

t

,y

t

denote the system’s state and observa-
tion respectively. The state innovation and observation noise
processes are modelled by z

t

and n

t

respectively.
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We assume that signal x
t

2 Rn is sparse in some domain.
which is considered to remain the same at all time instances
(e.g the frames of a video are sparse in the wavelet domain).
This allows to set the state transition matrix F

t

equal to the
unitary matrix I . Equation (1) becomes:

x

t

= x

t�1 + z

t

As in the standard Kalman filter we adopt the Gaus-
sian assumption so that: p(z

t

) = N (0,Z
t

), p(n

t

) =

N
�
0,�2

I

�
; and p(x

t

|x
t�1) = N (x

t�1,Zt

) and p (y

t

|x
t

) =

N
�
�x

t

,�

2
I

�
. At each time instance, the Kalman filter in-

volves the prediction step where the parameters of p(x
t

|y
t�1)

are calculated, while the update step evaluates those of
p(x

t

|y
t

). The advantages of the standard Kalman filter include
the ability to track the full statistics, and that the mean squared
error solution coincides with the maximum posterior solution
which has a closed form. The major issue when applying the
filter to dynamic sparse signals, is that the solution is typically
not sparse. This drawback is due to the fact that in the standard
approach, the covariance matrix Z

t

is priorly given. Variants
of the Kalman filter such as the non-linear Kalman filter also
suffer because of the special nature of the of the non-linearities
associated with sparse reconstruction.

To alleviate this problem, the key idea behind Sparse
Bayesian Learning (SBL) [10] is employed. As opposed to
the traditional Kalman filter where the covariance matrix Z

t

of z

t

is given, here it is assumed that the state innovation
process is given by:

z

t

⇠ N
�
0,A�1

t

�
,

where A = diag (↵) = diag ([↵1, · · · ,↵n

]

t

), and the hyper-
parameters ↵

i

are unknown and have to be learned from y

t

.
To see how this promotes a sparse solution, let us drop the
subscript t for simplicity. Then it holds that:

p (x|↵) = N
�
0,A�1

�
=

nY

i=1

N
�
0,↵

�1
i

�
.

By driving ↵

i

= +1 it means that p (x

i

|↵
i

) = N (0, 0);
hence it is certain that x

i

= 0. What remains is to find the max-
imum likelihood solution of ↵ for the given observation vector
y. The explicit form of the likelihood function p

�
y|↵,�

2
�

was
derived in [10] and a set of fast algorithms to estimate ↵ and
consequently z and x are proposed in [9].

Finally the principles behind the Kalman filter and SBL
are put together. Similar to the standard Kalman filter, two
steps, prediction and update, need to be performed at each
time instance. In the prediction step, one has to evaluate:

µ

t|t�1 = µ

t�1|t�1, ⌃
t|t�1 = ⌃

t�1|t�1 +A

�1
t

,

y

t|t�1 = �
t

µ

t|t�1, y

e,t

= y

t

� y

t|t�1.

where the notation t|t � 1 means prediction at time instance
t for measurements up to time instance t � 1. In the update
step, one computes:

K

t

= ⌃
t|t�1�

T

t

(�

2
I +�

t

⌃
t|t�1�

T

t

)

�1
,

µ

t|t = µ

t|t�1 +K

t

y

e,t

, ⌃
t|t = (I �K

t

�
t

)⌃
t|t�1.

Differently from the standard Kalman filter, one has to
perform the additional step of learning the hyper-parameters
↵

t

. From Equation (2) we get y

e,t

= �
t

z

t

+ n

t

where a
sparse z

t

is preferred to produce a sparse x

t

. Following the
analysis in [10] and [9], maximising the likelihood p(y

t

|↵
t

)

is equivalent to minimising the following cost function:

L(↵
t

) = log |⌃
↵

|+ y

T

e,t

⌃�1
↵

y

e,t

, (3)

where ⌃
↵

= �

2
I +�

t

A

�1
t

�T

t

. The algorithms described in
[9] can be applied to estimate ↵

t

. Note that the cost function
L(↵) is not convex. The obtained estimate ↵

t

is generally sub-
optimal and details on the estimation of the globally optimal
↵

t

are given in the next section.

III. BAYESIAN SUBSPACE PURSUIT

Here we discuss the performance guarantees for a single
time instance of the inference procedure. For convenience,
subscript t is dropped and focus is turned to Equation (2)
where x|↵ ⇠ N

�
0,A�1

�
. This was analysed in [6] for the

purpose of Basis Selection. It had also been proven in [6] that
a maximally sparse solution of y = �x attains the global
minimum of the cost function. However, the analysis did not
specify the conditions to avoid local minima. By contrast, we
provide a more refined analysis. Due to space constraints, only
the main results are presented.

We follow [6] by driving the noise variance �

2 ! 0. The
following Theorem specifies the behaviour of the cost function
L (↵).

Theorem 1. For any given ↵, define the set I , {1  i 
n : 0 < ↵

i

< 1}. Then it holds that:

lim

�

2!0
�

2L (↵) =

���y ��I�
†
Iy

���
2

2
, (4)

where �I is a sub-matrix of � formed by the columns indexed
by I, and �†

I denotes the pseudo-inverse of �I .
Furthermore, if |I| < m and y 2 span (�I), then L (↵) !

�1 and �

2L (↵) ! 0 as �

2 ! 0.

Two observations can be obtained: (a) the scenarios anal-
ysed in [6] can be seen as special cases of Theorem 1
where L (↵) ! �1; and (b) a proper scaling of the cost
function gives the squared `2-norm of the reconstruction error.
Reconstruction is then equivalent to recovering a support set
that minimises the reconstruction distortion. This principle is
the same as the one behind many greedy algorithms such as the
OMP [7] and SP [8]. Theorem 1 suggests such connections.

According to Theorem 1 the key quantities concerning
the algorithms described in [9] must be scaled by the noise
variance. The original formulae can be found in [9] while the
revised ones are given below:

�

�2⌃
x

=

�
�

2
AI +�T

I�I
��1

, µ

x

= �

�2⌃
x

�T

I y,

�

2
C

�1
�i

= I ��I�i

�
�

2
AI�i

+�T

I�i

�I�i

��1
�T

I�i

,

s̄

i

= �

2
s

i

= �

T

i

�
�

2
C

�1
�i

�
�

i

, q̄

i

= �

2
q

i

= �

T

i

�
�

2
C

�1
�i

�
y.

Subscript I denotes the set of indices for which 0 < ↵

i

<

+1. The notation I � i means removal of index i from I.
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Subsequently formula [9, Equation (20)] for the optimal ↵

i

given all other ↵
j

, j 6= i, becomes:

↵

i

=

s̄

2
i

q̄

2
i

� �

2
s̄

i

Finally the scaled cost function becomes:
¯L = �

2L = �

2
log

��
�

2
I +�IA

�1
I �T

I
��

+y

T

�
I ��I(�

2
AI +�T

I�I)
�1�T

I
�
y.

Let us clarify the importance of using the scaled quantities.
Assume that �2

= 0. It is then easy to show that the original
formulae in [9] result in poor performance. Scaling the cost
function (and consequently these quantities) is necessary when
we want to account for a given noise variance. This may
seem irrelevant but in many tracking applications the noise
floor is assumed to be estimated in some way or provided
by the manufacturer for specific devices. The initial work
in [10] provides the formula to infer the noise level from
the observations. The scaled versions of the aforementioned
quantities can still be applied if desired.

We now have a better understanding of the inference pro-
cedure but it still remains unclear what the selection criterion
for the basis functions should be. In [9] selection is based
on the value of ↵

i

which maximises the difference �L in the
likelihood function, while algorithms such as the OMP and SP
make decisions on different grounds. The following Theorem
sheds some light on this matter.

Theorem 2. Assume the noiseless setting y = �x where
� 2 Rm⇥n and �

T

i

�

i

= 1 for all 1  i  n. Furthermore
assume that t = max

��
�

T

i

�

j

�� for 1  i 6= j  n. Then
an algorithm similar to the one in [9] based on one of the
following criteria recovers all s-sparse signals exactly given
the sufficient condition t < 0.375/s; (a) the maximum �

2
�L,

(b) the maximum x

i

or (c) the minimum ↵

i

.

Theorem 2 is the starting point for redesigning the infer-
ence algorithm. Based on the scaled quantities we can re-
derive the algorithm in [9] termed Fast Marginal Likelihood
Maximisation (FMLM). It is possible to have variants with
OMP-like performance guarantees based on different criteria
as Theorem 2 suggests. Actually the inference algorithm then
greatly resembles the OMP; where the basis functions are
recovered sequentially with decreasing order of correlation
with the residual signal. For brevity we only present the
version based on maximising x

i

hence the algorithm is termed
FMLM-x

i

. The steps are given in Algorithm 1.

Theorem 3. Assume that the same conditions hold as in
Theorem 2. An algorithm similar to the one in [9] based on
the less greedy criterion of maximum ✓

i

= q̄

i

, recovers all s-
sparse signals exactly given the sufficient condition t < 0.5/s.
The algorithm presented in Algorithm 2 recovers all s-sparse
signals exactly if matrix � satisfies the RIP with parameter
�3s < 0.205.

Theorem 3 suggests further improvements to the perfor-
mance guarantees, to match those of the OMP by altering

Algorithm 1 FMLM-x
i

Input: �,y,�

2

Initialise:
- ˆ

T = {index i 2 [1, n] for maximum |�T

i

y|}.
Iteration:

- Calculate values of ↵
i

and [µ

x

]

i

for i 2 [1, n] \ ˆ

T .
- T 0

=

ˆ

T [ {index i corresponding to the maximum value
of [µ

x

]

i

for i /2 ˆ

T}.
- Calculate values ↵

i

for i 2 T

0.
- ˜

T = {i 2 T

0
: 0 < ↵

i

< +1}.
- If | ¯L

T̃

� ¯L
T̂

| = 0 then compute �

�2⌃
x

, µ
x

for ˜

T and
quit. Set ˆ

T =

˜

T and continue otherwise.
Output:

- Estimated support set ˜

T and sparse signal ˜

x with | ˜T |
non-zero components, ˜

x

T̃

= µ

x

.
- Estimated covariance matrix �

�2⌃
x

.

Algorithm 2 Bayesian Subspace Pursuit
Input: �,y,�

2

Initialise:
- ˆ

T = {index i 2 [1, n] for minimum ↵

i

=

1
|�T

i

y|}.
Iteration:

- Store ↵

max

= argmax

i2T̂

|↵
i

|.
- Calculate values ↵

i

and ✓

i

= q̄

2
i

� s̄

i

for i 2 [1, n].
- Calculate values t

✓

i

>0 = |{i 2 [1, n] : ✓

i

> 0}| and
t

↵

i

a

max

= |{i 2 [1, n] : |↵
i

|  a

max

}|.
- If t

✓

i

>0 = 0 then s = t

↵

i

a

max

+ 1 else
s = t

✓

i

>0 + t

↵

i

a

max

.
- T 0

=

ˆ

T [ {indices corresponding to s smallest values of
↵

i

for i 2 [1, n]}.
- Compute �

�2⌃
x

and µ

x

for T 0.
- ˜

T = {indices corresponding to s largest non-zero values
of |µ

x

| for which 0 < ↵

i

< +1}.
- If | ¯L

T̃

� ¯L
T̂

| = 0 then quit. Otherwise set ˆ

T =

˜

T and
continue.

Output:
- Estimated support set ˜

T and sparse signal ˜

x with | ˜T |
non-zero components, ˜

x

T̃

= µ

x

.
- Estimated covariance matrix �

�2⌃
x

for ˜

T .

the optimisation criterion. Also, results from [8] motivate us
to extend the FMLM procedure to a less greedy optimisation
procedure by borrowing ideas from the SP algorithm. The SP
selects a subset of basis functions at each time instance based
also on correlation maximisation, but adds a backtracking step
so as to retain only the sparse components with the largest
magnitudes. The redesigned algorithm termed here Bayesian
Subspace Pursuit is described in Algorithm 2.

IV. EMPIRICAL RESULTS

A. Single Time Instance

We concentrate on the performance of the algorithms for
a single time instance and for �

2
= 0. The algorithms under

comparison are the FMLM algorithm as originally presented
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Figure 1. Exact reconstruction rates for m = 128, n = 256

in [9], the variants based on the scaled quantities; FMLM-
x

i

, FMLM-↵
i

, FMLM-�l
i

, FMLM-✓
i

and the BSP. The
experiment is as follows:

1) Generate � 2 R128⇥256 with i.i.d entries from
N

�
0,

1
m

�
.

2) Generate T uniformly at random so that |T | = K.
3) Choose values for x

T

from N (0, 1).
4) Compute y = �x and apply a reconstruction algo-

rithms. Compare estimate ˆ

x to x.
5) Repeat experiment for increasing values of K and for

100 realisations.
The results from this procedure are depicted in Figure 1. The
first critical observation is that the original FMLM performs
poorly when �

2
= 0 due to the improperly scaled cost

function. The three scaled variants of FMLM based on the
criteria mentioned in Theorem 2 perform - within computa-
tional accuracy - in the same manner. We observe the increase
in performance for FMLM-✓

i

, a consequence of altering the
selection criterion to ✓

i

= q̄

i

. Even though changing the
criterion gives theoretically better performance as Theorem 3
suggests, empirically this gain is not great. By redesigning the
inference algorithm based on ideas from the SP we are able
to achieve far better performance, as the curve for the BSP
algorithm shows.

B. Dynamic Sparse Signal

We now compare the proposed method, HB-Kalman filter
against the original Kalman filter. Signal x

t

2 Rn is assumed
to be sparse in its natural basis with support set S chosen uni-
formly at random from [1, n] where n = 256. The magnitudes
of the non-zero entries of x

t

evolve according to Equation II
with Z

i

= �

2
z

I with �

2
z

= 0.1. The simulation time for this
experiment was T = 200 time instances. At two randomly
chosen time instances: T = 50 and T = 150, a change in the
support of x

t

is introduced. A non-zero component is added
to the support of x50 and a non-zero component is removed
from the support of x150. Apart from these two time instances
the support of x

t

remains unchanged. At T = 1 the support
is initialised with K = 30 non-zero components. Observation
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Figure 2. Reconstruction error comparison for m = 128.

variance is set to �

2
n

= 0.01 for the entire simulation time. We
compare the following techniques; the classic Kalman filter,
the HBK with FMLM-x

i

as the optimisation procedure and
the HBK with BSP.

In this scenario noisy measurements y

t

are taken by
choosing the design matrix �

t

2 R128⇥256 as described in
subsection IV-A and is re-sampled at each time instance. The
number of observations m remains constant at each time
instance. In Figure 2 we primarily notice how the HBK
outperforms the original Kalman filter, direct consequence
of the sparse dynamic model. The HBK-BSP captures the
evolution in the support set with greater success due to the
improved optimisation algorithm.
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Abstract—In this paper are considered some generalized Shan-

non sampling operators which preserve the total variation of

functions and their derivatives. For that purpose will be used

the averaged kernel functions of certain even bandlimited kernel

functions.

I. INTRODUCTION

In this paper we investigate the generalized Shannon sam-
pling operators, which preserve the total variation of functions
and their derivatives.

Dealing with the class of functions of bounded variation
BV [0, 1], the Bernstein polynomials have the following the
total variation preserving property (due to G.G.Lorentz, 1937)

V[0,1][Bnf ]  V[0,1][f ],

where f 2 BV [0, 1]. In [3] this was called as the variation
detracting property, sometimes called also as the variational
diminishing property. Such kind of the total variation preserv-
ing property is known for many positive operators [1].

There have been also interests in the variation detracting
property for the derivative of the Bernstein operator (e.g. [5])
expressed by the inequality

V[0,1][(Bnf)
0
]  V[0,1][f

0
].

The generalized Shannon sampling operators [4] for the
uniformly continuous and bounded functions f 2 C(R) are
given by (t 2 R; W > 0)

(SW f)(t) :=

1X

k=�1
f(

k

W
)s(Wt� k). (1)

The variation detracting property for the generalized Shan-
non sampling operators could be in form:

let f 2 BV (R) implies SW f 2 BV (R) and

VR[SW f ]  C0(SW ) VR[f ]

is valid, where the constant C0 = C0(SW ) depends on the
norm of the operator SW : C(R) ! C(R). The variation
detracting property for the derivatives of the generalized
Shannon sampling operators could be in form:

let f 0 2 BV (R) implies (SW f)0 2 BV (R) and

VR[(SW f)0]  C1(SW ) VR[f
0
]

for some constant C1 = C1(SW ) depending on the norm of
the operator SW .

For any f 2 C(R) the operators SW are well-defined, if
the kernel function s satisfies the condition

sup

u2R

1X

k=�1
|s(u� k)| < 1, (2)

hence s 2 L1
(R). Moreover [4], {SW }W>0 defines a family

of bounded linear operators from C(R) into itself, having its
operator norm

kSW k = sup

u2R

1X

k=�1
|s(u� k)| (W > 0). (3)

In our approach the kernel functions of sampling operators
defined above will be some even band-limited functions s, i.e.
s 2 L1

(R), and these are given as the Fourier transform of
an even window function � 2 C[�1,1], �(0) = 1, �(u) = 0

(|u| > 1) by the equality

s(t) := s(�; t) :=

1Z

0

�(u) cos(⇡tu) du. (4)

These type of window (also called as the apodization) func-
tions have been widely used in applications (e.g., [2], [10] and
literature cited there), in Signal Analysis in particular, very
long time.

The leading idea to consider the variation detracting prop-
erty of (1) is to construct some related kernels to the kernel (4).
For the kernels defined by (4) holds the following proposition.

Proposition 1. Define the related kernels to the kernel (4)
as follows:

sm(t) :=

Z 1

0

�(u)

sinc(mu)
cos(⇡tu)du (5)

for 0 < m  1, and

sm,n(t) :=

Z 1

0

�(u)

sinc(mu) sinc(nu)
cos(⇡tu)du (6)
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for 0 < m,n  1. Then

s(t) =

1

2m

Z m

�m

sm(t+ x)dx (7)

=

1

4mn

Z m

�m

dx

Z n

�n

sm,n(t+ x+ y)dy, (8)

sm(t) =

1

2n

Z n

�n

sm,n(t+ y)dy. (9)

Remark 1. The kernels (5) and (6) are well-defined, if
in case m = 1 or n = 1 we assume the existence of
the continuous left derivative with value � 0

(1�) = 0. If
m = n = 1, we assume the existence of the continuous left
second derivative with value � 00

(1�) = 0.
Since (8) and (9), we have the following
Corollary 1. If sm,n 2 L1

(R), then sm 2 L1
(R) and

ksk1  ksmk1  ksm,nk1.

Remark 2. If s 2 L1
(R), then by (4) s 2 B1

⇡ ⇢ L1
(R),

where B1
⇡ is a Bernstein class [6]. Under conditions of

Remark 1, and by Proposition 1, equations (5), (6), assuming
sm,n 2 L1

(R), the kernels sm, sm,n 2 B1
⇡ as well.

Some examples of kernels defined by (4), which appear in
our applications, are given as follows:

1) �(u) = 1 defines the sinc function (the exceptional case,
because sinc(·) 62 L1

(R))

sinc(t) :=
sin⇡t

⇡t
;

2) �(u) = sincu defines the Lanczos’ kernel (with cor-
responding operator LW ), which by (4) appears to be the
averaged sinc-function

sL(t) =
1

2

1Z

�1

sinc(t+ v) dv; (10)

3) �(u) = cos

⇡u
2 defines the Rogosinski-type kernel (with

corresponding operator RW ) in the form

r0(t) =
1

2⇡
· cos⇡t1

4 � t2
.

II. TOTAL VARIATION ON R
Let us consider functions of bounded variation in the

following meaning.
Definition. We say that f 2 BV (R), the space of all

functions of bounded variation on R, iff there exists a.e.
derivative f 0 2 L1

(R); and we define the total variation of
f 2 BV (R) as

VR[f ] := kf 0k1 =

1Z

�1

|f 0
(v)| dv.

Next we give some statements and properties of BV (R).
Proposition 2. For f 2 BV (R) and any monotone increas-

ing sequence {tk}1k=�1 ⇢ R with limk!±1 tk = ±1 one

has:
1)

1X

k=�1
|f(tk + v)� f(tk�1 + v)| 6 VR[f ] (v 2 R);

2) f is bounded and there exist limt!±1 f(t);
3) f is locally integrable, and

1

b� a

1X

k=�1

Z b

a

|f(tk + v)� f(tk�1 + v)|dv 6 VR[f ].

Proposition 3. Let f 0 2 BV (R), and let a 2 R, W >
0, tk =

k
W , k 2 Z. Then

W

1X

k=�1

���f(tk + a)� 2f(tk�1 + a) + f(tk�2 + a)
���  VR[f

0
].

III. THE VARIATION DETRACTING PROPERTY

The variation detracting property of certain sampling oper-
ators will be considered for BV (R), the space of all functions
of bounded variation on R. This property is important in
practice, since often signals are discontinuous but still with
bounded variation.

Theorem 1. Assume sm 2 L1
(R). If there exists a number

b 2 R such that ±m � b 2 Z, then for f 2 BV (R) we have
SW f 2 BV (R) and

VR[SW f ]  ksmk1 VR[f ].

The proof of Theorem 1 was essentially presented in [7].
By Corollary 1 and Theorem 1 we obtain under assumptions
of Theorem 1

Corollary 2.

VR[SW f ]  ksm,nk1 VR[f ].

For the proof of Theorem 2 we need the following technical
lemma.

Lemma. For any sequence (a0, a1, a2, ...) and M,N 2 N
we have
MX

i=1

NX

j=1

�
ai+j�2ai+j�1+ai+j�2

�
= a0�aM �aN +aM+N .

The variation detracting property for derivatives will be read
as follows.

Theorem 2. Assume the kernel sm,n 2 L1
(R) for m 6=

0, n 6= 0, such that there exists b 2 R with ± m ± n � b 2 Z.
If f is bounded and f 0 2 BV (R), then (SW f)0 2 BV (R) and

VR[(SW f)0]  ksm,nk1 VR[f
0
].

Proof. By (7) we get (see also Remarks 1 and 2)

s0(t) =
1

2m

�
sm(t+m)� sm(t�m)

�
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and hence by (9) we obtain

s00(t) =
1

2m

�
s0m(t+m)� s0m(t�m)

�

=

1

4mn

Z n

�n

�
s0m,n(t+m+ y)� s0m,n(t�m+ y)

�
dy

=

1

4mn

�
sm,n(t+m+ n)� sm,n(t+m� n)

� sm,n(t�m+ n) + sm,n(t�m� n)
�
.

So by (1) we have

(SW f)00(t) = W 2
X

k

f
� k

W

�
s00(Wt� k)

=

W 2

4mn

X

k

f
� k

W

��
sm,n(Wt� k +m+ n)

� sm,n(Wt� k +m� n)

� sm,n(Wt� k �m+ n)

+ sm,n(Wt� k �m� n)
�
.

Since sm,n 2 L1
(R), then by (6) sm,n 2 B1

⇡ ⇢ L1
(R) and

for sm,n the condition (2) is satisfied by Nikolskii’s inequality.
Therefore, since f is bounded, the series here is absolutely and
uniformly convergent. Under assumptions of Theorem 2 on a
number b 2 R we get

(SW f)00(t)

=

W 2

4mn

X

k

⇣
f
�k +m+ n� b

W

�
� f

�k +m� n� b

W

�

� f
�k �m+ n� b

W

�
+ f

�k �m� n� b

W

�⌘

⇥ sm,n(Wt� k + b). (11)

The application of Lemma with M = 2m,N = 2n,

al = f
�k + l �m� n� b

W

�
,

(k 2 Z,W > 0, l = 0, 1, ...) gives

f
�k �m� n� b

W

�
� f

�k +m� n� b

W

�

� f
�k �m+ n� b

W

�
+ f

�k +m+ n� b

W

�

=

2mX

i=1

2nX

j=1

⇣
f
�k + i+ j �m� n� b

W

�

� 2f
�k + i+ j � 1�m� n� b

W

�

+ f
�k + i+ j � 2�m� n� b

W

�⌘
.

Now by (11) we have

(SW f)00(t) =
W 2

4mn

X

k

2mX

i=1

2nX

j=1

⇣
f
�k + i+ j �m� n� b

W

�

� 2f
�k + i+ j � 1�m� n� b

W

�

+ f
�k + i+ j � 2�m� n� b

W

�⌘
sm,n(Wt� k + b).

Estimating and integrating over R yields

k(SW f)00k1  ksm,nk1
W

4mn

2mX

i=1

2nX

j=1

X

k

���f
� k

W
+ aij

�

� 2f
�k � 1

W
+ aij

�
+ f

�k � 2

W
+ aij

����,

where aij =

i+j�m�n�b
W . The application of Proposition 3

yields

k(SW f)00k1  ksm,nk1
1

4mn

2mX

i=1

2nX

j=1

VR[f
0
]

= ksm,nk VR[f
0
].

This concludes the proof.
In analogous way we can consider the variation detracting

property for the second derivative. We have the following
Theorem 3. Assume the kernel sm,n,r 2 L1

(R) for
0 < m,n, r < 1 such that there exists b 2 R with
±m± n± r � b 2 Z. Here

sm,n,r(t) :=

Z 1

0

�(u)

sinc(mu) sinc(nu) sinc(ru)
cos(⇡tu)du.

If f is bounded and f 00 2 BV (R), then (SW f)00 2 BV (R)
and

VR[(SW f)00]  ksm,n,rk1 VR[f
00
].

IV. APPLICATIONS

1) If we take �L(u) = sincu, the Lanczos’ window
function, then we get

�L(u)

sinc

u
2

= cos

⇡u

2

⌘ �R(u),

which is the Rogosinski window. Applying Theorem 1 with
m = b = 1

2 , by Corollary 2 we obtain

VR[LW f ]  kr0k1 VR[f ].

If we take m = n =

1
2 in (6), we get

�L(u)

sinc

2 u
2

=

⇡u

2

cot

⇡u

2

⌘ �F1(u),

which defines the Favard-type kernel sF1 ([9], Section 4.1.3;
[11], Chapter 3, Section 1). Applying Theorem 2 with
m = n =

1
2 , b = 0, we obtain

VR[(LW f)0]  ksF1k1 VR[f
0
].
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If we take m = n = r =

1
2 in Th. 3, then we get

�L(u)

sinc

3 u
2

=

⇣⇡u
2

⌘2
cot

⇡u
2

sin

⇡u
2

⌘ �F2(u),

which defines the Favard-type kernel sF2 (see [11], Ch. 3,
Sect. 1). Applying Theorem 3 with m = n = r = b = 1

2 , we
obtain

VR[(LW f)00]  ksF2k1 VR[f
00
].

Remark 3. In [8] we proved that kr0k1 = kLW k, thus the
variation detracting property takes a very natural shape,

VR[LW f ]  kLW k VR[f ].

2) If we take �R(u) = cos

⇡u
2 , the Rogosinski window

function, we get
�R(u)

sinc

u
2

= �F1(u).

Applying Theorem 1 with m = b = 1
2 , we get

VR[RW ]  ksF1k1 VR[f ].

If we take m = n =

1
2 in (6), we again have the Favard-type

window
�R(u)

sinc

2 u
2

=

⇣⇡u
2

⌘2
·
cot

⇡u
2

sin

⇡u
2

= �F2(u).

Applying Theorem 2 with m = n =

1
2 , b = 0, we have

VR[(RW f)0]  ksF2k1 VR[f
0
].

3) Let �H(u) = cos

2 ⇡u
2 be the Hann window function,

then
�H(u)

sincu
=

⇡u

2

cot

⇡u

2

= �F1(u).

Applying Theorem 1 with m = b = 1 we get

VR[HW f ]  ksF1k1 VR[f ].

If we take m = 1, n =

1
2 in (6), we have

�H(u)

sincu · sinc u
2

=

cos

⇡u
2

sinc

2 u
2

= �F2(u),

which defines the Favard-type kernel. Applying Theorem 2
with m = 1, n =

1
2 , b =

1
2 , we obtain

VR[(HW f)0]  ksF2k1 VR[f
0
].

V. CONCLUSION

We investigated the variation detracting property of the
generalized Shannon sampling operators,

(SW f)(t) :=

1X

k=�1
f(

k

W
)s(Wt� k),

which preserve the total variation of functions and their
derivatives, i.e.

VR[(SW f)(k)]  ksm,n,rk1 VR[f
(k)

],

where k = 0, 1, 2 and sm,n,r are certain related kernels to the
original kernel

s(t) := s(�; t) :=

1Z

0

�(u) cos(⇡tu).

As applications we considered some, in literature known
examples of kernels, which realize the variation detracting
property of the generalized Shannon sampling operators.
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Abstract—Array forming in seismic data acquisition can be

likened to FIR filtering. Misplacement of the receivers used to

record seismic waves can lead to degraded performance with

respect to the filtering characteristics of the array. We propose

two methods for generating linear space-varying filters that

take receiver misplacements into account and demonstrate their

performance on synthetic data.

I. INTRODUCTION

Variations in the sampling interval when sampling a signal
are often difficult or impossible to prevent. This might make
processing the sampled signal problematic, if the related tools
can only handle uniformly sampled signals. The motivation
for our work comes from the field of seismic data acquisition.
A very common practice in this field, is to sum together
the (possibly weighted) output signal of multiple seismic
receivers. This process is known as array forming and is used
to improve the signal-to-noise ratio and to reduce the amount
of recorded data.

Being a weighted summation of the output of a finite
number of receivers, array forming can be likened to FIR
filtering. More specifically, we can view array forming as the
application of a linear space-invariant (LSI) filter, since usually
the same set of weights is used for the array elements of all
arrays in a field.

A problem arises, however, when the receivers are mis-
placed due to e.g., terrain difficulties. Usually the array
weights are designed for a specific geometrical layout of
the array elements. When this geometrical layout is violated,
it can prove detrimental for the filtering capabilities of the
array, as shown in [1]. Fortunately, advances in acquisition
hardware have enabled us a) to record the output of each
individual receiver and b) to know with high (but limited)
accuracy the actual location of each receiver. This makes more
sophisticated techniques viable for array forming/filtering that
can compensate for irregularities in sampling.

A number of solutions have been suggested for the problem
of array forming/filtering nonuniformly sampled data, which
can be roughly divided in three categories. Methods of the
first category interpolate an FIR filter that is designed to filter
uniformly sampled data. We shall call this FIR filter the pro-
totype filter. An example is given in [2], where the prototype

filter is interpolated to the actual locations of the receivers.
These interpolated filter coefficients (or equivalently, the array
weights) are then reweighted based on the sampling density at
the area around each receiver. We shall refer to this method as
geometry-compensating filtering (GCF). The second category
involves methods that approximate the outputs of the prototype
filter applied to the uniformly sampled data. An example is
given in [3], which uses the projections onto convex sets
(POCS) framework applied to nonuniformly sampled data. The
third category involves reconstruction of the data at the regular
sampling locations. The prototype filter can then be applied
to the reconstructed data. The methods given in [4], [5] are
examples of data reconstruction.

The goal of this work is to propose two methods that
generate a linear space-varying (LSV) FIR filter suitable for
filtering the nonuniformly sampled data. We will refer to
these methods as Method A and Method B. The LSV FIR
filter designed by any of these two methods generates the
filter output at equi-spaced intervals. In this respect, both
methods combine filtering and regularization in one operator.
The difference is that

• Method A approximates the prototype filter in the spatial
domain, which has been already designed,

• Method B approximates the ideal response of the proto-
type filter in the wavenumber domain1. In other words,
Method B also skips the intermediate step of designing
the prototype filter.

Compared to existing works, Method A has a similar flavor
as the approach of [2] since they both interpolate a prototype
filter to the actual locations of the receivers. However, the
interpolation in [2] is driven by the geometry of the receiver
arrays while in this paper, the interpolation is based on the
band-limited assumption on the received signal, which is also
utilized in [4], [5]. In reality, such a band-limited assumption
is often valid, and the corresponding interpolation process can
yield a better approximation to the prototype filter response in
the wavenumber domain as will be demonstrated in the paper.

1Wavenumber domain is also known as spatial frequency domain.
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II. PROPOSED ALGORITHMS

For simplicity, we only consider filtering along one spatial
dimension x. The continuous data is represented by d(x); the
data samples gathered at the N locations of the receivers
xj , j = 0, . . . , N � 1 are denoted by d(xj). The nominal
locations of the receivers are defined on the grid x̄n = n�x

while the actual locations of the receivers are assumed to lie
on the denser grid ¯̄

xm = m�x = m(�x/M) with M being a
positive integer. This is not overly restrictive, since M can be
large and the precise receiver locations are known with high,
but limited, accuracy. We also define the indicator function
s(¯̄xm) to take the value s(¯̄xm) = 1 when a receiver is present
at ¯̄xm and the value zero otherwise. Suppose a prototype LSI
FIR filter has already been defined on the nominal grid, whose
ith tap is denoted as h(x̄i). We assume that h(x̄i) = 0 if
x̄i < 0 or x̄i � Lf�x, where Lf is referred to as the spatial
support of the FIR filter.

A. Method A

The filter to be designed in Method A is represented
as a set of LSV FIR filters, whose filter taps gl(¯̄xm) for
m = 0, 1, . . . , NM � 1 are defined on the dense grid. The
spatial support of gl(¯̄xm) is the same as that of h(x̄i), therefore
gl(¯̄xm) = 0 if ¯̄xm < 0 or ¯̄xm � Lf�x (note that [4] imposes a
different FIR constraint on the filter). We desire that the output
of one such filter at output location x̌l should be identical as
if the prototype filter were applied on uniformly sampled data.
In other words,
N�1

X

n=0

h(x̌l� x̄n)d(x̄n) =
NM�1

X

m=0

gl(x̌l� ¯̄
xm)s(¯̄xm)d(¯̄xm). (1)

The output locations x̌l lie on the nominal grid, i.e., x̌l =
l�x = lM�x. Utilizing the band-limited assumption on
d(¯̄xm) it can be shown that

d(¯̄xm) ⇡ 1

N

P
X

p=�P

 

N�1

X

n=0

d(x̄n)e
�j 2⇡p

N�x

x̄
n

!

e

j 2⇡p

N�x

¯x̄
m

, (2)

where N = 2P +1 (a similar expression can be derived when
N is even). We can exchange the order of summation and
arrive at

d(¯̄xm) ⇡
N�1

X

n=0

0

@

1

N

P
X

p=�P

e

j 2⇡p

N�x

(

¯x̄
m

�x̄
n

)

1

A

d(x̄n),

⇡
N�1

X

n=0

sin( ⇡
�x (¯̄xm � x̄n))

N sin( ⇡
N�x (¯̄xm � x̄n))

| {z }

sincd(N ;x̄
n

,¯x̄
m

)

d(x̄n). (3)

Substituting (3) in (1) yields
N�1

X

n=0

h(x̌l � x̄n)d(x̄n) ⇡

NM�1

X

m=0

gl(x̌l � ¯̄
xm)s(¯̄xm)

 

N�1

X

o=0

sincd(N ; x̄o, ¯̄xm)d(x̄o)

!

.

(4)

We rewrite (4) in matrix-vector form as

hH
l d ⇡ gH

l SQd (5)

where
hl is an N⇥1 vector with h(x̌l� x̄n) as its n-th element;
gl is an NM ⇥ 1 vector with gl(x̌l � ¯̄

xm) as its m-th
element;
S is an NM ⇥ NM diagonal matrix with s(¯̄xm) as its
m-th diagonal element;
Q is an NM ⇥ N matrix with sincd(N ; x̄o, ¯̄xm) as its
(m, o)th element and
d is an N ⇥ 1 vector with d(x̄n) as its n-th element.

A sufficient condition for (5) to hold is

hH
l ⇡ gH

l SQ,

for which a suitable gl can be found by solving the following
least-squares problem

min
g
l

�

||hH
l � gH

l SQ||2
2

 

⌘ min
˜g
l

n

||hH
l � g̃H

l Q̃||2
2

o

, (6)

where g̃H
l is formed by removing its elements corresponding

to the zeros of S. Similarly, Q̃ is constructed after removing
the rows of Q corresponding to the zero columns in S. This
eliminates S from (6). In order to limit the spatial support of
gl, we remove the elements of g̃l that correspond to elements
m of gl for which m < lM or m � (l + Lf )M holds, thus
forming ˜̃gl. The corresponding rows of Q̃ are removed as well,
to form ˜̃Q. The problem has a closed-form solution given by

˜̃gH
l = hH

l
˜̃QH( ˜̃Q ˜̃QH)�1

. (7)

A different FIR filter gl has to be calculated for each output
location x̌l. The solution can be seen as a composition of two
operations: the first operation is hH

l
˜̃QH = ( ˜̃Qhl)H , which

can be interpreted as an interpolation of the filter to the actual
locations of the receivers. The second operation ( ˜̃Q ˜̃QH)�1

deconvolves the effects of nonuniform sampling.

B. Method B

In comparison to Method A, Method B does not rely on
the knowledge of the prototype filter hl, which needs to be
pre-designed. To this end, we will try to approximate the
behavior of the prototype filter in the wavenumber domain.
As a first step, let us use a circular convolution operator to
describe the target LSV FIR filter as well as the prototype
filter. Accordingly, (1) should be adapted to the form

N�1

X

n=0

h(x̄
(l�n)mod(N)

)d(x̄n) =

NM�1

X

m=0

g

0
l(¯̄x(lM�m)mod(NM)

)s(¯̄xm)d(¯̄xm), (8)

where g

0
l(¯̄xm) stands for the LSV FIR filter from Method B.

In deriving the above, we have used the assumption that the
output locations x̌l lie on the nominal grid, i.e., x̌l = l�x =
lM�x. Just like Method A, we require that g

0
l(¯̄xm) have a
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spatial support in the interval [0, Lf�x). In other words,
g

0
l(¯̄xm) = 0 if ¯̄

xm < 0 or ¯̄
xm � Lf�x.

To get rid of the dependence on h(x̄i) in (8), we resort to
the wavenumber domain. Suppose the wavenumber response
of the prototype filter is known as hw(k) with �⇡  k  ⇡.
If we use Hw to denote an N ⇥ N diagonal matrix whose
nth diagonal element is given by the sample hw(k) at k =
�⇡ + n

2⇡
N for n = 0, 1, . . . , N � 1, then the wavenumber-

domain counterpart of (8) can be expressed as

Hw(Fd) = FG0SQFH(Fd), (9)

where we have coined an N⇥NM matrix G0 to represent the
circular convolution of the filter with the (l,m)th element of
G0 given by g

0
l(¯̄x(lM�m)mod(NM)

); F stands for the N -point
DFT matrix, and S and Q are defined in (5). A sufficient
condition for (9) to hold is

Hw ⇡ FG0SQFH
. (10)

The right-hand side of (10) can be broken down to three parts:
• G0 is the LSV filter. Its output is defined on the nominal

grid and its input on the dense grid.
• F acts on the columns of G0 to produce the DFT of the

LSV filter gl(x̌l � ¯̄
xm) with respect to x̌l.

• SQFH acts of the rows of G0 to produce the nonuniform
DFT of gl(x̌l � ¯̄

xm) with respect to ¯̄
xm.

The product of FG0SQFH is a wavenumber connection
matrix2 [6], which can be viewed as the wavenumber response
of the LSV FIR filter. Note that the off-diagonal elements in
FG0SQFH are in most cases non-zero, which means that
the relation between the spectra of the data before and after
filtering in the wavenumber domain is not simply an element-
wise multiplication for nonuniform sampling.

From (10), we formulate the following least-squares prob-
lem

min
G0

{||W � (Hw � FG0SQFH)||2F (11)

where W is a weighting matrix that can apply an individual
weight to each element of Hw�FG0SQFH with the symbol
� denoting the Hadamard (element-wise) product. Including
such a weighting matrix is beneficial, for instance, to enable a
better trade-off between different approximation errors in the
passband, stopband as well as the “do-not-care” (transition)
zones.

As in Method A, the matrix S can be eliminated by
removing all the columns of G0 and rows of Q with the same
index as the elements of the diagonal of S that have the value
zero. Let G̃0 and Q̃ respectively be the reduced form of G0

and Q resulting from this column- and row-removal. Then
(11) can be rewritten as

min
G0

{||W � (Hw � FG̃0Q̃FH)||}2F (12)

2In [6] its continuous counterpart is called “frequency connection function”.
We use the term “wavenumber connection matrix” for consistency with the
rest of the terminology in this paper.

This problem can be restated in its vectorized form as

min
vec(G0

)

{|| vec(W � (Hw � FG̃0Q̃FH)||}2
2

⌘

min
vec(G0

)

{|| diag(vec(W)) vec(Hw � FG̃0Q̃FH)||}2
2

, (13)

Here vec(A) returns a column-vector that stacks the columns
of the matrix A. The function diag(v) returns a diagonal
matrix with the vector v on its main diagonal.

Using the identity vec(ABC) = (CT ⌦A) vec(B), where
⌦ denotes the Kronecker product, (13) can be rewritten as

min
vec(G0

)

{|| diag(vec(W)) vec(Hw)�

diag(vec(W))(F⇤Q̃T ⌦ F) vec(G̃))||}2
2

where ⇤ denotes the complex conjugate of a matrix. Let

Ũ = diag(vec(W))(F⇤Q̃T ⌦ F)

g̃0 = vec(G̃0).

The elements of g̃0 and rows of Ũ that should be removed
due to the limited spatial support of the filter g0l(¯̄xn) are given
by the indexes of those elements of g̃0 that correspond to the
zero elements of g0l(¯̄xm). If we call ˜̃g0 and ˜̃U the results after
the corresponding row and element removal, the solution is
given by

˜̃g0 = ( ˜̃UH ˜̃U)�1

˜̃UH diag(vec(W)) vec(Hw) (14)

G0 can be constructed from the elements of ˜̃g0 and can be
applied to the nonuniformly sampled data.

III. RESULTS

The performance of Method A and Method B was ex-
amined using synthetically created seismic data. A portion
of the spectral content of the synthesized data can be found
at the lower part of Fig. 1. The reflections from the Earth’s
subsurface appear mostly on the lower part of the wavenumber
spectrum in the range �0.02m�1  k

0  0.02m�1. This
region appears highlighted in all figures. All the plots have
been smoothed by a 5-tap moving average filter. The peaks
found at k

0 = ±0.055m�1 are due to waves propagating
along the Earth’s surface. Their presence is often undesired and
should be removed before further processing of the seismic
data. Notice that when the data are not uniformly sampled, the
wavenumber content appears smeared. This is a well-known
side-effect introduced by nonuniform sampling [7].

We generated 100 different realizations of the receiver
locations and filtered the nonuniformly sampled data using
Methods A and B. Method A approximates the prototype
filter whose wavenumber response is given in the upper part
of Figure 1. In Method B, the prototype filter is not given but
is supposed to have a similar passband and stopband region in
the wavenumber domain as in Method A. The LSV FIR filters
resulting form Method A and B have the same spatial support
as that of the prototype filter. The average spectrum of the 100
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Fig. 1. Upper part: the wavenumber response of the prototype filter. Lower
part: the wavenumber content for the data.

realizations can be seen in Fig. 2. In addition to Methods A

and B, an adapted version of the GCF was implemented3.
In addition, we also compared the proposed methods against

1) the ideal case where the prototype filter is applied on the
uniformly sampled and 2) the case where the prototype filter
is applied directly on nonuniform data. In the latter case, the
spectral leakage induced by the irregularities is most obvious
in the passband. In Fig. 2 we see that using the LSI filter on
nonuniformly sampled data gives an output that differs almost
15dB at the edges of the passband. In contrast, Methods A

and B give a filtered output that, on average, is closer to the
ideal case in the low wavenumbers, exhibiting less than 5dB
maximum difference from the uniformly sampled data case
(Fig. 2) in the passband region. This is due to the fact that
Methods A and B compensate for irregularities in sampling.
The attenuation in the stopband, however, is less when using
Methods A and B. This is because the FIR filters generated
for each individual output will not, in general, have zeros at
the same locations of their wavenumber responses. This leads
to a more flat response in the stopband. GCF is somewhere in
the middle, as it interpolates the filter to the locations of the
receivers and compensates for sampling density, but does not
deconvolve the effects of nonuniform sampling.

The standard deviation of the output spectrum can be seen
in Fig. 3. Methods A and B exhibit in this case a significantly
smaller standard deviation in the lower wavenumbers, for
example, in Fig. 3, around 10dB lower than using the LSI
filter. This means that Methods A and B may provide an
output that is, generally, stable.

IV. CONCLUSION

We proposed two methods for generating LSV FIR filters
suitable for filtering nonuniformly sampled data. The resulting
filters yield a more accurate output in the passband than simply

3The method in [2] works on data having two spatial dimensions and is
adapted here to the single spatial dimension case.

Fig. 2. Average spectrum of the filtered data (over 100 realizations).

Fig. 3. Standard deviation from the average spectrum (over 100 realizations).

applying an LSI filter directly to nonuniformly sampled data.
The output is also more stable, as it varies less for different
realizations of the receiver locations.
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3 parvis Louis Néel, BP 257, 38016 GRENOBLE Cedex, France

Email: robin.rolland-girod@grenoble-inp.fr

Abstract—Non-uniform sampling is an interesting scheme that

can outperforms the uniform sampling with low activity signals.

With such signals, it generates fewer samples, which means less

data to process and lower power consumption. In addition, it is

well-known that asynchronous logic is a low power technology.

This paper deals with the coupling between a non-uniform sam-

pling scheme and a pattern recognition algorithm implemented

with an event-driven logic. This non-uniform analog-to-digital

conversion and the specific processing have been implemented

on an Altera FPGA platform. This paper reports the first results

of this low-activity pattern recognition system and its ability to

recognize specific patterns with very few samples. The objectives

of this work target the future ultra-low power integrated systems.

I. INTRODUCTION

The advances in microelectronics and wireless communica-
tion has facilitated the development of tiny sensor platforms,
smart sensors that can be integrated in mobile devices. Cur-
rently, mobile communication devices have sophisticated inter-
nal hardware architectures and embed a wide range of internal
sensors including three-axial accelerometers. Accelerometers
are widely used in the context of health monitoring with the
detection of motions, actions and activity.

The pattern recognition processing can be very challenging
to be achieved on mobile devices because they have limited
processing, memory and computing ressources. Figo et al.
[1] evaluated preprocessing techniques for recognizing basic
daily physical activities (jumping, running and walking) with
accelerometric data performed on a mobile device. The battery
autonomy that supplies the mobile device is an inherent
limitation that depends on the computational costs, storage
requirements and precision. Energy scavenging techniques
such as thermoelectric effect, vibrations or body movements
may also complement the battery power [2].

In activity monitoring, important amount of energy can be
saved since activities occur sporadically. Efforts are made to
avoid useless processing. For example, Jafari and Lotfian [3]
propose a low-power architecture dedicated to the Dynamic
Time Warping (DTW) for physical movement monitoring. The
idea is to activate the processing unit that performs the pattern
recognition only when necessary. The architecture consists of

a granular decision making module (GDMM) that detects a
priori relevant information in the signal.

Traditional activity recognition methods use uniform sam-
pling scheme, however the non-uniform sampling defined by
level crossing is a better candidate for signals with infrequent
activity. In this approach, levels are disposed along the ampli-
tude range of the signal and a sample is only captured when
the input signal crosses one of the defined levels (cf. Fig.1.).
Relation can be made with the field of symbolic dynamics
where the data space is partitioned and associated to a symbol.
Such method leads to data compression and is a way to save
energy, because irrelevant samples are pruned off. The data
partitioning is an active area of research. Some partitioning
methods are the data mean, midpoint, median, equal-size
intervals over the data range, or regions of the range with
equal probability [4].

Fig. 1. Level crossing sampling with regularly spaced levels along the
amplitude range of the signal

In this work, we propose a pattern recognition algorithm
dedicated to mobile applications.

This paper is divided into three parts. We begin with dis-
cussion of the current state of pattern recognition methods for
mobile devices. Secondly, we present our low-power pattern
recognition method. In the third part, we present the hardware
implementation. Finally, a discussion and a conclusion outline
the method strength and weakness.

II. RELATED WORKS

Benbasat and Paradiso [5] suggest to use the peaks struc-
tures in the accelerometer signal as a way to simplify the
human gestures signature detection in inertial gesture recog-
nition framework. The recognition is performed with simple
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parameters : peaks magnitude, duration and number. This
method, called atomic gestures decomposes complex human
gesture into a set of peaks. For example, a straight-line motion
generated by an arm movement will create a two-peaked trace.
The inertial measures are obtained with two two-axis MEMS
accelerometers and leading to a six degree-of-freedom inertial
measurements. The concept of motion decomposition into
atoms is used by Fan et al. [6] for the detection of translational
and rotational motions using a tri-axial accelerometer. An
interesting characteristic pointed out by the authors is that
for translational motions the translation starts by a tangen-
tial acceleration followed by a tangential deceleration. As a
consequence, the acceleration signature consists of two peaks
with opposite signs. The specific pattern allows to perform
the motion decomposition on the human gestures in order
to generate the sequences of motion directions defining the
translational motions (clockwise circular, counter clockwise
circular and hop right). One of the advantage of the detection
method based on atomic decomposition is its insensibility to
time distortion. Indeed, the gestures vary between individuals
and for the same individual.

A gesture can be performed at several speeds, leading to
similar shaped patterns but with different duration. The pattern
matching performed using the euclidean metric leads to poor
results for highly time distorted patterns since it does not take
into account the distortion due to its linear alignment. A more
adapted method is the dynamic time warping (DTW) distance
introduced by Sakoe and Chiba [7] in the context of speech
recognition. It is widely used in speech recognition, for online
signature verification and for fall detection in the elderly. This
technique aims to find an optimal alignment between two given
sequences. The non linear complexity in O(N ·M) strongly
restricts its implementation on mobile devices. Global con-
straints such as Sakoe-Chiba band [7] or adapted constraints
[8] are used to linearize the computational cost. Jafari and
Lotfian [3] implemented a low-power architecture of pattern
recognition for mobile applications based on the DTW.

Many algorithms have been proposed for pattern recognition
framework. The most popular method is the hidden Markov
model (HMM). It can achieves high recognition rate in motion
and gestures recognition. For example, Joselli and Clua [9]
propose a detection method of patterns performed in the
air for games processed on a mobile phone. The method is
energy intensive so the implementation on mobile devices
where battery cannot be easily recharged is restricted. In this
work, we use a finite state machine (FSM) model used for its
simplicity in hardware implementation. For more details about
gesture recognition algorithms, we refer the reader to [10].

III. TOOLS & METHODS

The proposed method is designed to perform pattern recog-
nition in activity signals. To take into account their sporadic
characteristic, a non classical sampling scheme called level
crossing sampling (LC) is used. With the LC sampling, a
sample is only captured when the continuous time input signal
crosses one of the defined levels (cf. Fig. 1.). Contrary to the

uniform sampling, the samples are not uniformly spaced along
the time axis, because they depend on the signal variations.
The time elapsed between samples ik and ik�1 is defined by
dtik = tin � tin�1 . For the hardware implementation of the
LC sampling, a local timer of period Tc is dedicated to record
dtik . Contrary to the Nyquist sampling, the amplitude of the
sample is known and the time elapsed between two samples
is quantized. The Signal to Noise Ratio (SNR) depends on
the timer period Tc and not on the number of quantization
levels [11]. An empirical framework is proposed in this paper,
to choose the minimum number of necessary levels with
their respective amplitude to properly perform the pattern
recognition.

A. Atomic decomposition

The manipulated data are time series. A time series
T = t1, ..., tm is an ordered set of m real-valued variables.
The patterns of interest are considered as the local subsections
of the time series, called subsequences. A subsequence C of
length m is a sampling of length n  m of contiguous posi-
tions from p, that is, C = tp, ..., tp+n�1 for 1  p  m�n+1.

In the proposed framework, the pattern recognition can be
considered as a two-class classification problem, let {p,n} the
two classes. A known process generates two different patterns
to detect, that belongs to the positive class p. The subsequences
generated by unknown processes are considered as noise and
associated to the negative class n. The two different type of
patterns of interest belonging to class p are depicted in Fig. 2.
There are four types of variations to detect

Fig. 2. The patterns consists of at least 2 peaks with opposite sign : (a)
Negative peak P�

1 followed by positive peak P+
2 (b) Positive peak P+

1
followed by negative peak P�

2

We suggest to detect these pair of opposite polarity peaks
with two levels (positive and negative). Their respective am-
plitude is determined with the ROC curve.

B. Data labelization

The data labelization (cf. Fig. 3), consists of 3 steps : (1)
The time series T is non-uniformly sampled with regularly
spaced levels along the amplitude range. (2) The signal is
then divided into two parts : positive T+ and negative T�.
(3) Every peak bounded by contiguous zeros crossings, called
epoch, are labeled. When the peaks belong to the positive
(resp. negative) class, it is labeled 1 (resp. 0).
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Fig. 3. Data labelization framework

C. ROC curve
The ROC curve is a technique mainly used for selecting

a classifier in pattern recognition and is well-known in
the medical decision community. Considering a two-class
classification problem, each pattern of interest or instances
are mapped to one element of the set {p, n} of positive and
negative class labels. There are four possible outcomes.

Fig. 4. The ROC graph plotted for two Gaussian data

If the instance is labeled positive and it is classified as
positive, it is counted as a true positive tp. If it is classified
as negative, it is counted as a false negative fp. If the pattern
is negative and is classified as negative, it is counted as a true
negative tn. If it is classified as positive, it is counted as a false
positive fp. The number of positive (resp. negative) instances
is noted P (resp. N ). The true positive rate tpr (resp. false
positive rate fpr) is defined by tp/P (resp. fp/N ), where P
(resp. N ) is the number of positive (resp. negative) instances.
The receiver operating characteristic (ROC) curve is a graph
where the true positive rate tpr is plotted on the Y axis and
the false positive rate fpr is plotted on the X axis. A ROC
curve depicts relative tradeoffs between benefits (true positive)
and costs (false positives). The Fig. 4. illustrates the ROC
curve for two data sets with Gaussian distribution. Each set
belongs to one class, positive p and negative n. As the distance

d between the two distributions increases, the decision error
decreases. When there is no overlapping between the two data
sets, there is no error in classification, which is represented
by the point (0,1) in the ROC curve. The ROC point (0,0)
means that there is no false positive nor true positive and the
point (1,1) represents a maximum rate of true positive and false
negative. The classification performance can be calculated with
the Area Under the Curve (AUC). We refer the reader to [12]
for more information about the ROC curve.

In the time series T+ (resp. T�), two ROC curves are
plotted to determine the optimal level for detecting peaks P+

1

and P+
2 (resp. P+

1 and P+
2 ). In the ROC space, the optimal

level is considered as the one which generated the more distant
point from the diagonal.

D. Algorithm

The pattern recognition algorithm is modeled by a finite
state machine (FSM). The Fig. 5. shows the two types of
signatures non-uniformly sampled with four levels. To validate
a pattern, two peaks with opposite sign must occur in a pattern
window �. Two levels of minimum amplitude (positive and
negative), defined as silence levels, are necessary to detect the
pattern beginning.

Fig. 5. The patterns depicted in Fig. 2 non-uniformly sampled with 4 levels

The algorithm is designed to detect a global pattern that
contains a set of 4 patterns. Consequently, another window
� is defined in which 4 patterns must be detected. This
redundancy is used to decrease the false positive rate fpr
without reducing the true positive rate tpr.

IV. SIMULATION & RESULTS

The data manipulated in this paper consists of experiments
with 5 different scenarii. They were sampled at 100 Hz, which
is the minimum frequency for detecting the patterns of interest.
Our procedure works directly with raw data and thus does
not need to extract features and pre-processing. The pattern
recognition algorithm was tested with MATLAB. The level
crossing sampling scheme allows to drastically reduce the
number of sample to process. The results in Tab. I. prove
that the non-uniform sampling is adapted to sporadic signals.
Indeed, the highest ratio between the number of samples for
non-uniform sampling and uniform sampling is less than 1 %.
The performance results are summarized in Tab.II. It globally
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shows good performances with a very low number of false
positive detections. The method proves that well positioning
the levels along the amplitude axis allows to prune off non-
relevant samples that leads to useless processing.

Record NUS (100 Hz) NNUS NNUS /NUS [%]
1 8 344 216 39 240 0.47
2 8 640 070 17 000 0.20
3 8 661 893 33 198 0.38
4 8 314 179 12 697 0.15
5 8 060 294 63 394 0.79

TABLE I
RATION BETWEEN THE NUMBER OF SAMPLE FOR NON-UNIFORM

SAMPLING NNUS AND UNIFORM SAMPLING NUS AT 100 HZ

Record False detection True detection Detection rate [%]
1 0 31/37 84
2 0 26/36 72
3 0 12/30 40
4 0 25/25 100
5 1 33/39 85

TABLE II
THE PATTERN RECOGNITION ALGORITHM DETECTION RATE

V. HARDWARE IMPLEMENTATION

The non-uniform sampling scheme based on level crossing
can be implemented with the Asynchronous Analog-to-Digital
Converter (A-ADC). The A-ADC, depicted in Fig. 6., consists
of four parts [13]. The difference quantifier compares the
continuous input signal i(t) and the reference Vref . If the
continuous input signal i(t) increases, Up = 1 and Down = 0.

Fig. 6. Block diagram of the A-ADC with the detection block connected to
its outputs

In the other case, when i(t) decreases, Up = 0 and
Down = 1. The signals Up and Down feed the level determina-
tion block that allows to select the appropriate reference signal
recorded in memory. Then it is converted to continuous value
with a DAC to make the comparison possible with i(t). The
timer aims to determine the time elapsed since the previous
sample. When the A-ADC is fed with a new sample k, its time
dtik and amplitude ik is determined by the decision block. The
A-ADC being asynchronous, it establishes a communication
with its neighbors blocks in order to exchange data with ack
and req signals. The A-ADC and the detection algorithm
were implemented on an Altera DE1 Board with Cyclone II
EP2C20F484. The input signal was generated with a GBF
Tektronix AFG3021 that generates an arbitrary signal from

a MATLAB file. Vref (t), obtained at the DAC output, is
the input signal i(t) approximated with four level determined
with the proposed method (cf. Fig. 7). wr(t) is the write-read
signal command of the digital-to-analog converter. It can be
considered as the A-ADC activity signal.

Fig. 7. The approximation of the input signal i(t) with four levels

VI. CONCLUSION

In this paper, we presented a threshold-based partitioning
scheme to perform pattern recognition with a level crossing
sampling scheme method without pre-processing. The non-
uniform sampling is well-adapted to sporadic signals and
allows to only capture samples with relevant information. The
results show that less than 1 % of data necessary to perform
the pattern recognition and to preserve a good detection
rate of about 76 %, similar to that of the uniform sampling
scheme. Moreover, the proposed method allows to determine
the most adequate levels, thanks to the ROC curve.
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Abstract—We present a multiscale based method that acceler-
ates the computation of particle filters. Particle filter is a powerful
method that tracks the state of a target based on non-linear
observations. Unlike the conventional way that calculates weights
over all particles in each cycle of the algorithm, we sample a
small subset from the source particles using matrix decomposition
methods. Then, we apply a function extension algorithm that uses
the particle subset to recover the density function for all the rest
of the particles. As often happens, the computational effort is
substantial especially when tracking multiple objects takes place.
The proposed algorithm reduces significantly the computational
load. We demonstrate our method on both simulated and on real
data such as tracking in videos sequences.

Index Terms—particle filter, multiscale methods, nonlinear
tracking

I. INTRODUCTION

Particle filter (PF) is a powerful method for target state
tracking based on non-linear observations obtained by a
Monte-Carlo approach [1]. The advantages of PF over different
tracking methods such as Kalman filter are in its ability to
use non-linear models and the ability to use non-Gaussian
distributions. On the other hand, the disadvantage of the PF
is its use of Monte Carlo as the performance of the PF
strongly depends on the number of particles used. A large
number of particles will simulate the required distributions
more accurately leading to better results but also increase
significantly the computational load. In many cases, weight
computation of each particle can be computationally expen-
sive. A common example for this case is object tracking in
videos where the weight of each particle is determined by
the Bhattacharyya coefficient [2] or by Earth-Moving-Distance
(EMD) [3], which requires to evaluate histograms over a large
number of bins, especially when color is involved. When
the number of particles is either moderate or large (typically
a few thousands) the computational load becomes a serious
bottleneck to achieve real-time processing.

In this work, we propose a new method to evaluate par-
ticles weights using multiscale function extension (MSE)
algorithm [4]. The MSE approach consists of two steps:
subsampling and extension. In the subsampling step, the
particles are sampled to achieve maximal coverage using a
small fraction of the actual number of particles with respect
to their density. This is done by a special type of matrix
decomposition called Interpolative-Decomposition(ID). Then,

the weights are computed for this small set of particles. In
the next step (extension), the weights are extracted for the
rest of the particles using the MSE method. The method uses
coarse-to-fine hierarchy of the multiscale decomposition of
a Gaussian kernel that represents the similarity between the
particles. This generates a sequence of subsamples, which we
refer to as adaptive grids, and a sequence of approximations
to a given empirical function on the data, as well as their
extensions to any missing multidimensional data point. Since
in many cases the computational load of the weights is heavy,
this approach can reduce the computational load significantly
and accelerate the PF, allowing us to use more particles.
Increasing the number of particles is needed since many of
today tasks are geared to track objects “buried” in huge data
streams such as video, communication and telemetric data.

Particle filters were studied in many works and used in sev-
eral applications domains such as computer vision, robotics,
target tracking and finance. While PF can be robust to both
the input observations distribution and the behavior of the
additive noise, its implementation is computationally intensive.
Making it working in real-time (computationally efficient) has
become a major challenge when objects tracking is done in
high dimensional state space, or when dealing with multiple
target tracking. Comprehensive tutorials and surveys on the
different variations and recent progress in PF methods are
given in [1], [5].

II. PARTICLE FILTER ALGORITHM

In general, PF is a model estimation technique based on
simulation that uses Monte Carlo methods for solving a recur-
sive Bayesian filtering problem [1]. It is used for estimating
the state xn at time n from a noisy observations y1, ..., yn.
A dynamic state space equations are used for modeling and
prediction. The basic idea behind PF is to use a sufficiently
large number of “particles”. Each particle is an independent
random variable which represents a possible state of the target.
For example, a state can be a location and velocity. In this
case, each particle represents a possible location and velocity
of the target from a proposed distribution. The system model
is applied to the particles in order to perform prediction to
the next state. Then, each particle is assigned a weight, which
represents its reliability or the probability that it represents
the real state of the target. The actual location (the output
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of the PF) is usually determined as the maximal likelihood
of the particle’s distribution. The algorithm robustness and
accuracy are determined by the number of computed particles.
A large number of particles is more likely to cover a wider
state subspace in the proximity of the target, as well as a better
approximation of the state distribution function. However, the
cost of such improved tracking produces higher computational
load since each particle needs to be both advanced and
weighted while this is repeated in each cycle.

III. MULTISCALE FUNCTION EXTENSION

Given a set of N particles PN = {p1, p2, . . . , pN} and
their mutual distances, we wish to estimate the value of their
weight function through a small subset Pn of n particles
(n < N is a predefined number), for which we compute
the weights directly. Formally, our goal is to interpolate the
weight function W : Pn ! R to PN , given a distance
function d : PN ⇥ PN ! R. For that purpose we use the
multiscale function extension (MSE) [4], which is a multiscale,
numerically stable interpolation method.

Each scale of the MSE is divided into two phases - a
subsampling phase and an extension phase. The first phase
is done by a special decomposition, known as interpolative
decomposition (ID), of an affinities matrix associated with
Pn. The second phase extends the function from Pn to PN ,
using the output of the first (sampling) phase. The essentials of
the MSE are describe in sections III-A and III-B. For further
reading we refer the reader to [4].

We use the following notation: s denotes the scale param-
eter, s = 0, 1, . . ., ✏s = 2

�s
✏0 for some positive number ✏0,

and g

(s)
(r) = exp{�r

2
/✏s}. For a fixed scale s we define

the function g

(s)
j : PN ! R, g(s)j (p) = g

(s)
(d(pj , p)) to be

the Gaussian of width ✏s, centered at pj . A(s) is the n ⇥ n

affinities matrix associated with Pn, whose (i, j)-th entry
is g

(s)
(d(pi, pj)). Note that the j-th column of A

(s) is the
restriction of g

(s)
j to Pn. Pc

n is the complementary set of Pn

in PN . The spectral norm of a matrix A is denoted by kAk,
and its j-th singular value (in decreasing order) is denoted by
�j(A).

A. Data subsampling through ID of Gaussian matrix
Let s be a fixed scale. Our goal is to approximate W by

a superposition of the columns of the affinities matrix A

(s),
then to extend W to p⇤ 2 Pc

n, based on the affinities between
p⇤ and the elements of Pn. At first sight, we could solve
the equation A

(s)
c = W and, using the radiality of g

(s), to
extend W to p⇤ by ˆ

W (p⇤) =
Pn

i=1 cig
(s)
j (p), which is exact

on Pn, i.e. ˆ

W (pj) = W (pj), j = 1, 2, . . . , n. This method is
known as Nyström extension [6], [7]. As proved in [4], the
condition number of A(s) is big for small values of s, namely
A

(s) is numerically singular. On the other hand, too big s

would be resulted in a short distance interpolation. Moreover,
even if we would choose such s for which A

(s) is numerically
non-singular and the interpolation is not for too short distance,
interpolation by a superposition of translated Gaussian of fixed
width, would not necessarily fit the nature of W .

In order to overcome the numerical singularity of A(s), we
apply an interpolative decomposition (ID). The deterministic
version of the ID algorithm can be found in [4], whose
complexity is O(mn

2
), and a randomized version can be

found in [8]. The latter is based on random-projections and
its complexity is O(k

2
n log n). Since each column of A

(s)

corresponds to a single data point in Pn, selection of columns
subset from A

(s) is equivalent for subsampling of Pn data
points.

B. Multiscale function extension

Let A(s)
= B

(s)
P

(s) be the ID of A

(s), where B

(s) is an
n⇥k matrix, whose columns constitute a subset of the columns
of A(s), and let P(s)

= {ps1 , . . . , psk} the associated sampled
dataset. The extension of W to Pc

n is done by orthogonally
projecting W on the columns space of B

(s), and extending
the projected function to Pc

n in a similar manner to Nyström
extension method, using the radiality of g(s). The single scale
extension (SSE) algorithm can be found in [4] (Algorithm 3),
whose complexity is O(nk

2
).

Obviously, w(s) is not necessarily equal to w, namely the
output of the SSE algorithm is not an interpolant of w. In
this case we apply the SSE algorithm once again to the
residual w�w

(s) with narrower Gaussian, that ensures a bigger
numerical rank of the next-scale affinities matrix A

(s+1) and,
as a consequence, a wider subspace to project the residual on.
Such approach is described in Algorithm 4 in [4]. We shell
call this algorithm the multiscale extension (MSE) Algorithm,
whose complexity is O(n

3
).

IV. MULTISCALE PARTICLE FILTER (MSPF)

In order to accelerate the PF computation, while executing it
with a large number of particles, we will apply an intelligent
sampling of the particles, followed by an extension method
to compute the weights of the rest. This will allow us to
compute a relatively small number of particle weights in each
cycle. Such approach can be effective if the particle weight
calculation is computationally expensive.

A. Particle Subsampling

In each cycle of the PF algorithm, we first resample a new
set of N particles from the set P = {x(n)

t , w

(n)
t }, n = 1, .., N

using their weights as the distribution function. Once we apply
the dynamic model on each particle and advance it, we need
to compute their new weights. To do that, we first select a
small subset of the particles. We wish to find a good set of
particle candidates that will capture the geometry of the weight
function W : Pn ! R. To find such candidates, we define a
distance metric between the particles. In our experiments we
used the euclidean distance between each two particles viewed
as vectors, but other metrics can be used as well. We select
the particle candidates using the ID Algorithm described in
Section III-A. We construct an affinity matrix A

(s) containing
the affinities between the particles, using a Gaussian kernel
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that is based on the given distance metric d(pi,p j) between
the particles.

[A

(s)
]ij = exp

✓�d(pi, pj)
2

✏s

◆
, i, j = 1, .., N. (IV.1)

We calculate the affinities for all the particles in P so A

(s)

is an N ⇥ N matrix defined by Equation IV.1. The number
of candidates we wish to receive is at most k. The value k is
usually selected according to the computation budget we have
to calculate the weight function in each cycle. The output of
the ID algorithm will be a set Pk of k particles selected from
P . We compute the weights of the k particles we selected, as
we do in the original PF algorithm.

B. Weight Calculation using Function Extension

Now that we have a set of particles Pk = {x(n)
t , w

(n)
t }, n =

1, .., k with their calculated weight values, we can continue and
compute the weights of the rest of the particles. Using the MSE
algorithm, we compute the weight value of each of the other
N�k particles, by using the set Pk, and the first k columns of
the affinity matrix A

(s)
k . These columns contains the affinities

between each pair of particles in Pk and the affinities between
particles in Pk and all other particles. The output of the MSE
algorithm is the weights of the N � k particles that were not
selected in the previous step. The extension method allow
us to avoid a direct computation of the weight for the rest
of the N � k particle. This is especially effective when we
can not compute the weight for all particles if the observation
has some missing data, or if the computation is too intense.
Once we calculated all the weights we select the particle with
the maximum likelihood (weight) as the prediction result and
continue to the next cycle.

V. EXPERIMENTAL RESULTS

To test the performance of Algorithm IV.1, we preformed
several experiments of tracking objects in both synthetic
and real videos, and comparing the results to other tracking
methods.

A. Multiple Target Tracking

he MSPF Algorithm IV.1 was tested on a video sequence
that contains multiple objects. In this case, the tracking was
achieved by the application of two different PF types algo-
rithms, where each had its own set of particles and a separate
set of observations. Each particle describes a state of a single
target. Another approach to track multiple objects is to create
a “super-state” particle, which describes the state of all the
objects inside the video sequence. In this case, the number
of fields inside the particle vector was n ⇥ k where n is the
number of targets and k is the number of parameters required
to describe a single target. In the latter scenario, the MSE
algorithm outperformed standard interpolation methods since
it handled better data points in high dimensions. The advantage
of using the “super-state” particle is by enabling to advance
a particle state by dynamic model equations that took into

Algorithm IV.1: Multiscale Particle filter
Input: Initial state x0 and current observations y1, ..., yT

Output: Estimated observations x1, ..., xT

1: Initialize weights w

(n)
0 =

1
N , and x

(n)
0 ⇠ p(x0),

n = 1, ..., N .
2: for time steps t=1,...,T do
3: Resample N new particles by their distribution

determined by weights: w(n)
t

4: Prediction: Apply the dynamic model on each particle
to estimate next state using xt�1 and y1, ..., yt

x̃

(n)
t ⇠ q(x

(n)
t |x(n)

t�1, y1, ..., yt)

5: Selection : Select a subset of size k out of the new
particles x̃

(n)
t , by computing the affinity matrix A

(s)

and using the ID Algorithm.
6: Calculate weights of the k selected particles using

w

(n)
t / p(yt|x(n)

t )p(x

(n)
t |x(n)

t�1)

q(xt|x(n)
t�1, y1, ..., yt)

, n = 1, ..., N

7: Weight extension: Calculate the weights of the
N � k particles using the Multiscale Function
Extension Algorithm (See Algorithm 4 in [4]).

8: Normalize weights:

w̃

(n)
t =

w

(n)
tPN

i=1 w
(i)
t

9: Set xt to be the particle x̃

(i)
t with maximum weight

w̃

(i)
t � w̃

(n)
t , n = 1, .., N

10: end for

account the state of all the objects within a particle including
dependencies between objects.

In order to test the tracking performance using the “super-
state” particle, we tracked two tennis players in a video
sequence. The players are represented by a single particle with
6⇥2 = 12 coordinates, 6 for each player (location in x and y,
velocity in x and y, width and hight). In each algorithm cycle,
the prediction step advanced the particles by the application
of the model equations separately to each coordinate. The
weight calculation was done in each region separately and
then multiplied the Bhattacharyya coefficient to obtain a single
weight. Then, the extension step was applied as before using
the weighted Euclidean metric for each particle that has 12

coordinates. By using Algorithm IV.1, we were able to track
both targets successfully with the lowest computational cost
in comparison to other extension methods that are based on
standard interpolation such as B-splines, cubics and nearest
neighbor. We used 1500 particles to track both players. In
each step of the algorithm, we calculated the weights for 150
selected particles and interpolated the weights for the other
1350 particles by using the MSE method. The complete videos
of the basketball and tennis games tracking can be seen in our
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Fig. V.1. Comparing the RMSE between different methods - multiscale with
ID sampling , Multiscale with WFPS sampling, linear approximation, cubic
approximation.

website1.

B. Comparison with Other Approximation Methods
In order to compare the proposed method with different

approximation methods, we applied the PF algorithm and
in each run we used a different approximation method to
calculate the particle’s weights. In this comparison, we used
a synthetic movie. We generated a video sequence by moving
a colored disc over a still image. The disc moved along a
non-linear parametric function. This allows us to know the
ground truth of the target at any frame. We applied the PF
algorithm to the synthetic video sequence several times, each
with different interpolation method. We compared the total
Root Mean Square Error (RMSE) for each approximation
method measured on the distance between the estimation and
the real location of the target. The MSPF Algorithm IV.1 had
the lowest error rate even when we use a sampling factor
between 2%-5% from the total number of particles. When such
subsampling factor was used, all the other tested methods fail
(error grew).

Overall, the MSPF Algorithm IV.1 achieved the lowest
computational time while maintaining a low error rate.

C. Comparison with the EMD Measurement
Recently, the Earth Moving Distance (EMD) [3] was used

for particles weight computation since this particle weight fits
deformable objects [9]. We tested Algorithm IV.1 with the
EMD metric to demonstrate how well the extension scheme fits
it. Several runs were conducted on the “Lemming” sequence
from the PROST database. Weights were calculated for 10%
from the total number of particles while the rest of the particles
were estimated using the MSE Algorithm.

Table V.1 shows the time differences between the naive
version of the PF algorithm that uses the EMD metric and our

1http://www.cs.tau.ac.il/⇠yanivshm/mspf

TABLE V.1
EMD ACCELERATION TIME COMPARISONS IN [SEC]. SAMPLING WAS 10%

FROM THE TOTAL NUMBER OF PARTICLES.

# of Time Time Acceleration
Particles [no MSE] [with MSE] Factor

2000 63 10.6 5.9
4000 125 32 3.9
6000 187 75.4 2.5
8000 260 151 1.7
10000 294 266 1.1

implementation that uses the MSE Algorithm. For the latter,
10% of the particles were sampled, and the MSE was applied
to the other 90% of the particles.

VI. CONCLUSION

In this work, we presented several contributions. We reduced
the PF computational time by applying a novel multiscale
extension (MSE) method to reduce the particle weight cal-
culation. This allowed us to use more particles within a
given computational budget thus improving the performance
of the PF. We tested our modified PF algorithm on real video
sequences to track a single and multiple targets, and compared
it with other extension methods.

ACKNOWLEDGMENT

This research was partially supported by the Israel Science
Foundation (Grant No. 1041/10) and by the Israeli Ministry
of Science & Technology (Grant No. 3-909).

REFERENCES

[1] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
Signal Processing, IEEE Transactions on, vol. 50, no. 2, pp. 174–188,
2002.

[2] A. Bhattacharyya, “On a measure of divergence between two statistical
populations defined by their probability distributions,” Bull. Calcutta
Math. Soc, vol. 35, no. 99-109, p. 4, 1943.

[3] Y. Rubner, C. Tomasi, and L. Guibas, “The earth mover’s distance as
a metric for image retrieval,” International Journal of Computer Vision,
vol. 40, no. 2, pp. 99–121, 2000.

[4] A. Bermanis, A. Averbuch, and R. Coifman, “Multiscale data sampling
and function extension,” Applied and Computational Harmonic Analysis,
vol. http://dx.doi.org/10.1016/j.acha.2012.03.002, 2012.

[5] A. Doucet and A. Johansen, “A tutorial on particle filtering and smooth-
ing: Fifteen years later,” Handbook of Nonlinear Filtering, pp. 656–704,
2009.

[6] C. Baker, The numerical treatment of integral equations. Clarendon
press Oxford, 1977, vol. 13.

[7] B. Flannery, W. Press, S. Teukolsky, and W. Vetterling, “Numerical
recipes in c,” Press Syndicate of the University of Cambridge, New York,
1992.

[8] P. Martinsson, V. Rokhlin, and M. Tygert, “A randomized algorithm for
the decomposition of matrices,” Appl. Comput. Harmon. Anal., 2010.

[9] S. Avidan, D. Levi, A. Bar-Hillel, and S. Oron, “Locally orderless
tracking,” in 2012 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2012, pp. 1940–1947.

Proceedings of the 10th International Conference on Sampling Theory and Applications

243



 

Analysis of Multistage Sampling Rate Conversion for 

Potential Optimal Factorization 
 

 

Zhengmao Ye, Habib Mohamadian 
 
Southern University, Baton Rouge, Louisiana, USA 

Email: zhengmao_ye@subr.edu, habib_mohamadian@subr.edu 

 

Abstract — Digital multistage sampling rate conversion has many 
engineering applications in fields of signal and image processing, 
which is to adapt the sampling rates to the flows of diverse audio 
and video signals. The FIR (Finite Impulse Response) polyphase 
sampling rate converter is one of typical schemes that are 
suitable for interpolation or decimation by an integer factor. It 
also guarantees the stability performance with the stable gain 
margin and phase margin. The big challenge occurs upon 
implementation when a very high order filter is needed with large 
values of L (positive integer factor of interpolator) and/or M 
(positive integer factor of decimator). Narrowband linear phase 
filter specifications are hard to achieve, however. It leads to extra 
storage space, additional computation expense and detrimental 
finite word length effects. The multistage sampling rate converter 
has been introduced to factorize the L and M ratio into a product 
of ratios of integers or prime numbers. The optimal number of 
stages and optimal converting factors are both critical terms to 
minimize the computation time and storage requirements. Filter 
structure analysis is conducted in this study to search for the 
potential factors that could have a remarkable impact to optimize 
the sampling rate conversion. 
 
      Keywords- Polyphase FIR Filter, Interpolation, Decimation, 
Sampling Rate Conversion, Multistage, Multirate, Optimization 
 

I. INTRODUCTION 
 

The sampling process stems from obtaining discrete time 

signals from the continuous time signals at the regular time 

intervals. Sampling can be conducted for functions varying in 

space, time, or any other dimension. For discrete time signals, 

potential upsampling, downsampling and multirate multi-stage 

sampling rate conversion can be applied as well [1-2]. There 

are a wide variety of important real world applications on 

sampling. For instance, the emerging GPS (Global Positioning 

System) enabled cell phones offer new opportunities of data 

collection in the massive volumes at relatively cheaper cost 

than the dedicated probe vehicles. The traffic monitoring 

applications need to firstly determine whether the GPS-

enabled cell phone is actually in an automobile and secondly, 

it needs to match the current GPS device location to a 

corresponding link on a GIS (Geographic Information System) 

map. A methodology is developed to determine relationships 

between the cell phone pinging sampling rate and accuracy of 

mode detection and map matching processes. It is found that 

the higher the number of pings per interval and the longer the 

data trace interval, the better the accuracy. The impact of the 

sampling frequency on the map matching algorithm is found 

to be a function of link length, current speed of a vehicle and 

period of the day [3]. In many cases, sampling rate conversion 

is required by digital systems dedicated to audio and speech 

processing in order to adapt the sample rate to different signal 

flows. For example, 8 kHz and 16 kHz for speech, 32 kHz for 

broadcasting, 44.1 kHz for CDs, and 48 kHz for studio work. 

The sampling rate conversion (SRC) is based on the objective 

criteria, such as complexity, integration cycle and performance 

characterization. The proposed SRC system has the capability 

of fully recovering characteristics and rounding noise behavior 

[4]. A linear phase Finite Impulse Response (FIR) filter of an 

arbitrary order is designed for the sampling-rate conversion by 

a rational factor of L/M (upsampling / downsampling) also. 

The coefficient symmetry of the linear-phase filter is exploited 

with a minimal number of delay elements. The number of 

multiplications per output sample is reduced approximately by 

a factor of two compared with the conventional polyphase 

implementation [5]. Similarly, a class of farrow-structure-

based reconfigurable bandpass FIR filters for integer sampling 

rate conversion is introduced. Both Mth-band and general FIR 

filters can be realized and the filters work equally well for any 

integer factor and passband location. The proposed sampling 

rate converters provide the considerably higher efficiency and 

fewer filter coefficients [7]. Rational sampling rate conversion 

can also be performed in the domains of discrete Fourier 

transform and discrete cosine transform. Conversion error 

performance and computational complexity are based on the 

proposed fast transform algorithms. It can achieve substantial 

improvements on the conversion accuracy at the reduced 

computational cost, compared with the conventional lowpass 

filter [6]. To evaluate the performance of sampling receiver, a 

sub-Nyquist rate sampling receiver architecture is presented 

that exploits signal sparsity by employing compressive sensing 

techniques. The receiver works at sampling rates much lower 

than the Nyquist rate whose performance is quantified 

analytically. A new parallel path structure is used. The 

receiver performance is quantified analytically. It is shown 

that an instantaneous receiver signal bandwidth of 1.5 GHz 

and a Signal to Interference plus Noise Ratio (SINR) of 44 dB 

are achievable [8]. Upsampling and downsampling can further 

be applied to digital image processing to enhance the image 

quality [9-10].  

From the most recent research outcomes, the problem of 

optimal multistage sampling rate converters has never been 

solved in terms of both the optimal number of stages and the 

optimal converting factor. For concern of the potential optimal 

solution, a case study has been made based on an example of 

the cascades of FIR polyphase filter design when converting 

the sampling rate for a stream of signals from audio DVD data 

(96 kHz) to audio CD data (44.1 kHz) with some interesting 

new results. 
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II. SINGLE STAGE SAMPLE RATE CONVERSION 
 

In order to convert a stream of signals from 96 kHz to 44.1 

kHz, the FIR lowpass filter structure is selected to perform the 

single stage sampling rate conversion. By nature, in contrast to 

the Infinite Impulse Response (IIR) filter, FIR filters are 

always stable and easy to implement with all poles located at 

the origin. On the other hand, a higher order is necessary. For 

a matter of simplicity, upsampling and downsampling are 

processed in the single stage, where anti-aliasing filtering is 

applied before downsampling (decimation) and anti-imaging 

filtering is applied after upsampling (interpolation). The 

combined cutoff frequency is selected as the minima of anti-

aliasing filtering and anti-imaging filtering. The frequency 

response of the single stage sampling rate conversion is shown 

in Fig. 1. Due to the large values of L (147) and M (320), a 

narrowband lowpass FIR filter has been produced. It is tough 

to implement while a very high order filter is necessary. The 

finite word length effect is thus generated. Also extra storage 

space and long simulation time are needed. The multistage 

sampling rate converter is an alternative to the single stage 

sampling rate converter. The multistage structure serves as a 

tradeoff to the harmful finite word length effects. The 

conversion ratio can be translated into a product of ratios, 

where smaller factorized values of the interpolation factor (L) 

and decimation factor (M) will be achieved. From literatures 

there is no systematic approach in determining an optimal 

number of stages and an optimal structure to factorize a set of 

L/M ratio so as to minimize the computation time and storage 

space. The trial and error method is mostly applied so far. 
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Fig. 1 Single Stage Sampling Rate Conversion - Narrowband Filter 

 

III. MULTISTAGE SAMPLE RATE CONVERSION 
The multistage sampling rate converter has been designed to 

substitute the single stage sample rate conversion. Overall it is 

a downsampling process (decimation) and three stage cascade 

structure has been applied. The block diagram is shown in Fig. 

2, where three composite anti-aliasing and anti-imaging filters 

H1(f), H2(f) and H3(f) are applied to each stage, respectively. 

 

 
Fig. 2 Multiple Stage Sampling Rate Conversion  

Since the three stage factorization approaches for the required 

L/M ratio of 147/320 are not unique, three typical cases are 

chosen whose filter specifications are shown in Table 1. Here, 

the stage conversion rates of three cases have been selected as: 

A. [7, 7, 3] / [8, 5, 8] 

B. [7, 3, 7] / [8, 5, 8] 

C. [7, 3, 7] / [8, 4, 10] 

 

where a combination of two decimators and one interpolator is 

applied in Case A, while combinations of three adjustable 

decimators are applied in Case B and Case C. At each stage of 

all 3 cases, the ideal gains of the low frequency passbands, 

sampling rates and cutoff frequencies are also provided.  

 
Table 1. Specifications for Multiple Stage Converter Design  

 
Sample Rate 
Conversion 
96 to 44.1K 

L/M H(f) 
Passband 

fs 
(kHz) F (kHz) Order 

Single Stage  147/320    7680 

A - Stage 1 7/8 7 96 6 192 

A - Stage 2 7/5 7 84 6 168 

A - Stage 3 3/8 3 117.6 7.35 192 

B - Stage 1 7/8 7 96 6 192 

B - Stage 2 3/5 3 84 8.4 120 

B - Stage 3 7/8 7 50.4 3.15 192 

C - Stage 1 7/8 7 96 6 192 

C - Stage 2 3/4 3 84 10.5 96 

C - Stage 3 7/10 7 63 3.15 240 
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Fig. 3 Three Stage Sampling Rate Conversion – Case A 

 

In addition, small integer factors are the solutions with the low 

fractional rate conversions in each case. Thus the FIR 

polyphase sample rate converters are applied to decimator and 

interpolator design. The reason is that the polyphase FIR 

filters are well suitable for interpolation or decimation by a 

small integer factor. In this way, detrimental finite word length 

effects can be avoided. The regular lowpass filters can be 

formulated in this way rather than the single stage narrowband 

lowpass filter. It can be shown in Table 1 that the orders of 
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three stage sampling rate converters are much lower than that 

of the single sampling rate converters (i.e., 7680). Using the 

multistage approach, an audio DVD to audio CD converter 

can be realized. The frequency responses of the multirate three 

stage sampling rate converters are plotted in Figs. 3-5. At the 

same time, among three different cases, case A has a relatively 

higher order design than Case B and Case C. 
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Fig. 4 Three Stage Sampling Rate Conversion – Case B 
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Fig. 5 Three Stage Sampling Rate Conversion – Case C 

 

IV. DETAILED CASE STUDIES VIA BODE PLOT 

 

The Nyquist–Shannon sampling theorem is strictly followed 

upon the design of direct-form FIR polyphase sampling rate 

converter. Hence, the source signals can also be reconstructed 

as the bandwidth of a baseband signal is less than the Nyquist 

frequency. The right choice of the FIR structure ensures the 

stability of filter design. This fact is also clearly shown in the 

Bode diagrams as Figs. 6-8, where the stable gain margin and 

phase margin have been depicted in all cases, no matter it is a 

higher order filter or lower order FIR filter. Essentially, this 

sampling rate converter is a decimator instead of an 

interpolator. Therefore, as Case A has a separate stage of the 

interpolator design, it results in a relatively higher order 

design than two other cases with the cascade structure of three 

decimators. For Case B and Case C, further analysis is needed 

to compare the merit and drawback. 
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Fig. 6 Bode Plot of Multistage Interpolator and 2 Decimators – Case A 
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Fig. 7 Bode Plot of 3 Multistage Decimators – Case B 
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Fig. 8 Bode Plot of 3 Multistage Decimators – Case C 

 

V. COMPLEXITY IN MULTISTAGE CONVERTER DESIGN 
 

To quantify the storage space and computation time needed 

for sampling rate conversion, a simple way could be achieved 

by comparing the actual amount of adders and multipliers 

being used as well as the number of states associated. For the 

high order single stage sampling rate converter and three low 

order multistage sampling rate converters being employed, the 

related expenses are listed in Table 2. Among 3 individual 

cases, when all three stages are counted together, Case A 

requires maximal numbers of states and electronic elements 

since a single stage interpolator has a negative effect on the 

overall decimator design. Case B requires a similar number of 

states to Case C but it requires less numbers of adders and 

multipliers than Case C. It results from the fact that more 

prime number factors of interpolation and decimation are used 

in Case B than Case C.  

 

Table 2. Expense for Sampling Rate Converter Design  
 

Expense 

(Quantity) 
States Adder Multiplier 

Adder + 

Multiplier 

Single Stage  52 7510 7657 15167 

A - Stage 1 27 162 169 331 

A - Stage 2 23 138 144 282 

A - Stage 3 63 166 169 335 

B - Stage 1 27 162 169 331 

B - Stage 2 38 94 97 191 

B - Stage 3 27 162 169 331 

C - Stage 1 27 162 169 331 

C - Stage 2 31 70 73 143 

C - Stage 3 34 210 217 427 

 

 

CONCLUSIONS 
 

Diverse types of data in the forms of audio, video or radio 

frequency signals are preferably processed in the digital 

domain. The conversion among different types of signals is 

frequently applied. Single stage sampling rate conversion is 

straightforward but the high order requirement represents a big 

challenge. The multistage sampling rate converter is a better 

solution. It is however still subject to optimization. There is no 

existing solid rule to reach the optimal number of stages and 

the optimal factor of L/M for the concern of computation time 

and memory storage. Case studies have been conducted in this 

article to seek for some feasible means towards the best 

solution of sampling rate conversion. If possible, each stage of 

multistage converters should be selected following the actual 

type of the single stage converter exactly, either decimator or 

interpolator. Also the prime number factors for interpolation 

and decimation are preferable throughout the upsampling and 

downsampling processes. 
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Abstract—This paper extends the concepts of the Sparse Fast

Fourier Transform (sFFT) Algorithm introduced in [1] to work

with two dimensional (2D) data. The 2D algorithm requires

several generalizations to multiple key concepts of the 1D sparse

Fourier transform algorithm. Furthermore, several parameters

needed in the algorithm are optimized for the reconstruction of

sparse image spectra. This paper addresses the case of the exact

k-sparse Fourier transform but the underlying concepts can be

applied to the general case of finding a k-sparse approximation

of the Fourier transform of an arbitrary signal. The proposed

algorithm can further be extended to even higher dimensions.

Simulations illustrate the efficiency and accuracy of the proposed

algorithm when applied to real images.

I. INTRODUCTION

The Fast Fourier Transform (FFT) has become ubiquitous
in signal processing applications. While the FFT does not
make any assumptions about the structure of the signal, very
often the signal of interest is obtained from a structured source
resulting in a nearly sparse Fourier spectrum. Assuming that a
signal of length N is k-sparse (k < N ) in the Fourier domain,
we can describe the signal with only these k coefficients. This
fact is the basis for signal compression and is used among
others in the popular MP3 codec. Due to the fact that the signal
is accurately described with just k coefficients it seems natural
that there should be a better performing algorithm that exploits
this property of the signal. Several algorithms have been
proposed with this goal [2], [3], [4], [5], [6]. One particular
approach is the so called sparse FFT (sFFT) which lowered
the computational complexity significantly was introduced
recently in [1]. The authors focused on the one dimensional
case and the extension to two or multi-dimensions is not
straight forward. Since the Fourier transform is separable,
it is tempting to sequentially apply the 1D sFFT algorithm
separately on all rows and columns. This approach, however,
would not be efficient as the algorithm would be of complexity
at least O(N) for a signal of NxN samples which is not nearly
as good as the proposed sub-linear algorithm. In addition, this
strategy does not exploit the intrinsic two dimensionality of
the signal and leads to a sub-optimal algorithm. This paper
aims to fill this gap and introduces the extensions that are
necessary to the algorithm.

The paper is organised as follows: Section II introduces
the main ideas and workings of the sparse Fourier transform.
Section III describes the new concepts and necessary modifica-
tions of the algorithm to extend it to 2D. Due to the sensitivity
of the parameter of the algorithm, Section IV lays out guid-

ance as to how the parameters should be selected under the
assumption of a natural image as the input. Simulations and
the conclusion are provided in the last two sections.

II. SPARSE FOURIER TRANSFORM ALGORITHM

It would be infeasible for this paper to describe in detail the
sFFT algorithm in its entirety. Instead we refer the reader to [1]
(up to page 9) and only describe the principal components of
the algorithm which are necessary to understand the proposed
extension. First, the notation is introduced. Note however that
the notation will be re-used for the 2D case in the next Section.
Given a signal x of length N we denote its discrete Fourier
transform as x̂. A signal is considered to be k-sparse if there
are only k non-zero components in x̂. Furthermore we define
! = e�2⇡ı/N .

The key idea of the sFFT algorithm is to hash the k
coefficients into few buckets in sublinear time. This is achieved
by using a carefully designed filter that is concentrated in time
as well as in the frequency domain. Due to the sparsity of
the signal and the careful selection of the number of bins,
each bin is likely to only contain one coefficient. After the
coefficients of each bin are obtained the actual positions in the
frequency domain are recovered by locating and estimating.
The algorithm does this hashing twice and “encodes” the fre-
quency of the coefficient into the phase difference between the
two hashed coefficients. This technique achieves the locating
part of the algorithm by decoding the phase and obtaining
the frequency. Before the coefficients are hashed into buckets,
the procedure (HASHTOBINS) permutes the signal x in the
time domain by applying the permutation operator P which
is defined as

(P
�,a,b

x)
i

= x
�(i�a)!

�bi, (1)

where the parameter b is uniformly random between 1 and N ,
� is uniformly random odd between 1 and N , and a is 0 for
one hashing operation and 1 for the other. With the use of
some basic properties of the Fourier transform the following
can be proved (page 5 of [1]):

÷P
�,a,b

x
�(i�b) = x̂

i

!a�i. (2)

Informally, this equation states the following: A permutation,
defined by equidistant subsampling in the time domain in
addition to a linear phase, results in a permutation in the fre-
quency domain with a linear phase. By carefully choosing the
parameters of (2) it is possible to design the permutation such
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that the phase difference between the two hashed coefficients
is linear in frequency which can then be recovered.

The previous paragraph describes the key ideas of one
iteration of the algorithm. A high level overview which was
taken from [1] is the following:

• HASHTOBINS permutes the spectrum of ’x� z, then
hashes to B bins. Where z is the already recovered signal
which is initially all zero.

• NOISELESSSPARSEFFTINNER runs HASHTOBINS
twice and estimates and locates “most” of ’x� z’s
coefficients.

• NOISELESSSPARSEFFT iterates NOISELESSSPARSE-
FFTINNER until it finds x̂ exactly.

NOISELESSSPARSEFFTINNER generates the random param-
eters for the permutation (among others) and passes it to
HASHTOBINS. The permutations are P

�,0,b for the first call of
HASHTOBINS and P

�,1,b for the second call respectively. The
number of bins is denoted by B and gradually reduced with
each call of NOISELESSSPARSEFFTINNER. HASHTOBINS
performs an FFT on B samples and thus has a complexity
of O(B logB). By carefully reducing B per iteration the 1D
sFFT algorithm runs in time O(k logN). Again, see [1] for a
detailed descriptions of the 1D sFFT algorithm.

III. EXTENSION TO 2D
For simplicity we will reuse the symbols and redefine the

notation for the two dimensional case. Let x be an NxN signal
with sparsity k, and the number of bins be BxB. It is intuitive
to extend the filtering and permutation to two dimensions.
However, the fact that the phase difference between the two
hashes is always a one dimensional entity even in a 2D sample
poses a problem. To be able to recover the frequencies in both
dimensions it is necessary to hash a total of three times and
encode one dimension in the second and the other dimension
in the third call of HASHTOBINS. This allows to locate the
coefficient in two dimensions. Additionally it is necessary to
extend the permutation to 2D which is done with the following
definition:

(P
�

x

,�

y

,⌧

x

,⌧

y

,a

x

,a

y

,b

x

,b

y

x)
i

x

,i

y

= x
�

x

i

x

+a

x

+⌧

x

i

y

,�

y

i

y

+a

y

+⌧

y

i

x

!�(b
x

�

x

i

x

+b

y

�

y

i

y

). (3)

Note that, in addition to extending the permutation to two
dimensions a new parameter ⌧ was introduced to allow more
powerful permutations. A similar equation as (2), which pro-
vides a relationship between the time and frequency domain,
can be obtained for the 2D case:

⁄�
(P

�,⌧,a,bx)
�

x

(i
x

�b

x

)+⌧

x

i

y

,�

y

(i
y

�b

y

)+⌧

y

i

x

= x̂
i

x

,i

y

!a

x

�

x

i

x!a

y

�

y

i

y . (4)

For the proposed algorithm the high level overview is sim-
ilar to that previously introduced in Section II. The main dif-
ference is within the function NOISELESSSPARSEFFTINNER
which needs to properly select the parameters �

x

,�
y

, ⌧
x

, ⌧
y

,
b
x

, b
y

and a
x

, a
y

. For the three calls of HASHTOBINS, a
x

, a
y

are selected as follows:

Fig. 1. Graphical depiction of the steps performed in HASHTOBINS. The
original spectrum (1) has only three non-zero coefficients (k = 3) which
are then permuted (2) and convolved with the low pass filter (3). Note that
only two coefficients are hashed (4) and the third (a) is missed. There is
no collisions in this particular example which could occur if the spectrum
overlaps with neighboring coefficients and the area is hashed.

1) a
x

= 0, a
y

= 0

2) a
x

= 1, a
y

= 0

3) a
x

= 0, a
y

= 1.
This approach encodes the frequency of the first dimension in
the phase difference of the first and second hashed coefficients
and the frequency of the second dimension in the phase
difference between the first and third hashed coefficient, re-
spectively. In order to allow the reconstruction of the frequency
by inverting the applied permutation, the parameter � needs to
be carefully chosen. In the one dimensional case the constraint
for the parameter � was for it to be odd. For the two
dimensional case the following conditions are to be met:

�
x

odd,�
y

odd, ⌧
x

even, ⌧
y

even

or
�
x

even,�
y

even, ⌧
x

odd, ⌧
y

odd.

These constraints ensure that the permutation applied in
HASHTOBINS is reversible which is necessary to decode the
frequencies in NOISELESSSPARSEFFTINNER.

The newly proposed algorithm has similar parameters as
the 1D algorithm. Though, at certain locations the parameters
need to be changed two accommodate for two dimensions
or extended to two dimensions. An example is the number
of bins B which changes to B2. Since the total number of
non-zero efficient is still k, the parameter k occurring in
NOISELESSSPARSEFFT is changed to

p
k.

The new procedure NOISELESSSPARSEFFTINNER gener-
ates the random parameters according to the constraints laid
out above and calls HASHTOBINS three times after which
the frequency locations can be recovered and w

i

x

,i

y

= v is
performed for “most” of ’x� z where i

x

and i
y

are extracted
from a combination of the three hashed coefficient and v
is taken from the first hash as in the one dimensional case.
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Fig. 1 depicts the concept of hashing the coefficients in two
dimension.

The proposed algorithm uses the same filter as that intro-
duced in [1] and extends it to two dimensions which is straight
forward and is not discussed here.

IV. OPTIMAL PARAMETER SELECTION

In [1], the authors only considered signals with random
spectra. That is, spectra where the k non-zero coefficients
have no structure. Often, however, signals encountered in real
world applications are structured. For instance, audio signals
often carry their majority of energy in harmonic frequencies.
Additionally, an image often contains most of its energy in
low frequency coefficients around the origin. This structure of
Fourier coefficients is the foundation of signal compression
where only the major coefficients are kept and low energy
coefficients are discarded [7]. In many signal processing
applications a randomized algorithm works extremely well
[8]. Often, however, it is beneficial to exploit the inherent
structure to obtain a better performing algorithm. In the
proposed algorithm, if the parameters are chosen randomly,
the performance can possibly be very poor which can be seen
in Fig. 3.

In particular, in the 1D algorithm of [1] the parameters � and
b are chosen randomly as described after (1). In our proposed
algorithm the parameters that need special attention are �

x

,�
y

and ⌧
x

, ⌧
y

. For the remaining of this paper we will assume
that we deal with two dimensional data whose spectrum is
concentrated around the origin.

The 2D permutation defined in (3) essentially performs a
linear mapping of the following form:

Ç
i0
x

i0
y

å
7!
Ç
�
x

i
x

+ ⌧
x

i
y

�
y

i
y

+ ⌧
y

i
x

å
(5)

In this form it is easy to see that � and ⌧ can be interpreted
as scaling and shearing parameters. In particular the scaling
is linear in �

x

and �
y

and the shear is linear in S
x

= ⌧
x

/�
x

and S
y

= ⌧
y

/�
y

.
In order to optimize the parameters it is important to know

that the low pass filter that is used in the algorithm has
an approximately rectangular shape. It is also necessary to
understand the inner workings of HASHTOBINS:

First, the spectrum is permuted using the permutation in
(3). Note that, if the permutation maps coefficients outside of
the valid range of 1 to N , the number is automatically taken
modulo N as the discrete Fourier transform is periodic with
N . Next the permuted spectrum is convolved with the nearly
rectangular two dimensional filter. Eventually the hashes are
obtained by evenly subsampling the spectrum. It is important
to note, that if the permuted samples are too close together
the hashed coefficients can be errornous due to colliding filter
windows after the convolution was applied.

Taking the above into consideration it is straight forward to
see how the parameters � and ⌧ can be optimized such that
the number of collisions are minimized:

Fig. 2. A 3% sparse spectrum of a 2D Wafer. Note the coefficients are
concentrated around the center and principal axes
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Fig. 3. Histogram of 7920 simulation of a 16384x16384 pixel Wafer with
scale parameter S range from 3 to 4201

The first step is to minimize the number of parameters and
to set the scale C = �

x

= �
y

due to the fact that most
natural occurring images have similar spectral characteristics
along each dimension. An example spectrum is depicted in
Fig. 2. Note that the coefficients are concentrated around the
center and the principal axes. Secondly, the shear S

x

and
S
y

are set such that S
x

⇡ 1 and S
y

⇡ �1 which can
be achieved by setting ⌧

x

= �
x

� 1 and ⌧
y

= �⌧
x

. This
results in an approximately 45

� rotation around the origin.
This shear is crucial in achieving a low collision rate, as the
coefficients along the principal axes would collide with each
other without the shear. Furthermore, it is important to choose
the scale parameter C carefully. Figure 3 depicts a histogram
of a series of simulations where the scale S was swept from
3 to N/2. Note that, the PSNR can possibly be very poor
if the scale parameter were to be chosen randomly. Instead,
our proposed algorithm chooses the scale as S⇤

= N/B � 1

which more consistently results in a good performance in
regards to PSNR. The scale S⇤ is chosen because each bin
contains N/B samples and so that it is likely that only one
coefficient falls into one bucket since the original coefficients
are concentrated prior to the application of the permutation
which in turn minimized collisions after the permutation.
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Fig. 4. A cropped 800x800px segment of a “reconstructed” 16384x16384px
image of a Wafer. Input was 2% sparse.

Fig. 5. Top: A 512x512 crop of a 2048x2048 image with a sparsity of
2%. Bottom: Image after running the proposed sFFT algorithm. The PSNR
is 23.3dB when compared to the original sparse image.

V. SIMULATION RESULTS

We implemented the proposed algorithm in MATLAB and
therefore only simulated the algorithm itself rather than im-
plementing it in C/C++ and measuring real world speedup.

Hence, no actual performance comparisons to a C/C++-
implementation (such as FFTW) were carried out and the
input signal size was limited to 32768

2 due to memory
constraints. In order to compare the performance of different
parameters, simulations terminated after one outer iteration of
the algorithm. An example “reconstructed” image of a Wafer is
depicted in Fig. 4. In this case, the Wafer image was sparsified
to 3% of the coefficients and then the proposed algorithm was
run on the sparse signal.

Figure 5 depicts a 512x512 crop of a 2048x2048 black
and white image. The resulting bottom image shows that the
proposed 2D sFFT algorithm successfully computed the sparse
FFT. First, the original image was loaded, sparsified and then
transformed to the spatial domain. This is the top image of
Fig. 5. Then the 2D sFFT algorithm was applied to that image
followed by an inverse FFT. This is the bottom image which
has a PSNR of 23.3dB.

VI. CONCLUSION

In this paper a new sparse 2D Fourier transform algorithm
was introduced. The proposed algorithm is based on the very
efficient sFFT algorithm of [1]. The extension to 2D was done
by hashing the coefficients into two dimensional buckets and
decoding both frequencies from only three hashes. We showed
that it is crucial to pay special attention to the parameters �
and ⌧ of the newly introduced permutation, especially when
dealing with natural images which usually have the main
coefficients around the origin. The result is an algorithm with
a time complexity of O(k log(N/k) log2 N) which is similar
to the one dimensional algorithm of [1]. Even though, we
only considered the optimization of the parameters of the
2D algorithm, the findings can be also be applied to the 1D
algorithm when dealing with structured signals such as natural
speech.
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Abstract—The problem of phase retrieval, namely, recovery
of a signal from the magnitude of its Fourier transform is ill-
posed since the Fourier phase information is lost. Therefore, prior
information on the signal is needed in order to recover it. In
this work we consider the case in which the prior information
on the signal is that it is sparse, i.e., it consists of a small
number of nonzero elements. We propose GESPAR: A fast local
search method for recovering a sparse signal from measurements
of its Fourier transform magnitude. Our algorithm does not
require matrix lifting, unlike previous approaches, and therefore
is potentially suitable for large scale problems such as images.
Simulation results indicate that the proposed algorithm is fast
and more accurate than existing techniques. We demonstrate
applications in optics where GESPAR is generalized and used
for finding sparse solutions to sets of quadratic measurements.

I. INTRODUCTION

Recovery of a signal from the magnitude of its Fourier
transform, also known as phase retrieval, is of great interest in
applications such as optical imaging [1], crystallography [2],
and more [3]. Due to the loss of Fourier phase information, the
problem (in 1D) is generally ill-posed. A common approach
to overcome this ill-posedeness is to exploit prior information
on the signal. A variety of methods have been developed that
use such prior information, which may be the signal’s support,
non-negativity, or the signal’s magnitude [4], [5]. A popular
class of algorithms is based on the use of alternate projections
between the different constraints. In order to increase the
probability of correct recovery, these methods require the prior
information to be very precise, for example, exact/or “almost”
exact knowledge of the support set. Since the projections
are generally not onto convex sets, convergence to a correct
recovery is not guaranteed [6]. A more recent approach is
to use matrix-lifting of the problem which allows to recast
phase retrieval as a semi-definite programming (SDP) problem
[7]. The algorithm developed in [7] does not require prior
information about the signal but instead uses multiple signal
measurements (e.g., using different illumination settings, in an
optical setup).

In order to obtain more robust recovery without requiring
multiple measurements, we develop a method that exploits
signal sparsity. Existing approaches aimed at recovering sparse
signals from their Fourier magnitude belong to two main
categories: SDP-based techniques [8],[9],[10] and algorithms

that use alternate projections (Fienup-type methods) [11].
Phase retrieval of sparse signals can be viewed as a special
case of the more general quadratic compressed sensing (QCS)
problem considered in [8]. Specifically, QCS treats recovery
of sparse vectors from quadratic measurements of the form
y

i

= x

T

A

i

x, i = 1, . . . , N , where x is the unknown sparse
vector to be recovered, y

i

are the measurements, and A

i

are
known matrices. In (discrete) phase retrieval, A = F

T

i

F

i

where F
i

is the ith row of the discrete Fourier transform (DFT)
matrix.

A general approach to QCS was developed in [8] , in
the context of partially incoherent imaging, based on ma-
trix lifting. More specifically, the quadratic constraints where
lifted to a higher dimension by defining a matrix variable
X = xx

T . The problem was then recast as an SDP involving
minimization of the rank of the lifted matrix subject to the
recovery constraints as well as row sparsity constraints on X.
An iterative thresholding algorithm based on a sequence of
SDPs was then proposed to recover a sparse solution. Similar
SDP-based ideas were recently used in the context of phase
retrieval [9],[10]. However, due to the increase in dimension
created by the matrix lifting procedure, the SDP approach is
not suitable for large-scale problems.

Another approach for phase retrieval of sparse signals is
adding a sparsity constraint to the well-known iterative error
reduction algorithm of Fienup [11]. In general, Fienup-type
approaches are known to suffer from convergence issues
and often do not lead to correct recovery especially in 1D
problems; simulation results show that even with the additional
information that the input is sparse, convergence is still prob-
lematic and the algorithm often recovers erroneous solutions.

In this paper we propose an efficient method for phase
retrieval which also leads to good recovery performance. Our
algorithm is based on a fast 2-opt local search method (see
[12] for an excellent introduction to such techniques) applied
to a sparsity constrained non-linear optimization formulation
of the problem. We refer to our algorithm as GESPAR: GrEedy
Sparse PhAse Retrieval. Sparsity constrained nonlinear opti-
mization problems have been considered recently in [13]; the
method derived in this paper is motivated – although different
in many aspects – by the local search-type techniques of
[13]. We demonstrate through numerical simulations that the
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proposed algorithm is both efficient and more accurate than
current techniques, and we present an example application in
optical imaging where a modified version of GESPAR is used.

II. PROBLEM FORMULATION

We are given a vector of measurements y 2 RN , that
corresponds to the magnitude of an N point discrete Fourier
transform of a vector x 2 RN , i.e.:

y

l

=

�����

nX

m=1

x

m

e

� 2⇡j(m�1)(l�1)
N

����� , l = 1, . . . , N, (1)

where x was constructed by zeros padding of a vector x̄ 2
Rn (n < N) with elements x

i

, i = 1, 2, . . . , n. In the
simulations section we considered the setting N = 2n which
corresponds to oversampling the DFT of x̄ by a factor of 2.
In any case, we will assume that N � 2n � 1. This allows
to determine the correlation sequence of x from the given
measurements, as we elaborate on more below. Denoting by
F 2 CN⇥N the DFT matrix with elements e�

2⇡j(m�1)(l�1)
N , we

can express y as y = |Fx|, where |·| denotes the element-wise
absolute value. The vector x is known to be s-sparse on its
support, i.e., it contains at most s nonzero elements in the first
n elements. Our goal is to recover x given the measurements
y and the sparsity level s.

The mathematical formulation of the problem that we con-
sider consists of minimizing the sum of squared errors subject
to the sparsity constraint:

min
x

P
N

i=1

(|F
i

x|2 � y

2

i

)2

s.t. kxk
0

 s,

supp(x) ✓ {1, 2, . . . , n},
x 2 RN

,

(2)

where F

i

is the ith row of the matrix F, k · k
0

stands for
the zero-“norm”, that is, the number of nonzero elements.
Note that the unknown vector x can only be found up to
trivial degeneracies that are the result of the loss of Fourier
phase information: circular shift, global phase, and signal
“mirroring”.

To aid in solving the phase retrieval problem we will rely
on the fact that the correlation sequence of x̄ (the first n

components of x) can be determined from y. Specifically, let
g

m

=
P

n

i=1

x

i

x

i+m

,m = �(n � 1), . . . , n � 1 denote the
correlation sequence. Note that {g

m

} is a sequence of length
2n � 1. Since the DFT length N satisfies N � 2n � 1, we
can obtain {g

m

} by the inverse DFT of the squared Fourier
magnitude y. Throughout the paper, we assume that no support
cancellations occur in {g

m

}, namely, if x
i

6= 0 and x

j

6= 0 for
some i, j, then g|i�j| 6= 0. When the values of x are random,
this is true with probability 1. This fact is used in the proposed
algorithm in order to obtain information on the support of x.

The information on the support is used to derive two sets, J
1

and J

2

from the correlation sequence {g
m

} in the following
manner. Let J

1

be the set of indices known in advance to

be in the support, from the autocorrelation sequence. In the
noiseless setting which we consider, J

1

comprises two indices:

J

1

= {1, i
max

}.

Due to the existing degree of freedom relating to shift-
invariance of x, the index 1 can be assumed to be in the
support, thereby removing this degree of freedom; as a conse-
quence, the index corresponding to the last nonzero element
in the autocorrelation sequence is also in the support, i.e.

i

max

= 1 + argmax
i

{i : g
i

6= 0}.

We denote by J

2

the set of indices that are candidates for
being in the support, meaning the indices that are not known
in advance to be in the off-support (the complement of the
support). In other words, J

2

contains the set of all indices
k 2 {1, 2, . . . , n} such that g

k�1

6= 0. Obviously, since we
assume that x

k

= 0 for k > n, we have J

2

✓ {1, 2, . . . , n}.
Defining A

i

= <(F
i

)T<(F
i

) + =(F
i

)T=(F
i

) 2 RN⇥N and
c

i

= y

2

i

for i = 1, 2, . . . , N , problem (2) along with the
support information can be written as

min
x

f(x) ⌘
P

N

i=1

(xT

A

i

x� c

i

)2

s.t. kxk
0

 s,

J

1

✓ supp(x) ✓ J

2

,

x 2 RN

,

(3)

which will be the formulation to be studied.
In the next section, we propose an iterative local-search

based algorithm for solving (3). We note that although in
the context of phase retrieval the parameters A

i

, J

1

, J

2

have
special properties (e.g., A

i

is positive semidefinite of at most
rank 2, |J

1

| = 2), we will not use these properties in
the proposed method. Therefore, our approach is capable of
handling general instances of (3) with the sole assumption that
A

i

is symmetric for any i = 1, 2, . . . , N .

III. GREEDY SPARSE PHASE RETRIEVAL (GESPAR)
ALGORITHM

In this section GESPAR is summarized. A more detailed
description can be found in [14].

A. The Damped Gauss-Newton Method

Before describing the algorithm, we begin by presenting the
damped Gauss-Newton (DGN) method [15],[16] that is in fact
the core step of our approach. The DGN method is invoked
in order to solve the problem of minimizing the objective
function f over a given support S ✓ {1, 2, . . . , n} (|S| = s):

min{f(U
S

z) : z 2 Rs}, (4)

where U

S

2 Rn⇥s is the matrix consisting of the columns of
the identity matrix I

N

corresponding to the index set S. With
this notation, (4) can be explicitly written as

min

(
g(z) ⌘

NX

i=1

(zTUT

S

A

i

U

S

z� c

i

)2 : z 2 Rs

)
. (5)
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Problem (5) is a nonlinear least-squares problem. A natural
approach for tackling it is via the DGN iterations. This
algorithm begins with an arbitrary vector z

0

. We choose it
to be an uncorrelated random Gaussian vector with zero mean
and unit variance. At each iteration, all the terms inside the
squares in g(z) are linearized around the previous guess.
The linearized term is then minimized to determine the next
approximation of the solution. Specifically, at each step we
pick y

k

to be the solution of

argmin
y

n

PN
i=1(z

T
k�1Bizk�1 � ci + 2(Bizk�1)

T (y � zk�1))
2
o

,

where B

i

= U

T

S

A

i

U

S

. This can be written as the linear least
squares problem

y

k

= argmin kMy � bk2
2

(6)

with the ith row of M being M

i

= 2(B
i

z

k�1

)T , and with
b

i

= c

i

+ z

T

k�1

B

i

z

k�1

for i = 1, 2, . . . , N . The solution y

k

can therefore be calculated explicitly by the pseudo-inverse
of M, i.e. y

k

= (MT

M)�1

M

T

b. We then define a direction
vector as d

k

= y

k

�z

k�1

. This direction is used to update the
solution with an appropriate stepsize designed to guarantee
the convergence of the method to a stationary point of g(z).
The stepsize is chosen via a simple backtracking procedure.

B. The 2-opt Local Search Method

The GESPAR method consists of repeatedly invoking a
local-search method on an initial random support set. In
this section we describe the local search procedure. At the
beginning, the support is chosen to be a set of s random indices
chosen to satisfy the support constraints J

1

✓ S ✓ J

2

. Then,
at each iteration a swap between a support and an off-support
index is performed such that the resulting solution via the
DGN method improves the objective function. Since at each
iteration only two elements are changed (one in the support
and one in the off-support), this is a so-called “2-opt” method
(see [12]). The swaps are always chosen to be between support
indices corresponding to components in the current iterate with
small absolute value and off-support indices corresponding
to large absolute value of rf . This process continues as
long as the objective function decreases and stops when no
improvement can be made.

C. The GESPAR Algorithm

The 2-opt method can have the tendency to get stuck at local
optima points. Therefore, our final algorithm, which we call
GESPAR, is a restarted version of 2-opt. The 2-opt method
is repeatedly invoked with different initial random support
sets until the resulting objective function value is smaller
than a certain threshold (success) or the number of maximum
allowed total number of swaps was passed (failure). A detailed
description of the method is given in Algorithm 1. One
element of our specific implementation that is not described
in Algorithm 1 is the incorporation of random weights added
to the objective function, giving randomly different weights to
the different measurements.

Algorithm 1 GESPAR
Input: (A

i

, c

i

, ⌧, ITER).
A

i

2 RN⇥n

, i = 1, 2, . . . , N - symmetric matrices.
c

i

2 R, i = 1, 2, . . . , N.

⌧ - threshold parameter.
ITER - Maximum allowed total number of swaps.

Output: x - an optimal (or suboptimal) solution of (3).

Initialization. Set C = 0, k = 0.

• Repeat
Invoke the 2-opt method with input (A

i

, c

i

, 4, 8) and
obtain an output x and T . Set x

k

= x, C = C + T

and advance k: k  k + 1.
Until f(x) < ⌧ or C > ITER.

• The output is x

`

where ` = argmin
m=0,1,...,k�1

f(x
m

).

IV. NUMERICAL SIMULATION

In order to demonstrate the performance of GESPAR, we
conducted a numerical simulation. The algorithm is evaluated
both in terms of signal-recovery accuracy and in terms of
computational efficiency.

A. Simulation details

We choose x̄ as a random vector of length n. The vector
contains uniformly distributed values in s randomly chosen
elements. The N point DFT of the signal is calculated, and
its magnitude is taken as y, the vector of measurements. The
2n� 1 point correlation is also calculated. In order to recover
the unknown vector x, the GESPAR algorithm is used with
⌧ = 10�4 and T = 20000, as well as two other algorithms for
comparison purposes: An SDP based algorithm (Algorithm
2, [9].), and an iterative Fienup algorithm with a sparsity
constraint [11]. In our simulation n = 64 and N = 128.

B. Simulation Results

Signal recovery results of the numerical simulation are
shown in Fig. 1, where the probability for successful recovery
is plotted for different sparsity levels. Successful recovery
probability is defined as the ratio of correctly recovered signals
x out of 100 signal-simulations. In each simulation both the
support and the signal values are randomly selected. The three
algorithms (GESPAR, SDP and Sparse-Fienup) are compared.
The results clearly show that GESPAR outperforms the other
algorithms in terms of probability of successful recovery - over
90% successful recovery up to s = 15, vs. s = 8 and s = 5
in the other two algorithms.

The average runtime performance of the three algorithms
was also compared for several sparsity levels (s = 3, 5, 8), and
the results are shown in table I. GESPAR is shown to perform
much faster than the SDP based method, and comparable in
time to the Sparse-Fienup method, while outperforming both
in terms of signal recovery.
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Fig. 1. Recovery probability vs. sparsity (s)

TABLE I
RUNTIME COMPARISON

SDP Sparse-Fienup GESPAR
s = 3 1.32 sec 0.09 sec 0.12 sec
s = 5 1.78 sec 0.12 sec 0.12 sec
s = 8 3.85 sec 0.50 sec 0.23 sec

V. APPLICATIONS IN OPTICS

As an example of one of the recent applications of GESPAR in
optical problems, where it is modified to handle more general
quadratic problems, we present Coherent Diffractive Imaging
(CDI) for sparsely varying objects. CDI [17] is an imaging
method used usually in the x-ray domain, where a small
object is illuminated by a coherent plane wave, and the far-
field diffraction intensity pattern is measured. The measured
intensity corresponds to the 2D Fourier transform of the object.
Discretization of the problem followed by appropriate scaling
of coordinates yields: y

i

= x

T

A

i

x, i = 1, . . . , N , where y

i

are the far-field intensity measurements, x is the object to be
recovered, and as before - A

i

= F

T

i

F

i

. We shall now focus
on an example where a dynamic scene is being imaged - e.g. a
moving object - so that sequential intensity patterns are being
captured at a certain frame rate. If the difference in the object
between the consecutive frames �

k

= x

k

� x

k�1

is sparse
(even if the object itself is not) - then recovering the frame
difference becomes the problem of finding a sparse solution
�

k

to y

i

k

= (x
k�1

+�
k

)TAi(x
k�1

+�
k

). Given The result
of the previous frame x

k�1

,this is a quadratic problem in �
k

,
and a modified version of GESPAR is used to solve it. An
example recovery is shown in Figure 2- where a comparison
to standard frame by frame Fienup HIO [4] recovery without
using sparsity is made. In this example there is added noise
(SNR=30) and the first frame is assumed to be known (e.g.
y

0

is measured with a sufficient number of measurements).

VI. CONCLUSION

We proposed and demonstrated GESPAR - a fast algorithm
to recover a sparse vector from its Fourier magnitude. We
showed via simulations that GESPAR outperforms alternative

Fig. 2. Sparsely varying CDI example - True object (Left) is being recovered
from noisy Fourier magnitude (SNR=30), using sparsity of frame differences
(GESPAR - center) and without (Fienup HIO algorithm - right).

approaches suggested for this problem. The algorithm does not
require matrix-lifting, and therefore is potentially suitable for
large scale problems such as 2D images, and we demonstrate
its application for a more general quadratic imaging problem.
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Abstract—We demonstrate that the phase of complex linear

measurements of signals preserves significant information about

the angles between those signals. We provide stable angle

embedding guarantees, akin to the restricted isometry property

in classical compressive sensing, that characterize how well the

angle information is preserved. They also suggest that a number

of measurements linear in the sparsity and logarithmic in the

dimensionality of the signal contains sufficient information to

acquire and reconstruct a sparse signal within a positive scalar

factor. We further show that the reconstruction can be formulated

and solved using standard convex and greedy algorithms taken

directly from the CS literature. Even though the theoretical

results only provide approximate reconstruction guarantees, our

experiments suggest that exact reconstruction is possible.

I. INTRODUCTION

The advent of compressive sensing (CS) has significantly
improved our ability to sense a variety of signals. Classical
CS theory reveals that it is possible to acquire signals at a
rate dictated by the complexity of the signal model, rather
than the signal dimensionality [1]–[3]. The acquisition is
performed using incoherent measurements that preserve all the
information in the signal. The signal is recovered from those
measurements by exploiting a signal model such as sparsity.
Computation—increasingly available thanks to Moore’s law—
plays an important role in this recovery. Thus it is possible
to simplify sensing systems in a number of applications and
substitute inexpensive computational complexity in place of
frequently expensive sampling complexity.

In this paper we explore how compressive sensing can be
used to reconstruct signals from phase-only measurements.
Specifically, we demonstrate that the phase of linear complex
measurements preserves information about angles of signals.
This information can be sufficient to reconstruct the signal
within a positive scaling factor. We further show that the
measurements contain sufficient information to formulate a
convex program or a greedy algorithm to recover the signal.

In many ways, this paper extends earlier work on 1-bit CS,
in which a signal is acquired by quantizing the measurements
to 1-bit per measurement, i.e. only preserving their signs [4]–
[6]. Similar to phase measurements, this operation preserves
the angles of signals but not amplitude information. Thus, the
signal can only be reconstructed within a scaling factor and
only approximated since the measurements are quantized. This
paper extends 1-bit CS in the same way that phase/magnitude

representations of complex numbers extend sign/magnitude
representations of a real numbers.

This work also extends earlier results on the importance
of phase information in recovering signals, with a number of
practical applications [7]–[10]. In summary, the phase of a
fully sampled Fourier transform of a signal contains, under a
variety of conditions, sufficient information to uniquely specify
the signal and enable its reconstruction within a scaling factor.
Our results exploit sparse signal models to reduce the number
of phase measurements required. In that sense they transfer
classical CS results to phase measurements. While we establish
the results using random matrices with i.i.d. normal entries, we
conjecture that a large variety of distributions could be used,
including subsampled Fourier transforms. Note that quantizing
the phase, explored in [11], provides an alternative quantized
representation to quantizing the linear measurements.

In the next section we provide a brief background on CS
and 1-bit CS, which also partly serves to establish notation.
Section III describes the problem, discusses the embedding
properties of phase-only measurements and explores how to
reconstruct the measured signal. Section IV provides exper-
imental results, validating our approach. Finally, Section V
provides some discussion and concludes.

II. BACKGROUND

A. Compressive Sensing

Classical, by now, results in CS have established that it
is possible to measure and successfully reconstruct a signal
sparse in some basis using a number of linear measurements
which is approximately proportional to the small number of
non-zero components of the signal in that basis [1]–[3]. This
acquisition can be expressed as the linear system

y = Ax, (1)

where x 2 RN denotes the sparse signal, y 2 RM denotes the
measured data, A 2 RM⇥N denotes the measurement matrix
representing the linear system, and M and N denote the di-
mensionality of the data and the acquired signal, respectively.
The sparsity of x, i.e., the number of non-zero coefficients, is
denoted using K. We assume, without loss of generality, that
the signal is sparse in the canonical basis.

A sufficient condition to recover the signal from the mea-
surements, is the Restricted Isometry Property (RIP). The
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matrix A satisfies the RIP of order K, with RIP constant �K
if for all K-sparse vectors x:

(1� �K)kxk
2

 kAxk
2

 (1 + �K)kxk
2

, (2)

i.e., approximately preserves the norm of all K-sparse vectors.
Thus, a matrix satisfying the RIP of order 2K describes an
embedding of K-sparse vectors in N dimensions into an M -
dimensional space. This embedding preserves the `

2

distance.
If the RIP of order 2K holds with a small RIP constant, the

signal can be exactly recovered using the convex program

b

x = argmin

x

kxk
1

s.t. y = Ax, (3)

or one of many available greedy algorithms [1], [12]–[16].
Variations of this program, as well as the recovery guarantees
have also been developed for a variety of measurement noise
conditions and relaxations of the strict sparsity requirement.

The RIP has been established for a variety of matrix
classes. With high probability, a properly scaled random matrix
with entries generated from an i.i.d. normal or subgaussian
distribution satisfies the RIP as long as M = O(K logN).
Similar results have been shown for other matrices, such as
ones generated by randomly selecting rows of a DFT matrix.

B. 1-bit Compressive Sensing
Practical acquisition systems quantize their measurements.

1-bit CS examines extreme quantization to one bit per mea-
surement, i.e., preserving only the sign of each measurement:

y = sign(Ax), (4)

where sign(·) is applied element-wise to its argument. Since
sign(Ax) = sign(Acx) for all c > 0, 1-bit CS acquisition
eliminates amplitude information about the signal. Thus, we
can only hope to recover the signal within a scaling factor.
Furthermore, the solution of an `

1

minimization program
similar to (3) degenerates to a zero x. Some way to enforce a
norm constrain is necessary [4].

The constraint proposed originally, kxk
2

= 1, leads to non-
convex program, difficult to analyze and provide guarantees
for. More recently, [17] showed that a convex program can be
formulated if we exploit the fact that the sign measurements of
the signal reveal the hyperoctant in which the measurements
lie. Thus a linear constraint can be used to enforce a non-trivial
solution, resulting to the convex program

b

x = argmin

x

kxk
1

s.t. y = sign(Ax) and y

T
(Ax) = 1. (5)

This program enforces an `
1

norm constraint by exploiting the
fact that yT

(Ax) = kAxk
1

at the correct solution.
In the context of 1-bit CS, a condition similar to the RIP

can be established, the Binary ✏-Stable Embedding (BeSE) [6].
The BeSE guarantees the correctness of a sign-consistent
reconstruction and characterizes the reconstruction error. The
BeSE is in fact an angle embedding, which preserves the
angles between signals, defined as

d\(x,x0
) =

1

⇡
arc cos

hx,x0i
kxk

2

kx0k
2

(6)

for two signals x and x

0. The angle is preserved in the
normalized Hamming distance between the measurements,
defined as dH(y,y0

) = (

P

i yi � y0i)/M , according to

d\(x,x0
)� ✏  dH(y,y0

)  d\(x,x0
) + ✏. (7)

Thus, if a signal with consistent measurements is found, i.e.,
dH = 0, it will be within angle ✏ of the measured signal.
Similar to the RIP, the BeSE holds for measurement matri-
ces with i.i.d. normal entries, although not in more general
ensembles. Furthermore, successful signal recovery from 1-
bit measurements with more general ensembles and without
requiring the BeSE has also been shown in [18].

III. PHASE-ONLY COMPRESSIVE SENSING

A. Phase-Only Signal Acquisition
In this paper we consider the following acquisition model

z = Ax, y = \(z), (8)

where x 2 RN is a real signal, A 2 CM⇥N , z represents
the linear measurement, \(·) denotes the principal angle
of a complex number, applied element-wise to each vector
coefficient, and y represents the final phase measurements.
We also use am to denote the mth row of A.

Obviously, \(Ax) = \(Acx) for any c > 0. Thus, angle
measurements are similar to sign measurements in 1-bit CS
and eliminate any norm information on x. Furthermore, if
the acquisition matrix A only contains real elements, the
information in y is essentially the sign of the measurement—
0 and ⇡ for positive and negative measurements, respectively.
In that case, the problem reverts to 1-bit CS. While complex
signals x can also be considered in this formulation, we defer
development of the theory to subsequent work.

B. Stable Angle Embedding
Similar to sign measurements, phase measurements also

provide stable embeddings. If two signals x,x0 in a finite set
W of size L are measured with a random Gaussian vector, the
expected value of the measured phase difference is equal to

E

⇢

�

�

�

�

\
✓

zm
z0m

◆

�

�

�

�

�

= E
n

�

�

�

\
⇣

ei(ym�y0
m)

⌘

�

�

�

o

= ⇡d\(x,x0
).

(9)

Hoeffding’s inequality bounds the probability that the average
of M random variables |\(ei(ym�y0

m)

)| deviates from (9). Us-
ing the union bound on L2 point pairs, a property reminiscent
of Johnson-Lindenstrauss (JL) embeddings [19] follows.

Theorem 3.1: Consider a finite set W ⇢ RN of L points
measured using (8), with A 2 CM⇥N consisting of i.i.d ele-
ments drawn from the standard complex normal distribution.
With probability greater than 1�2e2 logL�2✏2M the following
holds for all x,x0 2 S and corresponding measurements
y,y0 2 RM .

�

�

�

�

�

1

M

X

m

�

�

�

�

1

⇡
\
⇣

ei(ym�y0
m)

⌘

�

�

�

�

� d\(x,x0
)

�

�

�

�

�

 ✏ (10)

Proceedings of the 10th International Conference on Sampling Theory and Applications

257



Furthermore, the absolute value of the phase difference
�

�

�

\
⇣

ei(ym�y0
m)

⌘

�

�

�

is Lipschitz continuous with Lipschitz con-
stant equal to 1. Thus, an argument similar to [12] provides
a continuous version of the embedding guarantees, similar to
the BeSE and the RIP, which is appropriate for sparse signals.

Theorem 3.2: Consider the set SK ⇢ RN of all K-sparse
signals in RN , measured as in Thm. 3.1. Eq. (10) holds
with probability greater than 1� 2e2K log

(

12e
✏

N
K )

� ✏2M
2 , for all

x,x0 2 SK and corresponding measurements y,y0 2 RM

These theorems demonstrate that if the mean phase differ-
ence between the embedding of two signals is small, then the
angle between these signals is also very small. Their nature
is similar to the JL lemma, the RIP and the BeSE. They
suggest that, similar to classical CS, M = O(K log(N/K))

measurements are sufficient to acquire and reconstruct a signal.
The embedding guarantees can be extended to other structured
signal sets, such as unions of subspaces or manifolds, using
the Kolmogorov complexity of the set in a manner similar
to [20].

Unfortunately, the additive form of (10) does not guarantee
exact reconstruction. Even if we manage to determine a sparse
signal estimate bx that has the same embedding as the measured
signal x, Thm. 3.2 can only guarantee that we have identified
the signal within an angle ✏ from x, i.e., |d\(x, bx)|  ✏. This
behavior is similar to quantized embeddings, such as the BeSE,
rather than continuous embeddings such as the RIP. Our ex-
perimental results suggest that exact reconstruction guarantees
should be possible to derive—not necessarily provided in the
form of a stable embedding. However, we do not attempt a
proof in this paper.

C. Reconstruction

As discussed above, acquiring a signal using (8) eliminates
all information on the total magnitude of the signal. Thus,
a reconstruction algorithm, especially one based on `

1

-norm
minimization, should use a norm constraint to avoid trivial
solutions. The original 1-bit CS formulation uses kxk

2

= 1,
which seems like a natural constraint but leads to a non-
convex problem [4]. Instead, we use an approach inspired by
the convex formulation in [17].

Specifically, we use the phase of each measurement to rotate
that measurement to a positive real number. To do so, we
define a vector of unit-magnitude complex coefficients whose
phase is equal to the phase of the measurements. Abusing
notation, we denote it using eiy, i.e., (eiy)m = eiym . Since
e�iymzm = |zm|, it follows that (eiy)Hz = kzk

1

, where (·)H
denotes the Hermitian (conjugate) transpose. Thus, the convex
constraint (eiy)HAx = 1 can be used as a norm constraint to
prevent degenerate solutions.

In addition to the norm constraint, the phase measurements
of a solution should be the same as the original phase
measurements. This means that when the linear measurements
are properly rotated they should produce positive real numbers:
<{e�iymzm} � 0 and ={e�iymzm} = 0, where <{·} and
={·} denotes the real and the imaginary part, respectively.

Combining all constraints we obtain the following program:

b

x = argmin

x

kxk
0

(11)

s.t. (eiy)HAx = 1,

<
�

e�iymham,xi
 

� 0

and =
�

e�iymham,xi
 

= 0.

Of course, this `
0

minimization can exhibit combinatorial
complexity. Thus, (11) can be relaxed to the convex program:

b

x = argmin

x

kxk
1

(12)

s.t. (eiy)HAx = 1,

<
�

e�iymham,xi
 

� 0

and =
�

e�iymham,xi
 

= 0.

Alternatively we can use a greedy algorithm that attempts
to find a sparse vector satisfying the constraints. This is the
approach we follow in this work. We first define a rotated
matrix e

A such that eam = e�iym
am, i.e., such that if the

original signal was measured it would produce positive real
measurements. This means that the signal should be in the
nullspace of the imaginary part of e

A. Thus we can attempt to
use a greedy algorithm to solve the following optimization:

b

x = argmin

x

�

�

�

�

�

�

2

4

�

e�iy
�H

A

=
n

e

A

o

3

5

x�


1

0

�

�

�

�

�

�

�

2

2

(13)

s.t. kxk
0

 K

and <
�

e�iymham,xi
 

� 0.

This can be solved with straightforward modifications to
standard CS algorithms,such as CoSaMP [14], IHT [15], or
ALPS [16], to incorporate the positivity constraint on the
real part, in a manner similar to the constraints enforcing
quantization consistency in [4]–[6]. However, our experimental
results showed that the positivity constraint does not contribute
significantly to the performance of the system and can be
ignored. In this case, the program can be solved using the
existing algorithms without any modification. Since a number
of implementations of those algorithms expect real matrices
as inputs, the complex constraint (eiy)HAx = 1 can be
implemented as two real constraints <{(eiy)HA}x = 1 and
={(eiy)HA}x = 0. Similarly for the part of the cost function
enforcing that constraint in (13).

IV. EXPERIMENTAL RESULTS

To validate the theory we performed experiments in a range
of conditions. The results presented are for N = 1000 and a
variety of K and M , although different values of N exhibited
similar behavior. The experiments examined the correlation of
the recovered and the measured signals as well as the correct
support recovery. Using x and b

x to denote the measured and
recovered signals, respectively, the correlation coefficient is

⇢ =

hx, bxi
kxk

2

kbxk
2

(14)
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and is equal to 1 if and only if the signal is perfectly recovered.
Similarly, using T (·) to denote the support set, the support
recovery can be measured using the ratio

Ps =
|T (x) \ T (

b

x)|
|T (x)| . (15)

Note that although perfect signal recovery implies perfect
support recovery, the opposite is not true. The support could
be perfectly recovered without perfect signal recovery.

For reconstruction we used the very efficient ALPS al-
gorithm [16] to solve (13) without enforcing the positivity
constraint <

�

e�iymham,xi
 

� 0. The acquisition matrix
A was generated randomly with coefficients drawn from
a standard complex normal distribution. The signal x was
generated by first selecting its support set uniformly from
the

�

N
K

�

possible sets and then drawing coefficients from a
standard normal distribution. The results are averaged over
1500 trials, each with different draw of matrix and signal.

The results are illustrated in Fig. 1. The left plot shows the
average correlation as a function of the number of measure-
ments for different values of K. Similarly, the right plot shows
the fraction of support recovered as a function of the number
of measurements. As evident from the results, the recovery
performance exhibits similar behavior to classical compressive
sensing. The recovery fails if there is an insufficient number
of measurements and the performance exhibits a rapid phase
transition as the number of measurements increase. Once a
sufficient number of measurements is obtained the signal is
perfectly recovered.

V. DISCUSSION AND CONCLUSION

In summary, we demonstrated that the phase of complex
measurements contains sufficient information to fully recon-
struct a sparse signal within a scaling factor. The theory
we present demonstrates that two sparse signals with similar
measurements also have very high correlation. Unfortunately,
the stable angle embeddings we establish do not guarantee
exact reconstruction, even if the phase measurements of the re-
constructed signal are identical to those of the measured signal.
The small error ✏ characterizes the worst-case reconstruction
ambiguity. However, the experimental results suggest that
Thm. 3.2 can be tightened to guarantee exact reconstruction

We should also note that the theorem does not guarantee
that reconstruction is computationally tractable. The program
in (11) will recover the signal if A provides a stable angle
embedding. However, a stable angle embedding does not
guarantee that the relaxations in (12) and (13) also recover
the correct signal. In that sense, a stable angle embedding is
not equivalent to the RIP. The latter has a dual role: In addition
to its function as an embedding, the RIP also guarantees
that `

1

relaxation and greedy algorithms do provide an exact
solution, robust to noise and sparsity level. Whether stable
angle embeddings can provide such guarantees is still open.
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Abstract—The theory of compressed sensing studies the prob-
lem of recovering a high dimensional sparse vector from its
projections onto lower dimensional subspaces. The recently
introduced framework of infinite-dimensional compressed sensing
[1], to some extent generalizes these results to infinite-dimensional
scenarios. In particular, it is shown that the continuous-time
signals that have sparse representations in a known domain can
be recovered from random samples in a different domain. The
range M and the minimum number m of samples for perfect
recovery are limited by a balancing property of the two bases. In
this paper, by considering Fourier and Haar wavelet bases, we
experimentally show that M can be optimally tuned to minimize
the number of samples m that guarantee perfect recovery. This
study does not have any parallel in the finite-dimensional CS.

I. INTRODUCTION

Real-world signals are inherently analog or continuous-
time and we often observe them through digital measuring
devices. Imaging devices such as digital cameras and magnetic
resonance imaging (MRI) machines are well known examples
that measure light fields and brain signals, respectively. A
linear measuring process consists of sampling the signal using
certain sampling kernels. The samples of a continuous-time
signal f can be regarded as its coefficients in an infinite-
dimensional sampling domain S with a basis made of the
sampling kernels. In general, infinite number of samples is
required to precisely represent f . By adapting the sampling
kernels to a specific type of signal, it is possible to reduce the
infinite dimensional representation to a finite one. However, in
most of the acquisition devices, the sampling kernels are lim-
ited by the physics of the device, and are rarely controllable.
Therefore, it is very likely that a finite collection of samples
captured by a measuring device result in a poor approximation
of the signal.

An approach to reconstructing a satisfactory approximation
of the signal is to calculate its coefficients in another domain
R that efficiently represents the class of signals subject to
the measurement. This means that any signal f in this class
has sparse or fast decaying coefficients in R and N -term
approximations of f in R rapidly converge to the signal.
Wavelets are examples of the representation domains that pro-
vide fast converging approximations for piecewise continuous
signals with pointwise singularities. Also, piecewise smooth
images have compressible coefficients in the curvelet [2] and
contourlet [3] domains.

First introduced in [4] and further improved in [5], consis-
tent reconstruction is concerned with the problem of calculat-
ing the coefficients of a signal in a domain from its samples in
a different domain. The consistent reconstruction method uses
N samples in the sampling domain to calculate N coefficients
in the reconstruction domain. Adcock and Hansen revisited
this problem in [6], [7] and they argued that in general, N
samples may not be enough to stably find N coefficients in
R. Also, they introduced a new generalized sampling (GS)
approach to stably recover N coefficients in R from M
samples in S , where usually the stable sampling rate M is
larger than N .

With the GS framework, we can perfectly reconstruct the
signals that have sparse coefficients in a known domain R
from a finite number of samples. However, similar to the
finite-dimensional compressed sensing (CS) [8], [9], we are
interested to take advantage of the sparsity of coefficients to
reduce the number of samples. This problem can be considered
as an infinite-dimensional variant of the CS problem where
the goal is to recover a sparse vector x from linear mea-
surements y = Ux. It is shown that if the sensing matrix
U has the so-called restricted isometry property (RIP) of
order 2k, any k-sparse vector x can be uniquely recovered
from the measurements y = Um⇥nx [10]. However, verifying
the RIP condition for a matrix is computationally hard. In
[11], Candès and Romberg considered orthonormal matrices
U 2 Rn⇥n and they showed that in this case the coherence
µ(U) = maxi,j ui,j can be used to determine the subsampling
rate m.

Adcock and Hansen recently extended this idea to GS to
address infinite-dimensional compressed sensing [1]. In this
theory, a set of k-sparse coefficients in R with the support
of nonzero coefficients in {1, ..., N} are recovered with high
probability from m samples in S chosen uniformly at ran-
dom from the range {1, ..., M} by solving the basis pursuit

problem. The subsampling rate m depends on the coherence
of the underlying sensing matrix. In addition, the parameters
(N, k,M,m) should satisfy a balancing condition (refer to
II-B).

The infinite-dimensional CS developed in [1] is a promising
framework that allows us to obtain far better approximations
of signals and images. However, it is not clear in this theory
how the parameters (M, m) change with respect to (N, k)

and what are the optimum values of the sampling rate m and
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the support range M . In this paper, we study this problem.
Specifically, we study the change of m as a function of M for
some specific choices of sampling and reconstruction domains
and find the optimum values of (M, m) for given values N
and k, through the experiments.

The paper is organized as follows. In Section II, we define
the problem and briefly review GS and infinite-dimensional
CS theories. In Section III, we study the balancing condition
in infinite-dimensional CS and discuss the optimum choices of
sampling rate and support. Also, we present some experiment
results to calculate the optimum values of (M, m) for some
given pairs (N, k) when the sampling and reconstruction
kernels are Fourier exponentials and Haar wavelets. We use
the optimum values calculated in this section to recover the
sparse coefficients of different signals in Section IV. Finally,
we conclude the paper in Section V.

II. PROBLEM DESCRIPTION

Let H be a Hilbert space and S, R ✓ H represent the
sampling and reconstruction spaces with the orthonormal bases
{ j}1

j=1

and {�i}1
i=1

, respectively. Let f =

P1
i=1

↵i�i be the
signal we wish to recover and suppose that we have access to
the collection of samples

�
1

,�
2

, ... with �j = hf, ji. (1)

The problem throughout this paper is to recover the best
approximation of f in terms of {�j}1

j=1

from the samples
in (1). Equivalently, we seek the best approximation of the
coefficients ↵ = [↵

1

,↵
2

, ...]T from measurements � =

[�
1

,�
2

, ...]T = U↵, with

U =

0

B@
h�

1

, 
1

i h�
2

, 
1

i . . .
h�

1

, 
2

i h�
2

, 
2

i . . .
...

...
. . .

1

CA . (2)

A. Consistent reconstruction and generalized sampling

The consistent reconstruction of f is a point ˆf 2 R that
generates the same samples h ˆf, ji = �j , j = 1, 2, .... If we
represent the orthogonal projection of f onto S by PSf =P1

j=1

�j j , this is equivalent to

ˆf 2 R : PSf = PS ˆf. (3)

When the two subspaces satisfy R � S?
= H, equation (3)

has a unique solution that can be found by solving the infinite-
dimensional system of linear equations U↵ = � [4]. Clearly
in practice, we have access to a finite number of samples.
Therefore, we must consider truncations of this linear system
and seek the first N coefficients ↵N of ↵. This is equivalent to
looking for the N -term approximation of f in R, i.e. PRN f =PN

i=1

↵i�i.
We may think of solving this problem by taking N samples

in S and considering the consistency condition in the N -
dimensional subspace SN :

ˆf 2 RN s.t. PSN
ˆf = PSN f.

S
2

 
1

 
2

PS2(R1

)

f

R
1

ˆf
�

1 PS2f

˜f

S
1

Fig. 1. Generalized sampling reconstruction f̃ of f in R1 from samples in
S2.

The above equation has a stable solution only if

RN � S?
N = H. (4)

If we define the angle between two subspaces R, S as

cos(✓RS) = inf

r2R
krk=1

kPSrk,

then the condition in (4) is equivalent to cos(✓RNSN ) 6= 0.
In general, this condition may not hold for an arbitrary N ,
even if the infinite-dimensional spaces satisfy R � S?

= H
[6]. The generalized sampling approach to this problem is
to increase the number of samples M > N such that the
condition cos(✓RNSM ) 6= 0 is met. In this case, the projection
of RN onto SM is an N dimensional subspace PSM [RN ] =

span{PSM�i}Ni=1

. Now, we find an approximation of PRN f
by verifying the consistency condition in this subspace [7]

ˆf 2 RN s.t. PPSM
[RN ]

ˆf = PPSM
[RN ]

f. (5)

Note that PPSM
[RN ]

f = PPSM
[RN ]

PSM f can be derived from
the samples.

In Figure 1, we try to explain the GS reconstruction through
an example in R3. In this example, we find the approximation
of f in R

1

from two samples in S
2

. Note, that since R
1

is
orthogonal to S

1

= span{ 
1

}, one sample of f in S
1

is not
sufficient for the stable approximation of f in R

1

.
The solution of the GS equation in (5) is a stable approxi-

mation of f in RN and it satisfies

kf � ˆfk  1

cos(✓RNSM )

kf � PRN fk.

Also, the coefficients of ˆf can be calculated as ↵N
=

((UM,N
)

⇤UM,N
)

�1

(UM,N
)

⇤�M , where UM,N is the M ⇥N
subsection of U .

B. Infinite-dimensional compressed sensing

Now, assume that the coefficients ↵ are k-sparse with a
support � 2 {1, ..., N}. In this case, we can perfectly recover
f from equation (5). The infinite-dimensional CS approach
in [1] exploits the sparsity to reduce the number of samples.
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Fig. 2. The acceptable range of sampling rate m and sampling support M for samples in the Fourier domain and sparse coefficients in the Haar domain,
N = 200 and (a) k = 30, (b) k = 40. The blue and red plots display the minimum values of m as a function of M that are dictated by the balancing
property and the equation (7) with ✏ = 0.05, respectively. The black lines show the stable sampling rate in GS. The green regions display the acceptable
ranges of (M,m).

The price of the subsampling, however, is to trade the stable
recovery in GS with a probabilistic recovery.

Before we recall the main results in [1] for recovery of
sparse or compressible signals in R, we need to define the
balancing property.

Definition 1. Let U be the isometry matrix in (2). Then M
and m satisfy the balancing property with respect to U, N and

k if

k(UM⇥N
)

⇤UM⇥N � IN⇥Nk 
⇣
4

q
log

2

(4M
p

k/m)

⌘�1

,

k(UM⇥N
)

⇤UM⇥N � diag((UM⇥N
)

⇤UM⇥N
)kmr  1

8

p
k

,

where kUkmr denotes the maximum `2 norm of different rows

of U .

Theorem 1. Let U be an isometry matrix with the coherence

µ(U) = maxi,j |ui,j |. Let the coefficients ↵ 2 `1(N) in R
can be written as ↵ = ↵

0

+ ↵
1

with ↵
0

,↵
1

2 `1(N) and

supp(↵
0

) = � ⇢ {1, ..., N} and supp(↵
1

) = {1, ..., N}.

Also let ✏ > 0 and ⌦ ⇢ {1, ..., M} be chosen uniformly at

random with |⌦| = m. If � = U↵ and

ˆ↵ is a minimizer of

inf

⌘2`1(N)

k⌘k`1 s.t. UM⇥N
⌦

⌘N
= �

⌦

, (6)

then with probability exceeding 1 � ✏ we have

kˆ↵ � ↵k  (

20M

m
+ 11 +

m

2M
)k↵

1

k`1 ,
given that (N, |�|, M, m) satisfy the balancing property and

m satisfies

m � CMµ2

(U)|�|(log(✏�1

) + 1) log

⇣MN
p|�|
m

⌘
, (7)

for a universal constant C.

In case that ↵
1

= 0 and ↵ is a k-sparse vector with k =

|�|, the equation (6) has a unique solution that coincides with

↵ with probability greater than 1 � ✏.

III. OPTIMAL SAMPLING RATE

Theorem 1 indicates that a signal with a k-sparse represen-
tation in RN can be recovered with high probability from m
random samples in SM , if m fulfills the condition in (7) and
(N, k,M,m) satisfy the balancing property with respect to
U . The condition (7) has a simple structure and we can easily
track the change in m based on changes in M, N and k. On the
contrary, it is not clear which values of (N, k,M, m) satisfy
the balancing property with respect to a given U and how
changes in (N, k) affect the sampling rate m and sampling
support M . In other words, it is not clear what the subsampling
gain of this theory is with respect to the stable sampling rate
of GS, for a given sparsity.

In this section, we investigate the balancing property
when the underlying sampling and reconstruction domains are
formed by Fourier exponentials and Haar wavelet functions in
L2

[0, 1]. This special choice of basis functions has applications
in the MRI problem.

We use the following setup to find efficient sampling rates
for fixed pairs of N and k. First, we find all values of M in
the range {k, k+1, ..., M

max

} such that the submatrix UM⇥N

satisfies the constraint

k(UM⇥N
)

⇤UM⇥N � diag((UM⇥N
)

⇤UM⇥N
)kmr  1

8

p
k

.

The upper bound M
max

on the range of samples is usually
determined by the sampling device. We point out that in
general, the maximum row norm in the above equation does
not change monotonically with M . Thus, we should find
the acceptable values of M by checking all numbers in
{k, k + 1, ..., M

max

}.
In the next step, for each verified M , we find the minimum

m that satisfies (7) and the first constraint in Definition 1.
Finally, we accept the pair (M, m) if m < min(M, M

1

) where
M

1

denotes the stable sampling rate in GS corresponding to
N .
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Fig. 3. The acceptable range of sampling rate m and sampling support M
for samples in the Haar domain and sparse Fourier coefficients with N = 200
and k = 20.

Figures 2(a) and 2(b) display the acceptable pairs (M, m)

for N = 200, M
max

= 2000 and two different sparsity values
k = 30, 40, for sampling in Fourier and reconstruction in Haar
domains. Figure 3 depicts the same variables for k = 20,
when the sampling and sparsity domains are reversed. In
these figures, the minimum values of m as a function of
M satisfying the balancing property and the equation (7) are
indicated in blue and red, respectively. The error probability
is ✏ = 0.05. Also, the black lines display the stable sampling
rate corresponding to N = 200.

The green region in each figure shows the acceptable range
of (M, m). The optimal sampling rate is determined by the
point in this region that corresponds to the smallest m. For
instance, Figure 3 shows that a signal with 20-sparse Fourier
coefficients in the range {1, ..., 200} can be recovered with
probability greater than 0.95 from 58 samples that are chosen
uniformly at random from the first 760 coefficients in the Haar
domain. This means that we get a large subsampling gain
by solving the basis pursuit problem in equation (6). On the
contrary, Figure 2(b) illustrates that we do not get too much
subsampling gain by replacing the basis pursuit problem in (6)
with the stable reconstruction in GS for the specific values of
the parameters in this plot.

IV. NUMERICAL EXPERIMENTS

In this section, we use the optimal values of (M, m) in Fig-
ure 2(a) to recover signals having sparse representations in the
wavelet domain from randomly chosen Fourier coefficients.

In the first experiment, we consider signals of the form

f(t) =

200X

i=1

↵i�i(t),

with only 20 nonzero coefficients, where {�i(t)}i2N are Haar
wavelets on [0, 1]. In the second experiment we consider
signals of the form

f(t) =

200X

i=1

↵
0,i�i(t) +

200X

i=1

↵
1,i�i(t),

TABLE I
THE APPROXIMATION ERRORS FOR THE WAVELET COEFFICIENTS

(AVG. 100 TRIALS)

k↵� ↵̂k`1/k↵k`1 SNR
Noiseless coefficients 0.1024⇥ 10�6 104 dB

Noisy coefficients 0.7921⇥ 10�3 64.1 dB

where the coefficient vector [↵
0,1, ...,↵0,200]

T is 20-sparse and
[↵

1,1, ...,↵1,200]
T has a small `

1

norm. For each case, we take
m = 144 Fourier samples chosen uniformly from the first
1280 Fourier coefficients and we recover the signal by finding
the solution to (6). Table I summarizes the approximation
errors in the wavelet coefficients. The results in this table are
averages over 100 trials.

V. CONCLUSION

We studied the sampling problem of infinite-dimensional
signals that have sparse representations in a known domain.
We adopted the random sampling approach of compressed
sensing. Unlike the finite-dimensional case, the sampling
scheme involves a pair (M, m), where m samples are ran-
domly chosen among a size M subset of possible sampling
kernels. For a given setup, there are various pairs which
provide high probability of reconstruction. A counter intuitive
result is that the required number of samples m does not nec-
essarily decrease as M increases. We experimentally showed
that one can find the optimum M that results in the minimum
number of samples. We also observed that by swapping the
sampling and sparsity domains, the optimal sampling schemes
drastically change.
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Abstract—The modulated wideband converter (MWC) is a promising
spectrum blind, sub-Nyquist multi-channel sampling scheme for sparse
multi-band signals. In an MWC, the input analog signal is modulated by
a bank of periodic binary waveforms, low-pass filtered and then down
sampled uniformly at a low rate. One important issue in the design and
implementation of an MWC system is the selection of binary waveforms,
which impacts the stability of sparse reconstruction. In this paper, we
propose to construct the binary pattern with a circulant structure, in
which each row is a random cyclic shift of a single deterministic sequence
or a pair of complementary sequences. Such operators have hardware
friendly structures and fast computation in recovery. They are incoherent
with the FFT matrix and the corresponding sampling operators satisfy the
restricted isometry property with sub-optimal bounds. Some simulation
results are included to demonstrate the validity of the proposed sampling
operators.

I. INTRODUCTION

The modulated wideband converter (MWC) proposed by Mishali
and Eldar [1], [2] is a multi-channel, uniform sub-Nyquist sampling
system for sparse multi-band signals. It holds great potential in
applications such as communications, radar and sonar. Consider an
analog signal x(t) whose Fourier transform X(f) is bandlimited inh
� fNY Q

2

,

fNY Q

2

i
Hz. Assume that x(t) has only K active disjoint

frequency bands, each of which has a maximum bandwidth of B

Hz. x(t) is said to be a sparse multi-band signal if KB ⌧ fNY Q.
Figure 1 shows the implementation diagram of an m-channel MWC.
In each channel, the input signal is first modulated by a periodic
waveform pi(t), (i = 0, 1, · · ·m � 1), low-pass filtered by h(t)

and then decimated at the rate of 1/T to produce yi[n]. For ease
of presentation, we consider the basic configuration of an MWC in
which pi(t) is chosen as the sign alteration waveforms with period
of T [1]. Within each sampling period T , there are M intervals of
length T/M each and pi(t) takes the following form [2]

pi(t) = sik, k

T

M

 t  (k + 1)

T

M

(1)

with sik 2 {1,�1}. Reconstruction of x(t) from yi[n] (0  i 
m�1) exploits the recently emerged compressed sensing theory [3],
[4], which searches for the sparsest solution of a parameterized linear
equation. Details can be found in [5].

The selection of an m⇥M binary pattern S = {sik} (0  i  m�
1, 0  k  M � 1) is crucial to the performance of an MWC. From
the theoretical perspective, S needs to offer stable reconstruction
performance. From the implementation perspective, it is desirable that
S requires the minimal number of hardware elements with flexible
choice of m and M . In [2], S is constructed from a full random
Bernoulli operator. Although such an operator offers near optimal
theoretical guarantee, it requires mM flip-flops to implement [2]. To
simplify the design, [2] proposed a mixed scheme, in which the first
r < m rows of S are Bernoulli matrices, and the remaining rows

Fig. 1. Implementation diagram of the modulated wideband converter [2].

are cyclic shifts of them. Such a scheme needs only rM flip-flops.
However, the theoretical performance guarantee of these operators
is unknown. Besides, simulation results in [2] indicate performance
degradation when r is small. In [6], deterministic operators using
maximal, Gold and Kasami codes have been used. However, these
codes only exist when M = 2

� � 1 (� 2 Z+), which is not flexible
for practical applications.

In this paper, we propose to construct S with a circulant structure,
where each of its row is obtained by random cyclic shift of a single
sequence (e.g., the m-sequence or the Legendre sequence) or a pair of
cyclic complementary sequences. Due to their circulant structures, the
proposed binary patterns are memory efficient with simple hardware
implementation. They also offer fast calculation in reconstruction
as the matrix multiplication requires only O(M logM) operations.
Moreover, they exist for a large choice of M . It can be shown
that the corresponding sampling operator satisfies the restricted
isometry property, which guarantees stable reconstruction in sparse
optimization. Experimental results have shown that the proposed
binary patterns can offer nearly the same performance as that of the
random Bernoulli operator at much lower complexity.

The rest of the paper is organized as follows. In Section II,
we briefly review mathematical formulation of the MWC system
and related theory in compressed sensing. Section III presents our
proposed binary patterns with circulant structure using a single
sequence or a pair of complementary sequences. Their restricted
isometry properties have been analyzed. Experimental results are
shown in Section IV, followed by conclusions in Section V.

Notations: Throughout this paper, vectors are denoted by boldfaced
lowercase letters and matrices by boldfaced uppercase characters. If
their sizes are not clear from the context, subscripts are provided. For
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a matrix A, A(i, :) denotes its i-th row and Ak,l represent its (k, l)-
th element. AT and AH denote the transpose and the Hermitian
transpose of A, respectively. I is the identity matrix and FM is an
M⇥M FFT matrix with Fk,l = e

�j 2⇡kl
M . For an M⇥M matrix A,

µ(A) denotes its coherence parameter, i.e., the maximum magnitude
of its elements µ(A) = max

0k,lM�1

|Ak,l|.
II. REVIEW

Consider an m-channel MWC system in Figure 1. Let y[n] denote
the m⇥ 1 sampled vector

y[n] =
⇥
y

0

[n] y

1

[n] · · · yM�1

[n]

⇤T
.

Define y(f) as its discrete-time Fourier transform, i.e., y(f) =P1
n=�1 y[n]e�j2⇡fnT . Also, define zi(f) (i = 0, · · · ,M � 1) as

a slice of X(f) with bandwidth of 1

T

zi(f) = X(f + (i�M

0

)/T ), |f |  1

2T

in which M

0

= bM/2c. Let z(f) denote the M ⇥ 1 vector z(f) =⇥
z

0

(f) z

1

(f) · · · zM�1

(f)

⇤T , the input-output relation in an
MWC system can be written as [2]

y(f) = SF (PDz(f)) , |f |  1

2T

, (2)

where F is an M⇥M FFT matrix, P is a permutation matrix and D is
diagonal matrix which accounts for the decay of the Fourier transform
of pi(t) at high frequencies. In general, (2) is an under-determined
linear equation. But as X(f) is a multi-band sparse signal, z(f)
is a sparse vector with only K ⌧ M active elements. Based on
sparse reconstruction in compressed sensing theory [3], [4], x(t) can
be recovered from y[n] by first identifying the spectral support and
then reconstructed using a close-form expression [5].

Note that as PDz(f) is also a sparse vector with K non-zero
elements, we will only focus on the matrix product SF hereafter.
Let us consider the following simplified equation

v = SFu, (3)

in which u is an M⇥1 sparse vector with only K nonzero elements
and v is an m⇥1 vector. According to the compressed sensing theory
[3], [4], u can be reconstructed from v stably when the operator
� =

1p
mM

SF satisfies the restricted isometry property (RIP):
Definition 1 (RIP): An m⇥M matrix � with normalized columns

is said to satisfy the RIP with parameters (K, �) (� 2 (0, 1)) if [3],
[4]

(1� �)kuk2  k�uk2  (1 + �)kuk2 (4)

for all K-sparse vectors of u.
It is well known if S is a full-random Bernoulli matrix, then � =

1p
mM

SF satisfies the RIP when m � O(K log(M/K) [3], [4].
However, full random matrix incurs large memory in storage and
high cost in implementation. Another class of operators satisfying
the RIP is the randomly subsampled unitary matrix, as presented in
the following theorem [7].

Theorem 1 (RIP of a partial unitary matrix): Consider an m⇥M

matrix � =

1p
m
R

⌦

U, where 1p
m

is a normalizing coefficient, R
⌦

is
a random sampling operator which selects m samples out of M ones
uniformly at random, and U is an M ⇥M unitary matrix satisfying
U⇤U = MIM . � satisfies the RIP with high probability when [7]

M � O �
µ

2

(U)K log

4

M

�
, (5)

in which µ(U) represents the maximum magnitude of the elements
in U, i.e., µ(U) = maxk,l |Uk,l|.

Note that the unitary property of U implies that 1  µ(U)  p
M .

Hence, when µ(U) = O(1), we can get the sub-optimal bound
M � O(K log

4

M). In the next section, we will develop deter-
ministic binary sequnces for the MWC system based on the above
Theorem.

III. BINARY PATTERNS CONSTRUCTED FROM DETERMINISTIC
SEQUNCES

A. Construction from a single sequence

In this subsection, we consider S constructed from a partial
circulant matrix with the following form

S = R
⌦

C (6)

where R
⌦

is a random subsampling operator, which selects m rows
out of M ones uniformly at random. C is a circulant operator that
can be expressed as

C =

2

6664

c

0

c

1

· · · cM�1

cM�1

c

0

· · · c

1

...
...

. . .
...

c

1

a

2

· · · c

0

3

7775
, (7)

in which c =

⇥
c

0

, c

1

, · · · , cM�1

⇤
is a deterministic sequence.

According to [2], such a sampling operator can be easily implemented
in hardware with only M flip-flops.

It is well known that an M ⇥M real-coefficient circulant matrix
can be factorized into

C =

1

M

Fdiag(ĉ)FH
, (8)

in which F is the M ⇥M FFT matrix, and the 1 ⇥M row vector
ĉ =

⇥
ĉ

0

, ĉ

1

, · · · , ĉM�1

⇤
is the IFFT of c, i.e., ĉ = cFH . Hence, the

matrix product SF can be expressed as

SF = R
⌦

Fdiag(ĉ). (9)

To make use of Theorem 1, 1p
M
Fdiag(ĉ) needs to be a unitary

matrix, which implies that each element of ĉ has the same magnitude,
i.e., |ĉi| =

p
M . However, the only known binary sequence with

constant FFT magnitudes is c =

⇥
1 1 1 �1

⇤
or its cyclic

shift. Thus, we consider binary sequences whose FFT coefficients are
nearly flat. Two popular choices are the maximum length sequence
and the Legendre sequence [8]. Specifically,

• m-sequence: The maximum length sequence exists for M =

2

� � 1 (� 2 Z+). It can be easily implemented using � shift
registers and has found wide applications in spread-spectrum
communications and measurement of impulse response. If c is
a maximum length sequence, then |ĉi| can be expressed as

|ĉi| =
⇢

1 i = 0;p
M + 1 1  i  M � 1.

(10)

• Legendre sequence: A Legendre sequence c has length M (M
prime) and is given by the Legendre symbol [8]

c

0

= 1,

ci =

⇢
1 if i is a square (mod M)

�1 if i is a non-square (mod M).

i > 1

(11)

For such a sequence, its IFFT coefficients ĉi (0  i  M � 1)
take the form of [8]

ĉ

0

= 1,

ĉi =

⇢
1 + ci

p
M if M =1 (mod 4)

1 + jci

p
M if M =3 (mod 4)

(12)
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It is clear that both the maximum length sequence and the Legendre
sequence have a (nearly) flat spectrum except for ĉ

0

. By exploiting
such a property, we could arrive at the following theorem:

Theorem 2: Consider an sampling operator � =

1p
mM

SF, in
which F is an M ⇥ M FFT matrix and S takes the form of (6),
where c is a maximum length sequence or the Legendre sequence.
For all K-sparse vector u =

⇥
u

0

, u

1

, · · · , uM�1

⇤
with u

0

= 0, Eq.
(4) holds with high probability provided that m � O(K log

4

M).
The proof of the above theorem can be achieved by using (10),

(12) and Theorem 1. Details are omitted due to lack of space. Note
that when S is constructed from the maximum-length sequence or
the Legendre sequence, Theorem 2 implies that stable reconstruction
can be achieved as long as X(f) = 0 in |f | < 1

2T
. When X(f) is

non-zero in |f | < 1

2T
, we can first apply a lowpass filter with cut-off

frequency of 1

2T
to x(t) first and then sample it at the rate of 1/T .

Combined with the samples from MWC, x(t) can then be recovered.

B. Construction from a periodic complementary pair

Both the maximum-length sequence and the Legendre sequence
only exist for odd M . In this section, we consider the construction
of S when M is even. To this end, we first present the definition of
periodic complementary sequences (PCS) [9]–[11].

Definition 2: For a length-M , real-valued sequence c =⇥
c

0

, c

1

, · · · , cM�1

⇤
, its periodic autocorrelation Rc(l) (0  l 

M � 1) is given by

Rc(l) =

M�1X

k=0

ck · c
mod (k+l,M)

. (13)

Let a and b be a pair of length-M bipolar sequences. They are said
to form a periodic complementary pair (PCP) [9], [11] if

Ra(l) +Rb(l) = 0, 1  l  M � 1. (14)

a (or b) is called as a periodic complementary sequence (PCS).
It is known that periodic complementary sequences exist for

M = 2

1
10

2
26

3 , M = 2

1
34

2 or M = 2

1
50

2 with i

(1  i  3) being non-negative integers [11]. It is worth mentioning
that a periodic complementary sequence is also nearly flat in the FFT
domain. To see this, let a and b be a PCP and define â = aF and
b̂ = bF. From (14), it can be shown that [9]

|âk|2 + |ˆbk|2 = 2M, 0  k  M � 1, (15)

in which âk and ˆ

bk represent the k-th element of â and b̂, respec-
tively. Therefore,

|âk| <
p
2M and |ˆbk| <

p
2M, 0  k  M � 1. (16)

In Theorem 3, we will use this property to derive the coherence
bound.

We now move on to consider the construction of S using two
circulant cores. Let a and b be a PCP of length-M/2 and define A
and B as two M

2

⇥ M
2

circulant matrices whose first rows are a and
b, respectively. Eq. (14) implies that an M ⇥M operator G given
below is a binary orthogonal matrix [12]:

G =


A B
BT �AT

�
. (17)

Based on (17), we propose the following binary pattern S:

S = R
⌦

GP̃, (18)

in which R
⌦

is the same as that in (6), G is given by (17) and P̃ is
a permutation matrix so that for a vector c =

⇥
c

0

, c

1

, , · · · , cM�1

⇤
,

⇥
c

0

, · · · , cM/2�1

, cM/2, · · · cM�1

⇤
P̃

=

⇥
c

0

, cM/2, c1, cM/2+1

, · · · , cM/2�1

, cM�1

⇤
,

i.e., it interleaves the first M/2 elements and the last M/2 elements
of c. The following Lemma presents some properties of the product
matrix G̃ = GP̃:

Lemma 1: Consider G̃ = GP̃, in which G and P̃ are the same
as in (18). G̃ has the following properties:

• G̃ is an orthogonal matrix satisfying G̃G̃ = MIM .
• G̃ has a circulant structure. Specifically, G̃(k, :) and G̃(k +

M/2, :) (1  k  M/2� 1) are respectively, the cyclic shift of
G̃(0, :) and G̃(M/2, :) to the right by displacement of 2k, i.e.,
the following relations hold

G̃k,l = G̃
0, mod (2k+l,M)

(19)

G̃k+M/2,l = G̃M/2, mod (2k+l,M)

. (20)

• Each row of G̃ is a periodic complementary sequence.
Sketch of the proof: The orthogonal property of G̃ is straight-

forward due to the orthogonal property of G and P̃. The circulant
structure of G̃ can be obtained from the definitions of G and P̃. To
prove that each row of G̃ is a PCS, we need the following two facts
[11]: (i) If a and b form a PCP, then their individual cyclic shifts
by any displacement l will also produce a PCP; and (ii) If a and b
form a PCP with length of M/2, by interleaving them, one can get
a new PCS with length of M .

By exploiting Lemma 1, eq.(16) and Theorem 1, the following
theorem can be derived:

Theorem 3: Consider an m⇥M matrix � =

1p
mM

SF, in which
S is given by (18) and F is the M ⇥M FFT matrix. � satisfies the
RIP with high probability when m � O(K log

4

M).
Detailed proof of Lemma 1 and Theorem 3 will be given in the

journal version of this paper. Note that due to the structure of G
in (17), only M flip-flops are required to implement S in (18).
Besides, unlike the m-sequence and the Legendre sequence, there
is no additional processing of the signal X(f) in |f | < 1

2T
when S

is constructed from a PCP.

IV. SIMULATIONS RESULTS

Extensive simulations have been carried out to evaluate the perfor-
mance of the proposed binary patterns. Due to lack of space, we only
present the results using the Legendre sequence. The experimental
setup is very similar to that in [2]. Specifically, the signal x(t) has
fNY Q = 10 GHz with 3 pairs of active bands (i.e, K = 6), each of
width B = 50 MHz, constructed as follows

x(t) =

3X

i=1

p
EiBsinc(B(t� ⌧i)) cos(2⇡fi(t� ⌧i)), (21)

with sinc(x) = sin(⇡x)/(⇡x). The energy coefficients are Ei =

{1, 2, 3} and the time offsets are ⌧i = {0.4, 0.7, 0.2}. The
frequency components fi is selected uinformly at random from
[fNY Q/2, fNY Q/2]. In [2], M is selected as 195. Here, we choose
M = 197, the smallest prime number greater than 195 so that the
Legendre sequence can be used. Just as in [2], we assume that x(t)
is corrupted by white Gaussian noise and 500 test signals have been
evaluated. The reconstruction algorithm is based on that proposed in
[5].

We first present the performance of Legendre sequence-based
sampling operators for different number of channels with m ranging
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from 20 to 100, and different input signal to noise ratio (SNR),
ranging from �20 dB to 30 dB. For comparison purposes, the
results of full-random binary pattern (i.e., when S is a Bernoulli
matrix) are also included, as shown in Figure 2. One can observe
that the proposed sampling operator using the Legendre sequence
offers very similar performance to that of the full binary sampling
operator at much lower implementation cost. Next, we compare our
proposed sampling operators with the mixed scheme proposed in [2].
Specifically, in the mixed scheme, the first r rows are full random
Bernoulli operators. Then, the i-th row (r  i  m � 1) is five
cyclic shifts (to the right) of the (i� r)-th row. This mixed scheme
requires rM flip-flops, while our proposed sampling operator needs
only M ones. Figure 3 presents the reconstruction performance of
different binary patterns with m = 49 and M = 197. As can
be seen, the proposed Legendre sequence-based sampling operator
provides slightly better reconstruction performance than the full-
random sampling operator when the SNR is below 0 dB. On the
other hand, the mixed scheme is inferior to the full random sampling
operator. In fact, substantial performance loss can be observed when
r is small (i.e., r = 4). These simulation results demonstrate the
effectiveness of using deterministic sequences for an MWC system.
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Fig. 2. Probabilities of successful support set recovery for different number
of channels m and different SNR levels. (a) Results when S is a full-random
Bernoulli operator. (b) Results when S is partial circulant matrix in (6) with
c being the Legendre sequence.

V. CONCLUSIONS

In this paper, we have proposed to use deterministic sequences for
modulated wideband converter in sub-Nyquist sampling of spectrally
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Fig. 3. Successful recovery rate using different 49 ⇥ 197 binary patterns
under different input SNR.

sparse signals. These include the maximum-length sequence, the Leg-
endre sequence and periodic complementary sequences, all of which
have nearly flat spectrum in the (I)FFT domain. The corresponding
binary operator S features hardware friendly implementation, fast
computation and near-optimal performance guarantees. Simulation
results show that despite their simplicity, the proposed sampling
operators can offer very similar performance as that of the full random
sampling operators, which imply they are promising in practical
applications of the MWC system.
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Abstract—An important problem in communication engineer-
ing is the energy concentration problem, that is the problem of
finding a signal bandlimited to [−σ,σ] with maximum energy
concentration in the interval [−τ, τ ], 0 < τ, in the time domain,
or equivalently, finding a signal that is time limited to the interval
[−τ, τ ] with maximum energy concentration in [−σ,σ] in the
frequency domain. This problem was solved by a group of math-
ematicians at Bell Labs in the early 1960’s. The solution involves
the prolate spheroidal wave functions which are eigenfunctions
of a differential and an integral equations.

The main goal of this talk is to present a solution to the energy
concentration problem in a Hilbert space of functions. This
solution will contain as a special case the solution to the energy
concentration problem in both the fractional Fourier transform
and the linear canonical transform domains. The solution involves
a generalization of the prolate spheroidal wave functions, which
when restricted to the fractional Fourier transform domain, we
may call fractional prolate spheroidal wave functions.

I. INTRODUCTION

One of the fundamental problems in communication engi-
neering is the energy concentration problem, that is the prob-
lem of finding a signal bandlimited to [−σ,σ] with maximum
energy concentration in the interval [−τ, τ ], 0 < τ, in the time
domain or equivalently, finding a signal that is time limited
to the interval [−τ, τ ] with maximum energy concentration in
[−σ,σ] in the frequency domain. This problem was solved
by a group of mathematicians, D. Slepian, H. Landau, and H.
Pollak, at Bell Labs [6], [7], [12], [17] in the early 1960’s. The
solution involves the prolate spheroidal wave functions which
are eigenfunctions of a differential and an integral equations.

Because bandlimited functions are entire functions, they
cannot vanish outside any interval and as a result the energy
concentration in any interval [−τ, τ ] cannot be 100%. The
percentage of the energy concentration depends on σ and τ and
involves the eigenvalues of a certain integral equation satisfied
by the prolate spheroidal wave functions. The solution of the
problem uses properties of the Fourier transform, among them
is the fact that the Fourier transform of a prolate spheroidal
wave function is a multiple of a scaled version of itself.

Recall that the energy concentration of f in (−τ, τ) is given
by

∫ τ
−τ |f(t)|

2 dt; therefore, the solution of the concentration
problem can be found by finding the function f that maximizes
the ratio

α2 (τ) =

∫ τ
−τ |f(t)|

2 dt
∫∞
−∞ |f(t)|2 dt

.

A more general problem to consider is the energy concen-
tration problem in the fractional Fourier transform domain.
That is to find a signal that is bandlimited to [−σ,σ] in the
fractional Fourier transform domain with maximum energy
concentration in the interval [−τ, τ ], 0 < τ, in the time
domain. This problem, in turn, is a special case of the energy
concentration problem for the linear canonical transform. The
latter problems were solved in [15] and discrete versions of
them were solved in [22]. The solutions involved what the au-
thors called the generalized prolate spheroidal wave functions.
The generalized prolate spheroidal wave functions associated
with the fractional Fourier transform and the linear canonical
transform have interesting applications in the analysis of the
status of energy preservation of optical systems, self-imaging
phenomenon, and the resonance phenomenon of finite-sized
one-stage and multiple-stage optical systems [15].

The main goal of this article is to solve the energy con-
centration problem in a Hilbert space of functions which
will contain the fractional Fourier transform and the linear
canonical transform as special cases.

A. The Fractional Fourier Transform
The fractional Fourier transform (or FrFT) was first intro-

duced by Namias in 1980 in connection with an application
in quantum mechanics [11]. But since its introduction to the
signal processing community in the early 1990’s, the transform
has become an important tool in signal processing applications
and signal representation in the fractional Fourier transform
domain has been an active area of investigation [1], [3], [4],
[5], [8], [9], [10], [13], [14], [19], [20], [21].

The fractional Fourier Transform or FrFT of a signal or a
function, say f(t) ∈ L2(IR), is defined by

f̂θ(ω) =

∫ ∞

−∞
f(t)kθ (t,ω) dt (1)

where

kθ(t,ω) =






c(θ) · eja(θ)(t2+ω2)−jb(θ)ωt, θ #= pπ
δ(t− ω), θ = 2pπ
δ(t+ ω), θ = (2p− 1)π

is the transformation kernel with

c(θ) =
√

(1− j cot θ)/2π, a(θ) = cot θ/2, and b(θ) = csc θ.
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The kernel kθ(t,ω) is parameterized by an angle θ ∈ IR and
p is some integer. For simplicity, we may write a, b, c instead
of a(θ), b(θ), and c(θ). The inverse-FrFT with respect to an
angle θ is the FrFT with angle −θ, given by

f(t) =

∫ ∞

−∞
f̂θ (ω) k−θ (t,ω) dω. (2)

When θ = π/2, (1) reduces to the classical Fourier transform,
which will be denoted by f̂π/2 = f̂

f̂(ω) =
1√
2π

∫

IR
f(t)e−jωtdt.

Let kθ(t,ω) be the kernel of FrFT and define the operator Lθ

as

Lθ [f ] (ω) =

∫ ∞

−∞
f(t)kθ(t,ω)dt.

It is easy to see that

Lθ (Lφ [f ] (ω)) = Lθ+φ [f ] (ω).

It can be shown that the solution of the concentration
problem for the Fractional Fourier transform is the solution
of the integral equation (3)

∫ σ

−σ
F (ω)Kτ (ω, ζ) dω = λF (ζ), (3)

that yields the maximum λ, where

Kτ (ω, ζ) =
e
ja(t2−ζ2)

sin bτ (t− ζ)

π(ω − ζ)
.

The solutions of the integral equation (3) share similar
properties with the prolate spheroidal wave functions, but
satisfy more general differential and integral equations. For
lack of better terminology, we shall call these new functions
fractional prolate spheroidal wave functions.

B. The Linear Canonical Transform

The linear canonical transform G(a,b,c,d)(u) of a function
f(x), which depends on four parameters a, b, c, d, is defined
as

G(a,b,c,d)(u) =

{ ∫∞
−∞ K(a,b,c,d)(x, u)f(x)dx, b #= 0√
de(j/2)cdu

2

f(ud), b = 0

where

K(a,b,c,d) =
1√
2πjb

exp

(
j

2b

[
du2 − 2ux+ ax2

])
,

with ad− bc = 1.
For a = cos θ, b = sin θ, c = − sin θ, d = cos θ, the

linear canonical transform reduces to the fractional Fourier
transform.

C. The Prolate Spheroidal Wave Functions
The prolate spheroidal wave functions (PSWF), were first

discovered in [12] as the bounded eigenfunctions of the
following differential operator Lc,

Lcϕ(x) = (1− x2)
d2

dx2
ϕ(x)− 2x

d

dx
ϕ(x)− c2x2ϕ(x), (4)

where c > 0 is a real number. In the 1960’s, the group at Bell
Labs discovered that the following integral operator

Fc(ϕn,c)(x) =

∫ 1

−1
ϕn,c(t)

sin(c(x− t))

π(x− t)
dt, (5)

commutes with Lc, where ϕn,c are the eigenfunctions of the
operator (4). This commutation relation was termed ”a lucky
accident” by David Slepian. In a series of papers, the group at
Bell Labs employed the commutation relation to derive several
properties of the prolate spheroidal wave functions, see [6],
[7], [17]. For example, they have showed that the PSWFs
satisfy the following integral equation

∫ 1

−1
ϕn,c(x)e

icwxdx = µn(c)ϕn,c(w). (6)

The PSWFs are normalized so that

‖ϕn,c‖22 =

∫ +∞

−∞
|ϕn,c(x)|2 dx = 1, (7)

or equivalently,

‖ϕn,cχ(−1,1)‖22 =

∫ 1

−1
|ϕn,c(x)|2 dx = λn(c), (8)

where λn(c) is the nth eigenvalue of Fc. The most important
properties of the PSWFs are:
(P1) The set of PSWFs {ϕn,c, n ∈ IN} is an orthogonal basis

of L2([−1, 1]). More precisely, we have
∫ 1

−1
ϕn,c(x)ϕm,c(x) dx = λn(c)δmn.

(P2) The Fourier transform of ϕn,c is given by :

ϕ̂n,c(w) = (−i)n

√
2π

cλn(c)
ϕn,c

(w
c

)
χ[−c,c](w).

(P3) The set of PSWFs {ϕn,c, n ∈ IN} is an orthonormal set
of L2(IR) and also an orthonormal basis of Bc, where

Bc = {f ∈ L2(IR) : supp(f̂) ⊂ [−c, c]},

is the space of functions bandlimited to [−c, c].

II. CONCLUSION

The main goal of this talk is to show that the energy
concentration problem can be solved in a general Hilbert space
of functions using the theory of reproducing-kernel Hilbert
spaces. To outline the setting in which the problem will be
solved, let us introduce the following notation.

Let E be an arbitrary set and F(E) be the linear space of
all complex-valued functions defined on E . Let dµ be a σ-
finite positive measure and T be a dµ-measurable set in IRN .
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Consider the Hilbert space H = L2(T , dµ) consisting of all
complex-valued functions F such that

‖F‖2L2(T ,dµ) =

∫

T
|F (t)|2dµ(t) < ∞.

Let h(t, p) denote a complex-valued function on T × E , such
that

h(t, p) ∈ L2(T , dµ) for any p ∈ E .

Let L be the linear mapping L : L2(T , dµ) → F(E) defined
by

f(p) = (LF )(p) =

∫

T
F (t)h(t, p)dµ(t), F ∈ L2(T , dµ).

(9)
It is not difficult to see that the the function

K(p, q) =

∫

T
h(t, q)h(t, p)dµ(t), (10)

is positive definite on E , i.e.,
n∑

i=1

n∑

j=1

aiajK(pi, pj) ≥ 0,

for any finite set {pi} of E . Then it follows from [2] that
K(p, q) is a reproducing kernel for some Hilbert space of
functions defined on E . In fact, the set of all f ’s given by
(9), i.e., the range of the operator L, is a reproducing-kernel
Hilbert space H̃ whose reproducing kernel is given by (10) so
that f(q) =< f,K(., q) >H̃; see [16].

Hereafter, all functions of the form (9) will be called K-
bandlimited functions. In this talk we will show that the
energy concentration problem can be solved for the class of
K-bandlimited functions, but the details will be published
somewhere else. The problem will be solved by constructing
a sequence of functions that share similar properties to those
of the PSWF, in particular Equations (5), (6), and properties
P1 and P2.
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Abstract—We give some sharp statements on absolute conver-
gence of the series of Fourier-Haar coefficients in terms of Lp-
and p-variation best approximations by Haar polynomials.

INTRODUCTION.

The Haar orthonormal system {�n}1n=1 had been con-
structed in 1909 (see [1]). By this system A. Haar gave positive
answer on the question of D. Hilbert: is there an orthogonal
system such that Fourier series with respect to this system of
any continuous function converges uniformly to that function?

Let us recall the definition of Haar system. We set �1(x) =
1 on [0, 1]. After that we introduce the open dyadic intervals
Iki =

�
2

�k
(i� 1), 2�ki

�
, i = 1, ..., 2k, k = 0, 1, ..., and

represent the natural number n � 2 in the form n = 2

k
+ i,

i = 1, ..., 2k, k = 0, 1, ... Then we set �n(x) = 2

k/2 for
x 2 Ik+1

2i�1, �n(x) = �2

k/2 for x 2 Ik+1
2i and �n(x) = 0 for

x 2 [0, 1]\Iki , where Iki is closure of the interval Iki . If the
Haar function �n(x) has a jump in some poimt x 2 (0, 1), then
�n(x) = [�n(x� 0) + �n(x+ 0)] /2. In the end points of in-
terval [0, 1] we set �n(0) = �n(0+0) and �n(1) = �n(1�0).
The Haar functions �n(x) are step functions.

The principal information on Fourier-Haar series may be
found in the book [2].

For a function f 2 Lp[0, 1], 1  p < 1, we introduce the
integral modulus of continuity

! (�, f)p = sup

0h�

 Z 1�h

0
|f(t+ h)� f(t)|p dt

!1/p

, (1)

0  �  1, and the Fourier-Haar coefficients

ˆf(n) =

Z 1

0
f(x)�n(x)dx, n 2 N.

Z. Ciesielski and J. Musielak [3] proved the following
Theorem A. Let � > 0, � � 0, p = max(�, 1),

f 2 Lp[0, 1), and

1P
n=1

n���/2!�
(1/n, f)p < 1. Then the

series

1P
n=1

n�
��� ˆf(n)

���
�

converges.

Let us observe that in the paper [3] the authors introduced
a slightly different definition of the integral modulus of con-
tinuity in the space Lp

[0, 1], 1  p < 1. They extended the
function f to the real axis by setting f(x) = 0 for x /2 [0, 1],

and evaluated the integral in the right-hand side of (1) over
the interval [0, 1]. But if we analyze the proof of Theorem 2
from [3], we see that the statement of Theorem A is valid.

Let us define the Wiener’s class Vp[0, 1], 1  p < 1, of
functions of bounded pth-power variation on the interval [0, 1]
(see [4]). We set f 2 Vp[0, 1], if

V (f)p = sup

⌧

(
nX

i=1

|f(xi)� f(xi�1)|p
)1/p

< 1,

where ⌧ = {0 = x0 < x1 < ... < xn = 1} is arbitrary par-
tition of the interval [0, 1]. Let us note that the inclusion
Lip(1/p) ⇢ Vp[0, 1] holds for 1  p < 1.

P. L. Ulyanov [5] proved the following theorem.
Theorem B. For the function f 2 V1[0, 1] the series

1X

n=1

��� ˆf(n)
���
�

or

1X

n=1

n��1/2
��� ˆf(n)

��� (2)

converge, if � > 2/3 or � < 1 respectively. But this statement

does not true for � = 2/3 or � = 1 respectively.

The first author (see [6]) generalized Theorem B to func-
tions f 2 Vp[0, 1], 1  p < 1.

Theorem C. For the function f 2 Vp[0, 1], 1  p < 1,

the series (2) converge, if � > 2p/(p + 2) or � < 1/p. But

this statement is not true for � = 2p/(p + 2) or � = 1/p
respectively.

In the paper [7] a two-dimensional analog of this theorem
was proved.

In our paper we give some sharp generalizations of The-
orems A and C. We use the weight sequences belonging to
the classes A(↵), ↵ � 1. These classes were introduced by L.
Gogoladze and R. Meskhia [8].

MAIN RESULTS.

We shall say that the positive sequence � = {�k}1k=1
belongs to the class A(↵), ↵ � 1, if there is a constant C > 0

such that
0

@
2n+1X

k=2n+1

�↵
k

1

A
1/↵

 C2

n(1�↵)/↵
�n,
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where

�n =

2nX

k=2n�1+1

�k, n 2 N.

For n = 0 we assume that the above inequality holds for
�0 = �1.

This definition is a partial case of one introduced by L.
Gogoladze and R. Meskhia [8]. It is easy to prove that
A(↵1) ⇢ A(↵2) for ↵1 > ↵2 � 1.

Let us recall that for a function f 2 Lp[0, 1), 1 
p < 1, the norm is defined by the equality kfkp =

⇣R 1
0 |f(x)|p dx

⌘1/p
. Below we shall use the best approxima-

tion En (f)p = inf

{ak}
kf � tnkp of the function f 2 Lp[0, 1)

by Haar polynomials tn(x) =
nP

k=1
ak�k(x) of order n.

Theorem 1. Let f 2 Lp[0, 1), 1  p < 1, and

1X

k=1

�k

h
k�1/2Ek (f)p

i�
< 1, (3)

where 0 < � < p, � 2 A (p/(p� �)). Then the series

1X

n=1

n�
��� ˆf(n)

���
�

(4)

converges.

From the Theorem 1 and the inequality En(f)p 
2

1+1/p!(n�1, f)p, 1  p < 1, n 2 N, (see [5]) it follows
Theorem 2. The assertion of the Theorem 1 is

also valid, if instead of the condition (3) we assume

1P
k=1

�k

h
k�1/2!

�
k�1, f

�
p

i�
< 1.

For the function f 2 Vp[0, 1], 1  p < 1, we set

!1�1/p (�, f) = sup

�(⌧)�

⇢
nP

i=1
|f(xi)� f(xi�1)|p

�1/p

, where

⌧ = {0 = x0 < x1 < ... < xn = 1} is a partition of
interval [0, 1] and �(⌧) = max

1in
(xi � xi�1). This notation

was introduced in [9]. It is known the inequality ! (�, f)p 
�1/p!1�1/p (�, f) for the function f 2 Vp[0, 1], 1 < p < 1
(see [6], Lemma 2 and [9], Theorem 2.5). Therefore from the
Theorem 1 it follows

Corollary 1. If f 2 Vp[0, 1], 1 < p < 1, and

1X

k=1

�k

h
k�1/2�1/p!1�1/p (1/k, f)

i�
< 1, (5)

where 0 < � < p, � 2 A(p/(p � �)), then the series (4)

converges.

For the function f 2 Vp[0, 1], 1  p < 1, we define
the norm kfkVp

= max (Vp(f), kfk1), where kfk1 =

sup {|f(x)| : x 2 [0, 1]}. Let us define the best approximation
En (f)Vp

= inf

{ak}
kf � tnkVp

of the function f 2 Vp[0, 1], 1 

p < 1, by Haar polynomials tn =

nP
k=1

ak�k(x) of order n. It

is easy to prove the inequality En (f)p  Cpn
�1/pEn (f)Vp

.
Therefore from the Theorem 1 it follows

Corollary 2. The assertion of the Corollary 1 is valid, if

instead of the condition (5) we assume

1X

k=1

�k

h
k�1/2�1/pEk (f)Vp

i�
< 1.

The following two theorems show that under some condi-
tions the statement of Theorem 1 is sharp.

Theorem 3. Let 1  p < 1, 0 < � < p, � 2 A(p/(p��)),
and let be given some decreasing and tending to zero sequence

" = {"i}1i=1 satisfying Bary condition

1X

i=k

"i/i = O ("k) , k 2 N, (6)

and

1P
k=1

�k
�
k�1/2"k

��
= 1. Then there exists a function

f 2 Lp[0, 1] such that En (f)p  "n, n 2 N, and the series

(4) diverges.

Theorem 4. Let 0 < �  1 for 1 < p < 1 and

0 < � < 1 for p = 1. Moreover, let be given the sequence

� 2 A(p/(p� �)) such that (1�↵)2�/2�n+1 � �n for some

↵ 2 (0, 1) and a decreasing and tending to zero sequence

" = {"i}1i=1 such that

1P
k=1

�k
�
k�1/2"k

��
= 1. Then there

exists a function f 2 Lp[0, 1) such that En (f)p  "n,

n 2 N, and the series (4) diverges.

The following theorem shows that under some conditions
the statement of the Corollary 2 is sharp.

Theorem 5. Let 1 < p < 1, 0 < � < p, � 2 A(p/(p��)),
and let be given some decreasing and tending to zero sequence

" = {"i}1i=1 satisfying Bary condition (6) and such that

1P
k=1

�k
�
k�1/2�1/p"k

��
= 1. Then there exists a function

f 2 Vp[0, 1] such that En (f)Vp
 "n, n 2 N, and the series

(4) diverges.

Remark. Theorem 2 and Corollaries 1 and 2 have two-
dimensional analogs which will appear elsewhere.
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Abstract—The Mellin transform and the associated convolution

integrals are intimately connected with the exponential sampling

theorem. Thus it is very important to develop the various tools of

Mellin analysis. In this part we pave the way to sampling analysis

by studying basic theoretical properties, including Mellin-type

fractional integrals, and give a new approach and version

for these integrals, specifying their basic semigroup property.

Especially their domain and range need be studied in detail.

I. INTRODUCTION

The theory of Mellin transforms and Mellin approximation
theory was introduced in a systematic form, fully independent
of Fourier analysis in [6], papers on the present line of research
being [1], [2], [3], [4]. Mellin transform theory is intimately
connected with the exponential sampling theorem, stating that

f(x) =

+1X

k=�1
f(e

k/T

)lin
c/T

(e

�k

x

T

) (x 2 IR

+
),

where f is a function which is Mellin-bandlimited to the
interval [�⇡T,⇡T ], and

lin
c

(x) := x

�csinc(log x), lin
c

(1) = 1,

(see [8]). This version of the Shannon sampling theorem has
many applications in optical physics and engineering ([13],
[16], [5], [14]). Here the samples are not equally spaced apart
as in the case of the Whittaker-Kotel’nikov-Shannon sampling
theorem, but exponentially spaced; such spacing is needed in
those applications where independent pieces of information
accumulates near time t = 0.

The aim of this research is to put into a rigorous framework
such applications, making use only of results from the Mellin
transform theory. In [6] the following sentence is written:
The proofs of the Mellin results are mostly said to follow
by a change of variable and a change of function from the
corresponding Fourier or Laplace results. In fact one expresses
it as follows: ”It is a matter of using the theory of the Fourier
or Laplace transform to derive what one needs concerning the
Mellin transform”. However, the hypotheses upon which the
Mellin theory lies are often considered quite uncritically, and
certainly by no means in a unified, systematic fashion.

While the classical proof of the Shannon sampling theorem
is based on the Poisson summation formula, the exponential

version is established via the Mellin-Poisson summation for-
mula, which connects the classical Mellin transform with the
finite Mellin transform. Variuos fundamental facts in exponen-
tial sampling theory must be developed and, in this direction, a
deep study of Mellin analysis appears necessary. In particular,
the properties of Mellin convolution integrals and the Mellin
differential operators are fundamental tools. In papers [9], [10],
[11] certain Mellin convolution integrals, namely the so-called
Hadamard- type fractional integrals, were developed: these
integrals represent the appropriate extensions of the classical
Riemann-Liouville and Weyl fractional integrals and also lead
to definitions of certain Mellin fractional differential operators,
(see also the book [15]). The purpose of this article is a
continuation of these topics. As remarked in [9] the natural
operator of Mellin fractional integration is not the classical
Riemann-Liouville fractional integral of order ↵ > 0 on IR

+,
(see [17], [12]) but the integral

(J

↵

0+f)(x) =
1

�(↵)

Z
x

0

✓
log

x

u

◆
↵�1

f(u)

du

u

(x > 0). (1)

Thus the operator of integration (anti-differentiation) is not
the integral

R
x

0 f(u)du, as used throughout the literature in
matters Mellin transforms, including its table volumes, but the
integral

R
x

0 f(u)du/u. The use of the latter makes calculations
not only much simpler but also more elegant.

For the development of the theory, it is important to consider
the following generalization of (1), for µ 2 IR, x > 0 namely
(see [9], [10], [11])

(J

↵

0+,µ

f)(x) =

1

�(↵)

Z
x

0

✓
u

x

◆
µ

✓
log

x

u

◆
↵�1

f(u)

du

u

(2)

for functions belonging to the space X

c

of all measur-
able complex-valued functions defined on IR

+
, such that

(·)c�1
f(·) 2 L

1
(IR

+
).

Since the definition of pointwise fractional derivatives, as
defined in [10], is based on the Hadamard type integral, it
is important to study in depth the domain and the range of
these integrals. Here we first introduce the local spaces X

c,loc

and furnish some results concerning both the domain and the
range. In this respect, a fundamental role is played by a new
version of the basic semigroup property, which is proved here

Proceedings of the 10th International Conference on Sampling Theory and Applications

274



in a direct way, as an extension of a corresponding property
for spaces X

p

c

given in [10].
The theory of Hadamard fractional integrals is one of the

topics which reveals the importance of a direct approach via
Mellin transforms. For example, while the domain of the
classical Riemann-Liouville fractional operators of any order
↵ contains all the locally integrable functions over the positive
real line, this is no longer true for Hadamard operators. Indeed,
for ↵ > 1, the domain of J

↵

0+,c

is strictly contained in the
space X

c,loc

. This implies that the Hadamard integrals and the
corresponding notion of pointwise Mellin fractional derivative,
which we develop in the second part of this study, represent
new types of integro-differential operators which must be
properly treated using Mellin transform theory.

In the second part we apply these results to the exponential
sampling.

II. MELLIN FRACTIONAL INTEGRALS

Let L

1
= L

1
(IR

+
) be the space of all the Lebesgue

measurable and integrable complex valued functions defined
on IR

+
, endowed with the usual norm.

Let us consider the space, for some c 2 IR,

X

c

= {f : IR

+ ! CC : f(x)x

c�1 2 L

1
(IR

+
)}

endowed with the norm

kfk
Xc = kf(·)(·)c�1k

L

1
=

Z 1

0
|f(u)|uc�1

du.

For a, b 2 IR we define the spaces X(a,b), X[a,b] by

X(a,b) =

\

c2]a,b[

X

c

, X[a,b] =

\

c2[a,b]

X

c

and, for every c in the given intervals, kfk
Xc is a norm on

them.

We define for every f 2 X

c

the Mellin transform, with
s = c+ it 2 CC, c, t 2 IR, by

M [f ](s) ⌘ [f ]

^
M

(s) =

Z 1

0
u

s�1
f(u)du.

Thus M : X

c

! C({c} ⇥ iIR), f ! M [f ] = [f ]

^
M

, (see
[6]). A boundedness property for J

↵

0+,µ

in the space X

c

, is
needed when the coefficient µ is greater than c. This is due to
the fact that only for µ > c, we can view J

↵

0+,µ

f as a Mellin
convolution between two functions in X

c

. However, we are
interested here in the domain and the range of these fractional
operators when µ = c. We will show that for any non-trivial
function f in the domain of J

↵

0+,c

the image J

↵

0+,c

f cannot
be in X

c

. This implies that we cannot compute its Mellin
transform in the space X

c

.

We define the domain of J

↵

0+,c

, for ↵ > 0 and c 2 IR, as
the class of all the functions such that

Z
x

0
u

c

✓
log

x

u

◆
↵�1

|f(u)|du
u

< +1,

for a.e. x 2 IR

+
, denoted by DomJ

↵

0+,c

.

Let X

c,loc

be the space of all the functions such that
(·)c�1

f(·) 2 L

1
(]0, a[) for every a > 0.

Proposition 1: If f 2 X

c,loc

, then the function (·)cf(·) 2
X1,loc. Moreover, if c < c

0
, then X

c,loc

⇢ X

c

0
,loc

.

Note that the above inclusion does not hold for spaces X

c

.

Concerning the domain of the operator J↵

0+,c

, we begin with
Proposition 2: Let ↵ > 1, c 2 IR be fixed. Then

DomJ

↵

0+,c

⇢ X

c,loc

.

For ↵ = 1 we have immediately DomJ

1
0+,c

= X

c,loc

.

The case 0 < ↵ < 1 is more delicate. In this instance
X

c,loc

⇢ DomJ

↵

0+,c

, due to the following ”local” version of
the semigroup property of J↵

0+,c

:

Theorem 1: Let ↵,� > 0, c 2 IR be fixed. Let f 2
DomJ

↵+�

0+,c

. Then

(i) f 2 DomJ

↵

0+,c

\DomJ

�

0+,c

(ii) J

↵

0+,c

f 2 DomJ

�

0+,c

and J

�

0+,c

f 2 DomJ

↵

0+,c

.

(iii) (J

↵+�

0+,c

f)(x) = (J

↵

0+,c

(J

�

0+,c

f))(x), a.e. x 2 IR

+
.

(iv) If ↵ < � then DomJ

�

0+,c

⇢ DomJ

↵

0+,c

.

Thus if 0 < ↵  1, c 2 IR, then X

c,loc

⇢ DomJ

↵

0+,c

.

The inclusion in (iv) of Theorem 1 is strict for any choice
of ↵ and �. It is sufficient to consider the function, with ↵ <

� < �,

f(x) =

x

�c

| log x|� �]0,1/2[(x),

�]0,1/2[ being the characteristic function of interval ]0, 1/2[.

A sufficient condition in order that a function f belongs to
DomJ

↵

0+,c

for ↵ > 1, is

Proposition 3: Let ↵ > 1. If f 2 X

c,loc

is such that
f(u) = O(u

�(r+c�1)
) for u ! 0

+ and 0 < r < 1, then
f 2 DomJ

↵

0+,c

.

As a consequence, for c 2 IR fixed, we have

e
X

c,loc

⇢
\

↵>0

DomJ

↵

0+,c

.

Concerning the range of the operators J

↵

0+,c

we need the
following important propositions.

Proposition 4: Let ↵ > 0, c 2 IR be fixed. If f 2
DomJ

↵+1
0+,c

, then J

↵

0+,c

f 2 X

c,loc

.

As a consequence we can deduce that if f 2 DomJ

↵

0+,c

, not
necessarily does J

↵

0+,c

f 2 X

c,loc

.

For spaces X

c

we have the following
Proposition 5: Let ↵ > 0, c 2 IR be fixed. If f 2

DomJ

↵

0+,c

, then J

↵

0+,c

f 62 X

c

, unless f = 0 a.e. in IR

+
.

However we have the following property.
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Proposition 6: Let ↵ > 0, c, ⌫ 2 IR, ⌫ < c, being fixed. If
f 2 DomJ

↵

0+,c

\X[⌫,c], then J

↵

0+,c

f 2 X

⌫

and

kJ↵

0+,c

fk
X⌫ =

kfk
X⌫

(c� ⌫)

↵

.

Moreover, for any s = ⌫ + it,

|M [J

↵

0+,c

f ](s)|  kfk
X⌫

(c� ⌫)

↵

.
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Abstract—Here, we introduce a notion of strong fractional
derivative and we study the connection with the pointwise
fractional derivative, which is defined by means of Hadamard-
type integrals. The main result is a fractional version of the
fundamental theorem of integral and differential calculus in
Mellin frame. Finally there follow the first of several theorems
in the sampling area, the highlight being the reproducing kernel
theorem as well as its approximate version for non-bandlimited
functions in the Mellin sense, both being new.

I. INTRODUCTION

This article is the continuation of the previous one devoted
to the study of Mellin fractional integrals. Here we apply
the results concerning the Hadamard type integrals in order
to define an appropriate notion of the associated pointwise
fractional derivative. Moreover we will introduce a notion of
a strong fractional derivative in spaces X

c

, as an extension to
the Mellin setting of the notion of classical strong derivatives
in L

p�spaces (see [6]). The pointwise fractional derivative of
order ↵ > 0, is defined by the Hadamard integrals formally
as follows:

(D

↵

0+,c

f)(x) = x

�c

�

m

x

c

(J

m�↵

0+,c

f)(x),

where m = [↵] + 1 and � := (x

d

dx

). The above definition,
introduced in [9, Part I], originates from the theory of the
classical Mellin differential operator, studied in [6, Part I].
The main result here is an equivalence theorem which strictly
connects the two notions of fractional derivatives and the
Hadamard integrals. As far as we are aware this kind of equiv-
alence was never stated explicitily in the setting of Fourier
transform theory. This is also related to the fundamental
theorem of integral and differential calculus in the fractional
Mellin setting. For usual Mellin derivatives, this was described
in [6, Part I], where, in particular, the representation of the
Mellin derivatives in terms of the Stirling numbers of the
second kind is discussed in depth. Finally there follow the
first of several theorems in the sampling area.

One of the new and important applications regarding the
exponential sampling is an error estimate giving the fast rate
of approximation depending on the order of the fractional
derivative (see Corollary 2 below).

II. THE STRONG AND POINTWISE MELLIN FRACTIONAL
DIFFERENTIAL OPERATORS

We recall that X
c

denotes the space of all the measurable
functions f : IR

+ ! CC such that f(·)(·)c�1 2 L

1
(IR

+
). The

Mellin transform of a function f 2 X

c

is defined by

M [f ](s) ⌘ [f ]

^
M

(s) =

Z 1

0
u

s�1
f(u)du

where s = c + it, t 2 IR, and the Mellin translation operator
⌧

c

h

, for h 2 IR

+
, c 2 IR, f : IR

+ ! CC, by

(⌧

c

h

f)(x) := h

c

f(hx) (x 2 IR

+
).

Setting ⌧

h

:= ⌧

0
h

, then (⌧

c

h

f)(x) = h

c

(⌧

h

f)(x), k⌧ c
h

fk
Xc =

kfk
Xc . The Mellin fractional difference of f 2 X

c

of order
↵ > 0, defined by

�

↵,c

h

f(x) := (⌧

c

h

� I)

↵

f(x) =

1X

j=0

✓
↵

j

◆
(�1)

↵�j

⌧

c

h

jf(x).

for h > 0, I being the identity operator over the space of all
measurable functions on IR

+
, and

✓
↵

j

◆
=

↵(↵� 1) · · · (↵� j + 1)

j!

,

has the following properties
Proposition 1: For f 2 X

c

the difference �

↵,c

h

f(x) exists
a.e. for h > 0, with

i) k�↵,c

h

fk
Xc  kfk

Xc

P1
j=0

����

✓
↵

j

◆ ����
ii) M [�

↵,c

h

f ](c+ it) = (h

�it � 1)

↵

M [f ](c+ it).

Proof. As to (ii) it follows by taking the Mellin transforms on
the left, thus

1X

j=0

✓
↵

j

◆
(�1)

↵�j

h

�itj

M [f ](c+ it).

For spaces X[a,b], we have the following Proposition.
Proposition 2: Let f 2 X[a,b], and let c 2]a, b[.
(i) If 0 < h  1, then �

↵,c

h

f 2 X[a,c], and for every
⌫ 2 [a, c]

k�↵,c

h

fk
X⌫

 kfk
X⌫

1X

j=0

����

✓
↵

j

◆����h
(c�⌫)j

.
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Moreover for t 2 IR,

M [�

↵,c

h

f ](⌫ + it) = (h

c�⌫�it � 1)

↵

M [f ](⌫ + it).

(ii) If h � 1, then �

↵,c

h

f 2 X[c,b], and for every µ 2 [c, b]

k�↵,c

h

fk
Xµ

 kfk
Xµ

1X

j=0

����

✓
↵

j

◆����h
(c�µ)j

.

Moreover for t 2 IR,

M [�

↵,c

h

f ](µ+ it) = (h

c�µ�it � 1)

↵

M [f ](µ+ it).

Definition. If for f 2 X

c

there exists g 2 X

c

such that

lim

h!1

����
�

↵,c

h

f(x)

(h� 1)

↵

� g(x)

����
Xc

= 0

then g is called the strong fractional derivative of f of order
↵ and it is denoted by g(x) = s-⇥↵

c

f(x), and

W

↵

Xc
:= {f 2 X

c

: s-⇥↵

c

f exists and s-⇥↵

c

f 2 X

c

},

with W

0
Xc

= X

c

, is the Mellin Sobolev space. Analogously
we define the spaces W

↵

X[a,b]
,W

↵

X]a,b[
.

Now to our several basic theorems of the two-parts paper.

Theorem 1: (i) If f 2 W

↵

Xc
, then for s = c+ it, t 2 IR,

M [s-⇥↵

c

f ](s) = (�it)

↵

M [f ](s).

(ii) If f 2 W

↵

X[a,b]
, then for every ⌫, c 2 [a, b],

M [s-⇥↵

c

f ](⌫+ it) = (c�⌫� it)

↵

M [f ](⌫+ it), t 2 IR.

Proof. As to (i), it can be shown in view of

lim

h!1

✓
h

�it � 1

h� 1

◆
↵

= (�it)

↵

,

that
lim

h!1

����(�it)

↵

[f ]

^
M

(s)� [s-⇥↵

c

f ]

^
M

(s)

���� = 0.

The pointwise fractional derivative of order ↵, associated with
the integral J↵

0+,c

f , c 2 IR, and f 2 DomJ

m�↵

0+,c

, is given by
(see e.g. [9, Part I], [5], [15, Part I])

(D

↵

0+,c

f)(x) = x

�c

�

m

x

c

(J

m�↵

0+,c

f)(x)

where ↵ > 0,m = [↵] + 1 and � = (x

d

dx

). The (classical)
pointwise Mellin derivative of integral order, is defined by

lim

h!1

⌧

c

h

f(x)� f(x)

h� 1

= lim

h!1


h

c

x

f(hx)� f(x)

hx� x

+

h

c � 1

h� 1

f(x)

�

= xf

0
(x) + cf(x),

provided f

0 exists a.e. on IR

+
, and the Mellin differential

operator of order r 2 IN iteratively by ⇥

1
c

:= ⇥

c

, ⇥

r

c

:=

⇥

c

(⇥

r�1
c

).

The following proposition gives the connection between
Mellin and ordinary derivatives.

Proposition 3: For the pointwise derivative of order r 2 IN,

we have

(D

r

0+,c

f)(x) = (⇥

r

c

f)(x) =

rX

k=0

S

c

(r, k)x

k

f

(k)
(x),

where S

c

(r, k), 0  k  r, denote the generalized Stirling
numbers of second kind, defined recursively by

S

c

(r, 0) := c

r

, S

c

(r, r) := 1,

S

c

(r + 1, k) = S

c

(r, k � 1) + (c+ k)S

c

(r, k).

In the fractional case, for a given ↵ > 0, we define the
space X

↵

c,loc

by

{f 2 X

c,loc

: 9(D↵

0+,c

f)(x) a.e, D↵

0+,c

f 2 X

c,loc

}.

Proposition 4: Let f 2 X

↵

c,loc

be such that ⇥m

c

f 2 X

c,loc

,

where m = [↵] + 1. Then

(D

↵

0+,c

f)(x) = ⇥

m

c

(J

m�↵

0+,c

f)(x) = J

m�↵

0+,c

(⇥

m

c

f)(x).

Now to the fundamental theorem of the fractional differential
and integral calculus in the Mellin frame.

Theorem 2: Let ↵ > 0 be fixed. Let f 2 X

↵

c,loc

, be
such that D

↵

0+,c

f 2 DomJ

m

0+,c

and ⇥

m

c

f 2 DomJ

m

0+,c

. If
⇥

m�1
f 2 e

X

c,loc

, then

(J

↵

0+,c

(D

↵

0+,c

f))(x) = f(x), a.e. x 2 IR

+
.

Moreover, let f 2 DomJ

m

0+,c

be such that J↵

0+,c

f 2 X

c,loc

.

Then

(D

↵

0+,c

(J

↵

0+,c

f))(x) = f(x), a.e. x 2 IR

+
.

Concerning the connections between the strong and the point-
wise Mellin derivatives, we have the following

Theorem 3: Let ↵ > 0 and c 2]a, b] be fixed, and f 2 X

↵

[a,b]
be such that ⇥m

c

f 2 X[a,b]. Then f 2 W

↵

[a,b] and

(D

↵

0+,c

f)(x) = s-⇥↵

c

f(x), a.e. x 2 IR

+
.

Proof. By Proposition 4 we have

(D

↵

0+,c

f)(x) = (J

m�↵

0+,c

(⇥

m

c

f))(x).

Thus passing to Mellin transforms, we have, for t 2 IR,

[D

↵

0+,c

f ]

^
M

(⌫ + it) = [(J

m�↵

0+,c

(⇥

m

c

f))]

^
M

(⌫ + it)

= (c� ⌫ � it)

↵�m

[⇥

m

c

f ]

^
M

(⌫ + it)

= (c� ⌫ � it)

↵

[f ]

^
M

(⌫ + it).

Hence, D

↵

0+,c

f and s-⇥↵

c

f have the same Mellin transform
along the line ⌫ + it, and so the assertion follows by the
identity theorem (see [6, Part I]).

Using the previous results, we give the following equivalence
theorem which is the fractional version of Theorem 10 in [6,
Part I].

Theorem 4: Let f 2 X[a,b], ↵ > 0. The following four
assertions are equivalent
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(i) f 2 W

↵

X[a,b]
.

(ii) There is a function g1 2 X[a,b] such that, for every c 2
]a, b[,

lim

h!1

����
�

↵,c

h

f

(h� 1)

↵

� g1

����
Xc

= 0.

(iii) There is g2 2 X[a,b] such that, for every ⌫, c 2]a, b[,

(c� ⌫ � it)

↵

M [f ](⌫ + it) = M [g2](⌫ + it).

(iv) There is g3 2 X[a,b] such that for c 2]a, b[ and x 2 IR

+
,

f(x) =

1

�(↵)

Z
x

0

✓
u

x

◆
c

✓
log

x

u

◆
↵�1

g3(u)
du

u

a.e.

If one of the above assertions is satisfied, then D

↵

0+,c

f(x) =

s-⇥↵

c

f(x) = g1 = g2 = g3 a.e. x 2 IR

+
.

Proof. It is easy to see that (i) implies (ii), and (ii) implies
(iii) by Theorem 1. As to (iii) implies (iv), observe

M [J

↵

0+,c

g2](⌫ + it) = (c� ⌫ � it)

�↵

M [g3](⌫ + it).

As far as we know, a fundamental theorem with four
equivalent assertions in the form presented above for the
Mellin transform in the fractional case has never been stated
for the Fourier transform. As a fundamental theorem in the
present sense it was first established for 2⇡�periodic functions
via the finite Fourier transform in [10], and for the Chebyshev
transform in [7], [8]. Fractional Chebyshev derivatives were
there defined in terms of fractional order differences of the
Chebyshev translation operator, the Chebyshev integral by an
associate convolution product. The next fundamental theorem,
after that for Legendre transforms (see e,g. [2]), was the one
concerned with the Jacobi transform, see e.g. [9].

III. THE EXPONENTIAL SAMPLING THEOREM

Let BT

c

denote the class of functions f 2 X

c

, f 2 C(IR

+
),

c 2 IR, which are Mellin band-limited in the interval [�T, T ],

T 2 IR

+
, thus for which [f ]

^
M

(c+ it) = 0 for all |t| > T. A
mathematician’s version of the exponential sampling theorem
introduced by the electrical engineers/physicists M.Bertero,
E.R. Pike [5, Part I] and F. Gori [14, Part I], reads as follows

Theorem 5: If f 2 B

⇡T

c

for some c 2 IR, and T > 0, then
the series

x

c

1X

k=�1
f(e

k/T

)lin
c/T

(e

�k

x

T

)

is uniformly convergent in IR

+
, and one has the representation

f(x) =

1X

k=�1
f(e

k/T

)lin
c/T

(e

�k

x

T

) ⌘ E

c

T

f(x) (x 2 IR

+
).

The lin
c

�function for c 2 IR, lin
c

: IR

+ ! IR, is defined, for
x 2 IR

+ \ {1}, by

lin
c

(x) =

x

�c

2⇡i

x

⇡i � x

�⇡i

log x

=

x

�c

2⇡

Z
⇡

�⇡

x

�it

dt,

with the continuous extension lin
c

(1) := 1, thus lin
c

(x) =

x

�csinc(log x).

As we all know, bandlimitation in the classical Fourier version
of the Whittaker-Kotel’nikov-Shannon sampling theorem is a
restriction we try to avoid. Likewise it is so in the Mellin
setting. In this respect we have the following approximate
version.

Theorem 6: Let f 2 X

c

\ C(IR

+
), c 2 IR, be such that

M [f ] 2 L

1
({c}⇥ iIR). Then there holds the error estimate

����f(x)�
1X

k=�1
f(e

k/T

)lin
c/T

(e

�k

x

T

)

����

 x

�c

⇡

Z

|t|>⇡T

|M [f ](c+ it)|dt (x 2 IR

+
, T > 0).

Corollary 1: Let f 2 X

c

\ C(IR

+
), c 2 IR, be such that

M [f ] 2 L

1
({c}⇥ iIR). Then

lim

T!+1
|f(x)� E

c

T

f(x)| = 0, x 2 IR

+
.

Further, if f 2 B

⇡T

c

for some T > 0, then, for all T � T ,

f(x) = E

c

T

f(x), x 2 IR

+
.

The operator s-⇥↵

c

f, ↵ > 0, plays the basic role in the
following corollary, giving the fast rate of approximation of
f(x), depending on its order ↵, by the exponential sampling
sum E

c

T

f(x).

Corollary 2: If f 2 W

↵

Xc
, c 2 IR,↵ > 0, is continuous on

IR

+ such that M [s-⇥↵

c

f ] 2 L

1
({c}⇥ iIR), then

|f(x)� E

c

T

f(x)| = o(T

�↵

), (x 2 IR

+
;T ! +1).

Proof. According to Theorem 1, |[f ]^
M

(c + it)| =

|t|�↵|[s-⇥↵

c

f ]

^
M

(c+ it)|, t 2 IR, so that:
Z

|t|>⇡T

|[f ]^
M

(c+ it)|dt

 1

⇡

↵

T

↵

Z

|t|>⇡T

|[s-⇥↵

c

f ]

^
M

(c+ it)|dt = o(T

�↵

),

so the assertion follows by Theorem 6.

In the previous new corollary, we can consider the pointwise
derivative D

↵

0+,c

with the assumptions of Theorem 3.
One of the several theorems which are equivalent to the
classical Whittaker-Kotel’nikov-Shannon sampling theorem is
the well known reproducing kernel formula. In the Mellin
setting, it reads as follows, for functions in B

T⇡

c

, T > 0

Theorem 7: Let f 2 B

T⇡

c

, c 2 IR, T > 0, be fixed. Then
we have

f(x) = T

Z 1

0
f(y)lin

c/T

✓
(

x

y

)

T

◆
dy

y

(x 2 IR

+
).

Proof: Putting h(y) = f(y

1/T
), we have h 2 B

⇡

c/T

. Then
using the reasoning of Lemma 6.3 in [8, Part I] we can write

[h(y)lin
c/T

(x/y)]

^
M

(it)

=

x

�c/T

2⇡

Z
⇡

�⇡

[h]

^
M

(c/T + i(t+ v))x

�iv

dv (t 2 IR).
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Then for t = 0 we get
Z 1

0
h(y)lin

c/T

(x/y)

dy

y

=

x

�c/T

2⇡

Z
⇡

�⇡

[h]

^
M

(c/T + iv)x

�iv

dv = h(x)

by Theorem 2.4 in [8, Part I]. Thus we have

f(x

1/T
) = T

Z 1

0
f(y)lin

c/T

(x/y

T

)

dy

y

,

and putting x

1/T
= z we have the assertion.

A further new result is the approximate reproducing ker-
nel theorem, namely its version for not necessarily Mellin-
bandilimited functions. It states that

Theorem 8: Let f 2 X

c

, c 2 IR, be continuous on IR

+ such
that M [f ] 2 L

1
({c} ⇥ iIR). Then there holds, for y 2 IR

+

and T > 0, the error estimate
����f(x)� T

Z 1

0
f(y)lin

c/T

✓
(

x

y

)

T

◆
dy

y

����

 x

�c

2⇡

Z

|v|�⇡T

|[f ]^
M

(c+ iv)|dv.

IV. THE FINITE MELLIN TRANSFORM AND THE
MELLIN-POISSON SUMMATION FORMULA

The Poisson summation formula in the classical frame of
Fourier analysis is one the cornestones of all mathematical
analysis. To formulate and establish it in the Mellin setting
one needs further concepts, namely Mellin Fourier series
(introduced in [7, Part I]) and the associated finite Mellin
transform, since this Poisson summation connects the Mellin
transform with its finite version.

Definitions.
(i) A function f : IR

+ ! CC will be called recurrent, if
f(x) = f(e

2⇡
x) for all x 2 IR

+
. The function f is

called c�recurrent for c 2 IR, if x

c

f(x) is recurrent,
i.e., if f(x) = e

2⇡c
f(e

2⇡
x) for all x 2 IR

+
.

(ii) The space Y

c

of c�recurrent functions f : IR

+ ! CC is
defined for c 2 IR, by

Y

c

:= {f 2 L

1
loc

(IR

+
) : f c-recurrent, kfk

Yc < +1},

kfk
Yc =

R
e

⇡

e

�⇡ |f(u)|us�1
du, with s = c+ it.

(iii) The finite Mellin transform of f 2 Y

c

, c 2 IR is

M
c

[f ](k) ⌘ [f ]

^
Mc

(k) =

Z
e

⇡

e

�⇡

f(u)u

c+it�1
du, (k 2 ZZ),

M
c

: Y

c

! L

1
(ZZ), f 7! {[f ]^Mc

(k)}
k2ZZ

, with
kM

c

k[Yc,L
1] = 1.

(iv) The associated Mellin-Fourier series of f 2 Y

c

is

f(x) ⇠ 1

2⇡

1X

k=�1
[f ]

^
Mc

(k)x

�c�ik

, (x 2 IR

+
).

Theorem 9: Let f 2 X

c

, c 2 IR, be continuous on IR

+

such that
P1

k=�1 |M [f ](c+ ik)| < 1. If the series

f

c

(x) :=

1X

k=�1
f(e

2⇡k
x)e

2⇡kc
, (x 2 IR

+
)

which is c�recurrent and absolutely convergent a.e. on the
interval [e�⇡

, e

⇡

] is also uniformly convergent there, then

M [f ](c+ ik) = M
c

[f

c

](k), (k 2 ZZ),

and especially there holds

f

c

(x) =

1

2⇡

1X

k=�1
M [f ](c+ ik)x

�c�ik

, (x 2 IR

+
).

It is the strong feeling of the authors that not only the Mellin-
sampling theorem is equivalent to its approximate version,
but also the reproducing kernel theorem and its approximate
version are equivalent. Even more so all these theorems are
equivalent among themselves, and under suitable conditions,
are equivalent to the Mellin-Poisson summation formula.
Equivalence is understood in the sense that each is a corollary
of the others. This is indeed the situation in the non-fractional
version of the Fourier case as recently proved in [3], [4].
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Abstract—Localisation microscopy (PALM/ STORM) involves
sampling sparse subsets of fluorescently labelled molecules, so
that the density of bright fluorophores in a single frame is
low enough to allow single molecule sub-diffraction limited
localisation. The sampling rate, i.e. the density of bright flu-
orophores per unit time, is key to both the temporal and
spatial resolution of localization microscopy. Here we present
DAOSTORM, an image analysis algorithm allowing increased
sampling rate, and AutoLase, an algorithm for measurement and
closed-loop feedback control of sampling rate.

I. INTRODUCTION

Localisation microscopy (PALM [1]/ STORM [2], etc.)
involves two key insights. Firstly, that the positions of well
separated point sources can be localized to sub-diffraction
limited accuracy. Secondly, that fluorescent molecules can be
made to blink in a controlled fashion under appropriate exper-
imental conditions. By adjusting the blinking of a fluorophore
such that it spends most of its time in a dark inactive state,
and only a tiny fraction of its time in a bright, photon-emitting
state, a single image of even a densely-labelled structure
will show only a few active, well separated point sources
within the image. Repeated imaging of the sample records the
position of different subsets of fluorophores; by combining the
many subsets of localizations obtained from multiple images,
a single super-resolved image of all fluorophores within the
sample may be constructed.

One of the most important parameters in localization mi-
croscopy is the sampling rate, i.e. the density of bright
fluorophores per unit time. If the sampling rate is too high,
the bright fluorophores will no longer be well separated, and
the spatial resolution of the image will be degraded. If the
sampling rate is too low, an unnecessarily large number of raw
images will be required to reconstruct a single super-resolved
image, reducing the temporal resolution of the measurement.
Sampling rate is thus key to both the temporal and spatial
resolution of localization microscopy.

Here, we focus on two key sampling problems in local-
ization microscopy: how to increase the maximal sampling
rate, and how to maintain optimal sampling rate during data
acquisition.

II. INCREASED SAMPLING RATE BY HIGH DENSITY
LOCALIZATION

Until recently, algorithms for localization microscopy took
the following simplistic approach. All bright fluorophores
within a sample are assumed to be well separated (separation
much greater than FWHM of the point spread function, PSF).
Then bright spots in the image are identified and fitted with
a single model PSF (usually a 2D Gaussian). However, if
two spots overlap even slightly, this approach fails due to the
inadequacy of the fitting model, producing a single localization
which is in-between the two overlapping spots. This approach
only works when the imaging density (the density of bright
fluorophores in a single image) is very low, severely limiting
the sampling rate of the technique.

We developed DAOSTORM [3], which is capable of single
molecule localization at much higher imaging density. This
is achieved by simultaneously fitting multiple model PSFs to
bright regions of the image, instead of just one model PSF.
This simple improvement over previous algorithms allows
localization at much higher imaging density, increasing the
sampling rate and temporal resolution of the technique.

We compared DAOSTORM to two common “sparse” local-
ization algorithms. “Sparse Algorithm 1” (SA1) [2] fits candi-
date molecules with a single Gaussian PSF of variable size and
ellipticity. Localizations arising from overlapping molecules
are rejected if the fitted PSF appears too elliptical (“shape-
based filtering”), or too large/ small (“size-based filtering”).
“Sparse Algorithm 2” (SA2) [4] fits candidate molecules with
a single Gaussian PSF of fixed shape and size, without shape/
size-based filtering.

We first investigated the qualitative performance of each
algorithm for images of Alexa647-labelled microtubules in
fixed COS-7 cells in dSTORM photoswitching conditions [4].
The results of each algorithm on single raw images, illustrates
the characteristic performance of each algorithm (Fig. 1a-c).
SA1 only localized isolated molecules, which were fitted with
small localization error. SA2 localized a larger fraction of
the molecules, but showed large localization errors for over-
lapping molecules. DAOSTORM outperformed both sparse
algorithms, successfully identifying almost all molecules with
small localization error.

We quantified the performance of each algorithm by analyz-
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Fig. 1. Comparison of DAOSTORM to existing super resolution localization algorithms. A. A single image of fluorescently labeled
microtubules was analyzed using SA1, SA2 and DAOSTORM. Crosses represent localizations for each algorithm. B, C. Recall (B) and
localization error (C) of the algorithms used in a measured for simulated images of randomly distributed surface-immobilized molecules.
Error bars, s.d. (n = 10). D. Super-resolved microtubule images from a 2000-frame data series. E. Line plots of cross-section indicated by
dashed lines in D. Scale bars, 1 µm. Reproduced from [3]

ing simulations of randomly distributed surface-immobilized
fluorophores. We compared observed localizations to simu-
lated positions, calculating the recall and localization error at
different imaging densities. The recall is the percentage of
simulated fluorophores successfully detected. The localization
error is the root-mean-square distance between a localization
and the simulated position.

DAOSTORM substantially outperformed the sparse algo-
rithms in simulations at high signal-to-noise ratio (SNR)
typical of STORM data (Fig. 1d). SA2 gave large localization
errors even at low imaging density. In contrast, DAOSTORM
gave small localization errors similar to the other “precise”
algorithm, SA1, together with a 6-fold improvement in recall
performance.

Next, we recorded dSTORM images of the microtubule
network described above, and used each algorithm to ob-
tain super-resolved images (Fig. 1e-g). SA1 showed low
recall, producing poorly sampled STORM images, while SA2
achieved higher recall, but with large localization error, leading
to poorly-defined, noisy images. DAOSTORM showed high re-
call and small localization error, producing well-defined, low-
noise images. A line-plot across three parallel microtubules
demonstrates the performance difference among the algorithms
(Fig. 1h): DAOSTORM resolved all three microtubules, SA2
detected two, and SA1 detected only one.

These results demonstrate the ability of DAOSTORM to in-
crease the maximum sampling rate in localization microscopy,
and thus increase temporal resolution. DAOSTORM can also
increase quality of super-resolved images of biological sam-
ples in situations where control of imaging density is poor.

III. MEASUREMENT AND CLOSED-LOOP FEEDBACK
CONTROL OF SAMPLING RATE

During data acquisition, a careful balance in sampling rate
is required: if sampling rate is too high, spatial resolution is
reduced; if sampling rate is too low, temporal resolution is
reduced. In both PALM and STORM, the sampling rate is
usually sensitive to the illumination intensity of a “photoac-
tivation” UV laser [1], [2]. The sampling rate can thus be
adjusted to its optimal level by changing the photoactivation
laser power (hereafter, UV power). However, the UV power re-
quired to maintain optimal sampling rate will vary significantly
during a measurement, due to irreversible photobleaching of
an increasing fraction of the fluorophores as the experiment
progresses. It will also vary significantly between different
fields of view within a sample, e.g. due to variations in the
morphology and labelling density of the labelled structure.

Sampling rate is usually controlled by continuous manual
assessment of the density of molecules in any single frame,
and manual adjustment of UV power. This is tedious, and
most importantly, is incompatible with automation. To resolve
this, we present AutoLase, an algorithm for measurement and
closed-loop feedback control of sampling rate.

A conceptually straightforwards approach [5] is to perform
real-time localization analysis as the data is acquired and
optimise the UV power based on the observed number of local-
izations. However, this approach has two serious limitations.
Firstly, real-time localization is computationally intensive; this
approach will therefore be difficult to implement for high
frame-rate imaging and/ or for large field of view cameras
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(e.g. sCMOS cameras). Secondly, and most importantly, this
approach will fail at high imaging density, since multiple
overlapping PSFs will be erroneously grouped together.

The design requirements for AutoLase are thus low com-
putational burden and good performance at high imaging
density. Instead of trying to optimise sampling rate using only
the information from an individual frame, the problem can
be significantly simplified by including temporal information
from multiple frames. The amount of time that individual
fluorophores remain in a bright, photon emitting state is
Poisson distributed about a mean lifetime ⌧

on

. Therefore, any
region of a sample which remains continuously bright for
significantly longer than ⌧

on

very likely contains multiple
bright fluorophores instead of just one. We devised an image-
based estimator of ⌧

on

, by estimating the amount of time that
each pixel in an image has been continuously bright. This
allows us to estimate the number of bright molecules, without
the need for real-time localization. Since ⌧

on

will increase with
the number of active bright molecules, this estimator will be
robust at high imaging density.

For each frame k, and for each pixel i, we define the
estimated on-time, ⌧

i,k

,

⌧

i,0 = 0,

⌧

i,k

= (⌧

i,k�1 +�t) M

th

(I

i

),

where �t is the interval between each frame, I
i

is the intensity
at the current pixel, th is an intensity threshold, and M

th

(I)

is the binary threshold operator,

M

th

(I) =

(
1 if I � th,

0 otherwise.

Each time the pixel intensity I

i

falls below th, ⌧
i,k

is set
to 0. If I

i

is above threshold, ⌧
i,k

is equal to the duration for
which that pixel has been above threshold at frame k. ⌧ is
thus a measure of how long each pixel has been continuously
bright.

We implemented closed-loop feedback control of ⌧ . The
maximum value of ⌧ at each frame K is smoothed via a
running mean

⌧

max

=

1

N

KX

K�N+1

max

i

⌧

i,k

,

and compared to a target value T . If the observed value of ⌧
is above or below T by more than x %, then the UV power
is reduced or increased, respectively. We calculated the image
maximum of ⌧ rather than an average, since we reasoned that
the key criterion is that no region of the image contains too
many active molecules.

Closed-loop feedback control was implemented on a home-
built microscope, controlled using the open-source instrument
control software, Micromanager [6]. We wrote a plugin to
Micromanager, called AutoLase, to perform the feedback con-
trol, which we will shortly release as open-source software.
Because Micromanager is open-source and works for a large

variety of instruments, and because AutoLase is not compu-
tationally intensive and does not require real time localiza-
tion analysis, it should be straightforward for researchers to
implement feedback control on their own systems using our
software.

The performance of the AutoLase algorithm in estimating
⌧

on

is shown in Fig. 2. Live C. crescentus bacteria expressing
FtsZ-Dendra2 [7] were imaged at a frame rate of 100 Hz
using AutoLase to control the imaging density. An exemplar
subset of frames (Fig. 2A) shows the blinking behaviour of the
labelled molecules. Most molecules remain on for less than
100 ms, however, two molecules (top middle and top right
of images) remain on for greater than 200 ms. The on-time
estimator ⌧ successfully captures this behaviour (Fig. 2B),
showing only two regions active for greater than 200 ms,
consistent with the visual interpretation of the raw data.

AutoLase feedback control is shown in Fig. 2C-D. With
feedback control (Fig. 2C), the laser power was initially 0 %,
and AutoLase was turned on at t=0 s. The raw ⌧

max

data
is quite noisy (grey line), but clear trends are visible in the
smoothed data (black line). Before t=0 s, most molecules
are in their dark state, with only occasional spikes in ⌧

max

due to autofluorescence or photoactivation by the imaging
laser. When AutoLase is turned on at t=0 s, the laser power
(blue line) is rapidly increased and stabilises at ⇠10 % for
the first 50 s of imaging, after which point it increases in
approximately exponential form to the maximum power. This
produces observed on-times stable around the target value of
400 ms for nearly 100 s, after which ⌧

max

gradually decreases
because very few unbleached molecules remain.

Without feedback control (Fig. 2D), a new field of view
(FOV) was chosen, and the laser power was set to 10 %
of maximum power at t=0 s, since this was observed to be
the stable initial value for the previous FOV. Interestingly,
this power level produces an observed ⌧

max

well above the
target value of 400 ms for the first 50 s of imaging. This is
presumably due to variation in density of labelled molecules
between different FOVs. Between 50–100 s, ⌧

max

is near the
target value, after which it decreases rapidly.

These results show that AutoLase can rapidly and accurately
optimise ⌧

max

to a given target value, and that this value can
be maintained for extended periods of time. By contrast, set-
ting the power to a constant value without feedback control is
sensitive to variations in density of labelled molecules, which
occurs even between adjacent FOVs (e.g. due to variation
in morphology of the labelled structure), and significantly
reduces the period for which ⌧

max

is close to the target value.
In practice, we have found that AutoLase gives performance at
least as good as manual optimisation of the UV power, while
being compatible with automated imaging.

IV. CONCLUSIONS

Sampling rate is a key parameter for localization mi-
croscopy. Our algorithm, DAOSTORM, is capable of
analysing localization microscopy data even at high imaging
density, where many fluorescent molecules are simultaneously
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Fig. 2. Measurement and control of molecule on-time using AutoLase. A. Exemplar subset of images of live C. crescentus expressing
FtsZ-Dendra2, under photoswithing conditions. B. Estimated on-time for each pixel, for frame corresponding to t= 0 ms in A. C-D. Observed
maximum single-pixel on-time (⌧

max

) , with (C) and without (D) feedback control. Raw data, gray line; smoothed data, black line; laser
power, blue line. For the case with feedback control turned off (D), UV power was set to 10 % at t= 0 s.

active. In high signal-to-noise conditions, a sixfold increase in
maximum imaging density is obtained. This allows increased
sampling rate with minimal loss of spatial resolution. In
practice this allows super-resolved images to be constructed
from fewer frames of raw data, significantly increasing the
temporal resolution of the technique. These improvements are
particularly useful for challenging applications such as live-
cell super-resolution imaging [8].

We also presented AutoLase, an algorithm for measure-
ment and closed-loop feedback control of sampling rate. Our
algorithm is computationally non-intensive and is designed
to give good performance even at high imaging density. By
allowing automatic optimisation of photoactivation laser inten-
sity, AutoLase facilitates automated localization microscopy
measurements.
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Abstract—Localization microscopy such as STORM/PALM
achieves the super-resolution by sparsely activating photo-
switchable probes. However, to make the activation sparse enough
to obtain reconstruction images using conventional algorithms,
only small set of probes need to be activated simultaneously,
which limits the temporal resolution. Hence, to improve tem-
poral resolution up to a level of live cell imaging, high-density
imaging algorithms that can resolve several overlapping PSFs
are required. In this paper, we propose a maximum likelihood
algorithm under Poisson noise model for the high-density low-
SNR STORM/PALM imaging. Using a sparsity promoting prior
with concave-convex procedure (CCCP) optimization algorithm,
we achieved high performance reconstructions with fast recon-
struction speed of 5 second per frame under high density low SNR
imaging conditions. Experimental results using simulated and
real live-cell imaging data demonstrate that proposed algorithm is
more robust than previous methods in terms of both localization
accuracy and molecular recall rate.

I. INTRODUCTION

For the past decades, several innovative methods for sur-
passing the diffraction limit in far-field optical microscopy
have been proposed. It is now well known that their significant
resolution improvement was originated from exploiting the
optical non-linearity. For example, STED and SSIM can
achieve the super-resolution by exploiting the non-linearity of
high power illumination, whereas the stochastic optical recon-
struction microscopy (STORM) [1] and photo-activated local-
ization microscopy (FALM) [2] exploit non-linearity of pho-
toswitchable fluorescence dyes. Specifically, STORM/FALM
rely on sparse fluorophore activations such that fluorophores
are sparsely activated in both spatial and temporal domain.
When the point spread functions (PSFs) of the activated
fluorophore are usually not overlapped, these fluorophores can
be localized individually based on the least-squares [1], [2]
or the maximum-likelihood [3] PSF fitting. To achieve sparse
activation, an accumulation rate of localized fluorophores is,
however, limited; so that typically several thousands frames
are required to reconstruct a single super-resolution image. In
other words, its temporal resolution is on the order of minutes,
which allows only limited live-cell imaging.

In order to improve the temporal resolution, one of the
possible approaches is high-density imaging. However, in the
high-density imaging, many fluorophores are activated at the
same time so that there are many overlapping PSFs at each
snapshot. There have been several approaches to resolve the

overlapping PSFs. For example, DAOSTORM algorithm [4] it-
eratively fits overlapping spots in a greedy manner. CSSTORM
(compressed sensing STORM) [5] and DeconSTROM [6]
solve this problem as a sparse recovery among which the latter
approach has been demonstrated to be more efficient for high-
density imaging in terms of localization accuracy as well as
molecular recall rates. For example, in CSSTORM, Gaussian
noise model with sparsity constraint is assumed, which is
solved by linear programming. As linear programming is
computationally expensive, it adopts the local approach in
which a reconstructed image is divided into several small-sized
blocks processed individually, which potentially degrades the
localization accuracy. In DeconSTORM, they use a modified
Lucy-Richardson deconvolution in order to utilize Poisson
statistics and temporal correlation of activated fluorophores.

In this paper, we present a new localization algorithm
for high-density imaging by using a maximum likelihood
estimation with a sparsity constraint, which is extremely fast
compared to the existing approaches due to perfectly paral-
lelizable structure. Using both simulation and real experiment,
we confirmed that the proposed algorithm is especially robust
in high-density live-cell imaging at low SNR by low emitted
photons from activated fluorophores and high background
level.

II. CCCP FRAMEWORK USING GENERALIZED HUBER
PENALTY

A. Problem Formulation

Let x 2 Rn, r 2 R and y 2 Rm denote the unknown
fluorophore distribution, background fluorescence signals, and
detector measurements, respectively; and A = [aij ]

m,n
i,j=1 de-

notes the probability matrix that a emission photon from a
voxel is detected at a detector position. Then, the negative
loglikelihood function from Poisson intensity measurement is
given by:

L(x) = 1

T
(Ax + r)° y

T
log(Ax + r) (1)

where 1 denotes a vector with elements of ones with an
appropriate size and log(Ax + r) is treated as element by
element operation. Then, our superresolution imaging problem
can be formulated as the following minimization problem:

min

x

J(x) where J(x) = L(x) + pen(x) , (2)
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where the penalty function pen(x) imposes a penalty to
guide the reconstruction. Note that the optimization problem
is not trivial since 1) the gradient of L(x) is non-Lipschitz,
and 2) each element of x should be nonnegative. Another
technical difficulties in minimizing L(x) in Eq. (1) is the
existence of non-separable term in the likelihood, i.e. log (Ax).
Quadratic approximation [7] or Anscombe transform [8] was
used to make this separable. Recently, for the case of Poisson
image deconvolution using total variation (TV) or frame based
analysis/synthesis penalty, Figueiredo and Bioucas-Dia [9]
proposed so-called PIDAL algorithm using alternating direc-
tion of method of multiplier (ADMM) without approximating
the Poisson loglikelihood. However, these ADMM algorithm
requires huge additional memory to store the Lagrangian
parameters to deal with non-separability of loglikelihood and
the non-negativeness of x.

To overcome these issues, this paper proposes a new opti-
mization algorithm using the concave-convex procedure [10],
which does not need any approximation of the cost function, or
to store additional Lagrangian parameters. CCCP is a special
case of majorized-minimzation algorithm, which utilizes the
Legendre-Fenchel transform as a majorization function.

Legendre-Fenchel Transform of the Penalty: More specifi-
cally, as a sparsity inducing penalty, consider the following:

kxkµ,p =

nX

j=1

hµ,p(xj), 0 < p ∑ 1. (3)

where the generalized p-Huber function hµ,p(t) is defined as

hµ,p(t) =

Ω
|t|2/2µ, if |t| < µ

1/(2°p)

|t|p/p° ± if |t| ∏ µ

1/(2°p) (4)

and where ± = (1/p ° 1/2)µ

p/(2°p) to make the function
continuous and differentiable [11]. Note that for p < 1 the
prior is non-convex. For the generalized p-Huber function in
Eq. (4), it is easy to show that |t|2/µ ° hµ,p(t) is strictly
convex [12]. Therefore, the Legendre-Fenchel transform tells
us that there exist gµ,p such that

hµ,p(t) = min

s
{|s° t|2/µ + gµ,p(s)} . (5)

Chartrand [13], [11] showed that gµ,p(s) is convex when p =

1, but in general it is not convex. However, even when gµ,p(s)

is non-convex, |s|2/µ+gµ,p(s) is convex and Eq. (5) becomes
a convex minimization problem with respect to s that has a
closed form expression for the minimizer given as

shrinkp(t, µ) := arg min

s
{|s° t|2/µ + gµ,p(s)}

= max{0, |t|° µ|t|p°1}t/|t| . (6)

Here, p 2 [0, 1] in which p = 0 is similar to hard thresholding
and p = 1 is the same as soft thresholding [11].

Legendre-Fenchel Transform of the Negative Loglikelihood:
Note that the negative loglikelihood term for the Poisson noise
in Eq. (1) is convex. However, to deal with the existence of
non-separable term in the likelihood, we utilize the CCCP with
the help of a concave coordinate transform. More specifically,

using an appropriate coordinate transform and application of
Legendre-Fenchel transform, we can show that

L(x) = min

v

Lc(x, c)

Lc(x, c) =

mX

i=1

0

@
nX

j=1

aijxj + cij log

cij

aijxj
° yi log(yi)

1

A

+

mX

i=1

µ
ri + ci log

ci

ri

∂
(7)

and ci +

Pm
j=1 cij = yi.

B. Optimization Framework

Now, we have the following minimization problem:

min

x,c,w
Lc(x, c) + ∏

nX

j=1

µ
1

µ

kxj ° wjk2 + gµ,p(wj)

∂
, (8)

1) Minimization with respect to w: Using the shrinkage
relationship in Eq. (6), the close form solution is given by

w

(k+1)
j = shrinkp(x

(k)
j , µ).

2) Minimization with respect to c: The minimization prob-
lem has been studied by Hsiao et al [14] using Lagrangian for
the constraint ci +

Pn
j=1 cij = yi and it has been shown that

we have the following closed form solution for the constrained
optimization problem [15]:

c

(k+1)
ij =

yiaijx
(k)
jPn

j0=1 aij0
x

(k)
j0 + ri

, c

(k+1)
i =

yiri
Pn

j0=1 aij0
x

(k)
j0 + ri

,

(9)

3) Minimization with respect to x: Finally, for given c

(k+1)

and w

(k+1), we can obtain a closed form solution for the
update of x

(k+1). More specifically, a fixed point equation of
the gradient of the cost function with respect to xj satisfies
the following second order polynomial:

0 =

X

i

aij °
P

i c

(k+1)
ij

xj
+

∏

µ

(xj ° w

(k+1)
j ) , (10)

Define

d :=

∏

µ

, b

(k+1)
j =

√
X

i

aij

!
° dw

(k+1)
j .

Then, the closed form solution is given by

x

(k+1)
j =

°b

(k+1)
j +

q
(b

(k+1)
j )

2
+ 4dx

EM(k+1)
j

Pm
i=1 aij

2d

(11)

where x

EM(k+1)
ns is similar to an ML-EM update given by

x

EM(k+1)
j =

x

(k)
jPm

i=1 aij

mX

i=1

aijyi
Pn

j0=1 aij0
x

(k)
j0 + ri

. (12)

Note that the solution is always non-negative, satisfying the
positivity constraint. Moreover, our update equation is a
pixel-by-pixel update similar to ML-EM algorithm or Lucy-
Richardson method.
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4) Advantages of the Proposed Method: Compared to a PI-
DAL type algorithm, the proposed method has a unique advan-
tage well-matched to super-resolution localization microscopy.
The additional memory requirement for a Lagrangian ap-
proach is eliminated. Indeed, the computational complexity
and memory usage during the calculation of xj is similar to
the standard Lucy-Richardson deconvolution method. Hence,
the algorithm lends itself to a fast GPU implementation thanks
to the efficient memory utilization and pixel-by-pixel update.
On a intel i7 920 (CPU) and a Tesla C1060 (GPU), our GPU
implementation of the proposed method takes only 5 seconds
in reconstructing a five over-sampled image of a 128 £ 128

CCD image with 1500 iterations.

III. EXPERIMENTAL RESULTS

We performed experiments using simulated data and real
high-density live-imaging PALM data. We compared the
following algorithms: the least-square Gaussian fitting[1],
CSSTORM[5], FISTA[16] using l1 norm, and the proposed
algorithm. In CSSTORM, FISTA, and the proposed algorithm,
uniform background is assumed and estimated. In the least-
squares method, an elliptical Gaussian PSF to local maxima
of the image is fitted.

A. Simluation
In the simulated data, each nanoscale molecule provides a

Gaussian PSF of 340nm full width half maximum (FWHM).
Emitted photons of the molecules follow the log-normal dis-
tribution with mean of 500 and standard deviation of 100.
In order to generate low-SNR data, 70 background photons
are added to every CCD pixel of 100 nm. In addition, we
introduced Poisson shot noise and Gaussian readout noise
with unit variance. We generated a data set of a wide range
of imaging densities, from 0.2µm

°2 to 3.4µm

°2. At each
density level, flurophores are generated at random locations
within 40£40 pixel image, and the total of 30 realizations
were used. To quantify the error, each true molecular positions
are matched to the closest localized fluorophore within 200nm
radius. Then, we calculated the standard deviation of the
localization errors and the molecular recall rates.

In all ranges of the density level, the proposed algorithm
demonstrated better recall rates than the others. Specifically,
the proposed algorithm can identify 10 times more fluorophore
molecules than the least-squares method, and improve about
10-30% compared to CSSTROM and FISTA. Moreover, the
proposed method is much accurate than CSSTROM & FISTA
in terms of localization accuracy. While the least squares
method have the smallest localization error, these errors are
only for the corrected identified fluoresphores, whose number
is significantly smaller compared to others. Therefore, this
confirmed that the proposed algorithm is more effective in
low-SNR & high-density imaging data than the conventional
approaches.

B. Live-cell Super-resolution Imaging
U2OS cells were maintained in Dulbecco’s Modified Ea-

gles’s Medium (DMEM) (Gibco) supplemented with 10% Fe-
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Fig. 1. Simulation analysis on low-SNR STORM/PALM data. (a) Local-
ization error. (b) Identified molecular density. Cramer-Rao bound(CRB) is
theoretical minimum accuracy of single molecule localization.

tal Bovine Serum (FBS) (Gibco) in an atmosphere containing
5% CO2 at 37 ±C. Cells were cultured and maintained in T-25
flasks and grown to about 70% confluency (corresponding to
2 days) before they were passaged. Prior to staining, cells
were washed once with PBS (Sigma). A 200 nM dilution
of Mitotracker Red CMH2XRos (Invitrogen) was made in
Leibovitz (Invitrogen) and labelled in an inner membrane of
the mitochondria. Cells were incubated with the dye for 1520
min at 37 ±C in a CO2 atmosphere.

Imaging was performed on an inverted microscope (IX71,
Olympus), equipped with an oil-immersion objective (UP-
lanSAPO 100 x, NA=1.40, Olympus). A 561 nm (Sap-
phire 561, Coherent) was used to excite Mitotracker Red
CMH2XRos and fluorescence was directed onto an electron
multiplying CCD camera (iXon+, Andor) with a resulting
pixel size of 100 nm. The laser intensity was approximately
3 kW cm°2 and an ET605/70 (Chroma) emission filter was
used. 4000 frames were collected with a 20 ms exposure
time per frame. Using the experimental data, we compared
the reconstruction results using the three algorithms (Least-
squares, FISTA, and the proposed). The proposed algorithm
localized 30 % more molecules than FISTA and 8 times more
than the least-squares. In figure 2(b-d), the proposed results
show better internal matrix structure and have much clear
boundaries of mitochondria than the others. Moreover, the size
of the reconstructed mitochondria using FISTA (c) seems to be
reduced compared to that of the proposed method (d). In order
to observe the dynamic of mitochondria, we created time-lapse
images (e,f). Every images in (e,f) were generated from the
1000 consecutive CCD frames for 20 sec and the time-gap
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Fig. 2. Live-cell imaging of Mitochondria. Inner membrane of the Mitochondria was labbeled by Mitotracker. (a) Conventional image. (b)Least-square fitting.
(c) FISTA decon. (d)Proposed. (e,f) Conventional and Proposed time-lapse images. Every image is generated from consecutive 1000 CCD frames(20sec) and
time-gap is 10sec. (a-d) images correspond to blue maker in (e,f). Scale-bar in (a-d) is 1µm.

between successive acquisitions was 10 sec. In the time-lapse
images (e-f), we observed slow movements of mitochondria.

IV. CONCLUSION

We present a new localization algorithm for high-density
super-resolution microscopy using the maximum-likelihood
estimation of the Poisson noise model with sparsity promoting
prior. Using concave-convex procedure, a highly parallelizable
algorithm has been derived, which results in a fast GPU
implementation with speed of 5 sec per frame. We demon-
strated that our algorithm is much effective in low-SNR PALM
data over wide range of imaging density in terms of recall
rate and localization accuracy. Therefore, we expect that the
proposed approach can significantly reduce the number of
required CCD frames for super-resolution imaging, which
can improve the temporal resolution significantly. Thus, our
approach is appropriate for live-cell imaging to investigate
biological interactions at the nanometer scale.
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Abstract—We review traditions and trends in optics and imag-
ing recently arising by applying programmable optical devices
or by sophisticated approaches for data evaluation and image
reconstruction. Furthermore, a short overview is given about
modeling of well-known classical optical elements, and vice versa,
about optical realizations of classical mathematical transforms,
as in particular Fourier, Hilbert, and Riesz transforms.

I. INTRODUCTION

In the 18th/19th century the work of physicists and mathe-
maticians was often closely connected. Scientists in that age
were often acting concurrently in both fields: if we think
about e.g. Augustin Fresnel explaining experimentally and
theoretically the phenomena of light propagation and diffrac-
tion, or about Joseph Fourier, experimentally discovering mode
decomposition of (mechanical) wave fields and delivering the
basis for later theory about transforming signals and fields into
the (temporal or spatial) frequency domain. In the nearer past
both disciplines were developing rather independently in their
own directions. In the field of optics important discoveries as
the laser, wave-guides, novel microscopic or holographic tech-
niques should be named as examples among others. In the field
of mathematics the huge field of harmonic analysis, bringing
up wavelets, frames etc., the several numerical approaches for
solving differential equations and also the development of the
functional theoretic background in analysis should be quoted
as representatives here.

II. OPTICAL DEVICES AND MATHEMATICAL
DESCRIPTIONS; MATHEMATICAL APPROACHES AND

OPTICAL REALIZATIONS

A. Analogies between optical and mathematical approaches
Due to the contemporary possibilities given on one hand by

advanced digital optical devices, as spatial light modulators
(SLM) or micro mirror arrays (MMA), deformable mirrors
or phased arrays in combination with traditional optical ele-
ments, and on the other hand by the computational power of
modern hard- and software architecture allowing sophisticated

mathematical reconstruction algorithms, new fields of research
and perspectives are opened. Computational or programmable
optics are examples for this modern development and interdis-
ciplinary entanglement of the different disciplines. They open
a new branch of methods as for digital holography, lensless mi-
croscopy, or adaptive optics [1]–[3]; they comprehend several
phase retrieval and reconstruction techniques [4], [5], adaptive
wave front correction methods up to compressive sensing
for optical applications [6], [7]. Whereas in the past optical
imaging performance has often been hampered by scattering
within materials, by turbulences within fluids, or speckles
at rough surfaces, nowadays computational techniques and
programmable optics deliver novel approaches as focusing
through or within scattering materials, turbulence corrections
or contrast enhancement by SLM-based techniques, [8]–[10].

Bringing now together optics and mathematics in such a
way, touching points are noticed and furthermore, awareness
is arising that in both fields similar approaches exist, only
realization techniques or names may differ. This concerns for
instance classical optical devices (as lenses, prism, cones,...) or
classical imaging techniques (bright field, dark field, Schlieren
or knife edge imaging technique, spiral phase quadrature
imaging, or differential interference contrast (DIC) imaging),
[11]–[14]. Primarily, these techniques are modifying contrast
of the visualized specimen, but to a certain amount they are
also quantitative with respect to phase or optical path length,
which can be expressed and reconstructed mathematically un-
der knowledge of their (complex-valued) point spread function
(PSF) in the spatial domain or of their optical transfer function
in the Fourier domain.

Beyond the well-known Fourier transform (FT) other clas-
sical mathematical transforms as the two-dimensional (2D)
Hilbert transform (HT), also denoted as directional HT [15],
with a kernel function HHT defined in the Fourier do-
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Fig. 1. Different contrast modifications emulated by means of the SLM
device being addressed with different filter functions in a Fourier plane
filtering unit (a). The emulated imaging type shows as representative contrast:
(b) bright field (original scan), (c) dark field, (d) and (e) horizontal and
vertical Schlieren/knife edge imaging contrast. (Striped regions encode a zero
magnitude, continuous regions encode a constant unit magnitude, and a phase
between [0, 2 ⇡] according to the gray level. The white scale bar yields
100 µm.)

main (u, v) by

HHT1(u, v) = �sgn(u) exp(il⇡/2), (1)
HHT2(u, v) = �sgn(v) exp(il⇡/2), (2)

where l = 1 is chosen for the conventional HT, or as the
2D Riesz transform (RT), also denoted as complexified-valued
Riesz transform [15] or radial Hilbert transform [16], with a
kernel function HRT defined in the Fourier domain by

HRT (r̂, '̂) = exp(il'̂), (3)

with (r̂, '̂) denoting polar coordinates in the Fourier domain,
and l = 1 is chosen for the conventional RT, find entrance
in optical modeling, emulation, and settings. Optically these
transforms can be realized by classical elements (lenses,
apertures, spiral phase plates) or nowadays more and more
by programmable SLM devices allowing flexible realizations.
Vice versa, in the mathematical modeling of optical imag-
ing techniques these transforms build the base for an (ap-
proximated) description of the PSF e.g. for Schlieren and
DIC imaging, for pyramid and roof sensors (all with a PSF
model based on the directional HT), [17], [18]. Also spiral
phase/vortex filtering (with a PSF model based on the RT),
and their fractional expressions as fractional half-plane and
spiral phase filters (corresponding to a fractional HT resp. RT
with 0 < l < 1 in eq. (2) and (3)) can be modeled in such a
way, as shown in Fig.1 and Fig.2, [19]–[23].

Here we can connect now optics with classical functional
analysis. The PSF of a pyramid sensor [17] given in the spatial

Fig. 2. Contrast modifications emulated by means of the SLM device
being addressed with fractional spiral phase filter functions (fractional Riesz
transform) of fractional coefficient (a) l=0, (b) l=0.4, (c) l=0.8, (d) l=1.0,
(e) l=2.

domain (x, y) by
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with p.v. denoting a principal value and (n,m) are enumera-
tors (0, 1), resembles in its structure the 2D analytic signal, as
introduced by Hahn [24]. Whereas the PSF of a spiral phase
filter or so called vortex filter [22] can be described by the
(2D) Riesz kernel

hSP (r,') =
i

2⇡r2
exp(il'), (5)

with (r,') denoting polar coordinates in spatial domain, and
l = 1 is chosen in the conventional case. Furthermore, it
should be noted that Riesz transform has been introduced
by [25] in the field of optics under the name spiral phase
quadrature transform. This filter tends rather to a monogenic
signal approach, as introduced by Felsberg, [26]. Knowing
now in principle the PSF of these imaging modalities, we can
emulate the special imaging types by addressing SLMs in a
corresponding way with amplitude or phase transfer functions
in optical Fourier domain. So we can flexibly change the
contrast corresponding to the envisaged imaging technique
[27] and can go towards a quantitative reconstruction based
on the emulated PSF in future.

B. Optical Fourier plane filtering and wavelet-like filters

In applied mathematics and signal analysis orthogonal,
isotropic or anisotropic wavelet-based decomposition ap-
proaches play an important role for image processing, nam-
ing applications as image denoising, edge enhancement, or
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Fig. 3. The original image has been filtered optically in Fourier domain by
different monogenic wavelet-like filters, the applied filter kernels are sketched
in the inset. (Striped regions encode a zero magnitude, continuous regions
encode a constant unit magnitude and a phase between [0, 2 ⇡] according to
the gray level.)

compression methods among other. In particular, analytic or
monogenic wavelet approaches have found entrance in image
processing delivering additional phase and orientation infor-
mation or may be used for scale-based demodulation [28]–
[32].

On the other hand we can also ask whether and to which
extent a wavelet-like filtering can be performed analogously
in an optical way. Here the classical principle for optical
Fourier plane filtering finds its modern application anew. In
combination with programmable optics as SLMs or MMAs
we also can emulate to a certain amount the (compact and
positive) support and transfer function of suitable wavelets
(curvelets, shearlets) in Fourier domain. And for their analytic
and monogenic wavelet complements, also in this case, optical
realizations of Hilbert and Riesz transform build up the basis
for the filtering approaches. Here, the methods are usable for
isotropic or anisotropic contrast improvement in imaging [33],
as shown in Fig.3, for orientation emphasizing, or for salient
point detection.

C. Restrictions and differences between optical and mathe-
matical approaches

However, we also should keep in mind the restrictions
and differences between optical realizations and mathematical
approaches. For instance SLMs or MMAs as pixelated and
discrete arrays exhibit only a finite resolution; therefore, the
available spatial frequency range is restricted for filtering.
Furthermore, in optics without introducing additional sensors
or working with interferometric imaging setups, we can only
measure intensities at a conventional camera applied as detec-
tor. So the separated information given in the amplitude and

phase spectrum - as easily obtained by Fourier transform in
mathematics - is lost in their optical counterparts. At least for
phase reconstruction an additional phase retrieval step using a
multiple recording of the modified image would be required.

Coherence aspects in optical Fourier plane filtering provides
an additional discussion point. Coherence may be regarded as
an imaging feature closely related to the considered scale. Fur-
thermore, it must be distinguished between temporal coherence
and spatial coherence. Operating with broadband light sources
for illumination, these sources exhibit a smaller temporal
coherence length than conventional narrow band laser sources
used in coherent imaging. Therefore, the phase filter applied
on the SLM mask is exactly matching only for the central
wavelength. This mismatch may result in a slight blurring of
the image features such as edges. Spatial coherence can be
maintained by coupling the illumination beam into a single
mode fiber.

However, scattering within turbid materials severly restricts
the fixed phase relationship within the electro-magnetic wave
field required e.g. for the Fourier plane (phase-only) filtering
(or correspondingly within a convolution kernel of a defined
support). This demands again methods for wavefront correc-
tion to cope with scattering materials for future successful
implementations.

III. CONCLUSION

In summary, the close connection between the modeling of
well-known optical devices or elements and classical math-
ematical approaches or transforms has been demonstrated.
Furthermore, by linear filtering in optics we can realize
similar effects as with classical filtering in signal or image
processing. The explanation of the obtained effects in optics
and in mathematics is partly similar, but due to the complex-
valued nature of the light also different mechanism, as e.g.
interference or diffraction has to be considered.
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Abstract—We develop a unified sampling theory based on
sheaves and show that the Shannon-Nyquist theorem is a cohomo-
logical consequence of an exact sequence of sheaves. Our theory
indicates that there are additional cohomological obstructions for
higher-dimensional sampling problems. Using these obstructions,
we also present conditions for perfect reconstruction of piecewise
linear functions on graphs, a collection of non-bandlimited
functions on topologically nontrivial domains.

I. INTRODUCTION

The Shannon-Nyquist sampling theorem states that sam-
pling a signal at twice its bandwidth is sufficient to reconstruct
the signal. Its wide applicability leads to the question of
whether there exist similar conditions for reconstructing other
data from samples in more general settings. This article shows
that perfect reconstruction for sampling of local algebraic data
on simplicial complexes can be addressed through the machin-
ery exact sequences of cellular sheaves. As a demonstration of
our technique, we recover the Nyquist theorem and generalize
it to perfect reconstruction of piecewise linear signals on
graphs. Piecewise linear functions are not bandlimited, since
their derivatives are not continuous.

A. Historical context

Sampling theory has a long and storied history, about which
a number of recent survey articles [1], [2], [3], [4] have been
written. Since sampling plays an important role in applications,
substantial effort has been expended on practical algorithms.
Our approach is topologically-motivated, like the somewhat
different approach of [5], [6], so it is less constrained by
specific timing constraints. Relaxed timing constraints are an
important feature of bandpass [7] and multirate [8] algorithms.
We focus on signals with local control, of which splines [9]
are an excellent example.

Sheaf theory has not been used in applications until fairly
recently. The catalyst for new applications was the technical
tool of cellular sheaves, developed in [10]. Since that time, an
applied sheaf theory literature has emerged, for instance [11],
[12], [13], [14], [15].

Our sheaf-theoretic approach allows sufficient generality to
treat sampling on non-Euclidean spaces. Others have studied
sampling on non-Euclidean spaces, for instance general Hilbert
spaces [16], Riemann surfaces [17], symmetric spaces [18],
the hyperbolic plane [19], combinatorial graphs [20], and
quantum graphs [21], [22]. We show that sheaves provide

unified sufficiency conditions for perfect reconstruction on
abstract simplicial complexes, which encompass all of the
above cases.

A large class of local signals are those with finite rate of
innovation [23], [24]. Our ambiguity sheaf is a generalization
of the Strang-Fix conditions as identified in [25]. With our
approach, one can additionally consider reconstruction using
richer samples than simply convolutions with a function.

II. CELLULAR SHEAVES

A. What is a sheaf?

A sheaf is a mathematical object that stores locally-defined
data over a space. In order to formalize this concept, we need
a concept of space that is convenient for computations. The
most efficient such definition is that of a simplicial complex.

Definition 1. An abstract simplicial complex X on a set A
is a collection of ordered subsets of A that is closed under
the operation of taking subsets. We call each element of X a
face. A face with k+1 elements is called a k-face, though we
usually call a 0-face a vertex and a 1-face an edge. The face
category has as objects the elements of X and as morphisms
inclusions of one element of X into another.

Although sheaves have been extensively studied over topo-
logical spaces (see [26] or the appendix of [27] for a modern,
standard treatment), the resulting definition is ill-suited for
application to sampling. Instead, we follow a substantially
more combinatorial approach introduced in the 1985 thesis
of Shepard [10].

Definition 2. A sheaf F on an abstract simplicial complex
X is a covariant functor from the face category of X to the
category of vector spaces. Explicitly,

• for each element a of X , F (a) is a vector space, called
the stalk at a,

• for each inclusion of two faces a! b of X , F (a! b) is
a linear function from F (a)! F (b) called a restriction,
and

• for every composition of inclusions a ! b ! c, F (b !
c) � F (a! b) = F (a! b! c).

Definition 3. Suppose F is a sheaf on an abstract simplicial
complex X and that U is a collection of faces of X . An
assignment s which assigns an element of F (u) to each face
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u 2 U is called a section supported on U when for each
inclusion a! b (in X) of objects in U , F (a! b)s(a) = s(b).
A global section is a section supported on X . If r and s
are sections supported on U ⇢ V , respectively, in which
r(a) = s(a) for each a 2 U we say that s extends r. The
collection of sections supported on a given set forms a vector
space.

Example 4. Consider Y ✓ X a subset of the vertices of an
abstract simplicial complex. The functor S which assigns a
vector space V to vertices in Y and the trivial vector space
to every other face is called a V -sampling sheaf supported on
Y . To every inclusion between faces of different dimension,
S will assign the zero function. For a finite abstract simplicial
complex X , the space of global sections of a V -sampling sheaf
supported on Y is isomorphic to

L
y2Y

V .

Recall that an abstract simplicial complex X consists of
ordered sets. For a a k-face and b a k + 1-face, define

[b : a] =

8
><

>:

+1 if the order of elements in a and b agrees,
�1 if it disagrees, or
0 if a is not a face of b.

Example 5. Suppose G is a graph in which each vertex
has finite degree (evidently G can be realized as an abstract
simplicial complex). Let PL be the sheaf constructed on G
that assigns PL(v) = R1+deg v to each edge v of degree
deg v and PL(e) = R2 to each edge e. The stalks of
PL specify the value of the function (denoted y below)
at each face and the slopes of the function on the edges
(denoted m1, ...,mk

below). To each inclusion of a degree
k vertex v into an edge e, let PL assign the linear function
(y, m1, ...,me

, ...,m
k

) 7! (y + [e : v]

1
2m

e

, m
e

). The global
sections of this sheaf are piecewise linear functions on G.

Definition 6. A sheaf morphism is a natural transformation
between sheaves. Explicitly, a morphism f : F ! G of
sheaves on an abstract simplicial complex X assigns a linear
map f

a

: F (a) ! G(a) to each face a so that for every
inclusion a ! b in the face category of X , f

b

� F (a ! b) =

G(a! b) � f
a

.

B. Sheaf cohomology

Much of the theory of sheaves is concerned with computing
spaces of sections and identifying obstructions to extending
sections. The machinery of cohomology systematizes the
computation of the space of global sections for a sheaf.

Define the following formal cochain vector spaces
Ck

(X;F ) =

L
a a k-face of X

F (a). The coboundary map dk

:

Ck

(X;F ) ! Ck+1
(X;F ) takes an assignment s from the k

faces to an assignment dks whose value at a k + 1 face b is

(dks)(b) =

X

a a k-face ofX

[b : a]F (a! b)s(a).

It can be shown that dk �dk�1
= 0, so that the image of dk�1

is a subspace of the kernel of dk.

Definition 7. The k-th sheaf cohomology of F on an abstract
simplicial complex X is

Hk

(X;F ) = ker dk/image dk�1.

Observe that H0
(X;F ) = ker d0 consists precisely of those

assignments s which are global sections. Cohomology is also
a functor: sheaf morphisms induce linear functions between
cohomologies. This indicates that cohomology preserves and
reflects the underlying relationships between sheaves.

III. THE NYQUIST CRITERION FOR SHEAVES

Suppose that F is a sheaf on an abstract simplicial complex
X , and that S is a V -sampling sheaf on X supported on a
closed subcomplex Y . A sampling of F is a morphism s :

F ! S that is surjective on every stalk. Given a sampling,
we can construct the ambiguity sheaf A in which the stalk
A(a) for a face a 2 X is given by the kernel of the map
F (a) ! S(a). If a ! b is an inclusion of faces in X , then
A(a! b) is F (a! b) restricted to A(a). This implies that

0! A ,! F
s����! S ! 0

is an exact sequence, which induces the long exact sequence
(via the Snake lemma)

0! H0
(X;A)! H0

(X;F )! H0
(X;S)! H1

(X;A)!

An immediate consequence is therefore

Corollary 8. (Sheaf-theoretic Nyquist theorem) The global
sections of F are identical with the global sections of S
if and only if Hk

(X;A) = 0 for k = 0 and 1.

The cohomology space H0
(X;A) characterizes the ambi-

guity in the sampling, while H1
(X;A) characterizes its re-

dundancy. Optimal sampling therefore consists of identifying
minimal closed subcomplexes Y so the resulting ambiguity
sheaf A has H0

(X;A) = H1
(X;A) = 0.

Let us place bounds on the cohomologies of the ambiguity
sheaf. For a closed subcomplex Y of X , let FY be the sheaf
whose stalks are the stalks of F on Y and zero elsewhere,
and whose restrictions are either those of F on Y or zero as
appropriate. There is a surjective sheaf morphism F ! FY

and an induced ambiguity sheaf F
Y

which can be constructed
in exactly the same way as A before. Thus, the dimension of
each stalk of FY is at least as large as that of any sampling
sheaf, and the dimension of stalks of F

Y

are therefore as small
as or smaller than that of any ambiguity sheaf.

Proposition 9. (Oversampling theorem) If Xk is the
closed subcomplex generated by the k-faces of X , then
Hk

(Xk+1
;F

X

k) = 0.

Proof: By direct computation, the k-cochains of F
X

k are

Ck

(Xk+1
;F

X

k) = Ck

(Xk+1
;F )/Ck

(Xk

;F )

=

M

a a k-face ofX

F (a)/
M

a a k-face ofX

F (a)

= 0.
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Fig. 1. The sheaves used in proving the traditional Nyquist theorem

As an immediate consequence, H0
(X;F

Y

) = 0 when Y is
the set of vertices of X .

Theorem 10. (Sampling obstruction theorem) Suppose that Y
is a closed subcomplex of X and s : F ! S is a sampling of
sheaves on X supported on Y . If H0

(X,F
Y

) 6= 0, then the
induced map H0

(X;F )! H0
(X;S) is not injective.

Succinctly, H0
(X,F

Y

) is an obstruction to the recovery of
global sections of F from its samples.

Proof: We begin by constructing the ambiguity sheaf A
as before so that

0! A! F
s����! S ! 0

is a short exact sequence. Observe that S ! FY can be chosen
to be injective, because the stalks of S have dimension not
more than the dimension of F (and hence FY also). Thus
the induced map H0

(X;S) ! H0
(X;FY

) is also injective.
Therefore, by a diagram chase on

0! H0
(X;A) ����! H0

(X;F )

s����! H0
(X;S)

??y⇠=
??y

0! H0
(X;F

Y

) ����! H0
(X;F ) ����! H0

(X;FY

)

we infer that there is a surjection H0
(X;A) ! H0

(X;F
Y

).
By hypothesis, this means that H0

(X;A) 6= 0, so in particular
H0

(X;F )! H0
(X;S) cannot be injective.

IV. APPLICATIONS

A. Bandlimited signals on the real line

In this section, we prove the traditional form of the Nyquist
theorem by showing that bandlimiting is a sufficient condition
for H0

(X;A) = 0. We begin by specifying the following 1-
dimensional simplicial complex X . Let X0

= Z and X1
=

{(n, n + 1)}. We construct the sheaf C of signals (see Figure
1) so that for every simplex, the stalk of C is C

c

(R, C), the set
of compactly supported complex-valued continuous functions,
and each restriction is the identity. Observe that the space of
global sections of C is therefore just C

c

(R, C).
Construct the sampling sheaf S whose stalk on each vertex

is C and each edge stalk is zero. We construct a sampling
morphism by the zero map on each edge, and by the inverse
Fourier transform below on vertex {n}

M
n

(f) =

Z 1

�1
f(!)e�2⇡in!d!.

G

2

G

1

Y

Y

Y

Y

Y

0 or more copies

v w

e

G

3

Y

Y

Global section

Fig. 2. Graphs G1, and G2 (left) and G3 (right) for Lemma 12. Filled
vertices represent elements of Y , empty ones are in the complement of Y .

Then the ambiguity sheaf A has stalks C
c

(R, C) on each edge,
and {f 2 C

c

(R, C) : M
n

(f) = 0} on each vertex {n}.

Theorem 11. (Traditional Nyquist theorem) Suppose we re-
place C

c

(R, C) with the set of continuous functions supported
on [�B,B]. Then if B  1/2, the resulting ambiguity sheaf
A has H0

(X;A) = 0. Therefore, each such function can be
recovered uniquely from its samples on Z.

Proof: The elements of H0
(X;A) are given by the

compactly supported continuous functions f on [�B, B] for
which Z

B

�B

f(!)e�2⇡in!d! = 0

for all n. Observe that if B  1/2, this is precisely the state-
ment that the Fourier series coefficients of f all vanish; hence
f must vanish. This means that the only global section of A is
the zero function. (Ambiguities can arise if B > 1/2, because
the set of functions {e�2⇡in!}

n2Z is then not complete.)

B. Beyond Nyquist: Piecewise linear functions on graphs
The sheaf-theoretic Nyquist theorem can treat nontrivial

base space topologies as well as samples of different dimen-
sions. Consider the example of the sheaf of piecewise linear
functions PL on a graph, introduced in Section II-A and the
sampling morphism s : PL ! PLY where Y is a subset of
the vertices of X . Excluding one or two vertices from Y does
not prevent reconstruction in this case, because the samples
include information about slopes along adjacent edges.

Lemma 12. Consider PL
Y

, the subsheaf of PL whose
sections vanish on a vertex set Y and the graphs G1, G2, and
G3 as shown in Figure 2. There are no nontrivial sections of
PL

Y

on G1 and G2, but there are nontrivial sections of PL
Y

on G3.

Proof: If a section of PL vanishes at a vertex x with
degree n, this means that the value of the section there is
an (n + 1)-dimensional zero vector. The value of the section
on every edge adjacent to x is then the 2-dimensional zero
vector. Since the dimensions in each stalk of PL represent
the value of the piecewise linear function and its slopes, linear
extrapolation to the center vertex in G1 implies that its value
is zero too.

A similar idea applies in the case of G2. The stalk at v has
dimension 3. Any section at v that extends to the left must
actually lie in the subspace spanned by (0, 0, 1) (coordinates
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Y

Y

x

Y

x

x

Y

Y

Fig. 3. The three families of subgraphs that arise when med (Y ) > 1. Filled
vertices represent elements of Y , empty ones are in the complement of Y .

represent the value, left slope, right slope respectively). In the
same way, any section at w that extends to the right must lie
in the subspace spanned by (0, 1, 0). Any global section must
extend to e, which must therefore have zero slope and zero
value.

Finally G3 has nontrivial global sections, spanned by the
one shown in Figure 2.

Definition 13. On a graph G, define the edge distance between
two vertices v, w to be

ed (v, w) =

8
><

>:

min

p

{# edges in p such that p is a
PL-continuous path from v ! w}
1 if no such path exists

From this, the maximal distance to a vertex set Y is

med (Y ) = max

x2X

0
{min

y2Y

ed (x, y)}.

Proposition 14. (Unambiguous sampling) Consider the sheaf
PL on a graph X and Y ✓ X0. Then H0

(X;F
Y

) = 0 if and
only if med (Y )  1.

Proof: (() Suppose that x 2 X0\Y is a vertex not in
Y . Then there exists a path with one edge connecting it to
Y . Whence we are in the case of G1 of Lemma 12, so any
section at x must vanish.

()) By contradiction. Assume med (Y ) > 1. Without loss
of generality, consider x 2 X0\Y , whose distance to Y is
exactly 2. Then one of the subgraphs shown in Figure 3 must
be present in X . But case G3 of Lemma 12 makes it clear
that the most constrained of these (the middle panel of Figure
3) has nontrivial sections at x, merely looking at sections over
the subgraph.

Proposition 15. (Non-redundant sampling) Consider the case
of s : PL ! PLY . If Y = X0, then H1

(X;A) 6= 0. If Y is
such that med (Y )  1 and |X0\Y | +

P
y/2Y

deg y = 2|X1|,
then H1

(X;A) = 0.

Proof: The stalk of A over each edge is R2, and the stalk
over a vertex in Y is trival. However, the stalk over a vertex
of degree n not in Y is Rn+1. Observe that if H0

(X;A) =

0, then H1
(X;A) = C1

(X;A)/C0
(X;A). Using the degree

sum formula in graph theory, we compute that H1
(X;A) has

dimension 2|X1|�
P

y/2Y

(deg y + 1).
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[2] H. Feichtinger and K. Gröchenig, “Theory and practice of irregular
sampling,” Wavelets: mathematics and applications, pp. 305–363, 1994.

[3] M. Unser, “Sampling–50 years after Shannon,” Proceedings of the IEEE,
vol. 88, no. 4, pp. 569–587, 2000.

[4] S. Smale and D. Zhou, “Shannon sampling and function reconstruction
from point values,” Bulletin of the American Mathematical Society,
vol. 41, no. 3, pp. 279–306, 2004.

[5] P. Niyogi, S. Smale, and S. Weinberger, “Finding the homology of
submanifolds with high confidence from random samples,” in Twentieth
Anniversary Volume, R. Pollack, J. Pach, and J. E. Goodman, Eds.
Springer New York, 2009, pp. 1–23.

[6] F. Chazal, D. Cohen-Steiner, and A. Lieutier, “A sampling theory for
compact sets in Euclidean space,” Discrete Comput. Geom., vol. 41, pp.
461–479, 2009.

[7] R. Vaughan, N. Scott, and D. White, “The theory of bandpass sampling,”
Signal Processing, IEEE Transactions on, vol. 39, no. 9, pp. 1973–1984,
1991.

[8] M. Unser and J. Zerubia, “A generalized sampling theory without band-
limiting constraints,” Circuits and Systems II: Analog and Digital Signal
Processing, IEEE Transactions on, vol. 45, no. 8, pp. 959–969, 1998.

[9] M. Unser, “Splines: A perfect fit for signal and image processing,” Signal
Processing Magazine, IEEE, vol. 16, no. 6, pp. 22–38, 1999.

[10] A. Shepard, “A cellular description of the derived category of a stratified
space,” Ph.D. dissertation, Brown University, 1985.

[11] R. Ghrist and Y. Hiraoka, “Applications of sheaf cohomology and exact
sequences to network coding,” preprint, 2011.

[12] J. Lilius, “Sheaf semantics for Petri nets,” Helsinki University of
Technology, Digital Systems Laboratory, Tech. Rep., 1993.

[13] J. Curry, R. Ghrist, and M. Robinson, “Euler calculus and its applications
to signals and sensing,” in Proceedings of Symposia in Applied Mathe-
matics: Advances in Applied and Computational Topology, A. Zomoro-
dian, Ed., 2012.

[14] M. Robinson, “Inverse problems in geometric graphs using internal
measurements, arxiv:1008.2933,” 2010.

[15] ——, “Asynchronous logic circuits and sheaf obstructions,” Electronic
Notes in Theoretical Computer Science, pp. 159–177, 2012.

[16] I. Pesenson, “Sampling of band-limited vectors,” Journal of Fourier
Analysis and Applications, vol. 7, no. 1, pp. 93–100, 2001.

[17] A. Schuster and D. Varolin, “Interpolation and sampling for general-
ized Bergman spaces on finite Riemann surfaces,” Revista Matemática
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Fig. 1. Time-frequency partition with varying time-frequency bands

Abstract—We present a construction of frames adapted to

a given time-frequency cover and study certain computational

aspects of it. These frames are based on a family of orthogonal

projections that can be used to localize signals in the time-

frequency plane. We compare the effect of the corresponding

orthogonal projections to the traditional time-frequency masking.

I. INTRODUCTION

When representing a signal in a time-frequency dictionary,
the atoms are usually chosen as time-frequency shifts of a
window along a lattice (Gabor frame). The choice of the
lattice together with the characteristics (shape, width) of the
basic window or family of windows determines the ability
of the representation to localize certain signal components
and, furthermore, the possibility to separate them. Various
approaches have been taken to circumvent the restrictions
possibly imposed by a rigid application of lattice structure
(reassignment, adaptive frames) [1], [2], [6], [3], [17], giving
time-frequency partitions consisting of frequency (resp. time)
strips of varying widths (see figure 1)

In [10] we have presented a construction of frames whose
spectrogram follows a prescribed time-frequency pattern. This
pattern may be quite irregular and in particular does not need
to be a Cartesian product of a time and a frequency partition
(see figure 2).

Fig. 2. Fully irregular time-frequency partition

This construction is achieved by selecting from each tile of
the cover an orthonormal set of functions that maximizes its
joint spectrogram within the tile. These functions are eigen-
functions of time-frequency localization operators (see below),
whose concentration is no more restricted to be located at lat-
tice points. By definition, the eigenfunctions corresponding to
high eigenvalues of the localization operators, are maximally
localized within a (weighted) subfamily of the time-frequency
shifted atoms; thus, they provide potentially better localization
in a certain time-frequency region than the time-frequency
atoms themselves.

Since the frames introduced in [10] are constructed by
choosing a finite number of eigenfunctions from each lo-
calization operator corresponding to a partition of the time-
frequency plane, they produce a resolution of the identity
by orthogonal projections. This means that replacing the
usual time-frequency masking operators by certain orthogonal
projections does not lead to loss of information, provided that
the projection is chosen judiciously.

In this article we consider certain computational aspects of
the construction of frames adapted to time-frequency covers
and compare the effect of the corresponding orthogonal pro-
jections to the traditional time-frequency masking.
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II. TIME-FREQUENCY LOCALIZATION

A. Localization operators

The short-time Fourier transform (STFT) of a distribution
f 2 S 0

(Rd
) is a function defined on Rd⇥Rd defined, by means

of an adequate smooth and fast-decaying window function ' 2
S(Rd

), as

V'f(z) =

Z

Rd

f(t)'(t� x)e�2⇡i⇠tdt, z = (x, ⇠) 2 Rd⇥Rd.

The number V'f(x, ⇠) represents the influence of the fre-
quency ⇠ near x. The distribution f can be re-synthesized
from its time-frequency content by,

f(t) =

Z

Rd⇥Rd

V'f(x, ⇠)'(t� x)e2⇡i⇠tdxd⇠. (1)

Given a compact set ⌦ ✓ R2d in the time-frequency plane, the
time-frequency localization operator L⌦ is defined by masking
the coefficients in (1), cf. [5], i.e.

L⌦f(t) =

Z

⌦
V'f(x, ⇠)'(t� x)e2⇡i⇠tdxd⇠. (2)

L⌦ is self-adjoint and trace-class, so we can consider its
spectral decomposition

L⌦f =

1
X

k=1

�⌦
k hf,�⌦

k i�⌦
k .

The first eigenfunction, �⌦
1 , is optimally concentrated inside

⌦ in the following sense,
Z

⌦

�

�V'�
⌦
1 (z)

�

�

2
dz = max

kfk2=1

Z

⌦
|V'f(z)|2 dz.

More generally, the first N eigenfunctions of H⌦ form an
orthonormal set in L2

(Rd
) that maximizes the quantity

N
X

j=1

Z

⌦
|V'�

⌦
j (z)|2 dz,

among all orthonormal sets of N functions in L2
(Rd

). In this
sense, their time-frequency profile is optimally adapted to ⌦.

B. Time-Frequency areas of interest

The shape of the time-frequency areas one may be interested
to localize in, will usually depend on the application and the
characteristics of the underlying class of signals. Typically,
one may consider rectangles of different eccentricities in order
to be able to focus on signal components showing a more
transient or more harmonic characteristic. Examples are de-
picted in Figure 3. In some applications, one may be interested
in more exotic shapes, such as triangular, cf. Figure 4, for
example to account for the spectral roll-off in instrumental
sounds, or chirped components, cf. Figure 5, which are also
omnipresent in both speech and music signals.

Fig. 3. Four different rectangular masks in time-frequency domain and the
first eigenfunctions of the corresponding localization operators. Middle plots
show the absolute value squared of the STFT and right plots show the real
part.

Fig. 4. Triangular-shaped mask, absolute value squared of the STFT of
projection of random noise onto most localized resulting eigenfunctions, real
part of most concentrated eigenfunction.

III. FRAMES OF EIGENFUNCTIONS

We now present the main result on the construction of
frames adapted to a cover and then explore certain compu-
tational aspects of it. The proof of the following theorem can
be found in [10], together with an extended discussion on its
quantitative aspects (see also [8], [15], [9], [16]).

Theorem 1: Let {⌦� : � 2 �} be a cover of R2d such that

Br(�) ✓ ⌦� ✓ BR(�), with � a lattice and R � r > 0.

Then, there exists a constant C > 0 such that for every choice
of N� , C |⌦� |  N�  N < 1, the family of functions

n

�
⌦�

k : � 2 �, 1  k  N�

o

is a frame of L2
(Rd

).

A. Computing the eigenfunctions in each tile
In practice we work with a discrete realization of L⌦ given

by
Hm,⇤f =

X

�2⇤

m(�)hf,⇡(�)gi⇡(�)g, (3)

where
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Fig. 5. Chirp-shaped mask, absolute value squared of the STFT of projection
of random noise onto most localized resulting eigenfunctions, real part of the
projection.

• ⇤ ✓ R2d is a lattice,
• {⇡(�)g = e2⇡i�2·g(·��1) : � = (�1,�2) 2 ⇤} is a tight

Gabor frame of L2
(Rd

).
• m = (m�)�2⇤ is a bounded sequence of complex

numbers.
The operator Hm,⇤ is called a Gabor multiplier with mask m.
If we let m(�) := 1, if � 2 ⌦ and 0 otherwise, then Hm,⇤ is
a discretization of the operator L⌦ in (2).

Given an operator Hm,⇤ defined in (3), mapping L2
(Rd

)

into itself, we denote K = #supp(m), assume that K is
finite, and write Hm as a composition of the operator Gp

m :

f 7! [

p

m(�)hf,⇡(�)gi]�2⇤\supp(m), mapping L2
(Rd

) into
CK and its adjoint G⇤p

m
.

Both Gp
m and G⇤p

m
are finite-rank operators and can be

written in their singular value decomposition:

Gp
m =

K
X

j=1

sjh·, vjiL2uj , (4)

G⇤p
m =

K
X

j=1

sjh·, ujiCKvj . (5)

Then, applying G⇤p
m

to uk yields G⇤p
m

· uk = sk · vk and
thus the eigenfunctions vj of Hm,⇤ may be obtained from the
eigenfunctions of the Gramian operator �m := Gp

m · G⇤p
m

by
vj =

1

sj
·G⇤p

m · uj , j = 1, . . . ,K. (6)

In typical applications, where Hm,⇤ is a matrix whose size
depends on the signal length, the size of the corresponding
Gramian matrix is K⇥K with K being the size of the support
of the mask (or, in the case of 0/1-masks, the support of ⌦)
which is usually small enough for the computation of the spec-
tral decomposition to be a feasible task. Furthermore, in (6)
only the eigenfunctions corresponding to relevant eigenvalues
s2j need to be computed.

B. Computing the whole frame
Section III-A deals with the computation of the relevant

eigenfunctions for each individual tile of the cover. To compute

Fig. 6. Evaluation of the procedure to obtain frames adapted to a
given time-frequency partition.

the whole frame we use the following observation based on
the so-called covariance of the Short-Time Fourier transform.

Lemma 1: If ⌦

0
= ⌦ + z0, for some z0 2 R2d. Then the

eigenfunctions of L⌦ and L⌦0 are related by

�⌦0

k = ⇡(z0)�
⌦
k , k � 1.

where ⇡(x,w)f(t) = e2⇡iwtf(t � x). Hence, if the cover
{⌦� : � 2 �} in Theorem 1 consists of translates of N basic
tiles ⌦

1, . . . ,⌦N ,

⌦� = ⌦

k�
+ z� , 1  k�  N, z� 2 R2d,

then only N sets of eigenfunctions need to be computed.

C. The number of eigenfunctions and the resulting frame
quality

In order to test the performance of the procedure described
in Theorem 1 and Lemma 1 for the generation of a new frame,
we generated random partitions of the time-frequency plane,
consisting of three different rectangular shapes, thus in the
spirit of the example shown in Figure 2. Then, the eigenvalues
of the resulting spectral decomposition were thresholded by 6

different values between 0.51 and 0.41 and the corresponding
eigenfunctions were used to generate time-frequency frames
with redundancies between 1.15 and 7. The condition numbers
of the resulting frames are shown in Figure 6, as well as
the average error, when the corresponding frame operators are
applied to (1000 realizations of) random noise. Interestingly,
while the condition number of the resulting frame improves for
increased redundancy, the optimal approximation of the iden-
tity seems to be obtained for a threshold very close to 0.5. This
agrees with the observation that the number of eigenvalues
above 0.5 is given by the volume of the localization area [14],
[11], [7], [12]. This effect can be circumvented by renormal-
izing the eigenfunctions to its corresponding eigenvalue (see
[10]).
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IV. FRAMES OF EIGENSPACES

Theorem 1 can be interpreted in the following way. For
each � 2 � let V� be the subspace spanned by the first N�

eigenfunction {�⌦
1 , . . . ,�

⌦
N�

} and let P� be the corresponding
orthogonal projection. Then,

kfk22 ⇡
X

�2�

kP�fk22, f 2 L2
(Rd

).

This means that {V� : � 2 �} is a fusion frame in the sense
of [4]. In certain situations, using the projection P� may be
preferable to masking the coefficients with a multiplier like
the one in (3).

A. Cutting with reduced spilling
Denoising by time-frequency masking is a ubiquitous

method in signal restoration, cf. [18]. However, in dependence
on the time-frequency concentration of the window used to
obtain the time-frequency representation used, this method
leads to significant spilling of energy outside the region of
relevant signal components. Applying projection onto signif-
icant eigenfunctions of a time-frequency multiplier instead
of applying the multiplier itself, can ameliorate this bias.
An example for this is shown in Figure 7. Here, a Hann
window h was chosen as a reference signal, while the analysis
window is still a Gaussian window. The signal h was disturbed
by additive white noise, with a signal to noise ratio (SNR)
of 3.5dB to obtain the noisy signal hn. Then, the original
signal was recovered by either applying a Gabor multiplier
derived from a 0/1-mask on the estimated region, with an
underlying Gabor frame of redundancy 16, and, on the other
hand, the projection onto the eigenfunctions corresponding to
eigenvalues close to 1. The average achieved SNR (over a 1000
noise-realizations) was 12.5dB for the projection approach
and 11.3dB for the plain Gabor multiplier.

V. CONCLUSION AND PERSPECTIVES

In this article we have presented a new method to obtain
frames adapted to a given partition of the time-frequency plane
and addressed certain computational aspects of it. We also
showed that using projections onto the space spanned by the
first eigenfunctions corresponding to the Gabor multiplier of a
certain localization region can yield better results than apply-
ing the Gabor multiplier itself. These are preliminary results
that must be evaluated more extensively and in particular given
a proof of concept by means of application to real-life data.
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Abstract—The aim of this paper is to give an overview of
diffusive wavelets on compact Lie groups, homogenous spaces
and the Heisenberg group. This approach is based on Lie
groups and representation theory and generalizes well-known
constructions of wavelets on the sphere. We give also examples
for the construction of diffusive wavelets.

I. INTRODUCTION

The task of analyzing data, reconstructing functions from
measurements or to save data in an handable way occurs in
a lot of applications. Problems in geophysics, astronomy and
in material sciences involve groups and homogeneous spaces
such as the group SO(3) or the spheres S2 or S3. The group
theoretic approach to wavelets as coherent states fails and it
has been an open problem for along time to construct wavelets
on the sphere. The breakthrough was the construction of
spherical wavelets on S2 based on convolution-type integrals
by W. Freeden and co-workers [14]. An alternate successful
approach was made by J.-P. Antoine and P. Vandergheynst [1],
[2] by lifting up rotations and dilations on the sphere into the
Lorentz group. The aim of this paper is to demonstrate that
both approaches can be generalized to continuous diffusive
wavelets. Diffusive wavelets can be build not only on compact
groups and homogeneous spaces but also on stratified groups.
The most well-known example here is the Heisenberg group.

Classical wavelet theory is based on the group generated by
translations and dilations. The key idea of diffusive wavelets
is to generate a dilation from a diffusive semigroup and to
substitute translation by action of a compact group. A related
approach based on spectral calculus of the Laplacian on closed
manifolds was proposed by D. Geller and A. Mayeli [15] and
related work by I. Pesenson and D. Geller [17], [18].

The construction of diffusive wavelets is based on
convolution-type operators. These ideas were used in [6]
to construct wavelets on the sphere S3. Discrete wavelet
transforms of that type were used by R. R. Coifman, M. Mag-
gioni and others [11], [10], where the heat evolution was
combined with an orthogonalization procedure to model a
multi-resolution analysis in L2

(S3
).

These ideas can be combined with other group structures
to get wavelets invariant under finite reflection groups [3]. A
similar construction is possible for the torus in [5].

An application material sciences and specifically to the crys-
tallographic Radon-transform [8], [7], [9] we need wavelets on
S3, SO(3) and S2 ⇥ S2 [4].

This approach was generalized by a representation theory
based approach where the heat flow was replaced by a more
general approximate convolution identity in [13] and [12].

The aim of this paper is to give a general approach to
diffusive wavelets on compact groups, homogeneous spaces
and stratified groups which is based on the theory of Lie
groups. Several examples explain the construction of diffusive
wavelets for specific situations.

II. DIFFUSIVE WAVELETS

A. Preliminaries on compact Lie groups

Let G be a compact Lie group. A unitary representation of
G is a continuous group homomorphism ⇡: G ! U(d⇡) of G
into the group of unitary matrices of a certain dimension d⇡ .
Such a representation is irreducible if ⇡(g)M = M⇡(g) for
all g 2 G and some M 2 Cd

⇡

⇥d
⇡ implies M = cId, where

Id is the identity matrix.

Theorem 1 (Peter-Weyl). Let bG be the set of all equivalence
classes of irreducible representations of the compact Lie
group G , choose one unitary representation ⇡↵(g) from each
class, and let the dimension of the representation ⇡↵(g) be
d↵, and its matrix elements be ⇡↵

ij , 1  i, j  d↵, and
H↵ = span (⇡↵

ij)
d
↵

i,j . Then

L2
(G ) = �↵H⇡

↵

= �⇡2 bGH⇡

and any function f 2 L2
(G ) has a unique decomposition into

f(g) =
X

↵

d
↵X

i,j

c↵ij⇡
↵
ij ,

with Fourier coefficents c↵ij .
The orthogonal projection L2

(G ) ! H↵ is given by

f↵(g) =
d
↵X

i,j

c↵ij⇡
↵
ij = d↵(� ⇤ �pi

↵

),

where �⇡
↵

(g) = trace⇡↵(g) is the character of the represen-
tation.

The Fourier coefficient ˆf(⇡) can be calculated as

ˆf(⇡) =

Z

G
f(g)⇡⇤

(g) dg.

Proceedings of the 10th International Conference on Sampling Theory and Applications

301



and the inversion formula (the Fourier expansion) is then given
by

f(g) =
X

⇡2Ĝ

d⇡ trace(⇡(g) ˆf(⇡)).

The Laplace-Beltrami operator �G on G is bi-invariant.
Therefore, all of its eigenspaces are also bi-invariant subspaces
of L2

(G ). As H⇡ are minimal bi-invariant subspaces, each
of them has to be an eigenspace of �G with respect to an
eigenvalue ��2⇡. Hence,

�G� = �
X

⇡2Ĝ

d⇡�
2
⇡trace (⇡(g)ˆ�(⇡))

and the solution to the heat equation

(@t ��G )u = 0, u(0, ·) = �,

is given as convolution with the heat kernel pt(g) as u(t, ·) =
� ⇤ pt, where

p̂t(⇡) = e�t�2
⇡I and pt(g) =

X

bG

d⇡e
�t�2

⇡�⇡(g).

In particular � ⇤ pt ! � for all � 2 Lp
(G ), 1  p < 1.

B. Wavelets on compact groups
Definition 1 (Diffusive approximate identity). Let ˆG+ ⇢ ˆG be
cofinite. A family t ! pt from C1

(R+;L1
(G )) will be called

diffusive approximate identity with respect to ˆG+ if it satisfies
• ||p̂t(⇡)||  C uniform in ⇡ 2 ˆG+ and t 2 R+;

• limt!0 p̂t(⇡) = I for all ⇡ 2 ˆG+;

• limt!1 p̂t(⇡) = 0 for all ⇡ 2 ˆG+;

• �@tp̂t(⇡) is a positive matrix for all t 2 R+ and
limt!0 p̂t(⇡) = I for all ⇡ 2 ˆG+.

For f 2 L2
(G ) the projection onto L2

0(G ) is

f | bG+
=

X

⇡2 bG+

f ⇤ �⇡.

Definition 2 (Diffusive wavelets on a compact Lie group). Let
pt be a diffusive approximate identity and ↵(⇢) > 0 a given
weight function.
A family  ⇢ 2 L2

0(G ) =

L
⇡2Ĝ+

H⇡ is called diffusive
wavelet family, if it satisfies the admissibility condition

pt|Ĝ+
=

Z 1

t

ˇ ⇢ ⇤  ⇢ ↵(⇢) d⇢,

where ˇ ⇢(g) =  ⇢(g�1
).

Applying Fourier transform to the admissibility condition
yields:

p̂t(⇡) =

Z 1

t

ˆ ⇢(⇡) ˆ 
⇤
⇢(⇡)↵(⇢).

Differentiation with respect to t results in

�@tp̂t(⇡) = ˆ ⇢(⇡) ˆ 
⇤
⇢(⇡)↵(⇢).

If b ⇡(⇡) are the Fourier coefficients than a multiplication with
a unitary matrix ⌘⇢(⇡) does not change the last equality.

C. Wavelets based on the heat kernel
Let pt be the heat kernel eheatt on the group G . We know

that
lim

t!1
êheatt (⇡) = 0

for all nontrivial representations of G . Since the character of
the trivial representation ⇡0 is �⇡0 ⌘ 1 the corresponding
invariant subspace in L2

(G ) is the space of constant functions
and hence the eigenvalue vanishes, which implies êheatt (⇡) =
Id and contradicts the definition of the diffusive approximate
identity. Therefore we choose

bG+ =

bG \{⇡0}.
That means L2

0(G ) contains all square integrable functions
with vanishing mean. The admissibility condition reads now
as

@⇢ê
heat
⇢ (⇡) = �2⇡e

�⇢�2
⇡Id =

ˆ ⇢(⇡) ˆ 
⇤
⇢(⇡)↵(⇢).

Due to the freedom in choosing a unitary matrix ⌘⇢(⇡) we get

ˆ ⇢(⇡) =
1p
↵(⇢)

�⇡e
��

⇡

⇢

2 Id

and the wavelet has the form

 ⇢ =

1p
↵(⇢)

X

⇡2 bG+

d⇡�⇡e
��

⇡

⇢

2
trace (⌘⇢(⇡)⇡(g)).

Definition 3 (Wavelet transform). Let G be a compact group,
↵(⇢) > 0 a weight function on G and  ⇢ 2 L2

0(G ) a
diffusive wavelet family. The wavelet transform W : L2

0(G ) !
L2

(R+ ⇥ G , ↵(⇢) d⇢⌦ dg) is defined as

(W f)(⇢, g) := (f ⇤ ˇ ⇢)(g)

Theorem 2. The wavelet transform
W : L2

0(G ) ! L2
(R+⇥ G ,↵(⇢) d⇢⌦dg) is a unitary operator

and the wavelet transform is invertible on its range by
Z

R+

Z

G
(W f)(⇢, h) ⇢(h

�1g) dh↵(⇢) d⇢

=

Z 1

!0
(W f)(⇢, ·) ⇤  ⇢ ↵(⇢) d⇢ = f(g), 8f 2 L2

0(G ).

D. Wavelets on homogeneous spaces
We have two options to construct wavelets on homogeneous

spaces:
The naive way: We apply the wavelet transform to the lifted
function ˜f(g) = f(g · x0) with base-point x0 2 X = G /H
for some f 2 L2

(X ). This defines a function on R+⇥G via

(W ˜f)(⇢, g) =

Z

G

˜f(h) ˇ ⇢(h
�1g) dh

=

Z

G
f(h · x0)

ˇ ⇢(h
�1g) dh

But we would prefer to have a transform living on R+ ⇥ X
instead of R+ ⇥ G .

For that we introduce the following zonal product

fˆ• (x) =
Z

G
f(g · x0) (g · x) dg 2 L1

(G ).
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Definition 4. Let X = G /H be a homogeneous space and
pt be a diffusive approximate identity and ↵(⇢) > 0 be a given
weight function. A family  ⇢ 2 L2

(X ) is called a diffusive
wavelet family if the admissibility condition

pX
t (x)

��
Ĝ+

=

Z 1

t

 ⇢ˆ• ⇢(x)↵(⇢) d⇢

is satisfied.
We associate to this family the wavelet transform

(WX f)(⇢, g) = f •  ⇢(g) =

Z

X
f(x) (g�1 · x) dx.

Theorem 3. The wavelet transform WX : L2
0(X ) !

L2
(R+ ⇥ G , ↵(⇢) d⇢⌦ dg) is invertible on its range by

˜f =

Z 1

!0
(WX f)(⇢, ·) ⇤ ˜ ⇢ ↵(⇢) d⇢ for all f 2 L2

0(X).

E. The non-compact case

We only mention the key points for this case. The spectrum
of the Laplacian of non-compact groups becomes continuous.
Consequently, the expansion in eigenfunctions of the Lapla-
cian becomes a direct integral

f(g) =

Z �

R
ˆf(�)⇡�(g) dµ(�).

The critical question here is to have an appropriate Fourier
transform. That means, does there exist a measure dµ on bG ,
such that the integral

Z

bG
ˆf(�)⇡� dµ(�), where ˆf(�) :=

Z

G
⇡⇤
�(g) f(g) dg

is well-defined for some function space on G . If such measure
exists it is called Plancherel measure. In this case the con-
struction of diffusive wavelets works similar to the compact
case. In general a Plancherel measure does not exist for locally
compact groups. But since the Plancherel measure exists for
nilpotent Lie groups, one can extend diffusive wavelets to
nilpotent Lie groups.

III. WAVELET PACKETS

Definition 5. Let {⇢j , j 2 Z} be a strictly decreasing
sequence of real numbers such that

lim

j!1
⇢j = 0 and lim

j!�1
⇢j = 1.

Let { ⇢, ⇢ > 0} be a family of diffusive wavelets. A wavelet
packet is defined by

ˆ

 

P
j (⇡) =

 Z ⇢
j

⇢
j+1

(

ˆ

 ⇢)
2↵(⇢) d⇢

! 1
2

,

and in spatial domain

 

P
j =

X

⇡2Ĝ

d⇡�⇡

 Z ⇢
j

⇢
j+1

e�⇢�2
⇡ d⇢

! 1
2

trace (⌘(⇡)⇡(g)).

The wavelet transform is now given by

(W P f)(j, g) := (f ⇤ ˇ

 

P
j )(g).

Theorem 4. The wavelet transform W P is an isometry
L2

(G ) ! L2
(Z⇥ G )

2.

Theorem 5. The wavelet transform W P is invertible on its
range by

f(g) =
X

j2Z
(W P f)(j, ·) ⇤ P

j (·))(g).

A common strategy is to build up a multiresolution analysis
corresponding to  P .

IV. EXAMPLES

1) The torus Tn: Let Tn denote the n-dimensional torus
which can be identified with

Tn
= Rn/(2⇡Z)n.

We will identify n-fold periodic functions on Rn with their
projection on Tn. The corresponding projection will be called
periodization and is defined by

Pf(x) =
X

!22⇡Zn

f(x+ !).

In particular, the periodization of the heat kernel on Rn give
the heat kernel on Tn. We have

eheat,R
n

t (x) =
1

2(⇡t)n
e

||x||2
4t

Let m 2 Zn. For f 2 L2
(Tn

) we have

f(x) =
X

m2Zn

ˆf(m) ei
P

n

j=1 m
j

x
j ,

ˆf(m) =

1

(2⇡)n

Z

[0,2⇡]n
f(x)e�i

P
n

j=1 m
j

x
j dx.

The Fourier coefficients of the heat kernel eheat,T
n

t can be
given explicitly

êheat,T
n

t =

1

(2⇡)n

Z

[0,2⇡]n

X

!22⇡Zn

eheat,R
n

t (x+ !)e�i
P

n

j=1 m
j

x
jdx

=

1

(2⇡)n

Z

Rn

1

2(⇡t)n
e

||x||2
4t e�i

P
n

j=1 m
j

x
j dx =

1

2⇡n
e�

P
n

j=1 m2
j

t.

Let { ⇢} be a subfamily of L2
(Tn

). the wavelet we are
looking for has the Fourier series expansion

ˆ ⇢(x) =
X

m2Zn

1p
2⇡n

nX

j=1

m2
je

�
P

n

j=1 m2
j

⇢ei
P

n

j=1 m
j

x
j .

Proceedings of the 10th International Conference on Sampling Theory and Applications

303



2) The unit sphere Sn: The unit sphere is a homogeneous
space Sn

= SO(n + 1)/SO(n). An orthonormal system
in L2

(Sn
) is given by the spherical harmonics {Y i

k , k =

0, 1, . . . , i = 1, . . . dk(n)}, where dk(n) = (2k + n �
1)

(k+n�2)!
k!(n�1)! . We denote by C�

k the Gegenbauer polynomials
of order � =

n�1
2 . The eigenvalues of the Laplace-Beltrami

operator on Sn are ��2k = �k(k+n� 2) and the heat kernel
is given by

eheat,S
n

t (x) =
1X

k=0

dk(n)e
��2

k

tC
�
k (x0 · x)
C�

k (1)

=

1X

k=0

2k + n� 1

n� 1

e�k(k+n�2)tC�
k (x0 · x),

where x0 is base point. Let ↵(⇢) > 0 be a weight function on
Sn. Then (radial) diffusive wavelets are given by

 ⇢(x) =
1p
↵(⇢)

1X

k=0

(2k + n� 1)�k
n� 1

e��2
k

⇢/2C�
k (x0 · x),

where �2k = k(k + n � 2). This construction is based on the
Gauß-Weierstraß kernel. A similar construction can be done
with the Abel-Poisson kernel, where �2k = k.

3) The compact group SO(3): For SO(3) all irreducible
representations are unitary equivalent to one of the irreducible
components of the quasi-regular representation in L2

(S2
). In

L2
(S2

) the translation invariant subspaces are spanned by the
spherical harmonics of the same degree of homogenity. We
have d(2) = 2k + 1 and the eigenvalues of the Laplace-
Beltrami operator are ��2k = �k(k + 1). The eigenfunctions
are the so-called Wigner polynomials. Hence the heat kernel
on SO(3) is

eSO(3)
t (g) =

1

4⇡

1X

k=0

(2k + 1)e�k(k+1)C2k

⇣
sin

⇣
�(g)
2

⌘⌘
,

where �(g) denotes the angle of g [16]

�(g) = arccos

⇣
trace (g)�1

2

⌘
.

By our construction a family of wavelets on SO(3) corre-
sponding to the heat kernel is given by

 ⇢(g) =

1p
↵(g)

1

4⇡

1X

k=0

(2k + 1)

p
k(k + 1)e

k(k+1)
2 ⇢C1

2k

⇣
sin

⇣
�(g)
2

⌘⌘
.

4) The Heisenberg group: The construction of diffusive
wavelets is not restricted to compact groups and homogeneous
spaces. As long as we have some Plancharel formula we can
construct diffusive wavelets. Therefore we can construct diffu-
sive wavelets on the Heisenberg group. Since the Heisenberg
group is noncompact we cannot use the Peter-Weyl theorem.
But fortunately similar results can be obtained from the Stone-
von-Neumann theorem. Due to the existence of a Plancherel
measure the Fourier transform can be developed in a similar
way, where the sum over irreducible representations becomes
an integral since the spectrum of the Laplacian is continuous.

While the Laplacian involves a complete basis of the Lie
algebra, the sub-Laplacian involves only those operators which
corresponds to vector fields belonging to the sub-Riemannian
structure. Therefore we consider the heat equation

(�sub � @r)u((x, y, t), r) = 0

with fundamental solution

pr(x, y, t) =

Z
(2⇡)n/2

1X

k=0

X

|↵|=k

e�((2|↵|+n)|�|)r��k(x, y, t) dµ(�),

where ��k(x, y, t) are the radial-symmetric eigenfunctions of
�sub. For the three dimensional Heisenberg group H1 we
obtain the diffusive wavelets

 ⇢(x, y, t) = �
1X

k=0

 
1

k!

1

(it� (2k + 1)

⇢
2 )

✓
1 +

1
2 |x+ iy|2

it� (2k + 1)

⇢
2

◆k

+

(�1)

k

k!

1

(�it� (2k + 1)

⇢
2 )

✓
1 +

1
2 |x+ iy|2

it� (2k + 1)

⇢
2

◆k
!
e�

1
4 |x+iy|2 .
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I. INTRODUCTION

The problem of representation and analysis of functions
defined on manifolds (signals, images, and data in general)
is ubiquities in many fields ranging from statistics and cos-
mology to neuroscience and biology. It is very common
to consider input signals as points in a high-dimensional
measurement space, however, meaningful structures lay on a
manifold embedded in this space.

In the last decades, the importance of these applications
triggered the development of various generalized wavelet bases
suitable for the unit spheres S2 and S3 and the rotation group
of R3. The goal of the present study is to describe a general
approach to bandlimited localized Parseval frames in a space
L2(M), where M is a compact homogeneous Riemannian
manifold.

One can think of a Riemannian manifold as of a surface
in a Euclidean space. A homogeneous manifold is a surface
with ”many” symmetries like the sphere x2

1 + ... + x2
d

= 1 in
Euclidean space Rd.

Our construction of frames in a function space L2(M)

heavily depends on proper notions of bandlimitedness and
Shannon-type sampling on a manifold M. The crucial role
in this development is played by positive cubature formulas
(Theorem 1.3) and by the product property (Theorem 1.2),
which were proved in [1] and [10].

The notion of bandlimideness on a compact manifold M
is introduced in terms of eigenfunctions of a certain second-
order differential elliptic operator on M. The most important
fact for our construction of frames is that in a space of
!-bandlimited functions the regular L2(M) norm can be
descretized. This result in the case of compact manifolds
(and even non-compact manifolds of bounded geometry) was
first discovered and explored in many ways in our papers
[?]-[?]. In the classical cases of straight line R and circle
S the corresponding results are known as Plancherel-Polya
and Marcinkiewicz-Zygmund inequalities. Our generalization
of Plancherel-Polya and Marcinkiewicz-Zygmund inequalities
implies that !-bandlimited functions on manifolds are com-
pletely determined by their vales on discrete sets of points
”uniformly” distributed over M with a spacing comparable
to 1/

p
! and can be completely reconstructed in a stable

way from their values on such sets. The last statement is an
extension of the Shannon sampling theorem to the case of

Riemannian manifolds.
Our article is a summary of some results for Riemannian

manifolds that were obtained in [1]-[12]. To the best of our
knowledge these are the pioneering papers which contain the
most general results about frames, Shannon sampling, and
cubature formulas on compact and non-compact Riemannian
manifolds. In particular, the paper [1] gives an ”end point”
construction of tight localized frames on homogeneous com-
pact manifolds. The paper [11] is the first systematic devel-
opment of localized frames on compact domains in Euclidean
spaces.

A. Compact homogeneous manifolds

A homogeneous compact manifold M is a C1-compact
manifold on which a compact Lie group G acts transitively.
In this case M is necessary of the form G/H , where H is a
closed subgroup of G. The notation L2(M), is used for the
usual Hilbert spaces, where dx is an invariant measure.

If g is the Lie algebra of a compact Lie group G then it is
a direct sum g = a + [g, g], where a is the center of g, and
[g, g] is a semi-simple algebra. Let Q be a positive-definite
quadratic form on g which, on [g, g], is opposite to the Killing
form. Let X1, ...,Xd

be a basis of g, which is orthonormal
with respect to Q. Since the form Q is Ad(G)-invariant, the
operator

�X2
1 �X2

2 � ...�X2
d

, d = dim G

is a bi-invariant operator on G, which is known as the Casimir
operator. This implies in particular that the corresponding
operator on L2(M),

L = �D2
1 �D2

2 � ...�D2
d

, D
j

= D
Xj , d = dim G, (1)

commutes with all operators D
j

= D
Xj . Operator L, which is

usually called the Laplace operator, is the image of the Casimir
operator under differential of quazi-regular representation in
L2(M). Note that if M = G/H is a compact symmetric
space then the number d = dimG of operators in the formula
(1) can be strictly bigger than the dimension n = dimM. For
example on a two-dimensional sphere S2 the Laplace-Beltrami
operator LS2 is written as LS2

= D2
1 + D2

2 + D2
3, where

D
i

, i = 1, 2, 3, generates a rotation in R3 around coordinate
axis x

i

: D
i

= x
j

@
k

� x
k

@
j

, where j, k 6= i.
It is important to realize that in general, the operator L is

not necessarily the Laplace-Beltrami operator of the natural
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invariant metric on M. But it coincides with such operator at
least in the following cases:

1) If the manifold M is itself a compact Lie group G then L
is exactly the Laplace-Beltrami operator of an invariant
metric on G. In particular it happens if M is an n-
dimensional torus, and L is the sum of squares of partial
derivatives;

2) If M = G/H is a compact symmetric space of rank
one, then the operator L is proportional to the Laplace-
Beltrami operator of an invariant metric on G/H . This
follows from the fact that, in the rank one case, every
second-order operator which commutes with all isome-
tries x ! g · x, x 2 M, g 2 G, is proportional to
the Laplace-Beltrami operator. The important examples
of such manifolds are spheres and projective spaces.

Since manifold M is compact and L is a second-order dif-
ferential elliptic self-adjoint positive definite operator L2(M)

it has a discrete spectrum 0 = �0 < �1  �2  ...... which
goes to infinity and there exists a complete family {u

j

} of
orthonormal eigenfunctions which form a basis in L2(M).

Definition 1.1: The span of eigenfunctions u
j

Lu
j

= �
j

u
j

with �
j

 !, ! > 0, is denoted as E
!

(L) and is called the
space of bandlimited functions on M of bandwidth !.

According to the Weyl’s asymptotic formula one has

dim E
!

(L) ⇠ C V ol(M)!n/2, (2)

where n = dim M and C is an absolute constant.
Let B(x, r) be a metric ball on a compact Riemannian

manifold M whose center is x and radius is r. The following
lemma can be found in [2], [5].

Lemma 1.1: There exists a natural number NM, such that
for any sufficiently small ⇢ > 0, there exists a set of points
{x

k

} such that:
1) the balls B(x

k

, ⇢/4) are disjoint,
2) the balls B(x

k

, ⇢/2) form a cover of M,
3) the multiplicity of the cover by balls B(x

k

, ⇢) is not
greater than NM.

Definition 1.2: Any set of points M
⇢

= {x
k

} which is
described in Lemma 1.1 will be called a metric ⇢-lattice.

The following theorems are of primary importance.
Theorem 1.2: (Product property [1], [10]) If M = G/H is

a compact homogeneous manifold and L is the same as above,
then for any f and g belonging to E

!

(L), their product fg
belongs to E4d!

(L), where d is the dimension of the group
G.

Remark 1: At this moment it is not known if the constant
4d can be lowered in general situation. However, it is easy to
verify that in the case of two-point homogeneous manifolds
(which include spheres and projective spaces) a stronger result
holds: if f, g 2 E

!

(L) then fg 2 E2!

(L).
Theorem 1.3: (Cubature formula [1], [10]) There exists a

positive constant c = c(M), such that if ⇢ = c!�1/2, then
for any ⇢-lattice M

⇢

, there exist strictly positive coefficients

↵
xk > 0, x

k

2 M
⇢

, for which the following equality holds
for all functions in E

!

(M):
Z

M
fdx =

X

xk2M⇢

↵
xkf(x

k

). (3)

Moreover, there exists constants c1, c2, such that the follow-
ing inequalities hold:

c1⇢
n  ↵

xk  c2⇢
n, n = dim M. (4)

II. HILBERT FRAMES

Since eigenfunctions have perfect localization properties in
the spectral domain they cannot be localized on the manifold.

It is the goal of our development to construct ”better bases”
in corresponding L2(M) spaces which will have rather strong
localization on a manifold and in the spectral domain.

In fact, the ”kind of basis” which we are going to construct
is known today as a frame.

A set of vectors { 
v

} in a Hilbert space H is called a frame
if there exist constants A, B > 0 such that for all f 2 H

Akfk22 
X

v

|hf, 
v

i|2  Bkfk22. (5)

The largest A and smallest B are called lower and upper frame
bounds.

The set of scalars {hf, 
v

i} represents a set of measure-
ments of a signal f . To synthesize signal f from this set of
measurements one has to find another (dual) frame { 

v

} and
then a reconstruction formula is

f =

X

v

hf, 
v

i 
v

. (6)

Dual frame is not unique in general. Moreover it is difficult
to find a dual frame. If in particular A = B = 1 the frame is
said to be tight or Parseval.

The main feature of Parseval frames is that decomposing
and synthesizing a signal or image from known data are tasks
carried out with the same set of functions. In other words in
(6) one can have  

v

=  
⌫

.
Parseval frames are similar in many respects to orthonormal

wavelet bases. For example, if in addition all vectors  
v

are unit vectors, then the frame is an orthonormal basis.
However, the important differences between frames and, say,
orthonormal bases is their redundancy that helps reduce the
effect of noise in data.

Frames in Hilbert spaces of functions whose members
have simultaneous localization in space and frequency arise
naturally in wavelet analysis on Euclidean spaces when con-
tinuous wavelet transforms are discretized. Such frames have
been constructed, studied, and employed extensively in both
theoretical and applied problems.

III. BANDLIMITED LOCALIZED PARSEVAL FRAMES ON
COMPACT HOMOGENEOUS MANIFOLDS

According to spectral theorem if F is a Schwartz function
on the line, then there is a well defined operator F (L) in the
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space L2(M) such that for any f 2 L2(M) one has

(F (L)f) (x) =

Z

M
KF

(x, y)f(y)dy, (7)

where dy is the invariant normalized measure on M and

KF

(x, y) =

1X

j=0

F (�
j

)u
j

(x)u
j

(y). (8)

We will be especially interested in operators of the form
F (t2L), where F is a Schwartz function and t > 0. The
corresponding kernel will be denoted as KF

t

(x, y) and

KF

t

(x, y) =

1X

j=0

F (t2�
j

)u
j

(x)u
j

(y). (9)

Note, that variable t here is a kind of scaling parameter.
Localization properties of the kernel KF

t

(x, y) are given in
the following statement.

Lemma 3.1: If L is an elliptic self-adjoint second order
differential operators on compact manifolds, then the following
holds

1) If F is any Schwartz function on R , then

KF

t

(x, x) ⇠ c t�d, t ! 0. (10)

2) If, in addition, F 2 C1
c

(R) is even, then on M⇥M\�,
where � = {(x, x)}, x 2 M, KF

t

(x, y) vanishes to infinite
order as t goes to zero.

Let g 2 C1(R+) be a monotonic function such that
supp g ⇢ [0, 2

2
], and g(s) = 1 for s 2 [0, 1], 0 

g(s)  1, s > 0. Setting G(s) = g(s) � g(2

2s) implies
that 0  G(s)  1, s 2 supp G ⇢ [2

�2, 2

2
]. Clearly,

supp G(2

�2js) ⇢ [2

2j�2, 22j+2
], j � 1. For the functions

F0(s) =

p
g(s), F

j

(s) =

p
G(2

�2js), j � 1, one hasP
j�0 F 2

j

(s) = 1, s � 0. Using the spectral theorem for L
one can define bounded self-adjoint operators F

j

(L) as

F
j

(L)f(x) =

Z

M
KF

2�j (x, y)f(y)dy,

where

KF

2�j (x, y) =

X

�m2[22j�2
,22j+2]

F (2

�2j�
m

)u
m

(x)u
m

(y).

(11)
The same spectral theorem implies

P
j�0 F 2

j

(L)f = f, f 2
L2(M), and taking inner product with f gives

kfk2 =

X

j�0

⌦
F 2

j

(L)f, f
↵

=

X

j�0

kF
j

(L)fk2. (12)

Moreover, since the function F
j

(s) has its support in
[2

2j�2, 2

2j+2
] the functions F

j

(L)f are bandlimited to
[2

2j�2, 2

2j+2
].

Consider the sequence !
j

= 2

2j+2, j = 0, 1, ..... By (12) the
equality kfk2 =

P
j�0 kFj

(L)fk2 holds, were every function
F

j

(L)f is bandlimited to [2

2j�2, 2

2j+2
]. Since for every

F
j

(L)f 2 E22j+2
(L) one can use Theorem 1.2 to conclude

that
|F

j

(L)f |2 2 E4d22j+2
(L),

where d = dim G, M = G/H . This shows that for every
f 2 L2(M) we have the following decomposition

X

j�1
kF

j

(L)fk22 = kfk22, |F
j

(L)f |2 2 E4d22j+2
(L). (13)

According to Theorem 1.3 there exists a constant a > 0 such
that for all integers j if

⇢
j

= ad�1/2
2

�j ⇠ 2

�j , d = dim G, M = G/H, (14)

then for any ⇢
j

-lattice M
⇢j one can find coefficients µ

j,k

with
µ

j,k

⇠ ⇢n

j

, n = dimM, for which the following exact cubature
formula holds

kF
j

(L)fk22 =

KjX

k=1

µ
j,k

|F
j

(L)f(x
j,k

)|2 , (15)

where x
j,k

2 M
⇢j , k = 1, . . . ,K

j

= card (M
⇢j ). Using the

kernel KF

2�j of the operator F
j

(L) we define the functions

⇥

j,k

(y) =

p
µ

j,k

KF

2�j (xj,k

, y) =

p
µ

j,k

X

�m2[22j�2
,22j+2]

F (2

�2j�
m

)u
m

(x
j,k

)u
m

(y). (16)

We find that for every f 2 L2(M) the following equality holds
kfk22 =

P
j,k

|hf,⇥
j,k

i|2.
Theorem 3.2: (Kernel localization [1]) If M is compact

then the functions ⇥
j,k

are localized around the points x
j,k

in
the sense that for any N > 0 there exists a C(N) > 0 such
that

|⇥
j,k

(x)|  C(N)

2

dj

max(1, 2

jd(x, x
j,k

))

N

, (17)

for all natural j.
Theorem 3.3: (Bandlimited localized Parseval localized

frames on homogeneous manifolds) For any compact homo-
geneous manifold M the set of functions {⇥

j,k

}, constructed
in (16) forms a Parseval frame in the Hilbert space L2(M).
In particular the following reconstruction formula holds true

f =

X

j�0

KjX

k=1

hf,⇥
j,k

i⇥
j,k

, (18)

with convergence in L2(M). Every ⇥
j,k

is bandlimited to
[2

2j�2, 22j+2
] and its localization on manifold is given by (17).

The condition (14) imposes a specific rate of sampling in
(15). It is interesting to note that this rate is essentially optimal.
Indeed, on one hand the Weyl’s asymptotic formula (2) gives
the dimension of the space E

!

(L). On the other hand, the
condition (14) and the definition of a ⇢-lattice imply that the
number of points in an ”optimal” lattice M

⇢j for ⇢
j

⇠ 2

�j

can be approximately estimated as

card M
⇢j ⇠ c

V ol(M)

2

�jn/2
= cV ol(M)2

jn/2, n = dim M,

which is in agreement with the Weyl’s formula (2) with ! ⇠
2

j .
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IV. SHANNON SAMPLING OF BANDLIMITED FUNCTIONS

We consider an even F 2 C1
c

(R) which equals 1 on
[�1, 1], and which is supported in [�⌦, ⌦], ⌦ > 1. Let
KF

⌦�1/2(x, y) be the kernel of F (⌦

�1L) defined by (9). If
0 < !  ⌦ then since F (⌦

�1�
k

) = 1 whenever �
k

 !,
we have that according to (7) - (9) for every f 2 E

!

(L) the
following reproducing formula holds

f(x) =

⇥
F (⌦

�1L)f
⇤
(x) =

Z

M
KF

⌦�1/2(x, y)f(y)dy (19)

where dy is the normalized invariant measure. Clearly, for
a fixed x 2 M the kernel KF

⌦�1/2(x, y) as a function in
y belongs to E⌦(L). Thus, for f 2 E

!

(L), ! < ⌦,
the Product property (Theorem 1.2) implies that the product
KF

⌦�1/2(x, y)f(y) belongs to E4d⌦(L), where d = dim G.
Now an application of the Cubature formula (Theorem 1.3)
implies the following theorem.

Theorem 4.1: For every compact homogeneous manifold
M = G/H there exists a constant c = c(M) such that for
any ⌦ > 0 and any lattice M

⇢

= {x
k

}m⌦
k=1 with ⇢ = c⌦�1/2

one can find positive weights µ
k

µ
k

⇣ ⌦�n/2, n = dim M,

such that for any f 2 E
!

(L) with !  ⌦ the following analog
of the Shannon formula holds

f(x) =

m⌦X

k=1

µ
k

f(x
k

)KF

⌦�1/2(x, x
k

), f 2 E
!

(L). (20)

Remark 2: Note that our definition of a ⇢-lattice and the
Weyl’s asymptotic formula (2) for eigenvalues of L imply
that m⌦ is “essentially” the dimension of the space E4d⌦(L)

with d = dim G. In other words there exists a constants
C1(M) > 0, C2(M) > 0 (which are independent on ⌦) such
that the number m⌦ of sampling points satisfies the following
inequalities

C1(M)⌦

n/2  m⌦  C2(M)⌦

n/2

C1(M)E4d⌦(L)  m⌦  C2(M)E4d⌦(L). (21)

Remark 3: Lemma 3.1 shows that for large ⌦ functions
KF

⌦�1/2(x, x
k

) in (20) are essentially localized around sam-
pling points x

k

.

V. A DISCRETE FORMULA FOR EVALUATING FOURIER
COEFFICIENTS ON MANIFOLDS.

As another application of the Product Property and the Cu-
bature Formula, we prove an analog of the Shannon Sampling
Theorem on compact homogeneous manifolds.

Theorems 1.2 and 1.3 imply the following theorem which
shows that on a compact homogeneous manifold M there are
finite sets of points which yield exact discrete formulas for
computing Fourier coefficients of bandlimited functions.

Theorem 5.1: For every compact homogeneous manifold
M = G/H there exists a constant c = c(M) such that

for any ! > 0 and any lattice M
⇢

= {x
k

}r!
k=1 with

⇢ = c!�1/2 one can find positive weights µ
k

comparable
to !�n/2, n = dim M, such that Fourier coefficients c

i

(f)

of any f in E
!

(L) with respect to the basis {u
i

}1
i=1 can be

computed by the following exact formula

c
i

(f) =

Z

M
f(x)u

i

(x)dx =

r!X

k=1

µ
k

f(x
k

)u
i

(x
k

),

with r
!

satisfying relations

C1(M)!n/2  r
!

 C2(M)!n/2

C1(M)E4d!

(L)  r
!

 C2(M)E4d!

(L), (22)

where C1(M) and C2(M) are the same as in (21).
We obviously have the following ”discrete” representation

formula of f in E
!

(L) in terms of eigenfunctions u
i

f =

X

i

r!X

k=1

µ
k

f(x
k

)u
i

(x
k

)u
i

. (23)
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Abstract—A basic task in signal analysis is to character-
ize data in a meaningful way for analysis and classification
purposes. Time-frequency transforms are powerful strategies
for signal decomposition, and important recent generalizations
have been achieved in the setting of frame theory. In parallel
recent developments, tools from algebraic topology, traditionally
developed in purely abstract settings, have provided new insights
in applications to data analysis. In this report, we investigate some
interactions of these tools, both theoretically and with numerical
experiments, in order to characterize signals and their frame
transforms. We explain basic concepts in persistent homology
as an important new subfield of computational topology, as well
as formulations of time-frequency analysis in frame theory. Our
objective is to use persistent homology for constructing topo-
logical signatures of signals in the context of frame theory. The
motivation is to design new classification and analysis methods by
combining the strength of frame theory as a fundamental signal
processing methodology, with persistent homology as a new tool
in data analysis.

I. INTRODUCTION

Modern developments in signal processing have triggered
important interactions between pure and applied mathematics.
A basic example is given by new advances in time-frequency
analysis and its generalizations to frame theory [2, 8], but
another recent and major development illustrating a rich in-
terplay between abstract ideas and practical applications is
persistent homology [1, 7], which in the last few years has be-
come an important subfield of computational topology. These
developments in persistent homology have been applied in
different situations, and particular results relevant in our setting
are recent results in sensor networks [10, 11]. This report
is a natural continuation of our previous work [12] which
introduced a strategy for integrating time-frequency analysis
with persistent homology. Our contribution now is to further
understand and improve these interactions by combining frame
theory with the stability of persistent homology.

The outline of this report is as follows. We begin with a
short overview of time-frequency analysis and frame theory,
with a particular focus on voice transformations and how
this setting is generalized in (continuous) frame theory by
considering analysis operators V : H ! L2

(X ). Here, X is a
locally compact group for the case of voice transformations,
and a locally compact Hausdorff space in frame theory.

We then shortly present elements of persistent homology
as a new important branch in data analysis which, given a
point cloud data X = {xi}mi=1, (or more generally, a family of
simplicial complexes K1 ⇢ K2 ⇢ · · · ⇢ Kr = X ) constructs
a diagram that encodes a topological features of X (resp.
X ). We then proof a property combining the basic stability
of persistent diagrams with frame theory, and illustrate this
concept with computational experiments.

II. TIME-FREQUENCY ANALYSIS AND FRAME THEORY

Given a Hilbert space H as, for instance, a functional
space of signals L2

(R), the basic strategy in time-frequency
analysis is to segment a signal f 2 H in smaller chunks
xb = fgb, for g a window function, and gb(t) = g(t � b).
This segmentation procedure is the basis of Gabor analysis
and the short term Fourier transform (STFT), and it allows to
locally analyze the frequency behavior of f and its evolution
in time. A generalization of this method can be described
using a locally compact group G acting in a Hilbert space H
(see [8]). This action is an irreducible and square integrable
group representation, ⇡ : G ! U(H), defined as a group
homomorphism between G and U(H), the group of unitary
operators in H. The basic transformation that is constructed
with ⇡ is the analysis operator or the voice transform:

V : H ! L2
(G), V (f)(x) = hf,⇡(x) i,

which maps each f 2 H to a square integrable function V f
that “unfolds” the content of f in the setting provided by G.
We remark that a fundamental property of V is to be a quasi
isometry, which allows to perform not only analysis but also
synthesis procedures.

A. Continuous and Discrete Frames

Despite the major role of the voice transform and its
group representation background, in some applications it is
too restrictive to assume the existence of a group G that
parametrizes the family of dictionary vectors {⇡(x) }x2G. An
important generalization of these procedures is frame theory
which considers a family of vectors { x}x2X in a Hilbert
space H, where X is a locally compact Hausdorff space with
a positive Radon measure µ (see [9]). When X is finite or
discrete (e.g. X = N), we will consider a counting measure
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µ, and the resulting concept will be a generalization of an
orthogonal basis, and it provides powerful mechanisms for the
analysis and synthesis of a signal f 2 H.

The main property required by a frame { x}x2X ⇢ H is
the stabilization of the analysis operator.

Definition 1. A set of vectors { x}x2X ⇢ H in a Hilbert
space H is a frame, if

A||f ||2  ||V f ||2  B||f ||2, 8f 2 H
for 0 < A  B < 1, the lower and upper frame bounds, and
V : H ! L2

(X ), (V f)(x) = hf, xi is the analysis operator.

Reducing the difference between A and B improves the
stability of V , and for the case of A = B, or A = B = 1,
the resulting frame is denominated tight frame and Parseval
frame, respectively. The corresponding synthesis operator V ⇤

:

L2
(X ) ! V , with V ⇤

((ax)x2X ) =

R
X ax x dµ(x) is defined

with an adequate positive Radon measure µ, when X is a
locally compact Hausdorff space (see [9]). The maps V ⇤ and
V are combined in the frame operator

S = V ⇤V : H ! H, Sf =

Z

X
hf, xi xdµ(x),

which plays an important role due to the fact that the operator
norm of S can be bounded by A and B, namely:

A  ||S||op  B. (1)

III. PERSISTENT HOMOLOGY

In order to shortly introduce the basic concepts in persistent
homology, we recall elementary ideas in simplicial homology.
One of the simplest homology theories available is simplicial
homology which translates topological data into an algebraic
formulation. The fundamental objective is to compute quali-
tative properties of a topological space X , as the number of
n-dimensional holes X has. The basic object to analyze is a
(finite) abstract simplicial complex K, defined as a nonempty
family of subsets of a vertex set V = {vi}mi=1 with {v} 2 K if
v 2 V , and if ↵ 2 K,� ✓ ↵, then � 2 K. We define faces (or
simplices) to be the elements of K, and their corresponding
dimension will be their cardinality minus one.

In order to compute the number of holes of a given simpli-
cial complex K, we translate its topological or combinatorial
properties in the language of linear algebra. There are three
basic steps in this procedure: first, we construct a family
of free groups Cn, the group of n-chains defined as the
formal combinations of k-dimensional faces with coefficients
in a given group (or rings and fields in more specific cases).
Secondly, we construct the boundary operators @n, defined as
homomorphisms (or more specifically linear maps) between
the group of k-chains Ck. The homomorphism maps a face
� = [p0, · · · pn] 2 Cn into Cn�1 by

@n� =

nX

k=0

(�1)

k
[p0, · · · , pk�1, pk+1, · · · pn].

Finally, in the third step, we construct the homology groups
defined as the quotients Hk := ker(@k)/im(@k+1). The main

property is now the computation of the Betti numbers, which
represent the amount of k-dimensional holes, and it corre-
sponds to the rank of the homology groups, �k = rank(Hk).

The fundamental ideas of persistent homology have been
introduced at the end of the last century (see [6]) where the
estimation of topological properties of finite sets arises as an
important problem in many applications. An important sce-
nario is the analysis of a point cloud data X = {xi}mi=1 which
represents the challenging situation that no simplicial structure
is given a priori. The strategy is to consider special type
of simplicial complexes (e.g. Čech complexes, Vietoris Rips
complexes) arising by considering the set R✏(X), defined with
X as the vertex set, and setting the vertices � = {x0, . . . , xk}
to span a k-simplex of R✏(X) if d(xi, xj)  ✏ for all
xi, xj 2 �. The fundamental remark is to notice that for a finite
point cloud data X = {xi}mi=1 there is only a finite number
of simplicial complexes that fully characterize the family
{R✏(X)}✏>0. Namely, there is only a finite number of non-
homeomorphic simplicial complexes K1 ⇢ K2 ⇢ · · · ⇢ Kr

(a so called filtration) that fully describe the topology of the
sets {R✏(X)}✏>0. The power of persistent homology lies in
efficient algorithms that compute homology information for
the filtration K1 ⇢ K2 ⇢ · · · ⇢ Kr.

Definition 2 (Persistent homology). A filtration is the basic
input of persistent homology, and it is defined for a topological
space X , as a family of non-homeomorphic simplicial com-
plexes K1 ⇢ K2 ⇢ · · · ⇢ Kr = X . We define a persistent
homology group (at the level n) of a filtration as the image
of a group homomorphisms f ij

n : Hn(Ki) ! Hn(Ki+j).
The maps f ij

n are induced from the continuous inclusions
Ki ⇢ Kj by the functorial properties of homology. The images
of f ij

n represent the homology classes born at i and still alive
at i + j. The rank of theses images �ij

n = rank(Imf ij
n ) is

the persistent Betti number (at the homology level n). The
persistent diagram dgm(X ) (at the level n) of X is constructed
by associating the value �ij

n to the pairs (i, j), 1  i  j  r.

A. Stability Properties

We now present an important component in the persistent
homology toolbox denominated the stability of persistent dia-
grams [5]. In order to explain this concept, we first introduce
some preliminary notions.

Definition 3 (Homological critical values and tame functions).
Let X be a topological space, and ↵ : X ! R a continuous
function. A homological critical value (or HCV) is a number
a 2 R for which the map induced by ↵

Hn(↵
�1

(]�1, a� ✏[)) ! Hn(↵
�1

(]�1, a+ ✏[))

is not an isomorphism for all ✏ > 0. Remember that each
↵�1

(]�1, a[) is a level sets of ↵, and it plays a crucial role
in Morse theory, as well as in our current setting. A tame
function is now defined to be a function ↵ : X ! R that has
only a finite number of HCV.
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Typical examples of tame functions are Morse functions on
compact manifolds, and piecewise linear functions on finite
simplicial complexes [5].

Definition 4. For a tame function ↵ : X ! R, we define
its persistent diagram dgm(↵) as the persistent diagram of
the filtration K1 ⇢ K2 ⇢ · · · ⇢ Kr = X where we define
Ki = f�1

(]�1, ai]), and a1 < a2 < · · · < ar are the critical
values of ↵ (see [4]).

Definition 5 (Bottleneck and Hausdorff distances). For two
nonempty sets X,Y ⇢ R2 the Hausdorff distance and bottle-
neck distances are defined as

dH(X,Y ) = max

�
sup

x2X
inf

y2Y
||x� y||1, sup

y2Y
inf

x2X
||y � x||1

 

dB(X,Y ) = inf

�
sup

x2X
||x� �(x)||1,

where we consider all possible bijections � : X ! Y . Here,
we use ||p�q||1 = max{|p1�q1|, |p2�q2|} for p, q 2 R2. We
also remark the following inequality between these distances:
dH(X,Y )  dB(X,Y ) (see [5]).

Theorem 1 (Stability of persistent diagrams [3, 4, 5]). Let X
be a topological space with tame functions ↵,� : X ! R.
Then, the following stability property holds:

dB(dgm(↵), dgm(�))  ||↵� �||1. (2)

IV. FRAMES ANALYSIS AND PERSISTENT HOMOLOGY

Our objective is now to combine the core concepts in
frame theory with persistent diagrams in order to combine
the strength and features of these different analysis tools. Our
theorem provides stability properties of persistent diagrams of
frame transforms |V f |, when considering a frame decompo-
sition V f 2 L2

(X ). We assume the frame parametrization
space X to have a counting measure, which is anyway the
case when considering discrete structures for applications.

Theorem 2. Let f, g 2 H and |V f |, |V g| tame functions with
V : H ! L2

(X ) a frame analysis operator with upper bound
B. We consider a discrete topological space X with a counting
measure. Then, the following stability property holds:

dB(dgm(|V f |), dgm(|V g|)) 
p
B||f � g||H.

Proof: This is a consequence of the inequality (1) (the
bounding of the norm of the frame operator) and the stability
of the persistent diagrams described in the inequality (2):

dB(dgm(|V f |), dgm(|V g|))
 || |V f |� |V g| ||1
 ||V f � V g||2
 ||V || ||f � g||H
=

p
||V ⇤V ||||f � g||H

=

p
||S|| ||f � g||H


p
B||f � g||H,

where we use ||V ||2 = ||V ⇤V ||.

This proposition is an initial step towards the integration of
frame theory and persistent stability. We remark that important
developments have been achieved in generalizing the work in
[5], and the inequality (2), by avoiding the restrictions imposed
by the functional setting and expressing the stability in a purely
algebraic language (see [1, 3, 4]). The usage of these more
flexible and general stability properties is a natural future step
in our program.

A. Experiments

We now experiment with acoustic signals the interaction
between the components in our framework (frame transforma-
tions and persistent diagrams). A main objective is to study
both the stability and the discriminative power of persistent
diagrams in the setting of frame theory. We consider two
signals f0 and f1 together with a process transforming f0 into
f1 encoded with a family of signals {ft}0t1 defined as:

ft = (1� t)f0 + tf1, t 2 [0, 1].

a) Signal f0 b) Signal f1

c) |V f0|: STFT of f0 d) |V f1|: STFT of f1

e) dgm(|V f0|) f) dgm(|V f1|)
Fig. 1. Time-frequency plots and discriminative properties of persistence

In Fig. 1 (a) and Fig. 1 (b), the plots of f0 and f1 are
shown, and they represent a female speech recording and
a castanet signal respectively. In Fig. 1(c) and Fig. 1(d)
the corresponding spectrograms (STFT) |V f0| and |V f1| are
displayed, indicating different frequency characteristics. Here,
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the horizontal axis refers to the time domain, and the vertical
axis corresponds to the frequency domain. The case of the
speech signal f0 presents a mixture of harmonic and transitory
effects originated by vocal and consonants features of a speech
signal. In the case of the castanets signal f1, a sequence
of transients are displayed indicating the complex frequency
behavior of the rapid series of clicks.

The spectrograms |V f0| and |V f1| are then fed to a per-
sistent homology algorithm by considering its level sets as
indicated in Definitions 3 and 4. We use a Morse-theory based
algorithm that analyzes a quantized version of an input func-
tion, and feeds the resulting level sets to an efficient persistent
homology implementation, see [13]. In our persistent diagrams
of Fig. 1(e) and Fig. 1(f), we have selected only the 30 most
prominent 1-dimensional homological structures, displayed by
the 30 dots with the largest distance to the diagonal in the
persistent diagram. We are therefore not considering topolog-
ical unstable (noisy) components represented by dots, or 1-
homology features, located in closer regions to the diagonal in
Figures 1(e) and 1(f). These persistent diagrams are homolog-
ical fingerprints characterizing the shape of the corresponding
spectrograms. Notice that these homological structures are
clearly identifying and discriminating these spectrograms us-
ing a limited set of homological components. This description
represents a new type of topological characterization of time-
frequency data.

As indicated in Theorem 2, the persistent diagram
dgm(|V f |) has the crucial property to be robust with respect
to perturbations of the signal f . This important feature can
be used to illustrate the discriminative power of persistent
homology by studying the distances between persistent dia-
grams dgm(|V f0|) and dgm(|V ft|), for t 2 [0, 1]. In Fig. 2,
we display the function d(t) := dH(dgm(|V f0|), dgm(|V ft|))
using the Hausdorff distance, whose implementation is simpler
and it does not interfere with the stabilty property, due to the
inequality dH(X,Y )  dB(X,Y ) (see Definition 5). Notice
that when the parameter t increases from 0 to 1, the Haus-
dorff distance between dgm(|V f0|) and dgm(|V ft|) increases,
which indeed resonates with the discriminative properties of
persistent homology in the setting of frame analysis.

Fig. 2. d(t) := dH(dgm(|V f0|), dgm(|V ft|)), t 2 [0, 1]
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Abstract—The projection method is an atomic signal decom-
position designed for adaptive frequency band (AFB) and ultra-
wide-band (UWB) systems. The method first windows the signal
and then decomposes the signal into a basis via a continuous-
time inner product operation, computing the basis coefficients
in parallel. The windowing systems are key, and we develop
systems that have variable partitioning length, variable roll-off
and variable smoothness. These include systems developed to
preserve orthogonality of any orthonormal systems between ad-
jacent blocks, and almost orthogonal windowing systems that are
more computable/constructible than the orthogonality preserving
systems. The projection method is, in effect, an adaptive Gabor
system for signal analysis. The natural language to express this
structure is frame theory.

I. INTRODUCTION

Adaptive frequency band (AFB) and ultra-wide-band
(UWB) systems present challenges to current methods of
signal processing. Despite extensive advances, wideband prob-
lems continue to hit barriers in sampling architectures and
analog-to-digital conversion (ADC). ADC signal-to-noise and
distortion ratio (the effective number of resolution bits) de-
clines with sampling rate due to timing jitter, circuit imper-
fections, and electronic noise. ADC performance (speed and
total integrated noise) can be improved to some extent, e.g., by
cooling. However, the energy cost may be significant, and this
presents a major hurdle for implementation in miniaturized
devices. Digital circuitry has provided dramatically enhanced
DSP operation speeds, but there has not been a corresponding
dramatic energy capacity increase in batteries to operate these
circuits. Moore’s Law for chips is slowing down, and there is
no Moore’s Law for batteries or ADCs.

A growing number of applications face this challenge,
such as miniature and hand-held devices for communications,
robotics, and micro aerial vehicles (MAVs). Very wideband
sensor bandwidths are desired for dynamic spectrum access
and cognitive radio, radar, and ultra-wideband systems. Multi-
channel and multi-sensor systems compound the issue, such
as MIMO, array processing and beamforming, multi-spectral
imaging, and vision systems. All of these rely on analog
sensing and a digital interface, perhaps with feedback. This
motivates mixed-signal circuit designs that tightly couple the
analog and digital portions, and operate with parallel reduced
bandwidth paths to relax ADC requirements. The goal of
such wideband integrated circuit designs is to achieve good
tradeoffs in dynamic range, bandwidth, and parallelization,
while maintaining low energy consumption.

From a signal processing perspective, we can approach this
problem by implementing an appropriate signal decomposi-
tion in the analog portion that provides parallel outputs for
integrated digital conversion and processing. This naturally
leads to an architecture with windowed time segmentation
and parallel analog basis expansion. In this paper we view
this from the sampling theory perspective, including segmen-
tation and window design, achieving orthogonality between
segments, basis expansion and choice of basis, signal filtering,
and reconstruction. Definitions and computations for the paper
follow those given in Benedetto [1].

II. WINDOWING

We first construct smooth bounded adaptive partitions of
unity, or BAPU Systems. These are generalizations of bounded
uniform partitions of unity (BUPU Systems) in that they
allow for signal adaptive windowing. These systems give a
flexible adaptive partition of unity of variable smoothness
and are useful whenever a partition of unity is used, such
as in compressed sensing. The construction elements for
this system are B-splines. The second type of system we
develop preserves orthogonality of any orthonormal (ON)
system between adjacent blocks. The construction here uses
any orthonormal basis for L

2
(R) and is created by solving

a Hermite interpolation problem with constraints. These ON
preserving window systems were the motivation for the meth-
ods in this paper. They allow us to create a method of time-
frequency analysis for a wide class of signals. The third type
of system we develop uses the concept of almost orthogonality
developed by Cotlar, Knapp and Stein. It employs our B-spline
techniques to create almost orthogonal windowing systems
that are more computable/constructible than the orthogonality
preserving systems.

The windowing systems for the partition of unity {Bk(t)}
satisfy

P
k Bk(t) ⌘ 1 . The key difference between the

partition of unity systems and (ON) systems is that the second
preserves orthogonality. Preserving orthogonality requires that
the windowing systems {Wk(t)} satisfy

P
k [Wk(t)]

2 ⌘ 1 .

The almost orthogonal systems require that there exists a �,
0  �  1/2 such that for all k

1� �  [Ak(t)]

2
+ [Ak+1(t)]

2  1 + �

for t 2 [kT, (k + 1)T ].
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A. Partition of Unity Systems

The theory of B-splines gives us the tools to create smooth
partition of unity systems.

Definition 1 (Bounded Adaptive Partition of Unity): A
Bounded Adaptive Partition of Unity is a set of functions
{Bk(t)} such that

(i.) supp(Bk(t)) ✓ [kT � r, (k + 1)T + r] ,

(ii.) Bk(t) ⌘ 1 for t 2 [kT + r, (k + 1)T � r] ,

(iii.)

X

k

Bk(t) ⌘ 1 ,

(iv.) {dBk
�
[n]} 2 l

1
. (1)

Conditions (i.), (ii.) and (iii.) make {Bk(t)} a bounded
partition of unity. Condition (iii.) means that these systems do
not preserve orthogonality between blocks. We will generate
our systems by translations and dilations of a given window
BI , where supp(BI) = [(�T/2� r), (T/2 + r)].

Our general window function WI is k-times differentiable,
has supp(BI) = [(�T/2� r), (T/2 + r)] and has values

BI =

8
<

:

0 |t| � T/2 + r

1 |t|  T/2� r

⇢(±t) T/2� r < |t| < T/2 + r

(2)

We solve for ⇢(t) by solving the Hermite interpolation
problem

8
<

:

(a.) ⇢(T/2� r) = 1

(b.) ⇢

(n)
(T/2� r) = 0 , n = 1, 2, . . . , k

(c.) ⇢

(n)
(T/2 + r) = 0 , n = 0, 1, 2, . . . , k ,

with the conditions that ⇢ 2 C

k and

[⇢(t)] + [⇢(�t)] = 1 for t 2 [T/2� r, T/2 + r] . (3)

We use B-splines as our cardinal functions. Let 0 < ↵ ⌧
� and consider �

[�↵,↵]. We want the n-fold convolution of
�

[↵,↵] to fit in the interval [��, �]. Then we choose ↵ so that
0 < n↵ < � and let

 (t) =

�

[�↵,↵] ⇤ �

[�↵,↵] ⇤ · · · ⇤ �

[�↵,↵](t)| {z }
n�times

.

The �-periodic continuation of this function,  �(t) has the
Fourier series expansion

X

k 6=0

↵

n�


sin(⇡k↵/n�)

2⇡k↵/n�

�n

exp(⇡ikt/�) .

The C

k solution for ⇢ is given by a theorem of Schoenberg
(see [7], pp. 7-8). Schoenberg solved the Hermite interpolation
problem

8
<

:

(a.) S

(n)
(�1) = 0 , n = 0, 1, 2, . . . , k ,

(b.) S(1) = 1 ,

(b.) S

(n)
(1) = 0 , n = 1, 2, . . . , k .

An interpolant that minimizes the Chebyshev norm is called
the perfect spline. The perfect spline S(t) for Hermite problem
above is given by the integral of the function

M(x) = (�1)

n
kX

j=0

 (t� tj)

�

0
(tj)

,

where  is the (k+1) convolution of characteristic functions,
the knot points are tj = � cos(

⇡j
k ) and �(t)

Qk
j=0(t� tj). We

then have that ⇢(t) = S � `(t) , where `(t) =

1
r t � 2T

2r . For
this ⇢, and for

BI =

8
<

:

0 |t| � T/2 + r

1 |t|  T/2� r

⇢(±t) T/2� r < |t| < T/2 + r

we have that cBI(!) is given by the antiderivative of a linear
combination of functions of the form [sin(!)/!]

k+1
, and

therefore has decay 1/!

k+2 in frequency.

B. Orthogonality Preserving Systems
Our first system of signal segmentation uses sine, cosine and

linear functions. This was created because it is relatively easy
to implement, cuts down on frequency error and preserves
orthogonality. Consider a signal block of length T + 2r

centered at the origin. Let 0 < r ⌧ T . Ideally, we would
like to make r as small as possible. Define Cap(t) as follows.

8
>><

>>:

0 |t| � T
2 + r ,

1 |t|  T
2 � r ,

sin(⇡/(4r)(t + (T/2 + r)))

�T
2 � r < t <

�T
2 + r ,

cos(⇡/(4r)(t� (T/2� r)))

T
2 � r < t <

T
2 + r .

(4)
Given Cap, we form a tiling system {Capk(t)} such that

supp(Capk(t)) ✓ [kT � r, (k + 1)T + r] for all k. Note that
the Cap window has several properties that make it a good
window for our purposes. It has a partition property in that it
windows the signal in [

�T
2 � r,

T
2 + r] and is identically 1 on

[

�T
2 + r,

T
2 � r]. It has a continuous roll-off at the endpoints.

Finally, it has the property that for all t 2 R

[Capk(t)]

2
+ [Capk+1(t)]

2
= 1 .

This last condition is needed to preserve the orthogonality of
basis elements between adjacent blocks. Additionally, it has
1/!

2 decay in frequency space, and, when one time block is
ramping down, the adjacent block is ramping up at exactly the
same rate. If we had a signal f with an absolutely convergent
Fourier series,

(f · Cap)kb[n] =

X

m

f [n�m]Capb[m] =

b
f ⇤ Capb[n] .

The Fourier transform of Cap is a linear combination of
sinc(!) and sin(!) functions and has an asymptotic 1/!

2

decay.
The theory of splines gives us the tools to generalize this

system. The idea is to cut up the time domain into perfectly
aligned segments so that there is no loss of information.
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We also want the systems to be smooth, so as to provide
control over decay in frequency, and adaptive, so as to adjust
accordingly to changes in frequency band. Finally, we develop
our systems so that the orthogonality of bases in adjacent and
possible overlapping blocks is preserved.

Definition 2 (ON Window System): An ON Window System
is a set of functions {Wk(t)} such that for all k 2 Z

(i.) supp(Wk(t)) ✓ [kT � r, (k + 1)T + r] ,

(ii.) Wk(t) ⌘ 1 for t 2 [kT + r, (k + 1)T � r] ,

(iii.) Wk is symmetric about its midpoint ,

(iv.) [Wk(t)]

2
+ [Wk+1(t)]

2
= 1 ,

(v.) { dWk
�
[n]} 2 l

1
. (5)

Conditions (i.) and (ii.) are partition properties, in that
they give an exact snapshot of the input function f on
[kT + r, (k + 1)T � r] with smooth roll-off at the edges.
Conditions (iii.) and (iv.) are needed to preserve orthogonal-
ity between adjacent blocks. Condition (v.) is needed for the
computation of Fourier coefficients. We generate our systems
by translations and dilations of a given window WI , where
supp(WI) = [�T/2� r, T/2 + r]. Our next proposition
shows the need for the condition (v.). Let I = T +2r and let
PW⌦ denote the Paley-Wiener space for bandlimit ⌦.

Proposition 1: Let f 2 PW⌦ and let {Wk(t)} be an ON
Window System with generating window WI . Then

1

I

Z T/2�r

�T/2�r
[f ·WI ]

�
(t) exp(�2⇡int/[I]) dt =

b
f ⇤dWI [n] . (6)

Our general window function WI is k-times differentiable,
has supp(WI) = [�T/2� r, T/2 + r] and has values

WI =

8
<

:

0 |t| � T/2 + r

1 |t|  T/2� r

⇢(±t) T/2� r < |t| < T/2 + r

(7)

We solve for ⇢(t) by solving the Hermite interpolation
problem

8
<

:

(a.) ⇢(T/2� r) = 1

(b.) ⇢

(n)
(T/2� r) = 0 , n = 1, 2, . . . , k

(c.) ⇢

(n)
(T/2 + r) = 0 , n = 0, 1, 2, . . . , k ,

with the conditions that ⇢ 2 C

k and

[⇢(t)]

2
+ [⇢(�t)]

2
= 1 for t 2 [±(

T

2

� r),±(

T

2

+ r)] . (8)

The constraint (8) directs us to get solutions expressed in
terms of sin(t) and cos(t). Solving for ⇢ so that the window
in C

1, we get that ⇢(t) equals
8
>>><

>>>:

s
1� 1

2


1� sin(

⇡
2r (

T
2 � t))

�2�
T
2 � r  t  T

2

1p
2


1� sin(

⇡
2r (t� T

2 ))

�
T
2  t  T

2 + r .

(9)
With each degree of smoothness, we get an additional degree
of decay in frequency.

C. Orthogonality Between Blocks
We designed the ON Window Systems {Wk(t)} so that they

would preserve orthogonality of basis element of overlapping
blocks. Because of the partition properties of these systems, we
need only check orthogonality of adjacent overlapping blocks.
The best way to think about the construction is to visualize
how one would do the extension for a system of sines and
cosines. We would extend the odd reflections about the left
endpoint and the even reflections about the right. Let {'j(t)}
be an orthonormal basis for L

2
[�T/2, T/2]. Define

f'j(t) =

8
>><

>>:

0 |t| � T/2 + r

'j(t) |t|  T/2� r

�'j(�T � t) �T/2� r < t < �T/2

'j(T � t) T/2 < t < T/2 + r .

(10)
Theorem 1: { k,j} = {Wkf'j(t)} is an ON basis for

L

2
(R).

Proof : See [3]. ⇤
D. Almost Orthogonal Systems

The Partition of Unity Systems do not preserve orthogo-
nality between blocks. However, they are easier to compute
in both time and frequency. Therefore, these systems can be
used to approximate the Cap system with B-splines. We get
windowing systems that nearly preserve orthogonality. Each
added degree of smoothness in time adds to the degree of
decay in frequency.

Cotlar, Knapp and Stein introduced almost orthogonality via
operator inequalities. The concept allows us to create window-
ing systems that are more computable/constructible such as the
Bounded Adaptive Partition of Unity Systems {Bk(t)} with
the orthogonality preservation of the ON Window Systems
{Wk(t)}.

Definition 3 (Almost ON System): Let 0 < r ⌧ T . An
Almost ON System for adaptive and ultra-wide band sam-
pling is a set of functions {Ak(t)} for which there exists �,
0  � < 1/2, such that

(i.) supp(Ak(t)) ✓ [kT � r, (k + 1)T + r] ,

(ii.) Ak(t) ⌘ 1 for t 2 [kT + r, (k + 1)T � r] ,

(iii.) Ak((kT + T/2)� t) = Ak(t� (kT + T/2)) ,

(iv.) 1� �  [Ak(t))]

2
+ [Ak+1(t))]

2  1 + � ,

(v.) {dAk
�
[n]} 2 l

1
.

Starting with Cap(t), let �(T,r) =

T+2r
m . By placing equidis-

tant knot points �T/2 � r = x0,�T/2 � r + �(T,r) =

x1, . . . , T/2 + r = xm, we can construct C

m�1 polynomial
splines Sm+1 approximating Cap(t) in [(�T/2 � r), (T/2 +

r)] . A theorem of Curry and Schoenberg gives that the set of
B-splines {B(m+1)

�(m+1), . . . , B
(m+1)
k } forms a basis for Sm+1.

Therefore, Cap(t) ⇡
Pk

i=�(m+1) aiB
(m+1)
i . Let

� =

����
kX

i=�(m+1)

aiB
(m+1)
i � Cap(t)

����
1

.
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Then, � < 1/2, with the largest value for the piecewise linear
spline approximation. Moreover, � �! 0 as m and k increase.
Thus we get computable windowing systems that nearly pre-
serve orthogonality. Each added degree of smoothness in time
adds to the degree of decay in frequency.

III. SIGNAL EXPANSIONS

Given characteristics of the class of input signals, the
choice of basis functions used can be tailored to optimal
representation of the signal or a desired characteristic in the
signal.

Theorem 2 (The Projection Formula for ON Windowing):
Let {Wk(t)} be an ON Window System, and let { k,j} be
an orthonormal basis that preserves orthogonality between
adjacent windows. Let f 2 PW⌦ and N = N(T,⌦) be such
that hf · Wk, k,ni = 0 for all n > N and all k. Then,
f(t) ⇡ fP(t), where

fP(t) =

X

k2Z

 NX

n=�N

hf · Wk, k,ni k,n(t)

�
. (11)

This theorem gives a new method for A-D conversion.
Unlike the Shannon method which examined the function at
specific points, then used those individual points to recreate the
curve, the projection method breaks the signal into time blocks
and then approximates their respective periodic expansions
with a Fourier series. This process allows the system to
individually evaluate each piece and base its calculation on
the needed bandwidth. The individual Fourier series are then
summed, recreating a close approximation of the original
signal. It is important to note that instead of fixing T , the
method allows us to fix any of the three while allowing the
other two to fluctuate. From the design point of view, the
easiest and most practical parameter to fix is N . For situations
in which the bandwidth does not need flexibility, it is possible
to fix ⌦ and T by the equation N = dT · ⌦e. However, if
greater bandwidth ⌦ is need, choose shorter time blocks T .

The windowing systems above allow us to develop Signal
Adaptive Frame Theory. The idea is as follows. If we work
with an ON Windowing System {Wk(t)}, let { k,j} be
an orthonormal basis that preserves orthogonality between
adjacent windows. Let f 2 PW⌦ and N = N(T,⌦) be such
that hf · Wk, k,ni = 0 for all n > N and all k. Then

f(t) =

X

k2Z

X

n2Z
hf · Wk, k,ni k,n(t)

�
. (12)

This also gives

kfk2 =

X

k2Z

X

n2Z
|hf · Wk, k,ni|2

�
. (13)

Given that { k,j} = {Wkf'j(t)} is an orthonormal basis
for L

2
(R), we have a representation of a given function f in

L

2. The set { k,j} = {Wkf'j(t)} is an exact normalized tight
frame for L

2. The restriction that these basis elements present
is computability. They become increasing difficult to compute
as the smoothness in time/decay in frequency increases.

A way around this is to connect the Bounded Adaptive
Partition of Unity Systems {Bk(t)} to frame theory. The ideas
behind this connection go back to the curvelet work of Candès
and Donoho. The paper of Borup and Neilsen [2] gives a nice
overview of this connection, and we will refer to that paper for
the background from which we develop our approach. The set
{Bk(t)} form an admissible cover, in that they form a partition
of unity and have overlap with only their immediate neighbors.

For each window Bk(t), let �n,k(t) be the shifted
exp[⇡itT/n] centered in the window. Then define

�k,n = Bk(t)�k,n(t) .

Given and f 2 L

2 we can write

f(t) ⇡
X

k2Z

X

n2Z
hf · Bk,�k,ni�k,n(t)

�
. (14)

For this system we can compute

Akfk 
X

k2Z

X

n2Z
|hf · Bk,�k,ni|2

�
 Bkfk . (15)

The bounds are a function of how much of the signal is
concentrated in the overlap regions and will be tightened
for the almost orthogonal windowing systems. The closer the
approximation, the better the frame bounds. Developing these
signal adaptive frames, their bounds and the associated frame
operators will be a major point of emphasis in future work. We
will additionally develop biorthogonal adaptive frames using
our B-spline constructions. We conjecture the following:

A1��kfk2 
X

k2Z

X

n2Z
|hf ·Ak, k,ni|2

�
 A1+�kfk2 . (16)

Moreover, this �! Normalized Tight Frame as � �! 0.
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Abstract—We consider the task of estimating an operator from
sampled data. The operator, which is described by a rational
transfer function, is applied to continuous-time white noise
and the resulting continuous-time process is sampled uniformly.
The main question we are addressing is whether the stochastic
properties of the time series that originates from the sample
values of the process allows one to determine the operator.
We focus on the autocorrelation property of the process and
identify cases for which the sampling operator is injective.
Our approach relies on sampling properties of almost periodic
functions, which together with exponentially decaying functions,
provide the building blocks of the autocorrelation measure. Our
results indicate that it is possible, in principle, to estimate the
parameters of the rational transfer function from sampled data,
even in the presence of prominent aliasing.

I. INTRODUCTION

Models that are based on stochastic differential equations
are widely used for describing numerous physical phenomena.
We consider in this work stochastic differential equations that
have constant coefficients. Such equations are characterized by
a rational transfer function and are equivalent to the filtering
of white noise. In practice, the available data is discrete, and
one is often required to estimate continuous-time parameters
from sampled data. The stochastic properties of the time series
that originates from such processes depend on the constant
coefficients, and the question we are raising here is whether
the sampling process is injective in the sense that there is
a one-to-one mapping between the continuous-time and the
discrete-time models.

Within the context of state-space autoregressive represen-
tation, it is known that stochastic differential equations are
mapped to stochastic difference equations upon sampling. The
z transform description of the difference equation is based on
the exponential values of the poles (the roots of the rational
transfer function); and for that reason, currently available
estimation algorithms assume that there is an ambiguity in
determining their imaginary part value, as the exponential
function is invariant to 2⇡i increments in its argument. In order
to overcome this ambiguity, current estimation approaches
require high sampling rate values for avoiding aliasing [3]–
[10]. They also restrict the imaginary part of the poles to
be less than ⇡/T where T is the sampling interval. The
z transform description, however, includes non-exponential
terms as well, and this fact has not been taken into account
so far.

We revisit in this work the ambiguity assumption of sampled
autoregressive continuous-time processes, and identify cases

for which the sampling operator is injective when applied to
the autocorrelation function. We will show that there is no
ambiguity even in the presence of prominent aliasing. To this
aim, we introduce two alternative descriptions for the poles
of the model: one is used for deriving an explicit expression
for the autocorrelation function, while the other is used for
assigning a Lebesgue measure to subsets of poles. The build-
ing blocks of the autocorrelation function are exponentially
decaying terms and almost periodic functions; and we exploit
this structure for proving uniqueness of the sampled model.

II. THE PROBLEM

We consider the following stochastic process

x(t) =

Z 1

0
h(t� ⌧ ; ✓)w(⌧) d⌧ , (1)

where w(t) is a Gaussian or non-Gaussian white noise process.
The shaping filter h(t; ✓) is given in the Fourier domain by

H(!; ✓) =
1Qp

n=1(i! � sn)
, (2)

where ✓ = (s1, s2, . . . , sp) 2 Cp is composed of the poles
of H(!; ✓). The real part of each pole is strictly negative
and complex poles appear in conjugate pairs. Assuming that
w(t) is white with finite variance, �2, and that t � 0, the
autocorrelation function of x(t) is given in the Fourier domain
by �(!; ✓,�2

) = �2
��H(!; ✓)

��2. In this work we investigate
the injective property of the sampling operator x(t) ! {x(n)}
while assuming that p is known. Specifically, we raise the
following question: does the time series that originates from
the sampled version of x(t) allow one to recover ✓?

III. ASYMPTOTIC PROPERTIES OF THE AUTOCORRELATION
FUNCTION

A. Alternative representations to H(!; ✓)

We introduce two alternative parameter vectors, ˜✓ and ¯✓,
that will be used for deriving an explicit formula for the
autocorrelation function '(t; ✓), and for associating subsets of
✓ with a measure in Rp. Let ✓ = (s1, . . . , s2m, s2m+1, . . . , sp)
where the first 2m poles are complex, and conjugate pairs
appear sequentially. Additionally, for a given complex pair,
we require the one with positive imaginary part to be listed
first. Our first alternative representation is based on decay rates
and modulation values. It extends the representation of [11]
in the following manner,

˜✓ = (a1, b1, a2, b2, . . . , am, bm, am+1, . . . , ap�m), (3)
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where a1, . . . ap�m are the strictly negative real parts of the
poles, and b1, . . . bm are the strictly positive imaginary parts.
The vector ˜✓ is a point in Rp and this identification can be
made unique by imposing a dictionary-type ordering:

• 0 > a1 � a2 � · · · � am;
• 0 > am+1 � am+2 � · · · � ap�m;
• if ak = ak+1, then bk+1 � bk.

The difference in sign between the a’s and b’s allows us to
distinguish the two types of poles, so that there is no confusion.

The second alternative parameter vector ¯✓ indicates multi-
plicities of poles and will be used for obtaining an explicit
formula of autocorrelation functions

¯✓ = (s̄1,m1, s̄2,m2, . . . , s̄L,mL). (4)

The multiplicity of a pole s̄l is represented by ml.

Definition 1. The collection of all parameter vectors ✓ is ⌦(p).
This is also the collection of all parameter vectors

˜✓ or

¯✓.

B. The autocorrelation function

The rational form of H(!; ✓) is known to yield an autocor-
relation function that is a sum of Hermitian symmetric expo-
nentials, as the result of a decomposition in partial fractions
[1]. The explicit formula is obtained as follows.

Proposition 1. Let

¯✓ = (s̄1,m1 . . . , s̄L,mL) 2 ⌦(p). Then,

'(t; ¯✓) = (�1)

p
LX

`=1

e��1/2
l |t|

mlX

n=1

n�1X

k=0

dl,n,k |t|n�1�k
, (5)

where

�l = s̄2l (6)

P (⇠) =

LY

l=1

(⇠ � �l)
ml (7)

cl,n = lim

⇠!�l

1

(ml � n)!

d

ml�n

d⇠ml�n

✓
(⇠ � �l)

ml

P (⇠)

◆
(8)

dl,n,k =

(�1)

ncl,n(n� 1 + k)!

(n� 1)!k!(n� 1� k)!(2�
1/2
l )

n+k
, (9)

and �
1/2
l 2 C denotes the principal square root of �l.

Definition 2. Two parameter vectors ✓1, ✓2 2 ⌦(p) are equiv-

alent if there exists ↵ 2 R such that '(n; ✓1)+↵·'(n; ✓2) = 0

for all n 2 Z. If ✓1 is not equivalent to any distinct ✓2, then

it is unique.

When the uniqueness property holds, there is a one-to-one
mapping between the autocorrelation function and its sampled
version. The sample value of the autocorrelation function
can then be estimated from the available sample values of
x(t). The uniqueness property is related to linear combina-
tions of autocorrelation functions. In (5), the real parts of
the parameters �

1/2
l determine exponentially decaying terms,

while the imaginary parts determine periods of trigonometric
polynomials. In the case of multiple poles, a polynomial
term multiplies the complex exponential. Linear combinations

of these functions also have the same basic structure. We
generalise this structure in the following definition.

Definition 3. We denote by X the class of functions of the

form

LX

l=1

MlX

m=0

Tl,m(|t|) |t|m eal|t| (10)

where 0 > a1 > a2 > · · · > aL and each Tl,m is a

trigonometric function.

We note that Tl,m(t) 2 AP(R,R), which is the space of
almost periodic functions. Of particular interest is the fact
that uniform samples of almost periodic functions lie in the
normed space of almost periodic sequences AP(Z,R) (cf. [2,
Proposition 3.35]), and we shall exploit this fact to verify
uniqueness.

Definition 4. [2, pp.94-95] For any integer n, the mean value

of f 2 AP(Z,R) is

M(f) = lim

k!1

f(n+ 1) + f(n+ 2) + · · ·+ f(n+ k)

k
. (11)

Note that we are free to choose any integer n; however, the

limit is independent of this choice. A norm for AP(Z,R) is

given by

kfk2AP(Z,R) = M
⇣
|f |2

⌘
. (12)

Theorem 1. If f 2 X and f(n) = 0 for all integers n, then

the functions Tl,m must also satisfy Tl,m(n) = 0.

The value of Theorem 1 is that it essentially allows us to
compare functions from X in a segmented fashion, i.e. ac-
cording to decay rates. For example, suppose '(t; ✓) contains
a term T (|t|) |t|m ea|t|, where T (|n|) |n|m is not identically 0.
Then it can not be equivalent to any autocorrelation function
that lacks a term with similar decay. We shall use this result to
show that the uniform sampling operator is injective for large
sub-collections of ⌦(p).

IV. UNIQUENESS PROPERTIES

We consider two subsets of ⌦(p): H(!; ✓) is composed of
real poles only; and real and imaginary poles with minimal
restrictions.

Lemma 1. The elements of ⌦(p) that are composed entirely

of real poles are unique.

Definition 5. Let ⌦(p)⇤ be the collection of parameter vectors

˜✓ satisfying:

• ak1 6= ak2 for k1 6= k2;

• each bk is an irrational multiple of ⇡.

Proposition 2. As a subset of Rp
, the complement of ⌦(p)⇤

in ⌦(p) has Lebesgue measure 0.

Proposition 3. If an admissible vector

˜✓1 2 ⌦(p)⇤ is equiv-

alent to a vector

˜✓2 2 ⌦(p), then

˜✓2 must have the same

number of complex pairs of poles as

˜✓1. Furthermore, the

complex pairs should exist at the same decay rates.
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Proposition 4. Suppose

˜✓1 = (a1, b1, . . . , am, bm, am+1, . . . , ap�m) 2 ⌦(p)⇤ (13)

is equivalent to

˜✓2 = (a1,�1, . . . , am,�m,↵m+1, . . . ,↵p�m) 2 ⌦(p). (14)

Then al = ↵l for all l.

Proposition 4 implies that any vector of parameters that is
equivalent to a vector of parameters in ⌦(p)⇤ has the same
real part values. The autocorrelation function in such a case
is given by

'(t; ˜✓1) = (�1)

p
mX

l=1

2eal|t|
�
<(�l) cos(bl |t|)�

�=(�l) sin(bl |t|)
�
+

p�mX

l=m+1

�le
al|t|

(15)

where for l  m

�l :=

2

4�8i(al + ibl)albl
Y

l0 6=l,l0m

�
(al + ibl)

2 � (al0 + ibl0)
2
�

�
(al + ibl)

2 � (al0 � ibl0)
2
� Y

l0>m

�
(al + ibl)

2 � a2l0
�
#�1

and for l > m

�l :=

2

4�2al
Y

l0m

�
a2l � (al0 + ibl0)

2
��
a2l � (al0 � ibl0)

2
�

Y

l0 6=l,l0>m

(a2l � a2l0)

3

5
�1

.

Theorem 2. Let f1 and f2 be functions of the form

f1(t) = �1 cos(b |t|) + �2 sin(b |t|) (16)
f2(t) = �3 cos(� |t|) + �4 sin(� |t|), (17)

where �1, �2, �3, �4 are non-zero real numbers, b,� are pos-

itive real numbers, and b is an irrational multiple of ⇡. If

f1(n) = f2(n) for all non-negative integers n, then �1 = �3,

�2 = ±�4, and b = � + 2⇡k for some integer k.

Lemma 2. Let

˜✓1 2 ⌦(p)⇤ be of the form (13) with corre-

sponding autocorrelation function '(t; ˜✓1) as defined in (15).
Let

˜✓2 2 ⌦(p) be of the form (13), with autocorrelation

function '(t; ˜✓2) as defined in (15) where �l is replaced by �0
l

and bl is replaced by �l. If

˜✓1 is equivalent to

˜✓2, then there

is a positive number � such that

�2�l = �0
l or �2�⇤

l = �0
l (18)

for every l.

Lemma 2 provides a practical criterion for determining
uniqueness. According to the lemma, uniqueness translates
into a set of polynomial equations that can be simplified by
means of Gröbner basis algorithms. If the reduced Gröbner

basis has only trivial solutions, then uniqueness is guaranteed.
We utilized this property for obtaining the following results.

Theorem 3. [11] Every element of ⌦(1) is unique.

Theorem 4. [11] Every element of ⌦(2)

⇤
is unique.

Theorem 5. Every element of ⌦(3)

⇤
is unique.

Finding reduced Gröbner bases for p > 3 is computationally
demanding, and we suggest to exploit Lemma 2 for a limited
number of values of k. That is, verifying uniqueness for a
finite number of modulation values b = � + 2⇡k.

V. CONCLUSION

In this work, we investigated the injective properties of
sampled continuous-time stochastic processes. We considered
uniform sampling of processes with rational power spectrum
and identified cases for which the sampling operator is injec-
tive when applied to the autocorrelation function. Our analysis
relies on the sampling properties of almost periodic functions,
which are the building blocks of the autocorrelation function
of such processes. By removing a zero-measure set of vectors
of parameters we derived a criterion for the uniqueness of
the sampled model, and we proved the injective property
of several rational operators. Our results indicate that the
ambiguity assumption of sampled autoregressive models does
not hold true, and that it is possible in principle to estimate the
parameters of the rational operator from sampled data, even
in the presence of prominent aliasing.
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Abstract—This paper considers the problem of 
reconstructing a bandlimited signal from severely aliased 
multichannel samples. Multichannel sampling in this context 
means that the samples are available after the signal has been 
filtered by various linear operators. We propose the method 
of Generalized Matching Pursuit to solve the reconstruction 
problem. We illustrate the potential of the method using 
synthetic data that could be acquired using 
multimeasurement towed-streamer seismic data acquisition 
technology. A remarkable observation is that high-fidelity 
reconstruction is possible even when the data are uniformly 
and coarsely sampled, with the order of aliasing significantly 
exceeding the number of channels. 
 

I. INTRODUCTION 
In multichannel sampling, samples of a signal that was 

filtered by various linear operators are available. Suppose 
m(y)=h(y)*s(y), where m(y)=[m1,���,mJ] are the measurements, 
and h(y)=[h1,���,hJ] are the operators. The samples are available at 
points y1,���,yL, which may be regularly or irregularly spaced. The 
objective is to reconstruct bandlimited signal s(y) at arbitrary 
points y. In Figure 1, we show a slight generalization, where, for 
each channel j, the measurements are undersampled by a factor of 
Rj with respect to the bandwidth of s. In the spectral domain, we 
have m(ky)=H(ky)s(ky), where ky is the wavenumber (spatial 
frequency). 

 Fig. 1. Multichannel sampling. 

 The generalized sampling expansion proposed by Papoulis 
[1] implies that such a linear system, under certain conditions, 
allows reconstruction of the desired signal when Rj=J, j=1,2, ���,J. 
However, Papoulis [1] does not provide a readily realizable 

solution for the inversion of the system. Later, several articles 
were proposed to study the properties of the generalized sampling 
expansion, the well-posedness of the system, and a closed-form 
solution of the inverse problem [2, 3]. 
 In some applications, such as marine seismic data 
acquisition, the decimation rate Rj can be significantly larger than 
the number of channels, J.  In this case the order of aliasing 
significantly exceeds the number of channels. In the next section, 
we discuss a method that has shown promising performance in 
this setting. 

II. GENERALIZED MATCHING PURSUIT 
In this section, we describe a parametric matching pursuit 

method to solve the reconstruction problem that arises in 
multichannel sampling; we call it Generalized Matching Pursuit 
(GMP), as its aim is to reconstruct a signal of which no direct 
samples may be available. Suppose that the unknown signal s(y) 
is modeled as a sum of parametric basis functions E(y;Tn) with 
parameter set Tn:   ( ) ( ; ) .n

n
s y yE ¦ ș           (1) 

There are various basis functions that can be considered; one 
possibility that is especially convenient for seismic applications is 
 � �,( ; ) exp ,n n y n ny A j k yE Iª º �¬ ¼ș  (2) 

where the parameter set Tn consists of amplitude An, phase In, and 
wavenumber ky,n. The corresponding measurements would then 
be 
 

,( ) ( ) ( ; ) .y n n
n

y k yE ¦m H ș  (3) 

In GMP, the forward linear filters Hj(ky) are applied to each basis 
function; the filtered basis functions are then iteratively matched 
to the multichannel measurements. Iteratively, the basis function 
that, once forward filtered, jointly best matches all the input 
signals is used to reconstruct the desired output, with or without 
the forward filter applied. At the N-th iteration, i.e., after N-1 
basis functions have been determined previously, the residual in 
the measurements is given by 

 � � � � � �
1

1
,

1
( ; ) .

N
N

y n n
n

y y k yE
�

�

 

 �¦r m H ș  (4)              

If a new term E(y;TN)  is added to the existing representation of 
the signal, the residual becomes rN(y;TN) =rN-1(y)� H(ky,N) E(y;TN), 
where the parameters of the new term, i.e., TN,  are to be 

1( )H k

2( )H k

( )JH k

( )s y

1R 1( )m y

2R 2( )m y

JR ( )Jm y
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determined by minimizing a metric of the residual calculated over 
measurement locations. One such metric is 
 � � � � � �1; ; ,

HN N
N l N l N

l
y yP �ª º ¬ ¼¦ș U ș & U ș  (5) 

where the superscript H represents the Hermitian operator, & is a 
positive definite matrix, and yl represents the sensor locations in 
the y direction. These locations can, in general, be irregularly 
spaced. The role of matrix & is to weight the contributions of 
different measurements to the cost function to be minimized. This 
can take into account the difference of energy content due to the 
different physics of the input measurements, as well as the signal-
to-noise ratio that can vary in time, space, and frequency [10]. 

For basis functions chosen as in (2), it can be shown that the 
optimal AN and IN can be analytically related to the residuals rN-1, 
the input sample positions yl, and the optimal wavenumber ky,N. 
Hence, the only remaining parameter to select is 
 � � � �^ `1 1

, arg max ( ), , ( ), .N N
y N N l N l

k
k A y k y kI� � r rL  (6) 

We call the objective function L the generalized Lomb 
spectrum, in analogy with the single-channel interpolation 
problem. There, in the case of sinusoidal basis functions, the 
objective function generated by Interpolation by Matching 
Pursuit (IMAP) with optimal amplitudes in the least-squares 
sense corresponds to the Lomb spectrum [4, 5, 6]. 

The GMP iterations can be terminated once the residual 
energy falls below a predetermined fraction of the input energy. 

Next, we illustrate the antialiasing power of GMP for 
uniformly sampled multichannel data with a very simple 
multichannel sampling example. In this example, a single 
sinusoid signal with wavenumber 30 Km-1 is uniformly sampled 
at 25 Km-1. In addition to the signal samples, the spatial gradient 
samples are available at the same locations. Due to uniform 
sampling, there is hard-aliasing, i.e., exact periodic replicas in the 
spectra of each channel. This is a reconstruction problem that 
cannot be solved by multichannel sinc interpolation [7], since the 
order of aliasing is greater than two. Figure 2 shows the cost 
function to select the optimum wavenumber (negative of the 
generalized Lomb spectrum) at the first iteration. The aliases of 
the correct wavenumber can be clearly seen. However, 
simultaneous use of the multichannel measurements in the 
optimization process results in the correct wavenumber being 
selected.  

III. APPLICATION TO MULTICHANNEL SAMPLING  
Due to logistical and cost constraints, marine seismic 

acquisition systems can be deployed to acquire data only along a 
limited number of parallel lines (i.e., towed streamers) that are 
coarsely spaced in the crossline direction. Streamers are towed 

typically with crossline spacing of 75-100 m, resulting in coarse 
wavefield sampling that contrasts with adequate (non-aliasing) 
wavefield sampling of 6.25 m along the streamers (inline). 
Consequently, they do not adequately capture the full spatial 
bandwidth of the subsurface-scattered wavefield, leading to 
limitations in accurate subsurface imaging. Furthermore, 
conventional (pressure-only data) acquisition systems suffer from 
the ghost effect. The ghost is the reflection from the sea surface 
that interferes constructively or destructively with the upgoing 
wavefield (the signal of interest for imaging), reducing the 
seismic bandwidth at the low and high ends of the spectrum. 

To address these critical limitations, a multimeasurement 
marine seismic acquisition platform was recently introduced. It is 
equipped with hydrophones to measure the pressure wavefield 
(P) and accelerometers to measure the particle acceleration vector 
(A). The latter represents the vector spatial gradient of pressure as 
derived through the particle equation of motion, �P �UA, where 
U is the fluid density [8]. 

A. Example: Reconstructing P  from Aliased (P, Py) Data  
An important problem is to reconstruct (interpolate) the total 

pressure wavefield P at any desired position in the crossline 
direction from sparse samples of itself and its crossline gradient. 
P is the sum of the upgoing and downgoing (ghost) wavefields. 
For this problem, the unknown signal is s(f,kx,ky) P(f,kx,ky); the 
measurement vector is 

 � � � �( , , ) , , , , , 1,2, , ,
T

l l y lt x y P t x y P t x y l Lª º  ¬ ¼m "  (7) 

where Py  is the crossline gradient of the pressure wavefield; the 
number of streamers (L) is typically 8-12. The forward linear 
operator is 

 ( , , ) 1 .
T

x y yf k k jkª º ¬ ¼H  (8) 

Here, f is the temporal frequency; kx and ky are the inline and 
crossline wavenumbers, respectively. As the data are well 
sampled in the temporal (t) and inline (x) coordinates, we can 
operate the GMP algorithm outlined in Section 2 for fixed values 
of f and kx.  The particular form that GMP takes for this 
reconstruction problem is referred to as MIMAP (Multichannel 
Interpolation by Matching Pursuit) [9].  

Figure 3 shows a simple example reproducing linear events 
with energy up to 65 Hz and various incidence angles first 
decimated at 75 m and then reconstructed using different 
techniques. At every receiver position we modeled both the 
synthetic signal and its horizontal gradient. For the selected 
geometry, an event propagating horizontally generates first order 
alias at 10 Hz, and second order alias at 20 Hz, as shown in 2(b). 
Since MIMAP does not assume that the data comprise linear 
events in the implementation used for this example, the presence 
of high orders of aliasing presents a significant challenge for 
reconstruction.  

To show the impact of the antialiasing capabilities of 
MIMAP, we interpolated the data with two standard techniques in 
addition to MIMAP: the sinc interpolation, and the multichannel 
sinc interpolation [7]. Results are shown in Figure 3. In Figure 
3(a) we can see a region of the input time-space gather describing 
the pressure synthetics, sampled at 75 m, and the frequency-
wavenumber transform of the overall gather. The high order of 
aliasing is clearly visible in the f-k domain. Figures 3(c) and 3(d) 
show the results of the single-component conventional sinc 

Fig. 2. Cost function for the optimum wavenumber in a hard-aliasing 
problem resulting from insufficient uniform sampling. 
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interpolator, bandlimited in the spatial sampling bandwidth. As 
expected, only frequencies up to 10Hz are not subject to aliasing, 
and only the events with an incident angle close to zero can be 
properly interpolated (e.g., the event at 2.6 s). All the rest of the 
reconstructed information, in fact, corresponds to aliased replicas 
remapped to incorrect wavenumber positions. 

Figures 3(e) and 3(f) show the result of the multichannel sinc 
interpolation, bandlimited to twice the spatial Nyquist. In this 
case, we can see that more events are reconstructed correctly in 
the t-y plot (e.g., events at around 2.4 s, 2.5 s and 2.6 s), and that 
all the events are reconstructed correctly up to 20 Hz. What is 
also interesting is that the multicomponent sinc seems to amplify 
the aliased events that cannot be reconstructed, as visible in the 
f-k gather above 20 Hz. Moreover, the shape of the region not 
affected by the alias, or affected by a first-order alias only, is 
clearly recognizable as the properly reconstructed area. Finally, in 
Figures 3(g) and 3(h), we can observe the results produced by 
MIMAP, and the removal of aliasing up to very high frequencies 
can be appreciated. All the events are well reconstructed.  

B. Example: Reconstructing Pup from Aliased (P, Py, Pz) Data 
Using P, Py, and Pz data that can be recorded by a 

multimeasurement streamer, another and more challenging 
problem would be to reconstruct Pup at any desired position 
without having access to any direct samples of it. This is called 
the joint interpolation and deghosting problem [10], where the 
task of separating the wavefield into its down- and upgoing 
components is performed simultaneously with the task of 
reconstructing it at any desired position. For this problem, the 

unknown signal is s(f,kx,ky) Pup(f,kx,ky); the measurement vector 
is 

� � � � � �( , , ) , , , , , , , 1,2, , ,
T

y zt x y P t x y P t x y P t x y l Lª º  ¬ ¼m " (9) 

and the forward linear operator that links the measurements to the 
unknown signal is the ghosting operator defined by 

� � � � � �2 2 2( , , ) 1 1 1 .z z z
Tj k Z j k Z j k Z

x y y zf k k e k e jk e[ [ [ª º � � �¬ ¼H
  

(10) 

Here, kz is the vertical wavenumber, Z is the depth of the 
streamer, and [ is the reflection coefficient of the sea surface. 
Through the ghost model, the Pz component brings independent 
new information on the unknown upgoing wavefield in the 
crossline direction, which is crucial for this application [10]. 

Figure 4 shows the application of the GMP technique to 
solve the joint interpolation and deghosting problem in the 
crossline direction using synthetic data. The data set was created 
by finite-difference modeling and simulates a 3D 
multimeasurement survey over a complex geological structure. 
The source signature spectrum is flat up to 30 Hz. The streamer 
depth is 50 m; the unusual depth was chosen to place the pressure 
ghost notch within the 30-Hz bandwidth. Given total P, Py and Pz 
data sampled at 150 m where the data are severely aliased, the 
reconstructed upgoing pressure wavefield sampled at the desired 
25-m interval show both the dealiasing and the deghosting 
capabilities of this approach.  

Figure 4(a) shows the f-kx-ky transform of the total pressure 
wavefield before decimation, with pressure sampled over a 25-m 
x 25-m spatial grid. We can recognize the lack of energy in the 
low wavenumbers in the 15-Hz slice, and a circularly shaped 
notch in the 20-Hz and 25-Hz slices. The events that are not 

Fig. 3. Example with simple synthetics: close-up of a region of the t-y domain and f-k transforms of the whole dataset.  (a, b)  Input pressure, sampled at 75 m; 
(c, d) pressure reconstructed by using a sinc interpolator; (e, f) pressure reconstructed by using a multichannel sinc interpolator, also having as input the 
crossline gradients at the samples positions; (g, h) pressure reconstructed with MIMAP, also having as input the crossline gradients at the samples positions. 

(a) (b) (c) (d)

(e) (f) (g) (h)

Proceedings of the 10th International Conference on Sampling Theory and Applications

346



affected by the notch are still affected by the constructive 
interference of the ghost. Figure 4(b) shows the f-kx-ky transform 
of the reference upgoing pressure wavefield, sampled over a 25-
m x 25-m spatial grid. The  f-kx-ky transform of the total pressure 
wavefield after decimation of the data to 150 m in the crossline 
direction is shown in Figure 4(c). The first-order alias starts just 
above 5 Hz and the order of the alias grows significantly with 
frequency. Figure 4(d) shows the f-kx-ky transform of the upgoing 
pressure wavefield reconstructed by GMP, to a 25 m x 25 m 
spatial grid. The ghost notch is filled and the dealiasing impact of 
GMP is evident if we compare the output shown here with the 
spectrum of the input in the previous figures at high frequencies. 
Comparison of Figures 4(b) and 3(d) confirms the accuracy of 
joint interpolation and deghosting achieved by GMP.   

IV. SUMMARY AND CONCLUSIONS 
 The problem of reconstructing a bandlimited signal from 

highly aliased multichannel samples was considered and a 
solution proposed in the form of Generalized Matching Pursuit. 
GMP proceeds by modeling the target signal as a sum of 
parametric basis functions that are matched to the multichannel 
data in a simultaneous and iterative fashion through application 
of the respective linear operators. It was shown that under quite 
general conditions GMP can achieve high-quality reconstructions 
of signals aliased by orders significantly higher than the number 
of different measurements, including the notoriously difficult 
case of regular undersampling, and signals for which no direct 
measurements are available.  

We should emphasize that the results shown in this paper 
were obtained without using any priors (e.g., using a low-
frequency solution, which is assumed to be unaliased, to 
constrain a high-frequency solution), which are commonly 
utilized to interpolate aliased data. In the same vein, the 
reconstructions were carried out independently at each temporal 
frequency, i.e., without making any assumptions on local 
wavefronts being planar.  

During the presentation, we intend to show results obtained 
using real data acquired by multimeasurement towed-streamer 
seismic data acquisition technology; we had to omit them from 
this paper due to lack of space. 
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Abstract—In this paper, we examine the joint signal sampling
and detection problem when noisy samples of a signal are
collected in the sequential fashion. In such a scheme, at the
each observation time point we wish to make a decision that the
observed data record represents a signal of the assumed target
form. Moreover, we are able simultaneously to recover a signal
when it departs from the target class. For such a joint signal
detection and recovery setup, we introduce a novel algorithm
relying on the smooth correction of linear sampling schemes.
Given a finite frame of noisy samples of the signal we design a
detector being able to test a departure from a target signal as
quickly as possible. Our detector is represented as a continuous
time normalized partial-sum stochastic process, for which we
obtain a functional central limit theorem under weak assumptions
on the correlation structure of the noise. The established limit
theorems allow us to design monitoring algorithms with the
desirable level of the probability of false alarm and able to detect
a change with probability approaching one.

Index Terms—joint sampling-detection, parametric signals,
nonparametric alternatives

I. INTRODUCTION

The problem of reconstructing an analog signal from its

discrete samples plays a critical role in the modern technology

of digital data transmission and storage. In fact, the theory

of signal sampling and recovery has attracted a great deal

of research activities lately, see [8], [9] and the references

cited therein. In particular, the problem of signal sampling and

recovery from imperfect data has been addressed in a number

of recent works [5], [1], [2], [6]. The efficiency of sampling

schemes depends strongly on the a priori knowledge of an

assumed class of signals. For a class of bandlimited signals the

signal sampling and recovery theory builds upon the celebrated

Whittaker-Shannon interpolation scheme. On the other hand,

there exists a class of nonbandlimited signals which can be

recovered using the frequency rate below the Nyquist thresh-

old. This is possible since this class is completely specified

by a finite dimensional parameter. This parametric class of

functions is often referred to as finite rate innovation signals

[4], [3]. In practice, when only random samples are available it

is difficult to verify whether a signal is bandlimited, parametric

or belongs to some general function space. This calls for a

joint nonparametric detection-reconstruction scheme to verify

a type of the signal and simultaneously able to recover it.

In fact, the problem of automatic rapid detection of signals

differing from a reference (target) signal is important in many

fields of signal processing and communication, e.g., in the

analysis of radar signals and synchronization procedures the

joint detection and reconstruction provides the basis to de-

sign effective receivers. The additional difficulty of designing

detection/reconstruction procedures comes from the fact that

samples are inherently noisy and observed sequentially within

a fixed time frame. Hence, at the current frame we have a

noisy data set {yi : i ⇥ k}, and a detector should be applied

immediately when a new observation yk+1 is available to the

system. Hence, suppose we are given noisy measurements

yk = f(k⌥) + ⇤k, (1)

where ⌥ is the sampling period, {⇤k} is a zero mean noise

process, and f(•) is an unspecified signal which belongs to

some signal space. In this paper we are interested in the

following on-line detection problem. We are given a reference

(target) parametric class of signals S = {f(t; ⇧) : ⇧ ⌥ �},

where � is a subset of a finite dimensional space, and wish

to test the null hypothesis H0 : f ⌥ S against an arbitrary

alternative H1 : f /⌥ S . Throughout the paper, we assume that

the signal f(t) of interest is observed over a finite time frame,

i.e., t ⌥ [0, T ], for some 0 < T < ⌃. Indeed, in practice we

can only process a part of the signal which can be otherwise

defined over an arbitrary interval. As a result, we are interested

in methods relying on a finite data set {yk : k = 0, . . . , n}
obtained from model (1). Concerning the noise process in

(1), we admit a wide class of correlated error processes. Our

assumption is nonparametric and specifies a certain asymptotic

behavior of the noise process. Specifically we assume that

{⇤k} satisfies the so-called invariance principle or functional

central limit theorem also often referred to as the Donsker’s

property, see [10] for further details. Hence, the condition on

the error process employed in this paper is as follows.

Assumption 1 Let {⇤k} be a weakly stationary stochastic

process with zero mean which satisfies a functional central

limit theorem, i.e.,

n�1/2
⌥ns�X

k=0

⇤k ⇧ ↵
⌅B(s),

as n ⌅ ⌃, for some finite constant ⌅.

Here B(t) denotes a standard Brownian motion and ⇧
stands for the convergence in distribution. Also  x⌦ denotes

the greatest integer less or equal to x. It is worth mentioning

that the validity of the functional central limit theorem, i.e.,
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of Assumption 1 is not limited to the i.i.d. case but also

holds for many dependent stationary processes with summable

auto-covariances. For instance, it holds for linear processes

and mixing processes [10]. The dependence structure of the

measured data is controlled by the parameter ⌅ appearing

in Assumption 1. This parameter is identified with the limit

limn⌅⇧ V ar(n�1/2
Pn

k=0 ⇤k) and is often referred to as the

time-average (long-run) variance of {⇤k}.

Our test statistic builds upon the signal recovery methods

developed in [5], [6], where it has been proved that they

possess the consistency property, i.e., they are able to converge

to a large class of signals not necessarily being bandlimited.

A generic form of such estimates is given by

f̂n(t) = ⌥
nX

j=0

yjK�(j⌥, t), (2)

where K�(u, t) is the reconstruction kernel parameterized by

the parameter ⇥. For the consistency results the parameter ⇥
and the sampling period ⌥ should depend on the data size n
and be selected appropriately. In fact, we need that ⇥ ⌅ ⌃
and ⌥ ⌅ 0 as n ⌅ ⌃ with the controlled rate. For example,

the choice ⇥ = n1/3 and ⌥ = n�1 would be sufficient

to assure the consistency for a wide nonparametric class of

signals defined on the a finite interval. Our detection algorithm

uses the data observed over the interval [0, T ] and therefore we

select ⌥ = T/n and fix ⇥ to some large number. The kernel

K�(u, t) = sin(⇥(t � u))/⌃(t � u) is particularly important

since it is the reproducing kernel for bandlimited signals with

the bandwidth ⇥. For a broader class of signals we can use

generalized kernels K�(u, t) =
P

k �(⇥(u� k)) (⇥(t� k)),
where �(t),  (t) can be specified as biorthogonal functions

[8].

II. RECONSTRUCTION AND DETECTION ALGORITHMS

Our detection technique is relying on the consistent recon-

struction method defined in (2). Our asymptotic results assume

n ⌅ ⌃ but we will also provide useful approximations for

finite n. Note that n can be regarded as the planed maximum

number of observations in the time interval [0, T ]. In this

paper we address the following question: how long do we have

to sample the signal, until the available data provide enough

evidence to reject the null hypothesis H0 : f ⌥ S ? A specific

example of the null hypothesis class S is a class of signals that

are a superposition of shifted versions of a known pulse h(t),
i.e., f(t; ⇧) =

PL
k=1 akh(t� tk). Here ⇧ is a 2L dimensional

vector of unknown parameters.

Our goal in this paper is to decide whether the null hypothesis

is true or not, given a sequentially observed data set drawn

from the observation model (1), where f(t) is an unknown

signal from a large nonparametric function space. Hence,

if the alternative signal is unknown, we propose a detector

which can be computed without specifying this signal. We

will use a sequential version of the nonparametric estimator

(2), which automatically adapts to the unknown alternative

signal as sampling proceeds. Specifically, we use f̂n(t) as

a basic building block of our detection method, i.e., we

stop our detection process at the first time point t = k⌥
if a certain distance measure between f̂k(t) and the target

parametric signal f(t; ⇧0) from S is is too large. Here ⇧0
denotes the “true“ parameter if the null hypothesis holds. Since

the parameter ⇧0 is unknown we replace it in our test statistic

with its consistent estimate ⇧̂, see [7] for an extensive overview

of estimation algorithms and their performance for specific

classes of parametric signals. In [3] the estimation problem

associated with the class of finite rate innovation signals has

been also examined. To define our detection scheme, let us

introduce the following sequential partial sum process, which

represents the sequence of the estimators as a step function

Fn(s, t) =
↵
⌥

X

0⇤l⇤⌥ns�

[yl � f(l⌥ ; ⇧̂)]K�(l⌥, t), (3)

for 0 < s0 ⇥ s ⇥ 1, t ⌥ [0, T ]. The condition s0 ⇥ s
ensures that at least the first n0 =  ns0⌦ observations are used

ensuring a certain degree of precision in the reconstruction.

This allows us in our asymptotic analysis to replace ⇧̂ in

(3) by ⇧0. Then, for s = k/n the value Fn(k/n, t) can be

interpreted as the deviation of ⌥�1/2(f̂k(t)�E0f̂k(t)), where

throughout the paper E0 and P0 denote that the expectation

and probability are taken under the null hypothesis, i.e., that

f(t) = f(t; ⇧0). The interpretation of Fn(s, t) as a function

of one variable is as follows:

• For fixed t the step function s �⌅ Fn(s, t) describes

the sequence of deviations of f̂⌥ns�(t) from f(t; ⇧̂) as

sampling proceeds.

• For fixed s the function t �⌅ Fn(s, t) is the current

estimate of the whole signal, using  ns⌦ sampled values.

The sequential nonparametric decision problem for rejecting

the hypothesis H0 : f ⌥ S can now be handled by the

following detector statistics. A global maximum detector is

defined as follows

Mn = min

⇢
n0 ⇥ k ⇥ n : max

0⇤t⇤Tk/n
|Fn(k/n, t)| > cM

�

for some appropriately chosen control limit cM . The detector

Mn looks at the largest absolute value of the deviation process.

Notice that when calculating the maximum at a candidate time

point Tk/n, the maximum is determined for time points t
between 0 and Tk/n. That interval corresponds to the time

frame where observations are present. For t > Tk/n the

estimator f̂k(t) can be considered as an extrapolation scheme.

Alternatively, one can consider a global integrated detector

In = min

⇢
n0 ⇥ k ⇥ n :

Z Tk/n

0
|Fn(k/n, t)|2 dt > cI

�

for some appropriately chosen control limit cI . Without loss

of generality, however, we confine our investigation to the

detector Mn, which is easy to calculate and interpret. In order

to assess the statistical accuracy of the detector Mn we need

to establish the limiting distribution of the process Fn(s, t).
This is shown in the next section.
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III. LIMIT DISTRIBUTIONS

The statistical accuracy of the aforementioned detection

scheme Mn depends critically on the the choice of the thresh-

old parameter cM . The asymptotic choice of this parameter can

be obtained from the limiting distribution of Fn(s, t). Below

we establish that the limiting distribution is a locally stationary

Gaussian process F(s, t) with mean 0 and a certain covariance

function.

Theorem 1: Suppose the noise process {⇤k} meets Assump-

tion 1. Then under the hypothesis H0 we have

Fn(s, t) ⇧ F(s, t), n ⌅ ⌃,

where the limit stochastic process, F(s, t) is given by

F(s, t) =
p
T⌅

Z s

0
K�(Tz, t)dB(z).

As a result, the process F(s, t) is a locally stationary Gaussian

process with the following covariance function

cov(F(s1, t1),F(s2, t2))

= T⌅

Z min(s1,s2)

0
K�(Tz, t1)K�(Tz, t2)dz.

The smoothness of the sample paths of the Gaussian process

F(s, t) is determined by smoothness of its variance, i.e.,

the function T⌅
R s
0 K2

�(Tz, t)dz. The above result allows us

to establish the limit of our detector statistic. Under the

conditions of Theorem 1 the following central limit theorem

also holds true.

Mn/n⇧M = inf{s ⌥ [s0, 1] : sup
0⇤t⇤sT

|F(s, t)| > cM}.

These results allow us to specify the control limit cM in such

a way that the probability of a false alarm in the time frame

[s0, 1] is not greater than � < 1. For our detector Mn one can

proceed as follows. The detection error (under the hypothesis

H0) occurs if Mn/n < 1 and P0(Mn/n < 1) ⌅ P (M < 1)
by the aforementioned result. Since the event {M > z} is

equivalent to following one

{ sup
s0⇤s⇤z

sup
0⇤t⇤sT

|F(s, t)| ⇥ cM}, (4)

we can obtain a procedure for selecting cM with an asymptotic

detection error being equal to �. In fact, we choose cM as the

1 � � quantile of the distribution of the complement of the

event in (4) with z = 1, i.e., the constant cM is found as the

smallest c being the solution of the following inequality

P

✓
sup

s⌃[s0,1]
sup

t⌃[0,sT ]
|F(s, t)| > c

◆
⇥ �, (5)

where the probability is taken with respect to the extrema of

the absolute value of the Gaussian process F(s, t).
The question arises how the above results can be applied

in practice. The distribution of the random variable X =
sups0⇤s⇤1 sup0⇤t⇤sT |F(s, t)| required to evaluate the false

alarm error can be simulated by Monte Carlo methods using

the following algorithm.

1) Generate trajectories of the Gaussian process F(s, t) on

a grid {(si, tj) : i = 1, . . . , N, j = 1, . . . , N} where

0 ⇥ s1 < · · · < sN ⇥ 1 and 0 ⇥ t1 < · · · < tN ⇥ T .

2) Return X by calculating the maximum of the values

|F(si, tj)| for all (i, j) such that the constraints s0 ⇥
si ⇥ 1 and 0 ⇥ tj ⇥ siT are satisfied.

3) Repetitions of Step 1 and Step 2 produce realizations of

X that can be utilized for estimating cM (�).
Simulating the process F(s, t) in Step 1 is feasible, since

the covariance function can be evaluated numerically provided

that T and ⌅ are known. The choice of ⌅ is critical for the

accuracy of our detectors. We wish to estimate ⌅ without

assuming which hypothesis holds, i.e., to estimate ⌅ using

only the available data {y0, . . . , yk} without the knowledge

of the signal shape. Here we can utilize the discrepancies of

local means. One of such estimates takes the form

e⌅k =
bk

2(L� 1)

L�1X

j=1

(Aj �Aj�1)
2, (6)

where Aj =
Pjbk+bk�1

l=jbk
yl/bk is the local mean, j =

0, 1, . . . , L and L+ 1 =  (k + 1)/bk⌦ denotes the number of

data groups. It can be demonstrated [11] that this estimate can

converge to the true ⌅ with the rate OP (k�1/3) with virtually

no assumptions on the form of the underlying signals.
Having established the asymptotic distributions under the

null hypothesis, it remains to see how our detection method

behaves when f /⌥ S , i.e., when the true signal differs from

the target parametric signal. We can consider a class of local

alternatives for modeling this situation, i.e., let

f(t) = f(t; ⇧0) + ang(t), (7)

where an is the sequence tending to zero as n ⌅ ⌃ and

g(t) is a fixed function assumed to be piecewise continuous

and bounded. Under this condition and Assumption 1 we can

show that under the alternative local hypothesis and the choice

an = n�1/2 the process Fn(s, t) has the following limit

FA(s, t) = F(s, t) + T�1/2

Z sT

0
K�(z, t)g(z)dz, (8)

where F(s, t) is the locally stationary Gaussian process found

in Theorem 1. It is worth noting that if the departure from

the reference signal f(t; ⇧0) in the local alternative in (7) is

of order an = O(n��), for ⇥ > 1/2, then there is no visible

effect on the asymptotic distribution, i.e., Fn(s, t)⇧F(s, t).
Thus, even in large samples there is no chance to detect such

small departures from the target signal. The rate ⇥ = 1/2 is the

right order for getting a non-trivial limit distribution. The result

in (8) allows us to evaluate the power Pn = P1(TMn/n < T )
of our detector. In fact, the limit in (8) yields

lim
n⌅⇧

Pn = P

✓
sup

s0⇤s⇤1
sup

0⇤t⇤sT
|FA(s, t)| > cM

◆
. (9)

This holds for any cM but the proper value of cM can be

obtained by satisfying the bound for the probability of false

alarm in (5). In practise, the probability in (9) can be evaluated

by the aforementioned Monte Carlo algorithm.
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� 0.01 0.015 0.02 0.025 0.03
r⌧ 0.0924 0.0640 0.0571 0.0480 0.0432

TABLE I
SIMULATED REJECTION RATE FOR VARIOUS SAMPLING INTERVALS �

IV. SIMULATION STUDIES

In our simulation studies we will focus on the issues related

to the choice of the proper control limit and the resulting

detector rejection rate and power. This is studied in the

context of the length of the sampling interval ⌥ and the

problem of the influence that selection of the filter bandwidth

⇥ has on the detector power. We assume that the target

signal is f0(t) = sin(4t) on [0, 2]. This signal undergoes

the jump-point distortion to produce the alternative signal

f1(t) = f0(t) + 0.21(t ⇤ 1). Taking into account the global

maximum norm detector Mn we follow the proposed Monte

Carlo algorithm to estimate the proper control limit cM being

the sample 95%-quantile of 50000 simulation replicates. Our

base reconstruction algorithm is the post-filtering method [5]

utilizing the kernel function K�(u, t) = sin(⇥(t� u))/⌃(t�
u), where ⇥ is the bandwidth of a low-pass filter. To study

the influence of the sampling interval ⌥ on cM , we applied

the above procedure with s0 = 0.1,
↵
⌅ = 0.2, ⇥ = 10,

n = 100. The true rejection rate (the probability of rejection

under the null hypothesis) denoted by r⇤ was estimated by

a Monte Carlo simulation with 50000 repetitions for each

given ⌥ ⌥ {0.01, . . . , 0.03}. Since n⌥ = T therefore this

corresponds to the design intervals ranging from [0, 1] to [0, 3].
Note that the fixed value ⌥ = 0.02 was used in the illustrative

example. Table I provides the results. It can be seen that there

is some influence of the sampling interval on the accuracy of

the approximation, but it is still moderate for a rather large

range of values of ⌥ . There is an evident drop in the value

of the rejection rate for ⌥ larger than 0.01 corresponding to

design intervals larger than [0, 1].
Next, we studied the influence of the filter bandwidth ⇥ of

our reconstruction algorithm f̂n(t) on the detection power

(defined in (9)) using the corrected control limit. The param-

eter ⌅ was estimated by the method mentioned in Section

III. We employed the fixed alternative f1(t) = f0(t) +
0.1 sin

�
8(t� 1) + ⇥

2

�
, t ⌥ [0, 2]. This alternative is charac-

terized by the frequency and phase deformation, although the

difference between f0(t) and f1(t) is small. The results (shown

in Figure 1) indicate that there is an optimal value ⇥⇥ ⌥ [8, 12]
that maximizes the detector power. The value of ⇥⇥ is about

10.5 for n ranging from 500 to 1000. The corresponding power

for the optimal values of ⇥ is above 95% (n = 750) and 99%
(n = 1000). This is a quite remarkable fact noting that the L2

norm of f1(t)� f0(t) is as small as 0.0098.

V. CONCLUDING REMARKS

We investigated a new joint sampling-detection procedure

for testing the parametric form of a signal observed in the

8 9 10 11 12

0.
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0.
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0.
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0.
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0.
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0

Fig. 1. Simulated power in (9) to detect a change in frequency and phase as
a function of � 2 [8, 12] for the sample sizes n = 750 (bottom curve) and
n = 1000.

presence of correlated noise. Our detection methods are based

on sequentially applied reconstruction algorithms which are

related to linear sampling schemes. The asymptotic distribu-

tion of our detectors is established via functional central limit

theorems and Donsker’s invariance principle. This allows us to

evaluate the probability of false alarm and the corresponding

control limit. The asymptotic performance under local alter-

natives is also examined.
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Abstract—We study the design of sampling trajectories for
stable sampling and reconstruction of bandlimited spatial fields
using mobile sensors. As a performance metric we use the path
density of a set of sampling trajectories, defined as the total
distance traveled by the moving sensors per unit spatial volume of
the spatial region being monitored. We obtain new results for the
problem of designing stable sampling trajectories with minimal
path density, that admit perfect reconstruction of bandlimited
fields. In particular, we identify the set of parallel lines with
minimal path density that contains a set of stable sampling for
isotropic fields.

I. INTRODUCTION

Let the square-integrable mapping f : Rd !→ C denote a d-
dimensional time-invariant spatial field, with f(r) representing
the field value at a location r in d-dimensional space. The
Fourier transform of f is defined as

F (ω) =

∫
Rd

f(r) exp(−i〈ω, r〉)dr, ω ∈ R
d (1)

where i denotes the imaginary unit, and 〈u, v〉 denotes the
scalar product between vectors u and v in Rd. We say that f
is bandlimited to some set Ω ⊂ Rd, if the Fourier transform
F of f is supported on Ω. In this case we write f ∈ BΩ

where BΩ denotes the collection of fields with finite energy
bandlimited to Ω, i.e.,

BΩ := {f ∈ L2(Rd) : F (ω) = 0 for ω /∈ Ω}. (2)

The classical theory of sampling and reconstructing such high-
dimensional bandlimited fields dates back to Petersen and
Middleton [1] who identified conditions for reconstructing
such fields from their measurements on a lattice of points in
space. Further research on non-uniform sampling generated
more results on conditions for perfect reconstruction from
samples taken at non-uniformly distributed spatial locations
[2], [3], [4], [5], [6], [7]. Such works primarily deal with
the problem of reconstructing the field from measurements
taken by a collection of static sensors distributed in space, like
that shown in Figure 1(a), and hence the performance metric
usually used to quantify the efficiency of a sampling scheme
is the spatial density of samples which is exactly equal to the
number of sensors required for sampling per unit volume of
the spatial region being monitored.

In this paper we consider the problem of reconstructing a
bandlimited spatial field (where d = 2 or 3) using its samples
taken by a mobile sensor that moves along a continuous path

(a) Static sampling on points (b) Mobile sampling on a curve

Fig. 1. Two approaches for sampling a field in R2

through space taking measurements along its path, as shown
in Figure 1(b). In such cases it is often relatively inexpensive
to increase the spatial sampling rate along the sensor’s path
while the main cost of the sampling scheme comes from the
total distance that needs to be traveled by the moving sensor.
Hence it is reasonable to assume that the sensor can record
the field values at an arbitrarily high but finite resolution
on its path. Furthermore, for such a sampling application,
the density of the sampling points in Rd used in classical
sampling theory is not a relevant performance metric. Instead,
as we argued in our previous work [8] [9], a more relevant
metric is the average distance that needs to be traveled by
the sensor per unit spatial volume (or area, for d = 2). We
call this metric the path density. Such a metric is relevant
in applications like environmental monitoring using moving
sensors [10], [11], where the path density directly measures
the distance moved by the sensor per unit area. This metric
is also useful in designing k-space trajectories for Magnetic
Resonance Imaging (MRI) [5], where the path density captures
the total length of the trajectories per unit area in k-space
which can be used as a proxy for the total scanning time per
unit area in k-space.

In [8] and [9] we introduced the problem of designing
sampling trajectories for bandlimited fields that are minimal in
path density. We obtained conditions on unions of uniformly
spaced straight line trajectories that admit perfect reconstruc-
tion of bandlimited fields. From this class of trajectories, we
identified those with minimal path density. In this paper we
extend our past work to arbitrary configurations of parallel line
trajectories. We introduce the notion of trajectories that admit
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stable sampling. We identify new designs of trajectories for
fields in Rd, d ≥ 3 that are strictly better in path density than
those identified in [9].

The paper is organised as follows. In Section II we describe
the formal problem statement, in Section III we present our
new results and we conclude with some discussion in Section
IV. Below we introduce notations we use frequently in the
paper.

Notation: We use 〈, 〉 to denote the canonical inner product,
and ek to denote the unit vector along the k-th coordinate axis.
For u ∈ Rd we denote the hyperplane orthogonal to u through
the origin by u⊥ = {x ∈ Rd : 〈x, u〉 = 0}. For a set S ⊂ Rd

we use |S| to denote the volume of S relative to its affine hull,
relint(S) to denote the relative interior of S, S(x) to denote its
shifted version S(x) = {y + x : y ∈ S}, and Pu⊥S to denote
the orthogonal projection of S onto the hyperplane u⊥. We
use Bd

a and Bd
a(x) for denoting spherical balls of radius a

centered at the origin and x ∈ Rd respectively. For a discrete
set Λ we use #(Λ) to denote its cardinality.

II. PROBLEM STATEMENT

A trajectory pi in Rd refers to a curve in Rd. We represent
a trajectory by a continuous function p(.) of a real variable
taking values on Rd:

p : R !→ R
d.

A trajectory set P is defined as a countable collection of
trajectories:

P = {pi : i ∈ I} (3)

where I is a countable set of indices and for each i ∈ I, pi is
a trajectory in the trajectory set P . For any given trajectory
set P we denote its path density by "(P ) defined as follows:

"(P ) := lim sup
a→∞

supx∈Rd DP (a, x)

Vold(a)
(4)

where DP (a, x) represents the total arc-length of trajectories
from P located within the ball Bd

a(x) and Vold(a) represents
the volume of the d-dimensional ball. A simple example of a
trajectory set in R2 is a doubly infinite sequence of equispaced
parallel lines through R2 (e.g., see Figure 2(a)). We call such
a trajectory set a uniform set in R2. Such a uniform set has
a path density equal to 1

∆ (see [9, Lem 2.2]) where ∆ is the
spacing between the lines. Similarly a uniform set in Rd is
defined as a collection of parallel lines in Rd such that the
cross-section forms a (d− 1)-dimensional lattice, as shown in
Figure 2(b).

We say that a set of points Λ ⊂ Rd is uniformly discrete if
we have inf{‖x− y‖ : x, y ∈ Λ, x *= y} > 0, i.e., there exists
r > 0 such that for any two distinct points x, y ∈ Λ we have
‖x − y‖ > r.1 We say that Λ forms a set of stable sampling

1For example lattices in Rd are uniformly discrete, but a sequence in Rd

converging to a point in Rd is not.

(a) Uniform set in R2 (b) Uniform set in R3

Fig. 2. Examples of uniform sets in R2 and R3.

[4][3] for a set Ω ⊂ Rd if there exists positive scalars A and
B such that

A‖f‖2 ≤
∑
x∈Λ

|f(x)|2 ≤ B‖f‖2, for all f ∈ BΩ. (5)

Further, let AΩ denote the collection of all uniformly discrete
sets Λ ⊂ Rd that form sets of stable sampling for Ω. Classical
sampling theory is primarily concerned with the elements of
AΩ, e.g., Nyquist sampling lattices [1].

The following are some desirable properties of sampling
trajectory sets.

Definition 2.1: A trajectory set P of the form (3) is called
a stable Nyquist trajectory set for Ω ⊂ Rd if it satisfies the
following conditions:

(C1) [Nyquist] There exists a uniformly discrete set
Λ of points on the trajectories in P such that
Λ forms a stable sampling set for BΩ, i.e.,
Λ ⊂ {pi(t) : i ∈ I, t ∈ R} and Λ ∈ AΩ.

(C2) [Non-degeneracy] For any x ∈ Rd, there is
a continuous curve of length no more than
DP (a, x) + o(ad) that contains the portion
of the trajectory set P that is located within
Bd

a(x).

Here condition (C2) is a regularity condition to ensure that
the path density metric does indeed capture the total distance
traveled per unit area by a single moving sensor using the
trajectories in P . We also introduce a special notation for the
collection of all stable Nyquist trajectory sets:

Definition 2.2: We use NΩ to denote the collection of all
stable Nyquist trajectory sets for Ω, i.e., NΩ is the collection of
all trajectory sets P of the form (3) that satisfy conditions (C1)
and (C2).

Sampling theory for mobile sensing is primarily concerned
with identifying trajectory sets in NΩ. The key optimization
problem that we seek to solve is to identify trajectory sets in
NΩ with minimal path density:

min
P∈NΩ

"(P ). (6)

In [9] and [12] we identified various examples of trajectory sets
in NΩ, and obtained partial solutions to (6) optimizing over
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specific restricted classes of trajectories, such as uniform sets
and unions of uniform sets. In this paper we present optimality
results from broader classes of trajectory sets.

III. NEW OPTIMALITY RESULTS FOR PARALLEL LINES

Let P denote a trajectory set composed of parallel lines in
Rd. For any x ∈ Rd let Nx

a (P ) denote the number of lines
in P that intersect the d-dimensional ball Bd

a(x) of radius a
centered at x. We restrict our attention to trajectory sets that
are homogenous in the sense defined below.

Definition 3.1: We say that P is a homogenous parallel set

if

lim
a→∞

Nx
a (P )

|Bd−1
a |

exists and is equal for all x ∈ R
d.

Most practically useful parallel trajectory sets such as uniform
sets, approximately uniform sets (e.g., with bounded offsets)
and their finite unions are homogenous. For Ω ⊂ Rd we use
HΩ to denote homogenous parallel sets in NΩ. Below, we
characterize the path density of homogenous parallel sets.

Lemma 3.1: Any homogenous parallel set P in Rd satisfies

"(P ) = lim
a→∞

N0
a (P )

|Bd−1
a |

. ,- (7)

We provide a proof in the appendix. We now tackle (6) for
trajectory sets in HΩ and compact convex symmetric sets Ω.
We first establish a lower bound on the path density.

Proposition 3.2: Let Ω ⊂ Rd be a compact convex set
with non-empty interior. Assume further that Ω has a point
of symmetry at the origin. Let Q ∈ HΩ be a trajectory set

composed of lines parallel to q ∈ Rd. Then "(Q) ≥ |Ω∩q⊥|
(2π)d−1 .

Proof: Assume without loss of generality that q = e1,
the unit vector along the first coordinate axis. Consider a
field of the form f(x) = sinc(εx1)g(x2, x3, . . . , xd) and g
is bandlimited to a closed set Ωg where Ωg ⊂ relint(Ω∩ q⊥).
For ε small enough, f ∈ BΩ. For stably recovering f from
samples on Q, the non-uniform collection of points at which
the lines in Q intersect the hyperplane e⊥1 must form a set
of stable sampling for Ωg . We know from Landau’s result
[2] (see also [4, Cor. 1]) that the sampling density of such

a set must necessarily be greater than or equal to |Ωg|
(2π)d−1 .

Thus, by Lemma 3.1 it follows that "(Q) ≥ |Ωg|
(2π)d−1 for all

Ωg ⊂ relint(Ω ∩ q⊥). Hence "(Q) ≥ |Ω∩q⊥|
(2π)d−1 .

Although the result of Proposition 3.2 only provides a
lower-bound on the path density, we believe that the techniques
used in [13] can be used to construct trajectory sets in HΩ

that achieve arbitrarily close to this bound for convex and
symmetric Ω. However, in this paper, we only establish the
following achievability result, which is tight for some specific
choices of Ω as we discuss below.

Proposition 3.3: Let Ω ⊂ Rd be a compact convex set with
non-empty interior and a point of symmetry at the origin. Let
S(Ω) denote the volume of the smallest projection of Ω onto
a hyperplane defined as

S(Ω) := min
u∈Rd:‖u‖=1

|Pu⊥Ω|. (8)

Let u∗ be the minimizer in (8). Then for any ε > 0 there exists
P ∈ HΩ such that the lines in P are parallel to u∗ and

"(P ) ≤
S(Ω)

(2π)d−1
+ ε.

Sketch of proof: We do not provide a complete proof
due to lack of space. The optimal trajectory set is obtained
by choosing the lines in P parallel to u∗ such that their
points of intersection with (u∗)⊥ approximates an optimal set
of stable sampling for P(u∗)⊥Ω. Such an optimal set can be
designed using the results of [13, Cor 4.5]. In this case, the
path density of this trajectory set matches the sampling density
of the optimal set of sampling which is equal to |P(u∗)⊥Ω|+ε.

The following corollary is immediate from the above two
results.

Corollary 3.3.1: Let Ω ⊂ Rd be a compact convex set with
non-empty interior and a point of symmetry at the origin.
Suppose that Ω satisfies the condition

min
u∈Rd:‖u‖=1

|Ω ∩ u⊥| = S(Ω). (9)

Then

inf
Q∈HΩ

"(Q) =
S(Ω)

(2π)d−1
. ,- (10)

In words, condition (9) is the requirement that the volume
of the smallest section of Ω through the origin is equal to the
volume of the smallest projection of Ω onto a hyperplane. This
condition holds in the following practically relevant cases:

• Ω ⊂ R2 such that Ω is convex and compact [14, Thm
12.18].

• Ω ⊂ Rd such that Ω is a spherical ball (obvious), or an
n-cube [15], or an ellipsoid (can be shown).

However, this condition does not hold in general, a simple
counter-example being the regular octahedron in R3: Ω =
{ω ∈ R3 : ‖ω‖1 ≤ 1}. Nevertheless for Ω’s that satisfy
condition (9), the trajectory set of Proposition 3.3 gives the
optimal configuration of parallel lines for sampling fields in
BΩ. In particular, when Ω is a spherical ball in Rd, the
trajectory set of Proposition 3.3 gives the optimal configuration
of parallel lines for sampling isotropic fields in Rd. Similarly,
for convex and compact sets Ω ⊂ R2, we showed in [9] that the
optimum configuration of parallel lines given by Proposition
3.3 is a uniform set in HΩ. For general Rd, the result of
Proposition 3.3 gives the best known solution to the minimum
path density problem of (6). In Section IV we discuss the
possibility of extending this result to all of NΩ.

IV. DISCUSSION

This work opens up several possible research directions.
An obvious question is to check if under the conditions of
Proposition 3.3 it is possible to design a trajectory set in
HΩ that achieves a path density arbitrarily close to the lower
bound. Another direction of interest is to extend the results
on parallel lines obtained in this paper to parallel sampling
manifolds of higher dimensions, like those considered in [9].
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Although we have obtained various optimality results on
parallel line trajectories in this paper, our original task of
identifying minimal length trajectories for sampling spatial
bandlimited fields still remains open. A first case to analyze is
the necessary condition on a trajectory set in NΩ composed of
arbitrary (not necessarily parallel) straight lines. A generaliza-
tion of the notion of Fourier frames [4] [5] may be a possible
approach towards such a result.

A different question of interest is to examine the definition
of NΩ. In the current version of this work, while defining
the set NΩ we have placed the restriction that a sampling
trajectory set in NΩ must contain a uniformly discrete set of
points that form a set of stable sampling for Ω. In addition we
have the requirement of Condition (C2). Nevertheless, it has
recently come to our knowledge that under this definition of
NΩ it is possible to design sampling trajectories in NΩ that
have arbitrarily small path density. However, this leads to the
stability ratio B

A
of parameters A and B in the definition of

(5) to be arbitrarily high. It is of interest to examine whether a
constraint on the ratio B

A can be incorporated in the definition
of NΩ to obtain a non-trivial lower bound on the path density
of all trajectory sets in NΩ. However, it is to be noted that if
we restrict ourselves to trajectory sets in HΩ, then the problem
is still well-posed as evidenced by Proposition 3.2. It would be
of interest to examine whether such a non-trivial lower bound
on the path density continues to hold if we expand HΩ to all
trajectory sets composed of straight lines.
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APPENDIX

A. Proof of Lemma 3.1

For simplicity, we prove the result only for d = 2, since the
same proof idea works for higher dimensions. Without loss of
generality assume that the lines in P are parallel to e2. Since
the lines are homogenous we just need to evaluate (4) when
x is the origin. We number the lines in P such that for each
i ∈ Z+(Z−), "a,i denotes the length of the portion of the i-th
line to the right (left) of the origin that is contained within a
disc of radius a centered at the origin. Without affecting the
value of the computation we assume that the line indexed by
0 passes through the origin. Let di =

∑i
j=0 ∆j where ∆j

denotes the spacing between lines indexed by j and j + 1.
Now let Ia,f = {i ∈ Z : fεa ≤ di < (f + 1)εa} for − 1

ε
≤

f ≤ 1
ε . Let La,f =

∑
i∈Ia,f

"a,i and Na,f = #(Ia,f ). Clearly

lima→∞
Na,f

aε = ρ where ρ is the right hand side expression
in (7). Further, for f ∈ [0, 1

ε
],

2a(1 − (f + 1)2ε2)
1
2 Na,f ≤ La,f ≤ 2a(1 − f2ε2)

1
2 Na,f .

Hence

2ερ

π
(1 − (f + 1)2ε2)

1
2 ≤ lim

a→∞

La,f

πa2
≤

2ερ

π
(1 − f2ε2)

1
2 .

For f < 0 the above relation holds with the signs reversed.

Thus we see that
∑ 1

ε

f=0 lima→∞
La,f

πa2 is bounded between the
right hand and left hand Riemann sums that approximate the

Riemann integral
∫ 1
0

2ρ
π (1−x2)

1
2 dx. Since this holds for all ε

it follows that as we let ε → 0, we get lima→∞

P

i∈Z+ $a,i

πa2 =∫ 1
0

2ρ
π

(1 − x2)
1
2 dx. Following the same steps for negative

indices and combining, we get

lim
a→∞

∑
i∈Z

"a,i

πa2
=

∫ 1

−1

2ρ

π
(1 − x2)

1
2 dx = ρ.

,-
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Abstract—This paper considers the recovery of con-

tinuous time signals from the magnitude of its sam-

ples. It uses a combination of structured modulation

and oversampling and provides su�cient conditions on

the signal and the sampling system such that signal

recovery is possible. In particular, it is shown that an

average sampling rate of four times the Nyquist rate

is su�cient to reconstruct almost every signal from its

magnitude measurements.

Index Terms—Bernstein spaces, Paley-Wiener

spaces, phase retrieval, sampling

I. Introduction
In many applications, only intensity measurements are

available to reconstruct a desired signal x. This is widely
known as the phase retrieval problem which for example
occurs in di�raction imaging applications such as X-ray
crystallography, astronomical imaging or speech process-
ing.

In the past, several e�orts have been made on the
recovery of finite n-dimensional signals from the modulus
of their Fourier transform. In general however, they require
strong limitations on the signal such as constraints on its
z-transform [1] or knowledge of its support [2]. Analytic
frame-theoretic approaches were considered in [3], [4] and
an algorithm was presented which requires that the num-
ber of measurements grows proportionally with the square
of the space dimension. Ideas of sparse signal represen-
tation and convex optimization where applied in [5], [6]
to allow for lower computational complexity. Recently in
[7], results in the context of entire functions theory have
derived a sampling rate of 4n ≠ 4.

Note that all of the above approaches addressed finite
dimensional signals and the question is whether similar
results can be obtained for continuous signals in infinite
dimensional spaces. In [8] it was shown that real valued
bandlimited signals are completely determined by their
magnitude samples taken at twice the Nyquist rate. In the
present work we are looking at complex valued continuous
signals in Paley-Wiener spaces. Our approach extends
ideas from [3], [4], [6] and involves two steps: first we
apply a bank of modulators to the signal and sample
the subsequent intensity measurements in the Fourier

This work was partly supported by the German Research Founda-
tion (DFG) under Grant BO 1734/22-1.

domain. In this step, finite blocks of intensity samples are
obtained and a finite dimensional algorithm from [4] can
be used to recover the complex signal samples up to a
constant phase. Secondly, by ensuring an overlap between
subsequent blocks, the unimodular factor in all blocks is
matched and well-known interpolation theorems and the
inverse Fourier transform are used to obtain the time
signal. Therewith we are able to reconstruct the infinite
dimensional signals from samples taken at a rate of four
times the Nyquist rate, which asymptotically coincides
with the value for the finite dimensional case in [4].

Basic notations for sampling and reconstruction in
Paley-Wiener spaces are recaptured in Sec. II, Sec. III
describes our sampling setup. In Sec. IV we provide suf-
ficient conditions for perfect signal reconstruction from
magnitude measurements of the Fourier transform. The
paper closes with a short discussion in Sec.V.

II. Sampling in Paley-Wiener Spaces
Let ™ be an arbitrary subset of the real axis . For

1 Æ p Æ Œ we write Lp( ) for the usual Lebesgue space
on . In particular, L2( ) is the Hilbert space of square
integrable functions on with the inner product

Èx, yÍL2( ) =
s

x(◊) y(◊) d◊ ,

where the bar denotes the complex conjugate. In finite
dimensional spaces Èx, yÍ = yúx where ú denotes the con-
jugate transpose. Let T > 0 be a real number. Throughout
this paper = [≠T/2, T/2] stands for the closed interval of
length T , and PWT/2 denotes the Paley-Wiener space of
entire functions of exponential type T/2 whose restriction
to belongs to L2( ). The Paley-Wiener theorem states
that to every ‚x œ PWT/2 there is an x œ L2( ) such that

‚x(z) =
s

x(t) eitz dt for all z œ , (1)

and vice versa. If not otherwise noted, our signal space will
be L2( ), i.e. we consider signals of finite energy which
are supported on the finite interval . These are natural
assumptions for signals in reality. In the following we will
call x the signal in the time domain and ‚x the signal in
the Fourier domain, since its restriction to the real axis is
a Fourier transform.

A sequence � = {⁄n}nœ of complex numbers is said
to be complete interpolating for PWT/2 if and only if
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Fig. 1. Measurement setup: In each branch, the unknown signal x

is modulated with a di�erent sequence p

(m), m = 1, 2, . . . , M . Sub-
sequently, the intensities of the resulting signals y

(m) are measured
(IM) and uniformly sampled in the frequency domain.

the functions {„n(t) := e≠i⁄nt}nœ form a Riesz basis for
L2( ) [9]. Let x œ L2( ) be arbitrary. Then (1) shows that

‚x(⁄n) = Èx, „nÍL2( ) for all n œ .

Since {„n}nœ is a Riesz basis for L2( ) the signal x can
be reconstructed from the samples ‚x(�) = {‚x(⁄n)}nœ by

x(t) =
q

nœ Èx, „nÍ Ân(t) =
q

nœ ‚x(⁄n) Ân(t) , (2)

where {Ân}nœ is the unique dual Riesz basis of {„n}nœ
[10]. It is well-known that in the Fourier domain

‚Ân(z) = S(z)
SÕ(⁄n)(z ≠ ⁄n) with S(z) = z”� lim

RæŒ

Ÿ

|⁄n|<R
⁄n ”=0

!
1≠ z

⁄n

"

with ”� = 1 if 0 œ � and ”� = 0 otherwise. S is an
entire function of exponential type T/2, and the infinite
product converges uniformly on compact subsets of if �
is a complete interpolating sequence (see [11]).
Example 1: The well known Shannon sampling series is
obtained for regular sampling with ⁄n = n 2fi

T , n œ .
Then S(z) = sin( T

2 z) and ‚Ân(z) = sinc(T
2 [z ≠ n 2fi

T ])
where sinc(x) := sin(x)/x. This corresponds to x(t) =q

nœ ‚x(⁄n) e≠in 2fi
T t (t) in the time domain, where (t)

denotes the indicator function on .

III. Measurement Methodology
We apply a measurement methodology which uses over-

sampling in connection with structured modulations of the
desired signal, inspired by the approach in [6]. Suppose
x œ L2( ) is the signal of interest. In our sampling scheme
in Fig. 1, we assume that x is multiplied with M known
modulating functions p(m). In optics, these modulations
may be di�erent di�raction gratings between the object
(the desired signal) and the measurement device [6]. This
way we obtain a collection of M representations (or il-
luminations) y(m) of x. Afterwards, the modulus of the
Fourier spectra ‚y(m) are measured and uniformly sampled
with frequency spacing —.

Let p(m) have the following general form

p(m)(t) :=
qK

k=1 –
(m)
k ei⁄kt (3)

where ⁄k and –
(m)
k are complex coe�cients. The samples

in the mth branch are then given by

c(m)
n = |‚y(m)(n—)|2 =

-----

Kÿ

k=1
–

(m)
k ‚x(n— + ⁄k)

-----

2

= |È‚xn, –(m)Í|2 (4)

with the length K vectors

–(m) :=

Q

cca

–
(m)
1
...

–
(m)
K

R

ddb and ‚xn :=

Q

ca
‚x(n— + ⁄1)

...
‚x(n— + ⁄K)

R

db .

We will show that if –(m) and the interpolation points
{⁄n,k := n— + ⁄k}k=1,...,K

nœ are properly chosen, it is possi-
ble to reconstruct x from all samples c = {c

(m)
n }m=1,...,M

nœ .

A. Choice of the coe�cients –
(m)
k

The first recovery step determines the vector ‚xn œ K

from the M intensity measurements c
(m)
n for every n œ

, using a result from [4]. It states that if the family of
K-vectors A = {–(1), . . . , –(M)} constitutes a 2-uniform

M/K-tight frame which contains M = K2 vectors or A
is a union of K + 1 mutually unbiased bases in K , then
every ‚xn œ K can be reconstructed up to a constant
phase from the magnitude of the inner products (4). For
simplicity, we only discuss the first case here and therefore
fix M = K2.
Condition A: A sampling system as in Fig. 1 is said to

satisfy Condition A if A constitutes a 2-uniform M/K-

tight frame.

Then reconstruction will be based on the following formula

Q
x̂n = (K + 1)

K

Mÿ

m=1
c(m)

n Q–(m) ≠ 1
K

Mÿ

m=1
c(m)

n I (5)

with rank-1 matrices Q
x

= xx

ú. For K = 2 a valid choice
for A reads [4]

–(1) =
3

a

b

4
, –(2) =

3
b

a

4
, –(3) =

3
a

≠b

4
, –(4) =

3
≠b

a

4

with a =
Ò

1
2 (1 ≠ 1Ô

3 ) and b = ei5fi/4
Ò

1
2 (1 + 1Ô

3 ).

B. Choice of the interpolation points

Now it is necessary to find conditions which allow unique
interpolation from the known samples. Let {⁄k}K

k=1 be
ordered increasingly by their real parts. For each n œ ,
the vector ‚xn contains the values of ‚x at K distinct
interpolation points in the complex plane

⁄a
n := {⁄a

n,k}K
k=1 with ⁄a

n,k = n— + ⁄k , n œ . (6)

Therein, the parameter a œ denotes the number of
overlapping points of consecutive sets (6) (cf. also Fig.2).
More precisely, we require for every n œ that

⁄a
n,i = ⁄a

n≠1,K≠i+1 for all i = 1, . . . , a . (7)

Proceedings of the 10th International Conference on Sampling Theory and Applications

357



›

÷

—

⁄a
n≠1 ⁄a

n

⁄

a
n≠1,5 = ⁄

a
n,1

Fig. 2. Illustration for the choice of interpolation points in the
complex plane for K = 6 in (3) and an overlap a = 2.

In the following �a
O,n = ⁄a

n fl⁄a
n+1 is the set of overlapping

interpolation points between ⁄a
n and ⁄a

n+1, and we define
the overall interpolation sequence

�a :=
t

nœ ⁄a
n .

In general we allow for a Ø 1, but we will see that a = 1
is generally su�cient for reconstruction.
As explained in Sec. II, x œ L2( ) can be perfectly
reconstructed by (2) if �a is complete interpolating for
PWT/2. This gives a second condition on our sampling
system:
Condition B: A sampling system as in Fig. 1 is said

to satisfy Condition B if the coe�cients {⁄k}K
k=1 in (3)

are such that �a
is complete interpolating for PWT/2 and

satisfies (7) for a certain 1 Æ a < K.

In general it is hard to characterize sets which fulfill this
condition. One famous example is the set of zeros of a sine-
type function of type T̃ /2 Ø T/2 which is —-periodic (see,
e.g., [9], [11]). Such sine-type functions are entire functions
f of exponential type T̃ /2 with simple and isolated zeros
and for which there exist positive constants A, B, H such
that

A e T̃
2 |÷| Æ |f(› + i÷)| Æ B e T̃

2 |÷| , for |÷| Ø H .

Note that sin( T̃
2 z) is a trivial example for a sine-type

function (cf. Example 1). Moreover, shifting the zeros of
one sine-type functions arbitrarily in their imaginary parts
yields the zero set of another sine-type function [12]. The
complete interpolating property is also preserved under
small shifts in the real part (see Katsnelson’s theorem,
e.g. in [11]).

IV. Phaseless Signal Recovery
We assume a sampling scheme as described in Section III

which satisfies Condition A and B. For this setup, we show
that almost every x œ L2( ) (up to a set of first category)
can be reconstructed from the samples (4). The proof
provides an explicit algorithm for perfect signal recovery.
Theorem 1: Let x œ L2( ) be sampled according to the

scheme in Section III which satisfies Condition A and B,

and let c = {c
(m)
n }m=1,...,M

nœ be the sampling sequence in (4).
If the set ‚x(�a

O,n) contains at least one non-zero element

for each n œ , then x can be perfectly reconstructed from

c up to a constant phase.

Proof: According to Condition B of the sampling
system, �a is complete interpolating for PWT/2. There-
fore the signal x can be reconstructed from the vectors
{‚xn}nœ using (2). It remains to show that {‚xn}nœ can
be determined from c.
Let n œ be arbitrary. Since the sampling system satisfies
Condition A, we can use (5) to obtain the rank-1 matrix
Qn := ‚xn‚xú

n from the measurements {c
(m)
n }M

m=1. Then
‚xn œ K is obtained by factorizing Qn. However, such a
factorization is only unique up to a constant phase factor.
If the phase „n,i of one element [‚xn]i is known, the vector
‚xn can be completely determined from Qn by

‚x(n— + ⁄k) =
Ò

[Qn]k,k ei(„n,i≠arg([Qn]i,k)), ’k ”= i . (8)

Assume that we start the recovery of the sequence
{‚xn}nœ at a certain n0 œ and set the constant phase
of ‚xn0 arbitrarily to ◊0 œ [≠fi, fi]. In the next step, we
determine ‚xn0+1. After the factorization of Qn0+1, we use
the nonempty overlap to carry over the phase from n0
to n0 + 1. Since by assumption the overlapping point,
say ⁄a

n0+1,i, can be chosen such that it is non-zero, the
propagation of the constant phase can be ensured. Thus,
we can completely determine ‚xn0+1 and successively all
n = n0 ± 1, n0 ± 2, . . . using (8) to obtain ‚x(�a) ei◊0 .
The arbitrary setting of the phase of the initial vector ‚xn0

yields a constant phase shift ◊0 for all ‚xn which persists
after the reconstruction of the time signal as in (2).

Theorem 1 states that x œ L2( ) can only be recon-
structed if ‚x œ PWT/2 has at most a ≠ 1 zeros on the
overlapping interpolation sets �a

O,n. However, this restric-
tion is not too limiting. On the one hand, it is not hard to
see that the subset of all x œ L2( ) which does not satisfy
this condition is of first category [13]. On the other hand, it
is known that the zeros of an entire function of exponential
type can not be arbitrarily dense. For example, defining
Zn := {z œ : nfi/T < |z| Æ (n + 1)fi/T}, the result
in [14] states that for every ‚x œ PWT/2 there exist only
finitely many sets Zn which contain more than one zero of
‚x. Consequently, choosing the spacing of the interpolation
points in the overlapping sets �a

O,n less than fi/T , it is very
unlikely that a randomly chosen function from PWT/2
fails to satisfy the condition of Theorem 1, especially for
a > 1.

When the overall energy of the signal is known, even
such pathological cases can be avoided such that the last
condition in Theorem 1 always holds true. To this end, we
first state a simple variant of a lemma by Du�n, Schae�er
[15].
Lemma 2: Let ‚x(z) œ PWT/2 be an entire function of

z = › + i÷ satisfying |‚x(›)| Æ M on the real axis. Then for

every T Õ > T the function

‚v(z) = M cos( T Õ

2 z) ≠ ‚x(z) (9)
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belongs to the Bernstein space BŒ
T Õ/2 and there exists a

constant H = H(T, T Õ) such that |‚v(z)| > 0 ’z : |÷| > H.

A proof can be found in [13]. The Bernstein space BŒ
T Õ/2

is the set of all entire functions of exponential type T Õ/2
whose restriction to is in LŒ( ). Upon this we can es-
tablish a corollary for signals which have a known maximal
energy W0.
Corollary 3: Let x œ L2( ) : ÎxÎL2( ) Æ W0 be sampled

according to the scheme in Sec. III. Then there exist

interpolation sequences �a
with overlap a Ø 1 such that

every x can be perfectly reconstructed (up to a constant

phase) from the measurements (4).
Sketch of proof: The theorem of Plancherel-Pólya implies
that there exists a constant M independent of x such that
|‚x(›)| Æ MW0 for all › œ . Using T Õ > T we can define
‚v by (9) which only has zeros for |÷| Æ H by Lemma 2.
In the measurement scheme this corresponds to adding
a cosine to the signal. Subsequently, the function ‚v is
modulated and sampled at interpolation points �a, which
we choose as the zero set of a sine-type function of type
T̃ /2 > T Õ/2. By [12] we can shift the imaginary parts
of the interpolation points such that |÷k| > H for all k
while �a remains to be the zero set of a sine-type function
denoted by S. Since ‚v œ BŒ

T Õ/2 and �a is the set of zeros of
a sine-type function, the sequence {dn = ‚v(⁄n) ei◊0}nœ is
in ¸Œ, and we apply a generalization of [11, Lec. 21] (see
[13]) to reconstruct ‚v from the sequence {dn}nœ by

‚v(z) ei◊0 =
q

nœ dn
S(z)

SÕ(⁄n)

Ë
1

z≠⁄n
+ 1

⁄n

È
,

where the second term in the sum is omitted when ⁄n = 0.
Since ◊0 is unknown, we can only obtain

x̃(z) = MW0 cos
1

T Õ

2 z
2

≠ ‚v(z) ei◊0

= ‚x(z) ei◊0 + MW0 cos
1

T Õ

2 z
2

(1 ≠ ei◊0).

However, applying the inverse Fourier transform yields
x(t) ei◊0 for t œ which is the desired signal up to a
constant phase since the distributional Fourier transform
of a cosine vanishes within .

V. Discussion and Outlook
To determine the sampling system in Fig.1, one has to

fix K, M , a and —. The number K Ø 2 can be chosen
arbitrarily. Then M = K2 is fixed, and 1 Æ a Æ K≠1. The
sampling period — has to be chosen such that the sampling
system satisfies Condition B and in particular that �a is
complete interpolating for PWT/2. As discussed before,
one possible choice could be the zeros of the function
sin( T̃

2 z) with T̃ > T Õ > T . Then ” := ⁄k ≠ ⁄k≠1 = 2fi/T̃
such that — = (K ≠ a) ”, and the total sampling rate
becomes

R(a, K, T̃ ) = M

—
= K2

(K ≠ a) ”
= K2

K ≠ a

T̃

2fi
= K2

K ≠ a

T̃

T
RNy

where RNy := T/(2fi) is the Nyquist rate. It is apparent
that R(a, K, T̃ ) grows asymptotically proportional with K
and increases with the overlap a. R(a, K, T̃ ) is bounded
below by

inf
1Æa<K,

KØ1,T̃ >T

R(a, K, T̃ ) = inf
T̃ >T

R(1, 2, T̃ ) = 4RNy .

Since T̃ /T can be made arbitrarily close to 1 using
Theorem 1 and Corollary 3, we can sample at a rate
which is almost as small as 4RNy while still ensuring
perfect reconstruction. This corresponds to the findings
in [3] for finite dimensional spaces, where it was shown
that basically any x œ N can be reconstructed from
M Ø 4N ≠ 2 magnitude samples.

We note that the above framework can be applied
exactly the same way for bandlimited signals. To this end,
one only has to exchange the time and frequency domain.
Then the modulators in Fig. 1 have to be replaced by linear
filters and the sampling of the magnitudes has to be done
in the time domain. In future works, our approach will be
extended to larger signal spaces [13] and the influence of
sampling errors will be investigated in detail.
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Abstract—We present a novel method for robust reconstruction

of the image of a moving object from incomplete linear measure-

ments. We assume that only few measurements of this object

can be acquired at different instants and model the correlation

between measurements using global geometric transformations

represented by few parameters. Then, we design a method that

is able to jointly estimate these transformation parameters and an

image of the object, while taking into account possible occlusions

of parts of the object during the acquisitions. The reconstruction

algorithm minimizes a non-convex functional and generates a

sequence of estimates converging to a critical point of this

functional. Finally, we show how to apply this algorithm on a

real cardiac acquisition for free breathing coronary magnetic

resonance imaging.

I. INTRODUCTION

We have recently presented a method to reconstruct jointly
a set of images, representing a same scene, from few linear
multi-view measurements [1]. The correlation between images
is modeled using global parametric transformations, such as
homographies, and the proposed algorithm accurately esti-
mates the images and the transformation parameters, while
being robust to occlusions. We have shown the efficiency of the
algorithm for problems such as super-resolution from multiple
frames, or compressed sensing, using numerical simulations.

We show here the potential interest of this method for free
breathing coronary magnetic resonance imaging (MRI) [2]. In
this application, one wants to obtain a single high resolution
image of the heart to visualize the coronaries. To reach this
goal, one of the major challenge is to properly compensate
for the respiratory motion in the image reconstruction process.
Indeed, the acquisition speed in MRI is slow and inevitable
motion of the heart occur during the acquisition. To suppress
motion due to heart contractions, an ECG signal is usually
acquired to ensure that the Fourier measurements are taken
after a fixed time delay from the beginning of the cardiac
cycle. A few measurements are then taken at each cycle
during a period of minimum coronary motion (late diastole).
Unfortunately, the number of measurements acquired during
one cardiac cycle is too small to accurately reconstruct a
high resolution image of the heart. One thus has to combine
measurements acquired at different cycles to gather enough
information. However, it is mandatory to compensate for the

This work was partly funded by the Hasler Foundation (project number
12080).

respiratory motion occurring between cardiac cycles to be able
to visualize high resolution features.

As shown in [3] for two-dimensional MRI of the right coro-
nary artery, global translations are already sufficient to reach
good image quality. In [3], the estimation of the transformation
parameters and the image reconstruction are separated into two
separate tasks. We show here that the algorithm presented in
[1] can be considered as an alternative for joint registration
and reconstruction.

Notations: The Euclidean scalar product of Rn is denoted
h·, ·i and k·k2 is the corresponding `2-norm. The `1-norm of a
vector x = (xi)16i6n 2 Rn is defined as kxk1 =

Pn
i=1 |xi|.

The transpose operator is denoted ·|.

II. JOINT REGISTRATION AND RECONSTRUCTION VIA
NON-CONVEX OPTIMIZATION

A. Problem formulation

Let y1, . . . ,yl 2 Rm be l independent linear observations of
a moving object represented by the image x0 2 Rn, m 6 n.
The j

th vector yj contains the measurements of the object
when it is at its j

th position. We assume that the acquisition
speed is faster than the one of the object, so that we can
consider that the object is not moving during each acquisition.
However, as the object is moving between two different
acquisitions, the image x0 undergoes geometric transforma-
tions. In this work, we consider that these transformations
are not known in advance and need to be estimated from the
measurements. For simplicity, we restrict ourselves to global
transformations, such as translations or homographies, that can
be represented by few parameters ✓j 2 Rq , j = 1, . . . , l. We
also assume that the transformed images can be well estimated
using interpolation matrices S(✓j) 2 Rn⇥n, j = 1, . . . , l, built
using, e.g., bicubic splines [4]. Then, to handle more realistic
acquisitions, we consider possible occlusions of the object and
model them using l foreground images x1, . . . ,xl 2 Rn. The
image “viewed” at the j

th acquisition is thus S(✓j)x0 + xj .
In summary, denoting by A1, . . . ,Al 2 Rm⇥n the observation
matrices, the measurement model satisfies

2

64
y1
...
yl

3

75=

2

64
A1S(✓1) A1 . . . 0

...
...

. . .
...

AlS(✓l) 0 . . . Al

3

75

2

64
x0
...
xl

3

75+

2

64
n1
...
nl

3

75 , (1)
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where n1, . . . ,nl 2 Rm model additive measurement noise.
Estimating the images x = (x

|
0 , . . . ,x

|
l )

| 2 R(l+1)n and
the transformation parameters ✓

|
= (✓

|
1 , . . . ,✓

|
l )

| 2 Rlq

using the acquired measurements y = (y

|
1 , . . . ,y

|
l )

| 2 Rlm

as sole information is an ill-posed inverse problem. Prior
information is needed to restrict the set of admissible solutions.
Concerning the images, we can for example search for the ones
with a sparse decomposition in a wavelet basis by minimizing
the `1-norm of their wavelet coefficients. Alternatively, we
can search for piecewise constant images by minimizing their
Total Variation norm. For the transformation parameters, we
can for example impose that they belong to compact convex
sets ⇥j = {✓j 2 Rq

: ✓j 6 ✓j 6 ✓̄j}, j = 1, . . . , l,
where ✓j 2 Rq and ✓̄j 2 Rq are pre-defined upper and lower
bounds1. Therefore, an estimate x

⇤ and ✓

⇤ of the images and
the transformations parameters can be obtained by solving

min

(x,✓)
f(x) +  kA(✓)x� yk22 subjet to ✓ 2 ⇥, (2)

where f : R(l+1)n ! R [ {+1} is a proper lower-
semicontinuous convex function, 

�1
> 0 is a regularizing

parameter that should be adjusted with the noise level knk2,
⇥ = {✓ = (✓

|
1 , . . . ,✓

|
l )

| 2 Rlq
: ✓j 2 ⇥j , j = 1, . . . , l},

and

A(✓) =

2

64
A1S(✓1) A1 . . . 0

...
...

. . .
...

AlS(✓l) 0 . . . Al

3

75 2 Rlm⇥(l+1)n
.

Unfortunately, the minimization problem (2) is non-linear in
✓ and finding a global minimizer is not trivial. Nevertheless,
based on the recent works of Attouch et al., [5], [6], we
developed a novel minimization method for problem (2) that
produces a convergent sequence to a critical point (x⇤

,✓

⇤
) of

the functional L : R(l+1)n ⇥ Rlq ! R [ {+1} defined as

L(x,✓) = f(x) +  kA(✓)x� yk22 + i⇥(✓), (3)

where i⇥ is the indicator function2 of ⇥. Note that (x⇤
,✓

⇤
)

is not necessarily a global minimizer of L but might only be
local minimizer or a saddle point of the objective function.
The proposed algorithm generates a sequence of estimates
(x

k
,✓

k
)k2N such that L(xk+1

,✓

k+1
) 6 L(x

k
,✓

k
), 8k 2 N,

and consists of two main steps.

B. First step of the algorithm

Let (xk
,✓

k
) 2 R(l+1)n ⇥⇥ be the estimates obtained after

k iterations of the algorithm. The first step consists in finding
a new estimate x

k+1 2 R(l+1)n that decreases the value of
the objective function L while keeping ✓

k fixed. We choose
here this new estimate as a solution of

min

x2R(l+1)n
L(x,✓

k
) +

�

k
x

2

hµ( 
|
(x� x

k
)), (4)

1Let ✓̄ = (✓̄i)16i6q 2 Rq , ✓ = (✓i)16i6q 2 Rq , ✓ 6 ✓̄ means that
✓i 6 ✓̄i for all i 2 {1, . . . , q}.

2The indicator function of a non-empty closed convex set C is the proper
lower semicontinuous convex function that satisfies iC(x) = 0 if x 2 C and
iC(x) = +1 otherwise.

where �

k
x

> 0 acts as a stepsize parameter,  2
R(l+1)n⇥(l+1)p is a block-diagonal matrix built by repeating
l + 1 times a wavelet tight-frame3 W 2 Rn⇥p, p > n, on the
diagonal, and hµ : R(l+1)p ! R is the Huber function. It is a
smooth approximation of the `1-norm satisfying

8↵ = (↵i)16i6(l+1)p 2 R(l+1)p
, hµ(↵) =

(l+1)pX

i=1

hi,

with

hi =

⇢
↵

2
i /(2µ), if |↵i| < µ,

|↵i|+ µ/2, otherwise, 8i 2 {1, . . . , (l + 1)p},

and µ > 0. In practice, the smoothing parameter µ can be
chosen small so that the function hµ behaves similarly to the
`1-norm. Let us highlight that the minimization problem (4) is
convex and can be solved efficiently using, e.g., the algorithm
presented in [7].

We noticed experimentally that the addition of the function
hµ in the minimization procedure was improving the accuracy
of the estimated signals and transformations parameters by
producing a coarse-to-fine scales reconstruction of the images.
This function acts as a proximal term and provides, up to some
limits, a control on the evolution of the sequence of estimated
images (x

k
)k>0. Remembering that the `1-norm favors the

selection of few large coefficients, this function imposes that
the next estimate x

k+1 differs from x

k by a few large wavelet
coefficients. The bigger the �

k
x

parameter is, the fewer the
number of wavelet atoms that can be added at each iteration
is. In practice, we start form x

0
= 0 2 R(l+1)n and with a

large value of �k
x

at k = 0. We then slightly decrease the value
of �k

x

at each iteration. This allows us to have a coarse-to-fine
scales reconstruction of the images, as illustrated in [1].

C. Second step of the algorithm

In the second step of the algorithm, we update the trans-
formation parameters to further decrease the value of the
objective function. As the function ✓ 7! kA(✓)xk+1 � yk22
and i⇥ are separable in ✓j , j = 1, . . . , l, we optimize the
transformation parameters separately for each observations.

To simplify the notations, we introduce l new functions
Q

k+1
j : Rq ! R, with j = 1, . . . , l, satisfying

Q

k+1
j (✓j) = kAjS(✓j)x

k+1
0 + Ajx

k+1
j � yjk22. (5)

One of our goal is to find parameters ✓

k+1
j 2 ⇥j such that

Q

k+1
j (✓

k+1
j ) 6 Q

k+1
j (✓

k
j ). These functions are non-linear in

✓j . To simplify the estimation of the parameters, we instead
minimize quadratic approximations of these functions. Assum-
ing that the entries of the matrix S(✓j) are differentiable with
respect to the transformation parameters, the first order Taylor
expansion of S(✓j)x

k+1
0 at ✓k

j is S(✓k
j )x

k+1
0 + Jkj (✓j � ✓

k
j )

with

Jkj =

�
@✓1jS(✓

k
j )x

k+1
0 , . . . , @✓qjS(✓

k
j )x

k+1
0

�
2 Rn⇥q

.

3It satisfies WW| = In, with In 2 Rn⇥n the identity matrix.
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Therefore, Qk+1
j (✓

k
j ) + P

k+1
j (✓j), with

P

k+1
j (✓j) =

⌦
rQ

k+1
j (✓

k
j ),✓j � ✓

k
j

↵
+ kAjJ

k
j (✓j � ✓

k
j )k22,

and

rQ

k+1
j (✓

k
j ) = 2

�
AjJ

k
j

�| �
AjS(✓

k
j )x

k+1
0 + Ajx

k+1
j � yj

�
,

is a quadratic approximation of Qk+1
j at ✓k

j .
To update the transformation parameters, we minimize this

quadratic approximation to which we add another quadratic
term that ensures a decrease of the objective function L. The
next estimate of the transformation parameters is

✓

k+1
j = argmin

✓j2⇥j

P

k+1
j (✓j) +

2

i
�

✓

2

k✓j � ✓

k
j k22, (6)

where �

✓

> 0 and i is the smallest positive integer such that

Q

k+1
j (✓

k+1
j ) 6 Q

k+1
j (✓

k
j ) + P

k+1
j (✓

k+1
j )

+

(2

i � 1)�

✓

2

k✓k+1
j � ✓

k
j k22. (7)

The above condition ensures that ✓k+1
j decrease the value of

objective function and is essential for the convergence of the
sequence (x

k
,✓

k
)k2N to a critical point of L.

D. Convergence result

We are now in position to state our convergence result,
whose proof can be found in [1].

Theorem 1: Let L be the objective function defined in (3)
with  > 0. Assume that L is bounded below, that the entries
of Sj , with j = 1, . . . , l, are twice continuously differentiable,
that  2 R(l+1)n⇥(l+1)p satisfies   |

= I(l+1)n, and that
the stepsizes satisfy 0 < � 6 �

k
x

,�

✓

6 ¯

� for all k 2 N.
Then, the sequence of estimates (x

k
,✓

k
)k2N generated by

the algorithm described above is correctly defined and the
following statements hold:

1) For all k > 0,

L(x

k
, ✓

k
)� L(x

k+1
, ✓

k+1
) >

�

2


 k✓k+1 � ✓

kk22 + hµ( 
|
(x

k+1 � x

k
))

�
. (8)

Hence L(x

k
,✓

k
), k 2 N, does not increase.

2) The sequences (x

k+1 � x

k
)k2N and (✓

k+1 � ✓

k
)k2N

converge. Indeed,

lim

k!+1
kxk+1 � x

kk2 + k✓k+1 � ✓

kk2 = 0. (9)

3) Assume that L has the Kurdyca-Łojasiewicz property (see
Definition 3.2 in [5]). Then, if the sequence (x

k
)k2N is

bounded, the sequence (xk
,✓

k
)k2N converges to a critical

point (x⇤
,✓

⇤
) of L.

The last point of Theorem 1 applies if L has the Kurdyca-
Łojasiewicz property. As explained in [5], this property is
satisfied by several classes of functions. We detail in [1]
several examples where the conditions required by Theorem
1 are satisfied. For example, if the interpolation matrices Sj ,
j = 1, . . . , l, are built using the bicubic interpolation [8] and

f(x) = k�xk1 for some basis � 2 R(l+1)n⇥(l+1)n, then
the sequence of estimates converges to a critical point of the
objective function L for geometric transformations such as
translations, affine transformations or “small” homographies.

III. FREE BREATHING CORONARY MRI

A. Acquisition model

We acquired 2D image data of the right coronary artery in a
healthy adult subject with a clinical 3T scanner (Siemens Trio,
Erlangen, Germany). The field of view was 320⇥320 mm and
the spatial resolution was 1⇥ 1⇥ 8 mm. Our goal is here to
reconstruct a high resolution image x0 of the heart containing
320⇥ 320 pixels from this set of few Fourier measurements.

Note that in MRI we are dealing with complex images.
For simplicity, and to be able to use the proposed algorithm
without modifications, we treat separately the real and imagi-
nary parts of the images. Therefore, the vector x0 has size
n = 2 ⇥ 320

2 and satisfies: x

|
0 = ((x

r
0)

|
, (x

i
0)

|
), where

x

r
0 2 Rn/2 and x

i
0 2 Rn/2 are the real and imaginary

parts of the image. The same convention is used for the
foreground images. Note that the j

th transformed background
image is now obtained by multiplication with the block-
diagonal matrix built by repeating twice S(✓j) on the diagonal.
The measurements describing these images are then obtained
as follows.

At each cardiac cycle, we acquire few complex Fourier
coefficients lying along 15 radial lines, as presented in Fig.
1, with each line containing 320 equispaced sampling points.
As before, we separate the real and imaginary parts of the
measurements and stack them in a single measurement vector:
y

|
j = ((y

r
j )

|
, (y

i
j)

|
), with y

r
j 2 Rm/2 and y

i
j 2 Rm/2.

The number of acquired measurements at each cycle satisfies
m/n = 4.7 % and a total of l = 24 acquisitions are performed
at different cycles. Note that the radial lines along which the
measurements are acquired change at each cardiac cycle to
cover the Fourier space as much as possible. Let ⌦j be the
set of frequencies probed at the j

th cycle. We model this
acquisition using the complex Fourier matrix F⌦j 2 Cm/2⇥n/2

which estimates the Fourier transform of a discrete complex
image on the frequencies ⌦j . The observation matrix Aj then
satisfies

Aj =


Fr
⌦j

�Fi
⌦j

Fi
⌦j

Fr
⌦j

�
,

where Fr
⌦j

2 Rm/2⇥n/2 and Fi
⌦j

2 Rm/2⇥n/2 are the real and
imaginary part of F⌦j .

While we are mainly interested in the reconstruction of
x0, the l other foreground images have still their place in
the measurement model (1). Indeed, as we are imaging one
slice of an object moving in a 3D space, trough-plane motion
might occur. The l foreground images can compensate for such
negative effects. However, we have access to only 4.7% n

measurements to estimate each foreground image. We thus do
not expect to obtain an accurate reconstruction of these images.
On the contrary, all the 4.7% ln measurements contribute to
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Fig. 1. From left to right: sampling pattern in Fourier space for one cardiac cycle; reconstructed image using the usual method without registration;
reconstructed image x

⇤
0 using our method; reconstructed image using the usual method with registration by the estimated parameters ✓

⇤ obtained by our
method.

the estimation of x0. Obtaining an accurate reconstruction of
this reference image is thus possible.

Let us remark that we considered only one channel of the
receiving coil in the above measurement model. In total, 32
channels are present and each of them gives access to a local
image of the heart. The images of all these channels are
usually combined to increase the signal-to-noise ratio of the
recovered image and to have a more uniform spatial coverage.
Ideally, we should also combine the measurements provided
by each channel. However, the problem to solve becomes more
challenging and addressing it is beyond the scope of this short
abstract. We thus restrict our study to one channel only (chosen
to have the best coverage of the heart).

B. Reconstruction results

We run our algorithm with  = 10

�1, µ = 10

�10, and
f(·) = k | ·k1, where  2 R(l+1)n⇥(l+1)n is built by repeat-
ing 2 (l + 1) times the Haar wavelet basis W 2 Rn/2⇥n/2 on
the diagonal. The transformations between cardiac cycles are
assumed to be well modeled by translations. The translation
parameters along both dimensions are initialised to 0 and are
constrained to be in the set [�50mm,+50mm]. Finally, the
stepsizes satisfy �

k
x

= max((0.9)

k
500, 0.1) and �

✓

= 0.1.
Fig. 1 presents the reconstruction obtained from the acquired

measurements with the proposed algorithm, as well as the ones
obtained with the usual reconstruction technique without and
with registration with the transformation parameters estimated
by our algorithm. The usual reconstruction technique consists
of a gridding operation and an inverse Fourier transform
[9]. The measurements are also weighted before the gridding
operation to compensate for the fact that the low frequencies
are more densely sampled than the high frequencies.

Compared to the reconstruction obtained without registra-
tion, one can see that the image of the heart is sharper (see
arrows) with our reconstruction method. A part the coronary
previously hidden becomes visible (dotted arrow), and the
borders of the blood pool and the cardiac muscle become
better defined, indicating that the translations are accurately
estimated. Compared to the reconstruction with registration
obtained with the usual technique, our reconstruction contains
less noise, though some details are slightly less visible.

IV. CONCLUSION

We highlighted the interest of a reconstruction technique
initially developed for image reconstruction from multi-view
measurements, for free breathing coronary MRI. The method
reconstructs a high resolution image of the heart from few
Fourier measurements and automatically compensates for the
motion of the heart occurring during the acquisition. The
reconstruction algorithm minimizes a non-convex functional
and the generated sequence of estimates converges to a critical
point of this functional.

The current technique was designed assuming that the mo-
tion can be modeled by global geometric transformations, such
as translations or homographies. This is an obvious limitation
of the technique which prevents us to use it with more compli-
cated types of motion. However, the requirements of Theorem
1 hold for a large class of transformation models. This leaves
us the possibility to choose more general transformations.
For example, we could approximate elastic transformations
using a parametric model similar to [10] and estimate the
corresponding parameters using the proposed algorithm.

REFERENCES

[1] Puy et al., “Robust image reconstruction from multi-view measurements,”
SIAM J. Imaging Sci., submitted, 2012. arXiv:1212.3268.

[2] Stehning et al., “Free- breathing whole-heart coronary mra with 3d radial
ssfp and self-navigated image reconstruction”, Magn. Reson. Med., vol.
54(2), pp. 476–480, 2005.

[3] Bonanno et al., About the performance of multi-dimensional radial self-
navigation incorporating compressed sensing for free-breathing coronary
mri, ISMRM conference, Melbourne, 2012.

[4] Unser, “Sampling50 years after shannon,” Proc. IEEE, vol. 88(4), pp.
569–587, 2000.

[5] Attouch et al., “Proximal alternating minimization and projection methods
for nonconvex problems: An approach based on the kurdyka-lojasiewicz
inequality,” Math. Oper. Res., vol. 35(2), pp. 438–457, 2010.

[6] Attouch et al., “Convergence of descent methods for semi-algebraic and
tame problems: proximal algorithms, forward-backward splitting, and
regularized gauss-seidel methods,” Math. Program., 2011.

[7] Beck et al., “A fast iterative shrinkage-thresholding algorithm for linear
inverse problems,” SIAM J. Imaging Sci., vol. 2(1), pp. 183–202, 2009.

[8] Keys, “Cubic convolution interpolation for digital image processing,”
IEEE Trans. Acoustics, Speech, Signal Process., vol. 29(6), 1981.

[9] Jackson et al., “Selection of a convolution function for fourier inversion
using gridding [computerised tomography application],” IEEE Trans.
Medical Imag., vol. 10(3), pp. 473–478, 1991.

[10] Kybic et al., “Fast parametric elastic image registration,” IEEE Trans.
Image Process., vol. 12(11), pp. 1427–1442, 2003.

Proceedings of the 10th International Conference on Sampling Theory and Applications

320



Localization of point sources in wave fields from
boundary measurements using new sensing principle
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Abstract—We address the problem of localizing point sources
in 3D from boundary measurements of a wave field. Recently, we
proposed the sensing principle which allows extracting volumetric
samples of the unknown source distribution from the boundary
measurements. The extracted samples allow a non-iterative re-
construction algorithm that can recover the parameters of the
source distribution projected on a 2-D plane in the continuous
domain without any discretization.

Here we extend the method for the 3-D localization of multiple
point sources by combining multiple 2-D planar projections. In
particular, we propose a three-step algorithm to retrieve the
locations by means of multiplanar application of the sensing
principle. First, we find the projections of the locations onto
several 2-D planes. Second, we propose a greedy algorithm to pair
the solutions in each plane. Third, we retrieve the 3D locations
by least squares regression.

Index Terms—Sensing principle, finite-rate-of-innovation
(FRI), wave equation, source imaging, inverse problem

I. INTRODUCTION

Inverse source problems have wide applications in signal
processing and biomedical imaging. Among these, recon-
struction of sparse source distributions from boundary mea-
surements have attracted great attention of many researchers
recently. In particular, several mathematical models are studied
extensively, such as Poisson’s equations for identification of
current dipolar sources in electroencephalography (EEG) [1],
the steady-state diffusion equation for the determination of a
light source function in bioluminescence tomography (BLT)
[2] and the wave equation for the recovery of heat absorption
profile in photoacoustic tomograpghy (PAT) [3]–[5].

Many advanced techniques for the recovery of source
distributions aim at super-resolution by exploiting sparsity
properties of the underlying source distribution. For example,
the low-dimensional signal subspace plays a key role for
the MUSIC-type of algorithms to estimate the location of
the absorbing regions [6]. Moreover, compressive sensing
approaches have been studied recently for radar imaging
applications [7].

Here, we focus on the inverse source problem for the wave
equation from the boundary measurements of the field. The
problem is ill-posed and thus challenging, and we exploit an
explicit sparsity prior on the source model (i.e., a collection
of point sources) that makes the problem well-posed [8]. Re-
cently, we proposed the sensing principle that allows extracting
volumetric samples of the source distribution with a set of well
chosen sensing functions [9], [10]. These samples are then

used in a non-iterative FRI-like framework [11] to retrieve
the projected positions of the source distribution onto a 2-D
plane. The key component of the method is the selection of the
sensing functions which are used to extract the samples of the
source function through surface integration. We have shown
before that the localization of the selected families of sensing
functions plays a key role in the accuracy of the estimation
[9], [10]. Here we propose a multiplanar application of the
sensing principle using a well-localized sensing functions for
different projections planes. In particular, we propose a three-
step algorithm to retrieve the locations of the pointwise source
distribution. First, we extract the projected positions onto
several 2-D planes. Second, we propose a greedy approach
to pair the solutions between projection planes. Third, we
reconstruct the 3-D locations from the 2-D paired solutions
by a least squares regression.

The paper is organized as follows. In Section 2, we intro-
duce the setting of the problem. In Section 3, we provide the
key components of the sensing principle. In Section 4, we
develop the proposed method for a 3-D measurement setup.
The feasibility of the proposed method is demonstrated with
numerical experiments in Section 5.

II. PROBLEM FORMULATION

Consider an acoustic source distribution inside a volume ⌦.
In an acoustically homogeneous medium, the inhomogeneous
wave equation is described by

r2p(r, t)� 1

c2
@2p(r, t)

@t2
= �H(r, t), (1)

where H(r, t) is a general representation of a spatiotemporal
source distribution which we further decompose as the product
H(r, t) = A(r)I(t), where A(r) is the spatial part and I(t) is
the temporal part of the source. In particular, we assume that
the temporal behaviour is usually foreknown and we focus on
the spatial part of the source function that we characterise as
a pointwise source distribution;

A(r) =
MX

m=1

cm�(r� rm), (2)

where cm 2 R is the intensity, and rm 2 ⌦ is the location of
M point source. With this parametrization the source distri-
bution is completely described by the positions and intensities
of M sources with 4M parameters. Hence, the goal of the
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inverse problem is to reconstruct the point sources from the
measurements of the wave field p(r, t) on the surface of the
volume, @⌦.

III. SENSING PRINCIPLE

Let us consider the time harmonic solutions of (1)

r2P (r,!) +
!2

c2
P (r,!) = �I(!)A(r), (3)

which is the inhomogeneous Helmholtz equation. Without
loss of generality, we now consider a specific frequency !.
Based on the second Green’s identity, we propose the sensing
principle that provides a link between the source function and
the measurements such that

h , Ai = (4)
1

I(!)

{

@⌦

[P (r,!)r (r,!)� (r,!)rP (r,!)] · e@⌦dS,

where I(!) is a constant that we use to compensate the
surface integral and  (r,!) is a sensing function satisfying
the homogeneous Helmholz equation in the the volume

r2
 (r,!) +

!2

c2
 (r,!) = 0 in ⌦. (5)

This way the sensing principle allows to extract volumetric
samples of the source distribution through a surface integral
of the sensor measurements of the acoustic field. Finally, we
use the extracted samples by the sensing principle, i.e., h , Ai
the so-called generalised samples to retrieve the parameters of
the source function.

IV. ALGORITHM

We propose a three-step algorithm to estimate the 3-D
location of the point sources from the observed acoustic field
by means of applying the sensing principle.

A. Planar Projection

Fig. 1: Poles of the sensing functions in the horizontal XY-
plane and after rotation in the X0Y0-plane.

In the first step, we choose a set of sensing functions  
satisfying (5) in a general X0Y0Z0coordinate system:

 n(Rr,!) =
ej!z0/c

x0
+ jy0 � an

, an /2 ⌦, (6)

where an’s are the poles of the sensing function on X0Y0-plane
located at equidistant angles an = aejn✓, n 2 J0, N�1K, |a| is
greater than the radius of ⌦ excluding the volume and ✓ is an
arbitrary angle. The matrix R represents rotation matrix of the
coordinate system along the X-axis in a standard right-handed
cartesian coordinate system given by

2

64
x0

y0

z0

3

75

| {z }
r0

=

2

64
1 0 0

1 cos↵ sin↵

0 � sin↵ cos↵

3

75

| {z }
R

2

64
x

y

z

3

75

|{z}
r

. (7)

In Fig. 1, we provide a visualisation for the rotation of the
poles of the sensing functions on the X0Y0-plane.

Then, we define a polynomial, Q(X) whose roots are the
positions of the point sources on the X0Y0-plane:

Q(X) =

MY

m=1

(X � s0m) =

MX

k=0

qkX
k where s0m = x0

m + iy0m

(8)
where qM = 1. With this selection, the extracted samples of
the source function (4) turns into an annihilable equation as
follows:

h n, Ai = µn =

MX

m=1

cmei!z0
m/c

x0
m + iy0m � an

(9)

=

PM�1
m=0 c0meimn✓

QM
m=1(x

0
m + iy0m � an)

=

PM�1
m=0 c0meimn✓

Q(an)
,

where c0m are complex-valued coefficients that do not depend
on n nor ✓. The sequence µn ·Q(an), for n 2 J0, N � 1K for
some N � 2M + 1 (i.e., innovation rate given by the FRI
sampling [11]), can be annihilated by a known FIR digital
filter h = {hk} for k 2 J0, N � 1K characterized as

H(z) =
X

k2Z
hkz

�k
=

M�1Y

k=0

(1� eik✓z�1
),

where the zeros of the filter are chosen as the poles of (6)
on the plane, i.e., eik✓ for k 2 J0,M � 1K. Finally, solving
this annihilation system for the coefficients of the polynomial
Q(X), the point sources’ positions on the X0Y0-plane are found
to be the roots of the polynomial Q.

B. Pairing of the Projections

In the second step, we first define an inclusion map so that
we can treat the projected points as in R3. Let f : R2 ! R3

be an inclusion map defined as

f

 
r0i =

"
x0
i

y0i

#!
:=

2

64
x0
i

y0i cos(↵i)

y0i sin(↵i)

3

75 (10)
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for each projection point ri0 on a plane defined by the normal
ni = RT

i n0 (See Fig.2) where Ri is the rotation matrix of
the coordinate system for ↵i (7) and n0 = [0, 0, 1]T is the
normal vector of the standard XY-plane. We propose a naive

y

z

n0

n1

n2

n3

x

Fig. 2: Visualization of the closest pair of points algorithm
for M = 2 points projected onto different planes Pi with the
normals of the planes ni

solution for the closest pair problem for two separated sets
of points between consecutive projection planes. Indeed, the
main idea is to compute the Euclidean distance between all
the pairs of points in two sets and then pick the pair with
the smallest distance. Let us consider we have P projection
planes defined by Pi i 2 J0, P � 1K where each plane has
M points to be paired. We assume an initial labelling for the
points in plane P0 with 1 to M . Then, to find the closest pair
of points p 2 Pi and q 2 Pi�1, we compute the distances
between all the M ⇥M pairs of points and we pick and label
the pair with the smallest distance and exclude it from the
set. We repeat the same approach for the remaining points.
We provide a summary of the method in Algorithm 1 and a
visualisation in Fig 2. The method is computed in O(n2

) but
can be solved it in O(n log n) using the recursive divide and
conquer approach [13].

Algorithm 1: Closest Pair of Points
Data: p 2 Pi, for i 2 [[0, P � 1]]

Result: lp: Labels of p 2 Pi

begin
Initialize: Label l0: 1 to M
for i=1 to P-1 do
P ⇤
i = Pi

while P ⇤
i is not empty do

p⇤ = argmin
p2P⇤

i

min
q2Pi�1

||f(p)� f(q)||2

P ⇤
i =P ⇤

i \{p⇤}
Label li : Match the labels of p⇤ and q

C. 3-D Reconstruction of the Positions

In the third step, we solve for the following least squares
problem

ˆrm = argmin
rm

P�1X

i=0

||Di||2, 8m 2 J1,MK (11)

where ||Di|| is the distance of the solution rm to the line that
passes through the point f(r0i) and parallel to ni (See Fig. 3):

||Di||=
||(rm � f(r0i))⇥ ni||

||ni||
,

where ⇥ represents the cross product of the two vectors and
||ni||= 1. In Fig. 3, we provide a visualisation of the solution.

y

z

n0

n1

n2

n3

x

Fig. 3: Visualization of the 3-D reconstruction by least square
regression of the distance between the true point (red) and the
lines (dashed) defined by the projection points and the normals

V. EXPERIMENTAL RESULTS

We performed numerical experiments to validate our re-
construction algorithm. Specifically, we considered a spherical
detection geometry having a radius of 8 cm that is typical for
the imaging of breast tissue in a PAT setting using a temporal
illumination profile given as I(t) = @/@t(e�t2/2�2

)/
p
2⇡�2.

The speed of sound is taken as constant c = 1500m/s and we
assumed that there are 134

2 sensors uniformly positioned on
the surface. We focused on the localisation accuracy of our
method.

We define the reconstruction error per point source by

RMSE =

vuut 1

M

MX

i=1

||rm � r̂m||2

where rm is the true position, r̂m is the estimated position.
In Fig. 4, we compare the reconstruction accuracy using the
frequency samples at 200 KHz of the sensor data at 20 dB
for varying number of projections such that the angle between
the planes is ⇡

2P . In Fig. 4, we demonstrate the improvement
obtained by increased number of projections in which we
achieve about mm reconstruction accuracy among a radius
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Fig. 4: RMSE results of an average of 50 independent reali-
sations for varying number of projections for M = 3, 5 and 7

using the frequency samples at 200 KHz of the sensor data at
20 dB

of 8cm. We conclude that multiplanar approach performs
accurate localization once the sensing principle is applied on
sufficient number of projection planes, i.e., small projection
angle between the planes.

VI. CONCLUSIONS

In sum, we proposed a non-iterative algorithm for the de-
tection of point absorbers in three dimensional wave equation
from the boundary measurements. The key component of the
method is the selection of the sensing function that is used
to extract the generalized samples by the surface integral.
Here, we demonstrate that a well localised family of sensing
functions with the proposed framework to build the solution
in 3D from 2D projections can achieve accurate results even
for the low SNR regime.

For simplicity of the discussion, we provide the method that
combines the projected solutions using a simple rotation of the
coordinate system along the X-axis only. However, a general
rotation in three dimension can be obtained from three basic
rotation matrices along X,Y, and Z-axes. Therefore, the idea
can be easily generalized to a framework that combines the
projections from any rotation as a composition of the rotations
along the three axes.

Sparse models for the inverse source problems from overde-
termined boundary field measurements remain as a promising
research area of further research. The current work focuses
on the systems governed by the wave equation, however the
framework can be applied to similar problems encountered in
different domains. Moreover, we also consider possibility and
feasibility of the proposed method in real applications.
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Abstract—Schlieren deflectometry aims at measuring deflec-

tions of light rays from transparent objects, which is subsequently

used to characterize the objects. With each location on a

smooth object surface a sparse deflection map (or spectrum)

is associated. In this paper, we demonstrate the compressive

acquisition and reconstruction of such maps, and the usage

of deflection information for object characterization, using a

schlieren deflectometer. To this end, we exploit the sparseness of

deflection maps and we use the framework of spread spectrum

compressed sensing. Further, at a second level, we demonstrate

how to use the deflection information optimally to reconstruct the

distribution of refractive index inside an object, by exploiting the

sparsity of refractive index maps in gradient domain.

I. INTRODUCTION

Schlieren deflectometry is a modality to measure the de-
flections undergone by light in a transparent object [1]. These
deflections are used to characterize the properties of the trans-
parent objects such as the surface curvature, distribution of
the refractive index, etc. Unlike interferometry, deflectometry
is insensitive to vibrations and hence is very attractive for
industrial deployment (e.g., for quality control).

Considering a thin transparent object with an incident paral-
lel beam of light rays, as shown in Fig. 1(left). At each surface
location p, the function of our interest is a deflection spectrum
s̃p(✓,') 2 R

+

, representing the flux of the light deviated in
the direction (✓,'), in a spherical coordinate system. These
deflection spectra provide information about the curvature of
the object, and hence it is interesting to study them.

For convenience, s̃p is represented in this paper by its
projection in the ⇧p = e

2

e
3

plane, i.e., according to the
projected function sp(r(✓), ') = s̃p(✓,') with r(✓) = tan ✓.
Moreover, the object surface is assumed sufficiently smooth
for being parametrized by a projection of p in the same plane
(on a arbitrary fixed origin), so that p is basically a 2-D vector.

An important feature of deflections is that for most objects
(e.g., with smooth surfaces), for any location p, the flux is
limited to range of angles and hence the deflection spectra
therefore tend to be naturally sparse in plane ⇧p or in some
appropriate basis of this domain (e.g., wavelets). Fig. 1(right)
shows an example of a discretized deflection spectrum sp for
one location of a plano convex lens obtained using the setup
described in Sec. II. The white spot in the image signifies
that deflections occur at only a few angles (as governed by
classical optics) and deflections elsewhere are negligible.

The optical setup described in Sec. II measures the deflec-
tion spectrum sp for each location p indirectly by optical

PS is supported by the DETROIT project (WIST3), Walloon Region,
Belgium. LJ is supported by the Belgian FRS-FNRS fund.
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Fig. 1: Left, illustration of a deflection spectrum. Right, a typical (projected)
deflection spectrum sp for a plano convex lens of optical power 25.12D.

comparison with a certain number of programmable modula-
tion patterns. Computationally, these optical comparisons are
nothing but inner products between the deflection spectrum
and the modulation patterns. By assuming an extreme case of
the spectrum being a mere impulse, Phase Shifting Schlieren
(PSS) method measures the deflection angles by using multi-
line phase shifted patterns in the SLM [2]. However, it is a
limitation to ignore the richness of the deflection spectrum.

To this end, aided by the hindsight that each deflection
spectra is sparse, we use the framework of spread spectrum1

compressive sensing [3], described in Sec. III, to capture
maximum information about the spectrum using relatively few
modulation patterns, and then reconstruct the spectrum at each
location by solving an inverse problem. In effect, each CCD
pixel of our system behaves like a single pixel camera [4], but
for deflection spectrum.

In Sec. IV, we present the numerical results of reconstruct-
ing deflection spectra from deflectometric measurements, after
calibrating the system relative to its intrinsic noise. By making
further assumptions about the spectra, we show in Sec. V how
the deflection information can be obtained without explicit
reconstruction of the spectra.

If the object contains regions of varying refractive index,
then light undergoes deflections internally and at each surface
location only the resultant deflection is measured. Therefore,
the deflections provide indirect information about the distri-
bution of the refractive index (henceforth called Refractive
Index Map (RIM)). This necessitates measuring deflections for
several orientations of the object in order to recover the RIM.
Sec. VI briefly describes how the sparsity of RIM helps in its
reconstruction using deflections from only few orientations.

1“Spread Spectrum” is not related to the studied deflection “spectrum” but
it refers to the signal frequency spectrum.
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Fig. 2: A 2-D schematic of Schlieren deflectometer.

II. SCHLIEREN DEFLECTOMETER

Deflection spectra can be measured by the Schlieren deflec-
tometer, shown in Fig. 2, which consists of (i) a Spatial Light
Modulator (SLM), (ii) the Schlieren lens with focal length f ,
(iii) the Telecentric System (TS) and (iv) the Charged Coupled
Device (CCD) camera collecting the light.

The object to be analyzed is placed in between the Schlieren
lens and the telecentric system. It is shined on its left by
a light source and, due to the telecentric system, only the
parallel light rays emerging out of the object are collected by
the CCD. Moreover, up to a flip around the optical axis, each
location p on the object at a distance ⌧ from the optical axis
O (dashed line), is probed by a corresponding CCD pixel also
at a distance of ⌧ from O. Each location p is thus in one-to-
one correspondence with a CCD pixel and we will sometimes
consider p as CCD pixel location.

From classical optics, a light ray that is incident on location
p at an angle ✓p originates from the light source at a
distance of �x = f tan ✓p from the optical axis. Likewise,
the light rays originating at different locations on the source
have different incident angles at p. Since we can always
virtually invert the light propagation in the system, everything
works as if the object was shined on its right by a beam of
parallel light rays. Therefore, up to a global scaling by f , the
SLM plane is actually the local plane ⇧p of the deflection
spectrum occurring at p. Modulating the SLM corresponds to
modulating sp, while the light collected in CCD pixel p is
just an inner product of sp with the modulation.

If we generate M such modulations �i 2 RN with 1  i 
M in the SLM of N pixels, considering the discrete nature of
the CCD camera (having N

C

pixels), the discretized deflection
spectra are observed through

yk = �sk + n, 1  k  N
C

, (1)

where �T
= (�

1

, · · · ,�M ) 2 RN⇥M is the sensing matrix, k
is a CCD pixel index, sk 2 RN is the discretized spectrum at
the kth pixel/object location, and n models the measurement
noise (assumed Gaussian). Notice that the SLM and the CCD
2-D grids are represented as 1-D spaces for brevity of notation,
so that � is then a sensing 2-D matrix acting on 1-D vectors.

To optimize the design of � we rely upon spread spectrum
compressed sensing theory.

III. SPREAD SPECTRUM COMPRESSIVE SENSING

In Spread Spectrum Compressive Sensing (SSCS), a sig-
nal x =  ↵ 2 CN , having a sparse representation in
an orthonormal sparsity basis  2 CN⇥N , i.e., k↵k

0

:=

#{j : ↵j 6= 0}  K ⌧ N is randomly pre-modulated

before sensing [3]. Given a Rademacher or Steinhaus sequence
m 2 CN , |mi| = 1, the sensing process is summarized by

y = �⇤
⌦

M ↵ + n, (2)
where ⇤ denotes the conjugate transpose, � 2 CN⇥N is an
orthonormal sensing basis, �

⌦

is the M⇥N submatrix formed
by restricting the columns of � to those in ⌦ ⇢ [N ] :=

{1, · · · , N}, M = diag(m) and n is a Gaussian noise vector.
The signal is reconstructed by solving a convex optimization

problem, known as Basis Pursuit De-Noising (BPDN) [5]

b↵ := arg min

e↵2CN

ke↵k
1

subject to ky ��e↵k
2

 ✏, (3)

where � = �⇤
⌦

M , and ✏ is a bound on knk
2

 ✏.
For a given ✏, the number of measurements M required

by (3) to find a solution is, in general, governed by the sparsity
level K and the coherence

µ := max

1i,jN
|h�i, M ji|, (4)

where �i and  j are the columns of sensing and sparsity
matrices respectively [3], [6]. Smaller the coherence, lesser is
the number of measurements required for successful recovery
of the solution, with a high probability.

Defining C�, = max

1i,jN k�i � jk2

, where � denotes
pointwise product, the mutual coherence µ obeys

µ  C�, 

p
2 log(2N2/�), (5)

with probability at least 1 � �. When � is a universal basis,
i.e., when all the entries have the same complex amplitude c,
spread spectrum is optimal with C�, = c and the coherence
µ ' c, with a very high probability, irrespective of the
sparsity basis. Specifically, for Fourier and Hadamard bases,
µ ' 1/

p
N with high probability. We see in next section how

to exploit the spread spectrum CS method in our optical setup.

IV. DEFLECTION SPECTRUM RECONSTRUCTION

To apply the ideas of spread spectrum CS to schlieren
deflectometry, certain practical aspects have to be considered.
Most importantly, as the Spatial Light Modulator (SLM)
accepts only real and non-negative valued entries, we use
the Hadamard (universal) basis H combined with a random
Rademacher vector m with mi = ±1 independently with
equal probability for sensing.

Further, the sensing basis is biased to have all the entries
non-negative and an extra measurement is obtained to remove
the bias during reconstruction. The details about obtaining the
measurements can be found in [7].

Noise estimation: If there is no test object, then by classical
optics the measured deflection spectrum is constant in all
CCD pixels and corresponds to a simple disk centered on the
origin of the spectrum domain. We denote it as sno. The disk
diameter is proportional to the pinhole diameter of the system
(see Fig. 2). This prior information aids us in calibrating the
system and in estimating the noise level on the measurements.

From actual measurements in the absence of test object, we
obtain, on an arbitrary CCD pixel, yno

= �(sno

+ ns) + ny ,
where ns and ny are the unknown signal and observation
noises. After a small calibration of the SLM origin, and up to
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Fig. 3: An example of reconstruction using 2.5%, 10% and 100% of
measurements.

a small optimization of the disk height in sno, we can therefore
compute a bound on the noise power as ✏ = k�ns +nyk

2

=

kyno��snok
2

. We can either obtain this value for every M or
estimate it for M = N only and scale the result as ✏(M) =p

M + 2

p
M ✏(N)/

p
N for M < N . This estimate stems

from the concentration properties of �2

M random variables.

Reconstruction procedure: For the reconstruction, we use
the Daubechies 9/7 wavelet basis as our sparsity basis [8]
which offers a sparser representation of the spectra than the
canonical (Dirac) basis. To reconstruct the spectrum at any
location k, an estimate of the sparse wavelet coefficients b↵k

is obtained by solving (3) with the ✏ estimated above. The
spectrum is then estimated by ˆsk =  ⇤b↵k. To solve (3),
we used the Chambolle-Pock algorithm, a first order primal-
dual method for solving convex optimization problems using
proximal operators [9]. Compared to a previous work on
this subject [7], the reconstruction performance improved by
constraining the estimate ˆsk to be non-negative.

For evaluating compressive reconstruction performance, (3)
was solved with M = N measurements to obtain the reference
reconstruction ˜sk. Reconstructions for M < N were compared
with ˜sk using the (output) Signal-to-Noise Ratio oSNR :=

20 log

10

(k˜skk
2

/k˜sk � ˆskk
2

).

Experimental Results:

2 For experiments, we considered two
plano convex lenses of optical powers 10.03D and 60D, and
restricted the size of spectrum to 64 ⇥ 64 centered around the
SLM origin, resulting in N = 4096. For 5 CCD locations, 10
independent reconstruction trials were performed for several
values of M , by randomly drawing a new ⌦ ⇢ [N ] every time.

Fig. 3 shows an example of deflection spectrum recon-
structed using 2.5%, 10% and 100% of measurements, for the
lens with 10D optical power. Note that the spectrum is well
localized and sparse, corroborating our initial observation.

Fig. 4 shows the plot of oSNR versus the number of
measurements M/N (in %), averaged over the trials and
locations. The curves with square markers correspond to the
solutions obtained using additional non-negativity constraints
and the rest correspond to the lack of it. The oSNR improves
as M/N increases, as expected. Though the absolute values
of oSNR seem low, its significance has to be understood in the
light of the input SNR, which is approximately computed as
iSNR := 20 log

10

(k�snok
2

/kyno��snok
2

) ' 4.34 dB. The
horizontal dotted line on the plot indicates the iSNR for our
experiments, and it is clear that the reconstruction procedure
improves the oSNR, beyond the iSNR, thereby demonstrating

2Computational resources have been provided by the supercomputing facili-
ties of the Université catholique de Louvain (CISM/UCL) and the Consortium
des Équipements de Calcul Intensif en Fédération Wallonie Bruxelles (CÉCI)
funded by the F.R.S.-FNRS under convention 2.5020.11.
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Fig. 4: Average reconstruction oSNR (in dB) as a function of M/N .

the ability of CS reconstruction of deflection spectra in low
input SNR regime.

V. OBTAINING DEFLECTIONS WITHOUT RECONSTRUCTION

Reconstruction of deflection spectra is a computationally
intensive task and therefore if the objective is only to detect the
location of the important feature of the spectrum (in our case,
the location of the bright spot), then the idea of compressive
domain signal processing can be used [10], [11]. Assuming
that a template g⇢ for the feature can be built, the feature
can be localized using a matched filtering operation performed
directly on the measurements, without reconstructions. These
locations provide a first guess of the deflections.

For compressive spectrum detection, given deflectometric
measurements yk, we simply solve the following [7]

e⌧k = arg max

⌧
|h�T yk, g⇢

⌧ i|, (6)

where g⇢
⌧ is g⇢ translated by ⌧ .

The experimental results showed that the distance between
the centroids computed using compressive measurements and
full reconstruction becomes sub-pixel for measurements size
M/N as low as 4%, and continues to decrease as M increases.
The evolution of the centroid estimation error versus the
number of measurements M/N is available in [7].

We shall now see how to utilize deflection information for
certain meaningful characterization of transparent objects.

VI. REFRACTIVE INDEX MAP RECONSTRUCTION USING
DEFLECTION INFORMATION

Characterizing a transparent object consisting of heteroge-
neous optical media by studying its Refractive Index Map
(RIM), i.e., the spatial distribution of the refractive index, is
an important and challenging task for its manufacturing. In
this section we will focus on the task of reconstructing RIM
starting from deflection information.

The objective of the work is to demonstrate the relevance
of sparsity and compressive sensing ideas for RIM reconstruc-
tion, independent of how the deflection maps are acquired
(compressively or not). To emphasize that sparsity also helps
in efficiently reconstructing RIM of transparent objects, we
work with the deflection maps acquired (non-compressively)
using the classical phase shifting schlieren method.

As shown in Fig. 5 (left), consider a refractive index
map n(r), r 2 R2 in the e

1

e
2

plane (assuming that it is
invariant along e

3

), that characterizes a complex object. For
a given incident angle ✓ of the incoming light rays, schlieren
deflectometer measures a two-dimensional map of the effective
deflections �(✓, ⌧), where ⌧ is the distance between the origin
and the incident light ray under consideration.
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Fig. 5: (left) Model of light deflection through a transparent object. (right)
TV model of RIM.

The measured deflection angles turn out to be the integral
of the transverse gradient of the RIM, along the path of the
light assumed to be straight (paraxial approximation) [12].
Notice that unlike the integration of the function itself in usual
tomographic settings, here the integration is on the gradient of
the function. Upon using the modified (deflectometric) Fourier
slice theorem, the Fourier transform y✓ of �(✓, ⌧), along ⌧ for
a fixed ✓, provides one “slice” of the two-dimensional polar
Fourier transform ˆn(k) of n(r) through the origin, but each
coefficient weighted by its distance to the frequency origin.
This weighting is in fact due to the integration of the gradient.

With a suitable discretization of the quantities and abuse
of notations, the vectorized RIM n and the vectorized Fourier
transform of the deflection angles y✓ are related by

y✓ = �n + n, (7)

where � incorporates the Fourier operation and weighting
factors arising from the slice theorem [13].

Reconstructing n from the y✓ involves measuring deflec-
tions from several incident angles ✓ and then solving an inverse
problem using the forward model (7). To stabilize the inverse
problem, suitable prior knowledge on n has to be incorporated.

For a wide class of human made transparent objects, the
RIM consists of slowly varying regions limited by sharp
boundaries, as in Fig. 5(right), and therefore the RIM is sparse
in the gradient domain. This prior knowledge about sparsity
greatly helps us in reducing the number N✓ of incident angles
that are needed to satisfactorily reconstruct the RIM.

Algorithmically, the RIM is reconstructed by promoting
a solution with least Total Variation (TV) norm knkTV =

krnk
2,1 [14], [9], that also respects the forward model (7)

for a given noise level. The quality of the solution is further
improved by using additional prior knowledge such as the non-
negativity of n and relevant boundary conditions.

For a test object of a bundle of optical fibres, Fig. 6(left)
shows the reconstructed RIM, for the number of incident
angles N✓ = 60 (17% out of the possible 360 angles), using
the well known Filtered Back Projection (FBP) algorithm that
promotes a minimal `

2

norm of the solution [15]. Fig. 6(right)
shows the RIM reconstructed using a TV minimization ap-
proach, for the same number of angles. The TV reconstruction
is better than that of FBP in not only suppressing the artifacts
outside the fibre regions, but also in recovering the sharp edges
between the fibres and the surroundings.

VII. CONCLUSIONS AND PERSPECTIVES

This paper presents a novel approach for obtaining deflec-
tion information of transparent objects using schlieren deflec-
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Fig. 6: An example of RIM reconstruction for a bundle of fibres with (left)
the FBP and (right) TV minimization approach.

tometer, and using this information to further characterize the
objects. It has been demonstrated that suitable sparsity prior
not only helps us to compressively acquire and reconstruct
deflection maps, but also in efficiently using these deflections
to reconstruct refractive index maps.

For further work, it is of foremost importance to understand
the noise properties to tune the reconstruction method. Meth-
ods have to be developed to fully exploit the rich nature of
deflection spectrum for object characterization. We also intend
to develop approaches to exploit redundant dictionaries (e.g.
undecimated wavelets), analysis-based reconstructions or cor-
relation between neighbouring spectra for their simultaneous
reconstruction.
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Abstract—We review the Fourier-Laguerre transform, an al-
ternative harmonic analysis on the three-dimensional ball to the
usual Fourier-Bessel transform. The Fourier-Laguerre transform
exhibits an exact quadrature rule and thus leads to a sampling
theorem on the ball. We study the definition of convolution on
the ball in this context, showing explicitly how translation on the
radial line may be viewed as convolution with a shifted Dirac
delta function. We review the exact Fourier-Laguerre wavelet
transform on the ball, coined flaglets, and show that flaglets
constitute a tight frame.

Index Terms—Harmonic analysis, sampling, wavelets, three-
dimensional ball.

I. INTRODUCTION

Data often live naturally on the three-dimensional ball. For
example, in cosmology the distribution of galaxies that traces
the large-scale structure of the Universe is observed on the
celestial sphere (e.g. [1]), augmented with depth information
given by redshift. A spherical shell at a given redshift rep-
resents a given epoch in the history of our Universe; thus,
such data live naturally on the three-dimensional ball (hereafter
referred to as simply the ball).

One would like to analyse such data-sets on the ball to
study the physics responsible for them. Since many physical
processes are manifest on different physical scales, while also
spatially localised, wavelet analysis is a power method for this
purpose. Recently, two wavelet transforms have been derived
on the ball [4], [5]. The former [4] is based on an undecimated
wavelet construction, built on the Fourier-Bessel transform.
The latter [5] is based on a tiling of harmonic space, built on
a Fourier-Laguerre transform, and developed by the authors of
the current article. Our approach [5]: (i) yields wavelets that
are not isotropic but rather exhibit an angular opening that
is invariant under radial translation; (ii) is theoretically exact;
and (iii) leads to a fast multiresolution algorithm.

In this article we review our recent work [5] where we con-
sider the Fourier-Laguerre transform and construct wavelets
(which we coin flaglets) on the ball. Furthermore, we illumi-
nate the translation operator on the radial line, showing how
this may be viewed as convolution with a shifted Dirac delta
function. We also show that flaglets constitute a tight frame.

II. FOURIER-LAGUERRE TRANSFORM

The canonical harmonic transform on the ball is the Fourier-
Bessel transform, where the basis functions are the eigenfunc-
tions of the Laplacian on the ball. The Fourier-Bessel basis
functions separate into the usual spherical harmonic functions

on the sphere and the spherical Bessel functions on the radial
line. However, the Fourier-Bessel transform suffers from a
serious shortcoming. To the best of our knowledge there does
not exist a sampling theorem for the Fourier-Bessel transform,
since there does not exist an exact quadrature rule for the
evaluation of the spherical Bessel transform (the radial part of
the Fourier-Bessel transform).

To overcome this limitation we consider the Fourier-
Laguerre transform, for which we developed a sampling theo-
rem [5]. The Fourier-Laguerre transform follows by adopting
the Laguerre polynomials (the standard orthogonal polynomi-
als on R+) as the radial basis functions, while keeping the
spherical harmonics as the spherical basis functions. We define
the Fourier-Laguerre basis functions on the ball B3 = R+ ⇥ S2
by

Z`mp(r) = Kp(r)Y`m(✓,'), (1)

with spherical coordinates r = (r, ✓,') 2 B3, where r 2 R+

denotes radius, ✓ 2 [0,⇡] colatitude and ' 2 [0, 2⇡) longitude,
and where `, p 2 N0 and m 2 Z such that |m|  `. The
standard spherical harmonics are denoted by Y`m and the
normalised spherical Laguerre basis functions are defined on
the radial line by

Kp(r) ⌘

s
p!

(p+ 2)!

e

�r/2⌧

p
⌧

3
L

(2)
p (r/⌧) , (2)

where L

(2)
p is the p-th generalised Laguerre polynomial of

order two and ⌧ 2 R+ is a radial scale factor.
A square-integrable signal f 2 L2(B3) can then be decom-

posed as

f(r) =
1X

p=0

1X

`=0

X̀

m=�`

f`mpZ`mp(r), (3)

where the harmonic coefficients are given by the usual pro-
jection

f`mp = hf |Z`mpiB3 =

Z

B3

d3rf(r)Z⇤
`mp(r), (4)

where d3r = r

2 sin ✓ dr d✓ d' is the usual rotation invariant
measure in spherical coordinates.1 We consider band-limited

1This measure is a natural choice since it allows the Fourier-Laguerre
transform to be related directly to the Fourier-Bessel transform, such that the
Fourier-Bessel coefficients can be computed exactly from Fourier-Laguerre
coefficients (see [5] for further details).
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signals, with angular and radial band-limits L and P , respec-
tively, i.e. signals f such that f`mp = 0, 8` � L, 8p � P .
In this case the summations in Eqn. (3) over ` and p may be
truncated to L� 1 and P � 1 respectively.

In practice, computing the Fourier-Laguerre transform in-
volves the evaluation of the integral of Eqn. (4). An exact
quadrature rule for the evaluation of this integral for a band-
limited function f naturally gives rise to a sampling theorem.
Since the Fourier-Laguerre transform is separable in angular
and radial coordinates, we may appeal to separate sampling
theorems on the sphere and radial line. For the angular part,
we adopt the equiangular sampling theorem on the sphere
developed recently by one of the authors [7]. Other sampling
theorems on the sphere could alternatively be adopted (e.g.

[2]), however we select the sampling theorem developed
by [7] since it leads to the most efficient sampling of the
sphere (i.e. the fewest number of samples to represent a
band-limited signal exactly). For the radial part, we appeal
to Gaussian quadrature to develop an exact quadrature rule
and, consequently, a sampling theorem [5]. Combining these
results we recover a sampling theorem and, equivalently, an
exact Fourier-Laguerre transform on B3. For a band-limited
signal all of the information content of the signal is captured
in N = P [(2L� 1)(L� 1) + 1] ⇠ 2PL

2 samples on the ball
[5].

We have developed the public FLAG2 code [5] to compute
the Fourier-Laguerre transform. The FLAG code computes
exact forward and inverse Fourier-Laguerre transforms at
machine precision and is stable to extremely large band-
limits, relying on the public SSHT3 code [7] developed by
one of the authors for the angular part, which in turn relies on
FFTW4. FLAG supports both the C and Matlab programming
languages.

III. CONVOLUTION ON THE BALL

We review the definition of convolution on the ball [5],
highlighting how the translation operator defined on the radial
line may be viewed as convolution with a Dirac delta function.
By the angular and radial separability of the Fourier-Laguerre
transform, we construct a convolution operator on the ball from
convolution operators on the sphere and radial line (e.g. [3]).

On the sphere, we adopt the usual convolution of f 2
L2(S2) with an axisymmetric kernel h 2 L2(S2) given by
the inner product (e.g. [8])

(f ? h)(✓,') ⌘ hf |R(✓,')hiS2 (5)

=

Z

S2
d⌦(✓0,'0)f(✓0,'0)

�
R(✓,')h

�⇤
(✓0,'0),

where d⌦(✓,') = sin ✓ d✓ d' is the usual rotation invari-
ant measure on the sphere. The translation operator on the
sphere is given by the standard three-dimensional rotation:
(R(↵,�,�)h)(✓,') = h(R�1

(↵,�,�)(✓,')), with (↵,�, �) 2

2http://www.flaglets.org/
3http://www.jasonmcewen.org/
4http://www.fftw.org/

SO(3), where ↵ 2 [0, 2⇡), � 2 [0,⇡] and � 2 [0, 2⇡). We
make the association ✓ = � and ' = ↵, i.e. R(✓,') ⌘ R(↵,�,0),
and restrict our attention to convolution with axisymmetric
functions that are invariant under azimuthal rotation, i.e.

R(0,0,�)h = h, so that we recover a convolved function
f ? h defined on the sphere. In harmonic space, axisymmetric
convolution may be written

(f ? h)`m = hf ? h|Y`miS2 =

r
4⇡

2`+ 1
f`mh

⇤
`0, (6)

with f`m = hf |Y`miS2 and h`0�m0 = hh|Y`miS2 . The
generalisation to directional convolution on the sphere is
straightforward (see e.g. [8]), however we do not present it
here since we consider axisymmetric wavelets subsequently.

On the radial line, we consider a convolution operator
appropriate for the spherical Laguerre basis. We adopt a
convolution similar to that considered by [3] and others (see
additional references contained in [3]), although we recover
this operator in an alternative manner. Firstly, we define a
translation operator T on the radial line, which is constructed
by analogy with the case for the infinite line, for which the
standard orthogonal basis is given by the complex exponentials
�!(x) = exp(i!x), with x,! 2 R. Translation of the basis
functions on the infinite line is simply defined by the shift of
coordinates: (T R

u �!)(x) ⌘ �!(x � u) = �

⇤
!(u)�!(x), with

u 2 R and where the final equality follows by the standard
rules for exponents. We define translation of the spherical
Laguerre basis functions on the radial line by analogy:

(TsKp)(r) ⌘ Kp(s)Kp(r), (7)

where s 2 R+ (since Kp is real we drop the complex
conjugation). This leads to a natural harmonic expression for
the translation of a radial function f 2 L2(R+):

(Tsf)(r) =
1X

p=0

fpKp(s)Kp(r), (8)

implying
(Tsf)p = Kp(s)fp, (9)

where fp = hf |KpiR+ .
With a translation operator to hand, we may define convolu-

tion on the radial line of f, h 2 L2(R+) by the inner product

(f ? h)(r) ⌘ hf |TrhiR+ =

Z

R+

dss2f(s) (Trh) (s), (10)

from which it follows that radial convolution in harmonic
space is given by the product

(f ? h)p = hf ? h|KpiR+ = fphp, (11)

where hp = hh|KpiR+ .
Although the definition of the convolution operator on the

radial line is complete, we would like to gain further intuition.
The action of the translation operator is described in harmonic
space through Eqn. (9), which remains somewhat opaque. We
would also like to view the translation operator that we have
constructed on the radial line in real space.
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Fig. 1. Band-limited Dirac delta functions plotted on the radial line at
positions s = {0.2, 0.3, 0.4} (plotted in blue, green and red, respectively).
Oscillations are caused by the finite band-limit (here P = 256); as P ! 1
oscillations vanish as the band-limited Delta converges to �s(r) = r�2�R(r�
s).

In order to recover a real space representation of the radial
translation operator we must first consider the Dirac delta
function on the radial line. We define the Dirac delta on the
radial line at position s by �s(r) ⌘ r

�2
�

R(r� s), where �

R is
the usual Dirac delta defined on the infinite line R. The Dirac
delta on the radial line satisfies the following normalisation
and sifting properties, respectively:

Z

R+

drr2�s(r) = 1; (12)
Z

R+

drr2f(r)�s(r) = f(s). (13)

The harmonic expansion of the Dirac delta is given by

�s(r) =

1X

p=0

Kp(s)Kp(r), (14)

which follows trivially by the sifting property. For the analysis
of band-limited functions, it is sufficient to consider the band-
limited Dirac delta (see Fig. 1), where the summation of
Eqn. (14) is truncated to P � 1.

With the Dirac delta function now defined on the radial line,
we show that the radial translation operator defined above is
simply the convolution of a function with the shifted Dirac
delta function:

(f ? �s)(r) =

1X

p=0

fpKp(s)Kp(r) = (Tsf)(r), (15)

where the final equality follows by Eqn. (8). Radial convo-
lution and translation are thus the natural analogues of the
respective operators defined on the infinite line.

We define the translation operator on the ball by combining
the angular and radial translation operators, giving

Tr ⌘ TrR(✓,'). (16)

The action of the radial translation operator on functions
defined on the ball is shown in Fig. 2. The convolution on the
ball of f 2 L2(B3) with an axisymmetric kernel h 2 L2(B3)
is then defined by the inner product

(f ? h)(r) ⌘ hf |TrhiB3 =

Z

B3

d3sf(s)(Trh)⇤(s), (17)

where s 2 B3. In harmonic space, axisymmetric convolution
on the ball may be written

(f ? h)`mp = hf ? h|Z`mpiB3 =

r
4⇡

2`+ 1
f`mph

⇤
`0p, (18)

with f`mp = hf |Z`mpiB3 and h`0p�m0 = hh|Z`mpiB3 .

IV. FLAGLETS ON THE BALL

With an exact harmonic transform and a convolution op-
erator defined on the ball in hand, we are now in a position
to construct our exact wavelet transform on the ball, which
we call the flaglet transform (for Fourier-LAGuerre wavelet
transform) [5].

For a function of interest f 2 L2(B3), we define its jj

0-th
wavelet coefficient W jj0 2 L2(B3) by the convolution of f

with the axisymmetric wavelet, or flaglet,  jj0 2 L2(B3):

W

 jj0

(r) ⌘ (f ? jj0)(r) = hf |Tr jj0iB3
. (19)

The scales j, j

0 2 N+
0 respectively relate to angular and radial

spaces. The wavelet coefficients contain the detail information
of the signal only; a scaling function and corresponding scaling
coefficients must be introduced to represent the low-frequency,
approximate information of the signal. The scaling coefficients
W

� 2 L2(B3) are defined by the convolution of f with the
scaling function � 2 L2(B3):

W

�(r) ⌘ (f ? �)(r) = hf |Tr�iB3
. (20)

Provided the flaglets and scaling function satisfy an ad-
missibility property (defined below), the function f may be
reconstructed exactly from its wavelet and scaling coefficients
by

f(r) =

Z

B3

d3r0W�(r0)(Tr�)(r0)

+

JX

j=J0

J 0X

j0=J 0
0

Z

B3

d3r0W jj0

(r0)(Tr jj0)(r0).
(21)

The parameters J0 and J (J 0
0 and J

0) define the minimum
and maximum wavelet scales considered respectively for the
angular (radial) space and depend on the band-limit of f and
the specific definition of the wavelets and scaling function (see
[5]).

The admissibility condition under which a band-limited
function f can be reconstructed exactly is given by the
following resolution of the identity:

4⇡

2`+ 1

 
|�`0p|2 +

JX

j=J0

J0X

j0=J 0
0

| jj0

`0p|
2

!
= 1, 8`, p, (22)

where �`0p�m0 = h�|Z`mpiB3 and  jj0

`0p�m0 =

h jj0 |Z`mpiB3 . We refer the reader to our previous article
[5] for an example of the construction of specific wavelets
and scaling functions that satisfy the admissibility condition,
where we construct suitable wavelets by tiling the `-p
harmonic plane. The resulting wavelets are plotted in Fig. 2.
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(a)  jj0 (r) translated by r = 0.2
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(b)  jj0 (r) translated by r = 0.4

Fig. 2. Slices of the flaglet  jj0 (r) with j = j0 = 5 constructed on the ball
of radius R = 1 at resolution P = L = 64. The three-dimensional flaglets
can be visualised by rotating the slices of the left panel (zoomed on a ball of
radius r = 0.5 for clarity) around the vertical axis passing through the origin.
The radial profiles are shown in the right panels. Flaglets are well localised
in both real and Fourier-Laguerre spaces. Furthermore, their angular aperture
is invariant under radial translation.

We prove that flaglets are a tight frame by showing they
satisfy

Akfk2B3 
Z

B3

d3r|hf |Tr�iB3 |2 (23)

+

JX

j=J0

J 0X

j0=J 0
0

Z

B3

d3r|hf |Tr jj0iB3 |2  Bkfk2B3 ,

with A = B 2 R+
⇤ , for any band-limited f 2 L2(B3), and

where k ·k2B3 ⌘ h·|·iB3 . We adopt a shorthand integral notation
in Eqn. (23), although by appealing to our exact quadrature
rule these integrals may be replaced by finite sums. Noting
the harmonic expression for axisymmetric convolution given
by Eqn. (18) and the orthogonality of the Fourier-Laguerre
basis functions, it is straightforward to show that the term of
Eqn. (23) bounded between inequalities may be written

P�1X

p=0

L�1X

`=0

X̀

m=�`

4⇡

2`+ 1

 
|�`0p|2|f`mp|2

+
JX

j=J0

J 0X

j0=J 0
0

| jj0

`0p|
2|f`mp|2

!

=
P�1X

p=0

L�1X

`=0

X̀

m=�`

|f`mp|2 =

Z

B3

d3r|f(r)|2 = kfk2B3 ,

(24)

where the second line follows from the admissibility property
Eqn. (22). Thus, we find flaglets indeed constitute a tight frame

with A = B = 1, implying the energy of f is conserved in
flaglet space.

We have developed the public FLAGLET5 code [5] to
compute the flaglet transform. The FLAGLET code computes
the exact forward and inverse flaglet transform at machine
precision, exploiting a fast multiresolution algorithm, and is
stable to extremely large band-limits (the computation time
and numerical precision of the FLAGLET code is evaluated
in detail in [5], where a toy application is also presented).
FLAGLET relies on the public code S2LET6 [6] (to compute
wavelet transforms on the sphere), FLAG5 [5], SSHT7 [7] and
FFTW8, and supports both the C and Matlab programming
languages.

To summarise, flaglets live naturally on the ball (with an
angular opening that is invariant under radial translation),
yield a theoretically exact wavelet transform on the ball (in
both the continuous and discrete settings), and exhibit a fast
multiresolution algorithm. It is our hope that flaglets will prove
useful for analysing data defined on the ball. Indeed, in the
near future we intend to apply flaglets to study the large-scale
structure of the Universe traced by the distribution of galaxies.
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Abstract—Interpolation is a fundamental issue in image pro-
cessing. In this short paper, we communicate ongoing results
concerning the accuracy of two landmark approaches: the
Shannon expansion and the Discrete Fourier Transform (DFT)
interpolation. Among all sources of error, we focus on the impact
of spatial truncation. Our estimations are expressed in the form
of upper bounds on the Root Mean Squared Error as a function
of the distance to the image border. The quality of these bounds
is appraised through experiments driven on natural images.

I. INTRODUCTION

Regardless of their very digital nature, images must often be
considered continuous. To some extent that we shall discuss,
this conceptual ”equivalence” is justified by the Shannon-
Whittaker theorem. By any means, it is paramount for any
application of image processing where sub-pixel operations
are performed (such as in optical flow or stereopsis).

However fundamental, the Shannon-Whittaker theorem is
by nature deceptive when considering practical circumstances
for digital signals are noisy, possibly aliased and more impor-
tantly finite. As a result, any practical continuous reconstruc-
tion of such signals will be flawed. Among other error sources,
one can list photon counting, quantization, aliasing and spatial
truncation ([1]). The first three can be harnessed by different
means. Photon counting noise can be lowered by increasing
the exposure time, while quantization and aliasing are well
controlled in recent High Dynamic Range (HDR) cameras.

On the contrary, the last source of error will prove to be
much more troublesome. It is indeed the main goal of these
notes to alert the readers on this issue. We will also give
evidence that this is especially true for images, due to their
relatively narrow spatial extension and to their slow spectral
decay (mainly when textures are present).

It is rather awkward that the truncation error is often entirely
ignored in image processing. It was nonetheless studied in
other communities of signal processing. This is for example
the case of [2], [3], [4] and [5]. These articles are all dedicated
to the truncation error. They include upper bounds valid
under diverse circumstances. Unfortunately, because they were
developed in different contexts, these results are not so well
adapted to images.

In [2] for instance, the signal is assumed bounded. This is
certainly true for images since they are encoded on the range
between 0 and 255. However in practice their bound yields a
large overestimation because its tightness is proportional to the
signal dynamic which often exceeds greatly the signal local
variability. In [3], [5] the signal is assumed over-sampled,

a case often referred to as the guard band assumption in
the literature. Such an assumption may be realistic for audio
signals but not for images. Note that in the limit where the
guard band vanishes, the upper bounds explode inescapably.

While standing no exception to the previous limitations,
the study presented in [6] has yet been very inspirational. It
considers signals as stationary random processes and proposes
two upper-bounds depending upon whether the signal is over-
sampled or not. If not, the upper-bound is proportional to
the maximum value of the spectrum. This maximum value is
generally large and does not lead to a practical upper-bound.

Let us mention also [7], where the problem of Shannon-
Whittaker interpolation is directly posed for duration-limited
signals. Instead of considering convergence upon an infinite
number of samples, the authors let the sampling rate tend to
infinity. As a result, no band-limited assumption is required on
the signal. The counterpart is that upper bounds are derived
and expressed in term of the modulus of continuity of the sig-
nal. Such a property can only be known in certain application
domains, and certainly not in classical image processing.

All the articles we have mentioned so far concentrate on the
Shannon expansion, while in practice, the DFT interpolation is
preferred due to a lesser time complexity. To our knowledge,
upper-bounds in that case have only been studied in [8].
Their approach is similar to [3] and hence suffers the same
limitations. Since the DFT interpolation is equivalent to the
exact Shannon expansion under periodic conditions, a periodic
plus smooth decomposition [9] may improve its performance.

It is worth noting that the general study of interpolation error
can be considered a sub-field of approximation theory. One
fundamental and quite powerful result, known as the Strang-
Fix conditions [10], relates the capability of a linear shift in-
variant approximation system to its order of approximation. It
was for instance used by Blu et al. (see [11]) to estimate spline
based approximation errors. One should note however that
these developments concern shift-invariant (and thus infinite)
sampling grids. As a result they do not apply to the truncation
error. Moreover, it was shown in [12] that in this context
at least, the most accurate approximation methods are not
interpolating. In a nut shell, imposing a perfect reconstruction
of the signal at the sampling position has a negative effect on
the overall reconstruction.

For what concerns us, we shall concentrate our efforts on the
truncation error and endeavour to obtain realistic estimations
of the actual error. Due to lack of space, results shall be
presented in a summarized way (e.g. without proof and using
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the Landau notation). Further details (proofs and tightness
analysis) will be included in a forthcoming publication.

II. NOTATIONS AND ASSUMPTIONS

In what follows, Xt stands for a random process (RP),
where t 2 R might be either a time or space variable. The
Fourier transform of a deterministic signal xt will be denoted
by F(x) and defined as F(x)(!) :=

1
2⇡

R
e

i!t
xtdt.

All RPs are assumed weakly stationary, in other terms with
time-invariant first and second order statistics. For such a pro-
cess Xt, we will generically denote by µ := E [Xt] its average,
by RX(t) := E [(X⌧ � µ)(X⌧+t � µ)] its auto-correlation
function and by d X(!) := F(RX)(!) its power spectral
distribution. All RPs are further assumed strictly Nyquist band-
limited, which is to say that d X({|!| � ⇡}) = 0.

Given a RP Xt, we will denote by X.�K :=

P
|k|K Xk�k

the sampled version on the finite grid {k 2 Z, |k|  K}. For a
fixed K > 0, the number of samples will always be denoted by
N = 2K+1. We consider linear shift-invariant reconstructions
from such a sampled version in the form

[(X.�K) ⇤ hK ](t) =

X

|k|K

XkhK(t� k),

where hK(t) is any function referred to as a reconstruction
kernel. In this article, we will mainly consider two examples,

• the Shannon kernel sinc(t) := sin(⇡t)
⇡t and

• the DFT (or Dirichlet) kernel sincd[K](t) :=

sin(⇡t)
N sin(⇡t

N )
.

A. Goal

We will appraise the quality of a given reconstruction based
on the Root Mean Squared Error (RMSE),

RMSE[X,hK ](t)
2
:= E

h
(Xt � [(X.�K) ⇤ hK ](t))

2
i
.

Resting upon intuitive observations, we shall highlight two
predictable features of the RMSE. First, since any interpolation
is supposed to perform perfectly at the sampling locations,
the RMSE is likely to oscillate, being null at any sample and
maximal approximately midway between successive samples.
Besides, a RP can be theoretically recovered through the
Shannon expansion, if sampled on an infinite grid. Therefore,
we expect the error to be tied to the lack of knowledge
outside the finite sampling domain, and as such to diminish
as we move farther away from the borders. Accordingly, our
goal consists in evaluating the decay (up to an oscillating
modulation) of the RMSE as the distance varies. We set

�(t) :=min(K +

1

2

� t,K +

1

2

+ t).

(1)

III. THEORETICAL RMSE BOUNDS

Theorem 1 (Spectral representation of the RMSE): Let Xt

be a RP of average µ and power spectrum d X , K < 1 and
hK a reconstruction system. Then,

RMSE[X,hK ](t)
2
= MSEµ,hK (t) +MSEd X ,hK (t),

0

!

↵⇡

�

2
↵

⇡

�

2
↵ |!|⇡d!

d 

0
↵(!)

 ↵(!)d!

d X(!)

Fig. 1. The spectrum decomposition of Proposition 2.

where

MSEµ,hK (t) :=µ

2 |1��K ⇤ hK(t)|2 ,
MSEd ,hK (t) :=

1

2⇡

Z ��
e

i!t � [(e

i!.
�K) ⇤ hK ](t)

��2
d (!).

This theorem merely states that the mean squared error is the
sum of the squared errors with respect to the average value
of X and with respect to every pure harmonic e

i!t (weighted
by the spectrum of X). The conclusion holds true even if Xt

is not band-limited and under mild assumptions (applying to
a sequence of hK’s) when K ! 1.

We shall need to evaluate the behavior of each component
of the previous decomposition. We refer to them respectively
as the average MSE component and the power spectral MSE
component. Unlike the previous theorem, the next proposition
is specific to strictly Nyquist band-limited RPs.

Proposition 1:

MSEµ,hK (t) =µ2 |[�1 ⇤ sinc](t)� [�K ⇤ hK ](t)|2 ,

MSEd X ,hK (t) =
1
2⇡

Z

|!|⇡

d X(!)⇥
���[(ei!.�1) ⇤ sinc](t)� [(ei!.�K) ⇤ hK ](t)

���
2
.

Building upon existing works and the analysis of their flaws
with respect to specific spectrum characteristics of images, we
propose an essential step to obtain realistic bounds. The trick
resides in decoupling the low frequencies of the spectrum from
a residual component equivalent to band-limited white noise.
This process, illustrated in Figure 1, results in

Proposition 2 (Spectrum decomposition): Let 0  ↵ < 1

and assume that |!|�↵⇡d X(!) =  ↵(!)d!, with  ↵(!) 
�

2
↵. And let d 

0
↵ the positive component of d X � �

2
↵d!.

Then,

MSEd X ,hK (t) MSEd 0
↵,hK (t) + �

2
↵MSE |!|⇡d!,hK (t).

In the previous statement, the first term in the right-hand-side
corresponds to an over-sampled signal and the second one
to the aforementioned residual band-limited white-noise. In
addition, ↵ can be set freely; a freedom we shall exploit to
tighten the RMSE bounds which follow.
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�K

0
K

0

�K

K

t

Xi.�K

˜

X

hK
i (t)

Xi.�K0

˜

X

gt
i (t)

Fig. 2. Construction of the RMSE and spectrum estimators. Interpolation is
conducted along the x-axis and averaging along the y-axis.

Theorem 2: Under the same assumptions and notations as
in Proposition 2, and with the kernel hK associated with either
the Shannon expansion or the DFT interpolation, we have

RMSE[X.�K⇤hK ](t)
2
=

sin

2
(⇡t)

⇡

2
⇥

0

BBBBBBB@

µ

2
XO

⇣
1

�(t)2

⌘

+

�

02
↵O

⇣
1

�(t)2

⌘

+

�

2
↵O

⇣
1

�(t)

⌘

1

CCCCCCCA

,

where

�

02
↵ :=

1

2⇡

Z

|!|↵⇡

2

1 + cos(!)

d 

0
↵(!).

This provides a decomposition of the mean squared error
into a modulation times an envelope. Following the previous
developments, the latter has been decomposed into three terms
referred as the average envelope, the low-frequency envelope
and the white-noise envelope. This decomposition is valid for
the two aforementioned interpolation methods. However the
domination constants are different. Precisely, in the DFT, the
average envelop is null while the remaining two constants are
twice as large as those of the Shannon case.

IV. EXPERIMENTAL SETTINGS

In order to scrutinize the correctness of our upper bounds
and determine how insightful the information they provide,
we have designed an experimental framework1. Aspiring to
provide practical conclusions on natural images, we could not
resort to synthetic signals for which we could have obtained
closed-form expressions of the quantities of interest. Instead,
given an image exemplar and an interpolation method, our
goal would be to estimate the RMSE bound as well as an
accurate approximation of the RMSE at varying distances. As
illustrated in Figure 2, we will perform interpolation along
the horizontal dimension and take advantage of the remaining
dimension to perform empirical averages when needed.

The upper bound calculation relies on the image average
and two spectral statistics: �↵ and �0

↵. Assuming the spectrum

1Available at http://dev.ipol.im/⇠simonl/ipol demo/loic truncate.
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Fig. 3. RMSE estimator and upper bound for the dice image.

to be absolutely continuous, its density verifies  X(!) =

E [|F(X)(!)]|2. It can thus be estimated at discrete frequen-
cies as an average  X(!k) ' 1

M

PM
i=1 |DFT (Xi)|2(!k).

Assuming that we knew the signal at a given location t, the
RMSE could be approached by

RMSE

2
X,hk

(t) ' 1

M

MX

i=1

(Xi,t � ˜

X

hK
i,t )

2
,

where to shorten notations ˜

X

hK
i,t := [(Xi,..�K) ⇤ hK ](t). The

only challenge here relates to the estimation of the ground-
truth interpolated signal. A simple idea would be to subsample
an input image, and re-interpolate it with the method under
consideration at the missing samples. Obtaining the ground-
truth could not be more straightforward. However this scheme
does not fulfil other requirements, especially since it violates
the Nyquist band-limited assumption.

Instead, as illustrated in Figure 2, starting from an image of
half-width K

0, we restrict the evaluation to a central sub-image
of half-width K. That is to say, we apply the interpolation
method under test based on this subset of the samples and
obtain interpolated samples ˜

X

hK
i,t in a super-grid of the central

region t 2 {�K,�K + dt, . . . ,K}. We then use the whole
image to compute (pseudo-)ground-truth samples ˜

X

gt
i,t at the

same locations thanks to the Shannon expansion.
We must point out that the previous strategy has one major

drawback. Indeed, since we wish the ground-truth to be much
more accurate than the considered interpolation, the margin
between the whole image borders and the central region must
be large compared to the central extent, i.e. K

0 � K. Besides,
the errors made in ˜

X

gt
i,t and ˜

X

hK
i,t are due to missing samples,

a majority of which are shared. Therefore these errors are
correlated and result in a negative bias of the RMSE estimator.

V. EXPERIMENTAL RESULTS

Here we present the results on two images. For each image,
we plot the RMSE estimator for the Shannon expansion, the
DFT and the 9

th-order b-spline interpolation, as well as the
theoretical upper bound when available.

The two images were chosen to illustrate opposite be-
haviours associated with different spectral contents. Indeed,
the first image (Figure 3) is very smooth whereas the second
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Fig. 4. RMSE estimator and upper bound for the garden image.

one (Figure 4) presents various textured regions. We should
then expect the white-noise component to be more important
in the second case. To confirm this, a visual comparison of the
estimated spectra is depicted in Figure 5. In both cases, the
upper bound is consistent with the estimator. One cannot fail
to observe that the gap between the two curves is greater in the
smooth case. This might be explain either by a stronger bias
in the estimator or by a lesser sharpness of the upper bound.
In any case, consistently with our prediction, the worst-case
scenario occurs with highly textured images. It is therefore
a great achievement to ensure as tight an estimation in this
case. In fact, we have obtained closed-form expressions of the
tightness (for white-noise) that confirm our doing so.

Studying closely the values in Figure 4 reveals that for a
150 pixels wide and highly textured image, the interpolation
error might very well exceed the quantization (whose RMSE
amounts to 0.29) everywhere. The decay of the RMSE as
the square root of the inverse distance is then extremely
problematic, since it means that to achieve a 2fold decrease
of the RMSE the distances must be multiplied by 4. This
point brings out dramatic conclusions when considering 16-
bits HDR images. Practically, it means that for the same level
of accuracy (relatively to the quantization RMSE) the distances
must be multiplied by 256

2.
Considering the comparison between the Shannon/DFT

methods and B-splines, the most noticeable difference con-
cerns the shape of the RMSE curve. The B-splines error
decreases much more quickly and flattens. Unfortunately, the
attained value is much larger than in the other methods.

VI. CONCLUSION

We have presented ongoing results concerning a systematic
error which occurs in interpolation. Although similar studies
have been published in the past, their knowledge does not seem
widely spread among the image processing scientists. More
importantly, their applicability to natural images is limited.
On the contrary, our study is motivated by practical needs in
image processing and is therefore directed toward this specific
context. In particular, from the start we took into consideration
the possible presence of smooth regions as well as textures.

0.500.50
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(a) Dice

0.500.50

1010

2020

3030

4040

5050

6060
Spectrum (dB)Spectrum (dB)

(b) Garden
Fig. 5. Comparison of the spectra in dB for the dice and the garden image.

After presenting the main steps to the theoretical upper
bound, we have described an experimental framework and
some selected results. A consensus emerged among theoretical
and experimental conclusions wherein textured images proved
to be a worst-case scenario. The relatively slow decay of the
RMSE in that case appears as a major obstacle to highly
accurate image processing.

We hope that this paper sheds new light on the legitimacy of
the conceptual equivalence of digital and continuous images.
It should as well provide a sound starting point to consider ac-
curacy estimations in sub-pixel image processing applications.
We do plan to explore such path in the near future.
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Abstract—In this paper, we focus on the problem of interpo-

lating a continuous-time AR(1) process with stable innovations

using minimum average error criterion. Stable innovations can

be either Gaussian or non-Gaussian. In the former case, the

optimality of the exponential splines is well understood. For non-

Gaussian innovations, however, the problem has been all too often

addressed through Monte Carlo methods. In this paper, based

on a recent non-Gaussian stochastic framework, we revisit the

AR(1) processes in the context of stable innovations and we derive

explicit expressions for the optimal interpolator. We find that the

interpolator depends on the stability index of the innovation and

is linear for all stable laws, including the Gaussian case. We also

show that the solution can be expressed in terms of exponential

splines.

I. INTRODUCTION

Autoregressive (AR) processes are popular tools for mod-
eling natural phenomena such as speech signals [1]. The
processes are usually characterized by an all-pole filter that
acts on the innovation process (white excitation noise). They
are indexed by the number n of poles of the filter, as AR(n).
The AR family contains both stationary and non-stationary
models.

The AR processes were historically founded upon Gaus-
sian statistics. Extensions to non-Gaussian scenarios were
introduced later, for instance in financial applications, where
the data follow a fat-tailed distribution [3], [4]. Besides,
fat-tailed distributions are promising models for representing
sparse/compressible data [5]. This fact is recently employed
in the framework of sparse stochastic processes [6], [7]
which proposes a unified approach towards Gaussian and non-
Gaussian cases.

The estimation problems arising from AR processes are
conventionally studied in a finite-dimensional state-space, re-
sulting in the Kalman filter. Under Gaussian statistics, the
Kalman filter coincides with the Bayesian estimator (posterior
mean estimator) that minimizes the mean-square error. In non-
Gaussian scenarios, however, it is common to either apply
the Bayesian estimator on approximated posterior distributions
[8], [9], [10] or to realize the Bayesian filter numerically [11],
[12], [13].

In this paper, we focus on continuous-time AR(1) processes
and investigate the problem of Bayesian interpolation between
the samples. Our formulation is based on the characteristic
forms introduced in [6]. We show that the Bayesian interpo-

Shaping Op. (Linear)

Whitening Op.

White Process AR(1) Process
Discrete 

Measurements 

Sampling

w(x) s(x) s[i]

L

�1{·}

D + I

Fig. 1. Generation of the stochastic AR(1) process s(x) based on the
excitation white noise w(x). The inverse linear operator L�1 includes the
possible boundary condition.

lator is linear with respect to the samples when the process
follows a symmetric ↵-stable distribution. The demonstration
of linearity is constructive, in the sense that we derive explicit
forms for the Bayesian interpolator.

II. AR(1) MODEL

The model in this paper is a special case of [6] adapted for
AR(1) processes. The schematic diagram of the continuous-
time model is given in Figure 1. The process of interest, s,
satisfies the stochastic differential equation

d

dx

s(x) + s(x) = w(x), (1)

where w is a stationary white ↵-stable excitation with 1 
↵  2 and  2 R is a constant. Equation (1) suggests the
filter D + I as the whitening operator, where D and I stand
for the derivative and identity operators, respectively. This
whitening operator has a one-dimensional null space spanned
by the function e

�x.
For a proper definition of the process, the shaping operator

L

�1 (inverse of the whitening operator), which transforms the
innovations into the main process, needs to be stable. For  6=
0, the system D+I has a unique stable inverse which is shift-
invariant and corresponds to the impulse response e

�x

�R+0
(x)

for  > 0 and e

�x

�R+0
(�x) for  < 0, where �R+0

(·) denotes
the characteristic function of the nonnegative real numbers
(step function).

For  = 0, however, there exists no stable inverse. It is
shown in [6] that L

�1
=

R

x

0 , which is weakly stable (finite-
input finite-output), is a valid choice for  = 0. Nevertheless, it
imposes s(0) = 0 (boundary condition) and makes the process
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s non-stationary. A more general way of setting the boundary
condition is given by

L

�1{w}(x) =

Z

x

0
w(⌧)d⌧ + hw, �i, (2)

where � is an anti-causal function that decreases rapidly and
hw, �i =

R

w(⌧)�(⌧)d⌧ in the sense of generalized functions.
The anti-causal choice of � shows that, for all x > 0, the
random variable L

�1{w}(x) is statistically independent of
w(⌧) for ⌧ > x. This will later help us in simplifying the
estimation procedure.

Since the innovation process is white and the impulse
response of the shaping operator for (�) is the time-reversal
of the one for  6= 0, we expect to obtain the interpolation
results of (�) by time-reversing the results for . Therefore,
without loss of generality, we shall assume  � 0.

Finally, the samples of the AR(1) process are taken at the
integers 0, 1, . . . , m. They are then used to interpolate the
process values in the interval [0, m]. For the sake of simplicity,
we use s[k] to denote the sample s(x)|

x=k

for k = 0, 1, . . . , m.

III. INTERPOLATION

Our approach to the interpolation problem is to estimate the
process values on a finer grid with spacing T that contains
the integers. For this reason, we set T =

1
N

, where N is
an arbitrary large positive integer. In this approach, we can
get arbitrarily close to any desired point by increasing N .
We represent the values s(x)|

x=kT

for k = 0, 1, . . . , mN ,
which we want to estimate, by s

T

[k]. Clearly, s

T

[kN ] (or
s1[k]) represent the known samples and we do not need to
estimate them. Since the definition of the process s might
include a boundary condition, it is not necessarily stationary,
which complicates our analysis. Hence, we prefer to work with
the generalized-increment process defined as

u

T

[k] = s

T

[k] � e

�T

s

T

[k � 1]. (3)

To relate the generalized increments to the innovation process,
recall that

s

T

[k] = L

�1
w(x)

�

�

�

x=kT

=

Z

kT

⌘

w(⌧)e

�(kT�⌧)
d⌧ + c

w,

, (4)

where ⌘



= �1 and c

w,

= 0 for  > 0, and ⌘



= 0 and
c

w,

= hw, �i for  = 0. By substituting s

T

[k] and s

T

[k � 1]

from (4) into (3), we see that the null-space term vanishes and
we obtain

u

T

[k] =

Z

kT

(k�1)T
w(⌧)e

�(kT�⌧)
d⌧. (5)

The outcome can be written in form of an inner product as

u

T

[k] =

⌦

w , �

,T

(kT � ·)
↵

, (6)

where

�

,T

(x) = e

�x

⇣

�R+0

�

x

�

� �R+0

�

x � T

�

⌘

. (7)

The function �

,T

is usually known as the exponential B-
spline for the grid spacing T [14]. It is supported on [0, T ).

A. Preliminary Results

To further proceed in solving the interpolation problem, we
need to use a few results regarding the increment process
which we state below in the form of 3 lemmas.

Lemma 1: Let k, k

0
be nonnegative integers and T, T

0
be

positive reals. For the generalized increments u

T

we have

(i) u

T

[k] and u

T

0
[k

0
] are independent if T

T

0 /2 (

k

0
�1
k

,

k

0

k�1 );

(ii) u

T

[k] and s

T

0
[k

0
] are independent if k

0

k�1 � T

T

0 ;
(iii) u

T

[k] and u

T

[k

0
] are identically distributed.

Proof From (6) and since �

,T

is of finite support, we
know that the statistics of u

T

[k] are completely determined
by w

�

(k � 1)T < x  kT

�

. Condition (i) guarantees
that the parts of the innovation contributing to u

T

[k] and
u

T

0
[k

0
] are disjoint. Since the innovation is white, the two

are independent. Similarly, Condition (ii) implies disjointness
of the innovation parts involved in forming u

T

[k] and s

T

0
[k

0
]:

the LSI part of s

T

0
[k

0
], due to the use of causal filters, depends

only on w(x  k

0
T

0
), while the boundary condition is fully

determined by w(x  0). Thus, for nonnegative k

0
, s

T

0
[k

0
] is

statistically independent of w(k

0
T

0
< x). The validity of (iii)

is a direct consequence of the stationarity of the innovation.
⌅

Lemma 2: For any positive integer n, we have that

u

nT

[k] =

n�1
X

i=0

e

�iT

u

T

[kn � i]. (8)

Proof We show this property by pointing out the refinement
equation of �

,nT

�

,nT

(x) = e

�x

�

�R+0
(x) � �R+0

(x � nT )

�

=

n�1
X

i=0

e

�iT

e

�(x�iT )
�

�R+0
(x�iT ) � �R+0

(x�iT�T )

�

=

n�1
X

i=0

e

�iT

�

,T

(x � iT ). (9)

Now, it is easy to conclude the claim by applying (9) to (6).
⌅

Lemma 3: For any positive integer i, we have that

s

T

[k + i] � e

�iT

s

T

[k] =

i

X

✓=1

e

�(i�✓)T
u

T

[k + ✓]. (10)

Proof The proof requires only the substitution of u

T

by its
definition in (3). ⌅
B. Minimum Conditional Mean-Square Error

The well-known minimum mean-square error (MMSE) esti-
mation of a random variable x based on the multidimensional
random variable y (observations) is the function x̂(y) =

E{x

�

�y} that minimizes the cost E
�

(x̂(y) � x)

2
 

. Note that
the averaging applies over both x and y. Consider now that
we are estimating x based on a deterministic measurement
vector y that is an observed realization of some multivariate
random variable. In this case, we should modify the cost to
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E
x

�

(x̂(y) � x)

2|y
 

, which again results in x̂(y) = E{x

�

�y}
(i.e., the Bayesian estimator). More precisely, the Bayesian
estimator x̂(y) = E{x

�

�y} not only minimizes the average
quadratic cost over all realizations, but also minimizes the
cost for every individual realization. The distinction is revealed
when y follows a heavy-tail distribution with infinite variance
(e.g., a non-Gaussian ↵-stable). Here, the cost function for
each realization y might be finite while the average over
all y often does not exist. In other words, the conditional
expectation defines an optimal estimator for the modified cost,
while the MSE might not be defined. It is obvious that the
Bayesian estimator coincides with the MMSE estimator when
it exists.

With respect to the conditional MSE criterion, the optimal
interpolation for s

T

[k], using the given samples s[l]

m

l=0, is
given by E

�

s

T

[k]

�

�

s[l]

m

l=0

 

. By using Lemma 3, for 0  k <

m and 0 < i < N where T =

1
N

, we have that

E
n

s

T

[kN + i]

�

�

�

{s[l]}m
l=0

o

� e

�iT

s[k]

=

i

X

✓=1

e

�(i�✓)TE
n

u

T

[kN + ✓]

�

�

�

s[l]

m

l=0

o

. (11)

The one-to-one mapping between the sets s[l]

m

l=0 and
{u1[l]}m

l=1 [ {s[0]} allows us to rewrite the conditional ex-
pectations as

E
n

u

T

[kN + ✓]

�

�

�

s[l]

m

l=0

o

=E
n

u

T

[kN + ✓]

�

�

�

u1[l]
m

l=1, s[0]

o

. (12)

It follows from (12) and Lemma 1 that u

T

[kN + ✓] is
independent of s[0] and u1[l]

m

l=1 except for l = k + 1. Thus,

E
n

s

T

[kN + i]

�

�

�

s[l]

m

l=0

o

� e

�iT

s[k]

=

P

i

✓=1 e

�(i�✓)TE
n

u

T

[kN + ✓]

�

�

�

u1[k + 1]

o

. (13)

To simplify the notations, we represent the random variables
u

T

[kN + ✓] by X

✓

and the weights e

�✓T by d

✓

. Lemma 1
shows that X

✓

are i.i.d., and from Lemma 2 we know that

u1[k + 1] =

N

X

l=1

e

�(N�l)T
u

T

[kN + l] =

N

X

l=1

d

N�l

X

l

. (14)

Hence,

E
n

u

T

[kN + i]

�

�

�

u1[k + 1]

o

= E
n

X

i

�

�

�

P

N

l=1 d

N�l

X

l

o

. (15)

The summary of the results in (11)–(15) is

ŝ

T

[kN + i] =

s[k]

e

iT

+

P

i

✓=1 E
�

d

N�✓

X

✓

�

�

P

N

l=1 d

N�l

X

l

= u1[k + 1]

 

e

(i�N)T
. (16)

C. Stable Distributions

Up to this point, our results were generic and applicable to
all innovation models. We now concentrate on the symmetric
↵-stable innovations and try to extract the conditional expecta-
tions explicitly. For an ↵-stable innovation w, the inner product
hw, 'i follows an ↵-stable distribution for any acceptable test
function '[15]. In particular, the distribution of u

T

(or X

✓

)
is ↵-stable from (6). If we denote the probability density
and characteristic functions (Fourier transform of the density
function) of u

T

by p

X

and p̂

X

, respectively, the ↵-stable
law implies p̂

X

(!) = exp

�

��|!|↵
�

for some positive real
�. Unfortunately, there is no closed form for the density
function in general. In addition, the characteristic function of
the random variable

P

i

c

i

X

i

, which again follows an ↵-stable
distribution, is given by exp

�

� �|!|↵
P

i

|c
i

|↵
�

[15]. This
shows that, if Y1 = d

N�✓

X

✓

and Y2 =

P

N

l=1,l 6=✓

d

N�l

X

l

,
then we should have

⇢

p̂

Y1 = exp

�

� �|!|↵|d
N�✓

|↵
�

,

p̂

Y2 = exp

�

� �|!|↵
P

N

l=1,l 6=✓

|d
N�l

|↵
�

.

(17)

Note that Y1 and Y2 are independent and that the conditional
expectations in (16) are equal to

E
n

d

N�✓

X

✓

�

�

N

X

l=1

d

N�l

X

l

= u1[k + 1]

o

= E
n

Y1

�

�

Y1 + Y2 = u1[k + 1]

o

=

R

R y p

Y1(y) p

Y2

�

u1[k + 1] � y

�

dy

p

Y1+Y2

�

u1[k + 1]

�

. (18)

The latter integral can be converted to the Fourier domain by
employing Parseval’s theorem, which results in
Z

R
y p

Y1(y) p

Y2

�

u1[k + 1] � y

�

dy

=

Z

R
F

y

n

y p

Y1(y)

o

(!)F
y

n

p

Y2

�

u1[k + 1] � y

�

o

(!) d!

=

Z

R

d

d!

p̂

Y1(!)p̂

Y2(!)

e

�j!u1[k+1]

j

d!

= |d
N�✓

|↵
Z

R

��↵|!|↵e

�j!u1[k+1]��|!|↵
PN�1

l=0 |dl|↵

j!

d!.

(19)

On one hand, the main message from (18) and (19) is that

E
n

d

N�✓

X

✓

�

�

P

N

l=1 d

N�l

X

l

= u1[k + 1]

o

|d
N�✓

|↵ = const., (20)

where const. does not depend on ✓. On the other hand,
N

X

✓=1

E
n

d

N�✓

X

✓

�

�

N

X

l=1

d

N�l

X

l

= u1[k + 1]

o

= u1[k + 1]. (21)

Now, by combining (20) and (21), we can evaluate the
conditional expectations without performing the integration,
as

E
n

dN�✓X✓

�

�

N
X

l=1

dN�lXl = u1[k + 1]
o

=
|dN�✓|↵u1[k + 1]
PN

l=1 |dN�l|↵
. (22)
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The main result of this paper is given in Theorem 1 which
is now easy to verify from (16) and (22).

Theorem 1: For the AR(1) process s associated with the
whitening operator D + I with ↵-stable innovations, the
optimal Bayesian interpolation at the point x

⇤
= k +�, where

0  �  1 is a rational number and k is a nonnegative
integer, depends only on the neighboring samples s(x = k)

and s(x = k+1). Moreover, the dependence is linear and can
be expressed as

ŝ(x

⇤
) = ⇡

�

s(k) + ⌫

�

s(k + 1), (23)

where
8

<

:

⇡

�

= e

(↵
2 �1)� sinh(↵

2 (1��))
sinh(↵

2 ) ,

⌫

�

= e

(↵
2 �1)(��1) sinh(↵

2 �)
sinh(↵

2 ) ,

(24)

if  6= 0 and, otherwise,
⇢

⇡

�

= 1 � �

⌫

�

= �.

(25)

It is interesting that, for  = 0 (Lévy process) and indepen-
dently of the stability index (↵), the optimal interpolator is the
simple first-degree B-spline. Also, to compare the result with
the classical Gaussian theory, we use ↵ = 2 and obtain

(

⇡

�

=

sinh(1��)
sinh

,

⌫

�

=

sinh�

sinh

.

(26)

IV. SIMULATIONS

To show the impact of our results, we have applied our
interpolator to MATLAB simulated data. For this purpose,
we have plotted a realization of an ↵-stable AR(1) process
with ↵ =

3
2 and  = 5 in Figure 2. We have used the

values at the integers as the samples for interpolating the
process. As is evident in Figure 2, the curves connecting the
points deviate from straight lines and are not even piecewise
monotonic (e.g., the part corresponding to the interval [9,10]).
In fact, the statistics of the model show that, for each pair of
adjacent samples, the distribution of the values between them
is biased in favor of one of the sides of the line connecting
the two samples. It is comforting to observe that the curve of
the optimal interpolator is bent towards the same direction.
From Figure 2, it is evident that the optimal interpolator
takes advantage of knowing the system parameters and better
follows the process than the outcome of the uninformed first-
degree B-spline.

V. CONCLUSION

In this paper, we studied the interpolation problem for
the first-order autoregressive processes generated from stable
innovations, including non-Gaussian ones. We applied the
Bayesian estimator which minimizes the mean-square error
under Gaussian distributions and conditional mean-square er-
ror under stable laws that have infinite variance. We derived
explicit forms for the optimal interpolator in a general setting
and found that it is linear with respect to the samples.

0 1 2 3 4 5 6 7 8 9 10
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x

s
(
x
)

 

 

Original
Interpolated

Fig. 2. A realization of the AR(1) process with  = 5 and ↵ = 1.5, and
the interpolated function using the samples at the integers.

Moreover, it depends on the stability index that characterizes
stable innovations. Our derivations rely on exponential splines.
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Abstract—In this work, we develop an optimization framework
for problems whose solutions are well-approximated by Hierar-
chical Tucker (HT) tensors, an efficient structured tensor format
based on recursive subspace factorizations. Using the differential
geometric tools presented here, we construct standard optimiza-
tion algorithms such as Steepest Descent and Conjugate Gradient
for interpolating tensors in HT format. We also empirically
examine the importance of one’s choice of data organization in
the success of tensor recovery by drawing upon insights from the
matrix completion literature. Using these algorithms, we recover
various seismic data sets with randomly missing sources.

I. INTRODUCTION
Matrix completion has seen a large amount of development

in recent years, resulting in algorithms that are very space
and time efficient and theoretical guarantees which closely
agree with empirical recovery rates. The success of completing
a matrix with randomly missing entries via rank-minimizing
optimization is a result of assuming a low-rank model on the
underlying solution, coupled with a subsampling operator that
tends to increase the rank of the underlying matrix.

We use extended notions of low-rank in the case of in-
terpolating a tensor with missing entries. Our model is a
structured tensor format known as the Hierarchical Tucker
(HT) format, which efficiently represents a high-dimensional
tensor by means of a Kronecker splitting of subspaces, with
the set of all such tensors parametrizing a smooth manifold
in Rn1⇥n2⇥...n

d . We extend the largely theoretical results
of [1] by imposing a Riemannian metric on the resulting
quotient manifold, from which we can derive the Riemannian
gradient and develop solvers for minimizing smooth functions
defined on this manifold. We will use these efficient, SVD-
free solvers in order to interpolate tensors that have a large
portion of their entries removed and empirically examine the
effect of data organization on the success of recovery for our
test seismic cases. Our manifold-optimization approach for
completing tensors with missing entries follows a similar spirit
to [2]. We present the results of several interpolated seismic
frequency slices and demonstrate our ability to recover tensors
even amidst high levels of subsampling.

II. HIERARCHICAL TUCKER TENSOR FORMAT

An important choice of dimension separation, ensuring that
the resulting HT tensor is low-rank, is that of a dimension tree.

Definition 1. A dimension tree for a d�dimensional tensor is
a nontrivial binary tree such that

• The root node, troot, has the label {1, . . . , d}
• The labels for the children of each non-leaf node form a

partition of the parent’s label, i.e.

t

l

t t

r

= t, t 62 L

where t

l

, t

r

are the left and right children of the node t,
respectively, and L is the set of all leaves of T .

Suppose that we have chosen a set of (positive integer) hi-
erarchical ranks (k

t

)
t2T

assigned to each node of a dimension
tree T , with ktroot = 1. Then we have the following

Definition 2. Let Rn⇥p

⇤ and Rp⇥q⇥r

⇤ denote the set of all n⇥p
matrices of full rank and p⇥q⇥r 3-tensors of full multilinear
rank, respectively.

A d�tensor X is said to be in Hierarchical Tucker for-
mat with associated dimension tree T and hierarchical ranks
(k

t

)
t2T

if there exist parameter matrices/tensors x = (U
t

, B

t

)
with U

t

2 Rn

t

⇥k

t⇤ , B

t

2 Rk

r

⇥k

l

⇥k

t⇤ such that �(x) = X ,
where

vec�(x) = (U
t

l

⌦ U

t

r

)(B(k
l

,k

r

)) t = troot (1)

U

t

= (U
t

l

⌦ U

t

r

)(B(k
l

,k

r

)) t 62 L [ troot

where k

t

is the rank associated to node t and k

l

, k

r

are the
ranks associated to nodes t

l

, t

r

, respectively. We say that the
parameter matrices x are in Orthogonal Hierarchical Tucker
(OHT) format if (U

t

, B

t

) also satisfy

U

T

t

U

t

= I

k

t

for t 2 L

(B(k
l

,k

r

)
t

)TB(k
l

,k

r

)
t

= I

k

t

for t 62 L [ troot

Let HT,k denote the set of all tensors expressible in HT
format with dimension tree T and hierarchical ranks (k

t

)
t2T

.
Note that the intermediate matrices U

t

in (1) for t 62 L do
not need to be stored: only the matrices U

t

for t 2 L and
so-called transfer tensors B

t

for t 62 L need to be stored to
specify the tensor X completely. Let

M =⇥
t2L

Rn

t

⇥k

t⇤ ⇥ ⇥
t2T\L

Rk

t

r

⇥k

t

l

⇥k

t

⇤
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be the space of admissible HT parameters. � given in (1) is
a smooth function from M to its image HT,k ⇢ Rn1⇥...n

d

that is not injective. From the optimization point of view, any
optimization problem defined on HT,k and parametrized by
M and (1) will have minimizers which are not isolated. We
will characterize this non-uniqueness, and its remedy, below.

III. QUOTIENT GEOMETRY OF THE HT FORMAT

There is an ambiguity in the representative parameters for a
given HT tensor X , which is characterized in [1] as follows.
Let G be the Lie group

G = {A = (A
t

)
t2T

: A
t

2 GL(k
t

) Atroot = 1}
acting on M via the right action

✓A(Ut

, B

t

) := (U
t

A

t

, (A�1
t

r

, A

�1
t

l

, A

T

t

) �B
t

)

where (A1, A2, A3)�C is the multilinear product that premul-
tiplies C by A

i

in the i-th dimension. Note that �(x) = �(y)
if and only if there exists a unique A 2 G such that
y = ✓A(x). The quotient manifold has a unique smooth
structure such that ⇡ : M!M /G is a smooth submersion.
The quotient manifold M /G is really our manifold of interest
for the purposes of solving optimization problems, since each
equivalence class ⇡(x) is identified with unique values of �(x).

The authors in [1] introduce the following horizontal space

H
x

M := (2)
(
(Uh

t

, B

h

t

) :
(Uh

t

)TU
t

= 0
k

t

⇥k

t

for t 2 L

(Bh

t

)(kt

)
Q

t

(B(k
t

)
t

)T = 0
k

t

⇥k

t

for t 62 L [ troot

)

where Q

t

= (UT

t

l

U

t

l

⌦UT

t

r

U

t

r

), which is shown to be invariant
under the action of ✓. Eq. (2) allows us to uniquely identify
vector fields on M /G with horizontal vector fields in M.

For the purposes of interpolation, we are interested in the
computing the best fit of our data within the space of HT
models, which involves solving a corresponding optimization
program on HT,k. There is a large body of existing research
on solving optimization problems on matrix manifolds (see [3]
for a comprehensive introduction). Before we can develop such
optimization methods, we must first specify a well-defined
Riemannian metric on the quotient manifold M /G.

Fix x = (U
t

, B

t

), ⌘

x

= (�U
t

, �B

t

), ⇣
x

= (�V
t

, �C

t

) 2
H

x

M. Let P
t

= U

T

t

U

t

for each t 2 T \ troot, Qt

as above,
and let, by abuse of notation, �B

t

:= �B

(k
l

,k

r

)
t

and similarly
for �C

t

. One can show that, for the following inner product,

g

x

(⌘
x

, ⇣

x

) :=
X

t2T

tr(P�1
t

�U

T

t

�V

t

) (3)

+
X

t 62L[troot

tr(P�1
t

(�B
t

)TQ
t

�C

t

)

+ vec(�Btroot)
T

Qtroot vec(�Ctroot)

it holds that g

x

(⌘
x

, ⇣

x

) = g

✓A(x)(⌘✓A(x), ⇣✓A(x)) for every
A 2 G. Therefore the metric g restricted to vectors in the
horizontal space does not depend on the representative point
for the equivalence class, x

0 2 ⇡(x). Since each U

T

t

U

t

is

Require: x = (U
t

, B

t

), Z 2 Rn1⇥...n

d

�Utroot  Z

for each t 2 T \ L, visiting each node before its children
do

�U

t

l

 @U

t

@U

t

l

⇤
�U

t

, �U
t

r

 @U

t

@U

t

r

⇤
�U

t

,

�B

t

 @U

t

@B

t

⇤
�U

t

end for
return D�(x)⇤Z = PH

x

M((�U
t

)
t2L

, (�B
t

)
t2T\L)

Fig. 1. Algorithm for computing D�(x)⇤Z

symmetric positive definite for each t 2 T \ troot and varies
smoothly with x, it is easy to see that g

x

varies smoothly
with x as well. This yields a Riemannian metric that is well-
defined on the quotient manifold M /G (see 3.6.2 in [3]).
Our optimization algorithm will then be implemented on the
total space M rather than the abstract quotient M /G, with
the understanding that points x 2 M will represent their
equivalence class ⇡(x) 2M /G (see [3] for more details).

When we restrict our parameter matrices to be in OHT, one
can see that since U

T

t

U

t

= I

k

t

for every t 2 T \ troot, and so
the inner product (3) reduces to the standard Euclidean one.
For this reason, and to ensure that the resulting projections
on to H

x

M can be performed efficiently, we restrict our
parameters x = (U

t

, B

t

) to be OHT in the sequel. This is
not a hindrance from a theoretical point of view, because
any non-orthogonalized parameter set x can be efficiently
orthogonalized via Proposition 3 to a parameter set x

0 such
that �(x) = �(x0). It can be shown that the resulting quotient
space of orthogonalized parameters is diffeomorphic to HT,k.

A. Riemannian Gradient

Using this Riemannian metric, we can compute the Rieman-
nian gradient of a smooth function f : HT,k ! R as follows.
Let x 2 M. Then by the fundamental theorem of linear
algebra, since im D�(x) = T

�(x)H, ker D�(x)⇤ = T

?
�(x)

Our Riemannian gradient in this case can be easily seen as
Z = D�(x)⇤gradf(�(x)), since for any ⇠ 2 H

x

M,

hZ, ⇠i = hD�(x)⇤gradf(�(x)), ⇠i
= hP

T

�

(x)Hgradf(�(x)), D�(x)[⇠]i
= Df(�(x)) �D�(x)[⇠]

= Df(�(x))[⇠]

The adjoint of D�(x) can be computed using that, for t 2 T ,
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t

and D�(x)[⇠] = vec(�Utroot). The adjoint of this recursion,
followed by a projection on to (2), gives us Figure 1.

Since U

t

in (1) is linear in each variable, one can write out
the partial derivatives of U
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t
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, U
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and using the matrix calculus product rule

@(AB)

@X

= (BT ⌦ I

M

A

)
@A

@X

+ (I
N

B

⌦A)
@B

@X

to isolate for the corresponding differential. We will not go
into the full derivation here due to space constraints. The final
result is a very simple set of MATLAB commands, which uses
code from the SPOT framework [4] and from the hTucker
toolbox [5], that requires only matrix-matrix multiplications
and permutations of relatively small matrices, which can be
performed efficiently.

IV. OPTIMIZATION ALGORITHMS

Let M be the space of parameters for the OHT format with
the corresponding Lie group of orthogonal matrices G  G
acting on M via ✓. For the purpose of interpolation, we are
interested in solving

x

⇤ = argmin
x=(U

t

,B

t

)
f(x) = kA�(x)� bk22 (4)

s.t. U

T

t

U

t

= I

k

t

, (B(k
l

,k

r

)
t

)TB(k
l

,k

r

)
t

= I

k

t

where A is our subsampling operator and b is our subsampled
data. For a Steepest Descent-type method, we have a means
to compute the Riemannian gradient of f at a point x, which
we will denote g

x

. In order to move along �g
x

for some
step size t, we need a retraction on M, which is a first-order
approximation to the exponential mapping on M.

Proposition 3. Let x = (U
t

, B

t

) 2 M, ⌘ = (�U
t

, �B

t

) 2
T

x

M. Then the reorthogonalization mapping R, introduced
in [6], and defined by

R

x

(⌘) =

8
>><

>>:

qf(U
t

+ �U

t

) if t 2 L

qf((R
t

l

⌦R

t

r

)(B
t

+ �B

t

)) if t 62 troot [L
(R

t

l

⌦R

t

r

)(B
t

+ �B

t

) if t = troot

where qf(X), R
t

are the Q-factor from the QR factorization of
X and R

t

is the R-factor from the QR factorization associated
to node t, is a retraction on TM.

R

x

(⌘) can be computed very efficiently, in the sense that
one avoids operating on the full tensor space Rn1⇥n2⇥...n

d

and instead one performs QR factorizations on relatively small
matrices. Since R is a retraction on the tangent bundle TM
and H

x

M in (2) is a ✓-invariant horizontal distribution on
M, by 4.1.2 in [3] we have that the mapping R̃

⇡(x)(⇠⇡(x)) =
⇡(R

x

(⇠
x

)) is a well-defined retraction on T (M/G).
Using this retraction, we formulate the steepest descent

algorithm using an Armijo line search in a straightforward
manner, presented in Figure 2. We can easily modify this
framework to implement other first-order methods such as CG,
which we will use for our numerical examples.

V. MULTIDIMENSIONAL SUBSAMPLING

As we use seismic data examples for our recovery, it should
be noted that 3D seismic data is five dimensional, with two
source coordinates (x, y), two receiver coordinates (x, y), and
time, from which we extract a single, 4D frequency slice by

Require: Initial guess x0 = (U
t

, B

t

), 0 < c < 1 sufficient
decrease parameter, 0 < ✓ < 1 step size decrease
for k = 0, 1, 2, . . . until convergence do
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)
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)) //Riemannian gradient of f at x
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↵ 1 //Armijo line search
while f(�(R
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)))� f
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> �c↵hg
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i do
↵ ↵ · ✓

end while
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)
end for

Fig. 2. Steepest descent for optimizing a function f over the manifold HT,k
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Fig. 3. Singular values for the Left: (src x, src y) Matricization Right: (src
x, rec x) Matricization of a test data set. Blue: Without subsampling, Black:
With subsampling

taking the Fourier transform in time and fixing a frequency.
Owing to the symmetric nature of seismic data between
sources and receivers, we have essentially two choices of
underlying dimension tree, both depicted in Figure 3. Namely,
we can choose between placing the (src x, src y) dimensions
in the rows and (rec x, rec y) dimensions in the columns, or
placing the (src x, rec x) dimensions in the rows and (src y, rec
y) dimensions in the columns (each choice specifies the rest of
the dimension tree). In the case when we are, say, randomly
missing sources, the former organization of data has the effect
that subsampling will tend to remove rows of this matrix, and
hence the singular values will not increase and in fact are set
to zero at the low end (the worst-case scenario for the purposes
of rank-minimizing recovery, e.g. see [7]). On the other hand,
the latter organization of data results in a subsampling operator
that randomly removes blocks from the underlying matrix,
which is a much more favourable situation from a low-
rank recovery perspective, as we can see from the singular
values of the resulting matrix. The same situation holds for
matricizations in the singleton dimensions, adding further
degrees of regularity to the computed solution compared to
standard matrix completion. Our choice of dimension tree is
of great importance in the success of our recovery.

VI. NUMERICAL EXPERIMENTS

In the following examples, we apply our algorithms to
interpolate seismic frequency slices from two test sets. In the
first set, we use data generated from a simple single-reflector
model, while the second set has been provided to us by British
Gas (BG), generated from an unknown model. For our solver,
we implement nonlinear CG in this OHT framework, using
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(h) Recovered - SNR 14.8 dB
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Fig. 4. Top: (Rec x, Rec y) = (5,45). (b), (c), (g), (h) are results for 25% source subsampling, (d), (e),(i), (j) are results for 75% source subsampling
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Fig. 5. Interpolated BG Data for 75% missing sources. Top: Fixed, unknown
source image, Bottom: Fixed receiver image

the orthogonalization retraction in (3) and projection onto the
horizontal space (2) as a vector transport.

The simple data set has size D 2 R50⇥50⇥50⇥50 and we
randomly remove source (x, y) pairs from the data set before
recovery. We run the resulting algorithm for 200 iterations
starting from a random initial guess, which produces the
results in Figure 4. Even amidst high levels of missing sources,
the HT construction is able to sufficiently regularize the
interpolation process to successfully recover each slice for
fixed receiver coordinates (known as a common receiver gather
in seismic circles).

The BG data set originally has 68 x 68 sources correspond-
ing to 401 x 401 receivers, from which we remove a subset of
the sources randomly and interpolate using our CG method.
We show a common source gather and a common receiver
gather for 75% missing sources in Figure 5. We summarize our
results in Figure 6 for interpolating this volume from varying

Missing Sources SNR - Known SNR - Interpolated
25% 15.4 dB 14.4 dB
50% 15.7 dB 14.1 dB
75% 17.4 dB 11.6 dB

Fig. 6. SNRs of the data volume restricted to known source locations and
interpolated source locations after recovery.

amounts of missing sources.

VII. CONCLUSION

In this work, we have extended the largely theoretical
results of [1] to a practical algorithmic framework for solving
optimization problems whose solutions lie on a Hierarchical
Tucker manifold of fixed dimension tree and hierarchical rank.
Our methods easily allow us to interpolate tensors exhibiting
this hierarchical low-rank structure from a subset of their
entries. There is a large open question as to how one can
formulate precise recovery results for this problem to the
sufficiently comprehensive level of the recovery results present
in the Compressive Sensing and Matrix Completion literature,
a question that we leave for future research.

The authors would like to thank the sponsors of the SIN-
BAD consortium for their continued support and particularly
BG for providing the test data set.
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Abstract—We propose a new technique which allows us
to estimate any random signal from a large set of noisy
observed data on the basis of samples of only a few
reference signals.

I. INTRODUCTION

A. Motivation

In many applications associated with difficult environ-
ments, a priori information on signals of interest can
be obtained only at a few given times {t

j

}p

1 Ω T =

[a, b] Ω R where a = t1 < t2 < · · · < t
p°1 < t

p

= b
whereas it is required to estimate the signals at any
time t 2 T . Typical examples are devices deployed
in the stratosphere, underground or underwater. The
choice of points t

j

might be beyond our control (e.g. in
geophysics and defence tascs). For any t 2 T , the signal
is a stochastic vector. We consider large sets of such
signals where each signal is associated with a particular
t 2 T . The observations are noisy and also large. Thus,
all we can exploit is noisy observations and a sparse
information on reference signals given by samples of
the signal set at times {t

j

}p

1.

B. Formalization of the problem

To formalize the problem, we denote by ≠ the set of all
experimental outcomes1, by K

x

= {x
!

| ! 2 ≠} a set of
reference stochastic signals and by K

y

= {y
!

| ! 2 ≠}
a set of observed signals2. Note that, theoretically, K

x

and K
y

are infinite signal sets. In practice, however, sets
K

x

and K
y

are finite and large, each with, say, N signals.
To each random outcome ! 2 ≠ we associate a unique

1We write {≠, ß, µ} for a probability space where ß Ω ≠ is a
sigma-algebra of measurable sets known as the event space and µ is
a non-negative probability measure with µ(≠) = 1.
2In an intuitive way, y can be regarded as a noise-corrupted version

of x. For example, y can be interpreted as y = x + n where n is
white noise. We do not restrict ourselves to this simplest version of y
and assume that the dependence of y on x and n is arbitrary.

signal pair (x

!

,y
!

) where x

!

: T ! C0,1
(T, Rm

) and
y

!

: T ! C0,1
(T, Rn

)

3. Write

P = K
x

£K
y

= {(x
!

,y
!

) | ! 2 ≠} (1)

for the set of all such signal pairs. For each ! 2 ≠,
the components x

!

= x

!

(t), y
!

= y

!

(t) are Lipschitz
continuous vector-valued functions on T [1].

We wish to construct an estimator F (p°1) that estimates
each reference signal x

!

(t) in P from related observed
input y

!

(t) under the restriction that a priori information
on only a few reference signals, x

!

(t1), . . ., x

!

(t
p

), is
available where pø N .

In more detail, this restriction implies the following.
Let us denote by K(p)

x

a set of p signals x

!

(t1), . . .,
x

!

(t
p

) for which a priori information is available. A
set of associated observed signals y

!

(t1), . . ., y
!

(t
p

) is
denoted by K(p)

y

. Then for all y

!

(t) that do not belong
to K(p)

y

, y

!

(t) /2 K(p)
y

, estimator F (p°1) is said to be
the blind estimator [2], [3], [4], [5] since no information
on x

!

(t) /2 K(p)
x

is available. If y

!

(t) 2 K(p)
y

then
F (p°1) becomes a nonblind estimator since information
on x

!

(t) 2 K(p)
x

is available. Thus, depending on y

!

(t),
estimator F (p°1) is classified differently. Therefore, such
a procedure of estimating reference signals in K

x

is here
called the almost blind estimation.

C. Differences from known techniques

We would like to note that the almost blind estimation
is different from known methods such as nonblind [6]–
[18], semiblind and blind techniques [2]–[5], [19]–[22]4.
Indeed, at each particular time t 2 T , the input of the
almost blind estimator F (p°1) developed below in this
paper, is a random vector y

!

(t). Thus, for different t 2
T , the input is a different random vector y

!

(t) but we

3The space C0,1(T, Rp) is the set of vector-valued Hölder contin-
uous functions f of order 1 with f(t) 2 Rp and kf(s) ° f(t)k ∑
K|s° t|. See [1], p. 96.
4The literature on these subjects is very abundant. Here, we listed

only some related references.
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wish to keep the same estimator F (p°1) for any t 2 T ,
i.e. for any observed signal y

!

(t) in the set K
y

.

By known techniques in [2]–[16] and [19]–[22], an
estimator (here, we choose the united term ‘estimator’ to
denote an equalizer or a system) is specifically designed
for each particular input–output pair represented by
random vectors. That is, for different inputs (observed
signals) y

!

(t), known techniques require different spec-
ified estimators and the number of estimators should be
equal to a number of processed signals. In the case of
large signal sets, such approaches become inconvenient
because the number of signals N can be very large as
it is supposed in this paper. For example, in problems
related to DNA analysis, N = O(10

4
). Therefore, the

inconvenient (burdened, difficult) restriction of using a
priori information on only p reference signals, with
p ø N , is quite significant. At the same time, beside
difficulties that this restriction imposes on the estimation
procedure, we use it in a way that allows us to avoid
the hard work associated with known techniques applied
to large signal sets. To the best of our knowledge,
the exception is the methodology in [17], [18] where
for estimation of a set of signals, the single estimator
is constructed. The estimation techniques in [17], [18]
exploit information in the form of a vector obtained, in
particular, from averaging over signals in K(p)

x

.

Further, the semiblind techniques are not applicable to
the considered problem because they require a knowl-
edge of some ‘parts’ of each reference signal in K

x

(e.g.,
see [3], [5], [19]) but it is not the case here. Although the
blind techniques allow us to avoid this restriction, it is
known that they have difficulties related to accuracy and
computational load. In the problem under consideration,
the advantage is a knowledge of some (small) part of the
set of reference signals. It is natural to use this advantage
in the estimator structure and we will do it in Section II.

Nonblind estimators [6]–[16] are not applicable here be-
cause they require a priori information on each reference
signal in K

x

(e.g., a knowledge of covariance matrix
E[x

!

y

T

!

] where E is the expectation operator). In par-
ticular, it is known that there are significant advantages
in adaptive or recursive estimators (e.g., associated with
Kalman filtering approach) and it may well be possible
to embed our estimator into such an environment—
but that is not our particular concern here. Further, we
note that much of the literature on piecewise linear
estimators [23]–[26] seems to be not directly relevant
to the estimator proposed here. In the first instance
papers such as [23]–[26] are mostly concerned with
the theoretical problems of approximation by piecewise
linear functions on multi-dimensional domains which is

not the case here.

Also, unlike many known techniques, we consider the
case of observations corrupted by an arbitrary noise (not
by an additive noise only) and design the estimator in
terms of the Moore-Penrose pseudo-inverse matrix [27].
Therefore it is always well defined.

II. THE MAIN RESULTS

In this section we outline the rationale for the proposed
estimator and state the main results.

A. Some preliminaries

The proposed estimator F (p°1) is adaptive to a sparse
set K(p)

x

.

The conceptual device behind the proposed estimator is
a linear interpolation of an optimal incremental estima-
tion applied to random signal pairs (x

!

(t
j

), y
!

(t
j

)) and
(x

!

(t
j+1), y

!

(t
j+1)), for j = 1, . . . , p ° 1, interpreted

an extension of the least squares linear (LSL) estimator
(see, for example, [6], [11], [16]).
Although this idea may seem reasonable the detailed
justification of the new estimator is not straightforward
and requires careful analysis. We shall do this by es-
tablishing an upper bound for the associated error and
by showing that this upper bound is directly related
to the expected error for an incremental application of
the optimal LSL estimator. In Section II-B below, we
will show that such an estimator is possible under quite
unrestrictive assumptions.

Since the estimator proposed below is based on an
extension of the LSL estimator it is convenient to sketch
known related results here. Consider a single random
signal pair (x(!), y(!)) where x 2 L2

(≠, Rm

) and
y 2 L2

(≠, Rn

) with zero mean (E[x], E[y]) = (0,0),
where 0 is the zero vector. Note that here, x and y do not
depend on t as above. The estimate b

x of the reference
vector x by the optimal least squares linear estimator is
given by

b
x(!) = E

xy

E†
yy

y(!) (2)

where E
xy

= E[xy

T

] and E
yy

= E[yy

T

] are known
covariance matrices and E†

yy

is the Moore-Penrose
pseudo-inverse of E

yy

. By the LSL estimator, matrices
E

xy

and E†
yy

should be specified for each signal pair
(x(!),y(!)).

Further, for a justification of our estimator, we need
some more notation as follows. It is convenient to
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denote x(t,!) = x

!

(t) and y(t, !) = y

!

(t) so that
x(t,!) 2 Rm and y(t,!) 2 Rn.

B. The piecewise LSL interpolation estimator

For each signal pair (or vector function pair)
in the set P , (x(t,!), y(t,!)), we assume that
(E[x(t, ·)], E[y(t, ·)]) = (0,0). To begin the estimation
process we need to find an initial estimate b

x(t1, !). It
is assumed this can be found by some known method.
Further, let us consider a signal estimation procedure
at t2, · · · , tp. We use an inductive argument to define
an incremental estimation procedure. Consider a typical
interval [t

j

, t
j+1] and define incremental random vectors

v

j

(!) = x(t
j+1,!)° x(t

j

,!) 2 Rm, (3)
w

j

(!) = y(t
j+1,!)° y(t

j

, !) 2 Rn (4)

and construct the optimal linear estimate

b
v

j

(!) = E
vjwj E

†
wjwj

w

j

(!) (5)

of the increment v

j

(!) for each j = 1, . . . , p ° 1. We
will write

B
j

= E
vjwj E

†
wjwj

2 Rm£n. (6)

Define the estimate at point t
j+1 by setting b

x(t
j+1,!) =

b
x(t

j

,!) +

b
v

j

(!). Thus we have

b
x(t

j+1,!) =

b
x(t

j

,!) + B
j

[y(t
j+1,!)° y(t

j

,!)]

= ≤

j

(!) + B
j

y(t
j+1,!) (7)

where we write

≤

j

(!) =

b
x(t

j

,!)°B
j

y(t
j

,!). (8)

Note that this definition can be rewritten more sugges-
tively as

b
x(t

j

,!) = ≤

j

(!) + B
j

y(t
j

,!) (9)

for each j = 1, . . . , p° 1.

The formula (7) shows that on each subinterval [t
j

, t
j+1]

the estimate of the reference signal at t
j+1 is obtained

from the initial estimate at t
j

by adding the optimal LSL
estimate of the increment.

Now, consider a signal estimation at any t 2 [a, b]. The
first step is simply to extend the formulæ (7) and (9) to
all t 2 [t

j

, t
j+1] by defining

b
x(t,!) = ≤

j

(!) + B
j

y(t,!). (10)

Thus the incremental estimation across each subinterval
is extended to every point within the subinterval. Be-
cause of determining estimate b

x(t
j+1,!) in the form

(5)–(7) we interpret this procedure as the LSL piecewise
interpolation.

The incremental estimations are collected together in the
following way. For each j = 1, 2, . . . , p° 1, write

F
j

[y(t,!)] = ≤

j

(!) + B
j

y(t,!) (11)

for all t 2 [t
j

, t
j+1] and hence define the piecewise LSL

interpolation estimator by setting

F (p°1)
[y(t, !)] =

p°1X

j=1

F
j

[y(t,!)][u(t°t
j

)°u(t°t
j+1)]

(12)
for all t 2 [a, b] where u(t) =

Ω
1 for t > 0

0 otherwise. is the
unit step function. Thus we can now use the estimate

b
x(t,!) = F (p°1)

[y(t,!)] (13)

for all (t,!) 2 T £ ≠. The idea of a piecewise LSL
interpolation estimator on T seems intuitively reasonable
for signals with a well defined gradient over T .

We note that by (6)-(13), the estimator F (p°1) is adaptive
to a variation of signals in K(p)

x

. A change of signals
in K(p)

x

implies a change of determinations of sub-
estimators B

j

in (6) and keep the same structure of the
F (p°1).

C. Justification of the LSL interpolation estimator

We wish to justify the proposed estimator by establishing
an upper bound for the associated error.

To explain the technical details we introduce some
further terminology.

Let us denote kx(t, ·)k2≠ =

R
≠ kx(t,!)k2dµ(!). As-

sume that for all t 2 T , we have

kx(t, ·)k2≠ <1 and ky(t, ·)k2≠ <1, (14)

where kx(t,!)k and ky(t,!)k are the Euclidean norms
for x(t,!) and y(t,!) for each (t,!) 2 T £ ≠,
respectively. Thus we will say that the signals are
square integrable in ! and write x(t, ·) 2 L2

(≠) and
y(t, ·) 2 L2

(≠) for each fixed t 2 T .

For each t 2 T , let F = {f : T £ ≠ ! Rm | f(t, ·) 2
L2

(≠, Rm

)} and define

kfk
T,≠ =

1

b° a

Z

T£≠
kf(t,!)k dt dµ(!)

=

1

b° a

Z

T

E[kf(t, ·)k] dt

for each f 2 F where kf(t,!)k is the Euclidean norm
of f(t, !) on Rm for all (t, !) 2 Rm. Suppose that for
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all (x, y) 2 P there exist constants ∞
j

, ±
j

> 0 such that

kx(s,!)° x(t,!)k ∑ ∞
j

|s° t|, (15)
ky(s,!)° y(t,!)k ∑ ±

j

|s° t| (16)

for all (s,!), (t,!) 2 [t
j

, t
j+1]£≠, i.e. we suppose that

the Lipschitz constants in (15) are independent of !.

The error bound for the piecewise LSL interpolation
estimator is established in Theorem 1 below.

Theorem 1: If condition (15) is satisfied then the error
≤
p

= kx° F (p°1)
[y]k

T,≠ associated with the piecewise
LSL interpolation estimator satisfies the inequality

≤
p

∑ max

j=1,...,p°1
{(∞

j

+ kB
j

k2±j

)|t
j+1 ° t

j

| (17)

+

h
kE1/2

vj ,vj
k2

F

° kE
vjwj (E

1/2
wjwj

)

†k2
F

i1/2
} (18)

where kB
j

k2 denotes the 2-norm given by the square
root of the largest eigenvalue of BT

j

B
j

and k ·k denotes
the Frobenius norm.

III. CONCLUSION

The piecewise least squares linear (LSL) interpolation
estimator was developed to estimate a large set of
random signals of interest from the set of observed data.
The distinctive feature is that a priori information can
be obtained on only a few reference signals in the form
of samples. Since no information of the major part of
the set of reference signals is known, such a procedure
is called almost blind estimation.

The proposed estimator mitigates to some extent the dif-
ficulties associated with existing estimation approaches
such as the necessity to know information (in the form of
a sample, for instance) on each random reference signal;
invertibility of the matrices used to define the estimators;
and demanding computational work.
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ABSTRACT

We present a performance analysis for image registration with gradient
descent methods. We consider a multiscale registration setting where
the global 2-D translation between a pair of images is estimated by
smoothing the images and minimizing the distance between their in-
tensity functions with gradient descent. We focus in particular on the
effect of low-pass filtering on the alignment performance. We adopt an
analytic representation for images and analyze the well-behavedness
of the distance function by estimating the neighborhood of translations
for which the distance function is free of undesired local minima. This
corresponds to the set of translation vectors that are correctly com-
putable with a simple gradient descent minimization. We show that the
area of this neighborhood increases at least quadratically with the filter
size, which justifies the use of smoothing in image registration with
local optimizers. We finally use our results in the design of a regu-
lar multiscale grid in the translation parameter domain that has perfect
alignment guarantees.

Keywords— Image registration, image smoothing, gradient-
descent, performance analysis.

1. INTRODUCTION

The estimation of the transformation that best aligns two images is
one of the important problems of image processing. The necessity for
registering images arises in many different applications; e.g., image
analysis and classification [1], [2], stereo vision [3], motion estimation
for video coding [4]. Many registration techniques adopt, or can be
coupled with, a multiscale hierarchical search strategy. In hierarchi-
cal registration, reference and target images are aligned by applying
a coarse-to-fine estimation of the transformation parameters, using a
pyramid of low-pass filtered and downsampled versions of the images.

In this work, we analyze the effect of smoothing on the performance
of registration. It is commonly admitted that smoothing an image pair
is helpful for overcoming the undesired local minima of the distance
function between images. In practice, filtering is commonly used in hi-
erarchical registration and motion estimation methods [4]. However, to
the best of our knowledge, the analytical relation between filtering and
the well-behavedness of the image dissimilarity function has not been
extensively studied. Most theoretical results in the image registration
literature investigate how image noise affects the registration accuracy,
e.g., [5], [6]. However, the analysis of the effect of smoothing on the
registration performance has generally been given less attention in the
literature. Some of the existing works examine how smoothing influ-
ences the bias on the registration with gradient-based methods [5], [7].
Also, there are some results in scale-space theory that examine the vari-
ation of the local minima of 1-D and 2-D functions with filtering [8],

This work has been partly funded by the Swiss National Science Founda-
tion under Grant 200020 132772.

which however does not exactly have the same setting as in the image
registration problem.

In this paper, we consider a setting where the geometric transforma-
tion between the reference and target patterns is a global 2-D transla-
tion. In particular, we examine the neighborhood of translation vectors
in which the only local minimum of the distance function is also the
global minimum in the alignment problem. This neighborhood defines
the translations between a pair of images, which can be estimated cor-
rectly with a descent algorithm. We call this neighborhood the Single
Distance Extremum Neighborhood (SIDEN) of the reference pattern.
For the ease of derivations, we formulate the registration problem in the
continuous domain of square-integrable functions L2

(R2
) and adopt

an analytic and parametric model for the reference and target patterns.
We derive an analytic estimation of the SIDEN in terms of the pat-
tern parameters. Then, in order to study the effect of smoothing on
the registration performance, we consider the alignment of low-pass
filtered versions of the reference and target patterns and examine how
the SIDEN varies with the filter size. Our main result is that the vol-
ume (area) of the SIDEN increases at a rate of at least O(1 + ⇢2

) with
respect to the filter size ⇢. This formally shows that, when the pat-
terns are low-pass filtered, a wider range of translation values can be
recovered with descent-type methods; hence, smoothing improves the
well-behavedness of the distance function. Finally, we demonstrate
the usage of our SIDEN estimate in sampling the translation parameter
domain to construct a grid such that any translation between the image
pair can be exactly recovered by locating the closest solution on the
grid and then locally refining this estimation with a descent method.
This can be achieved by adjusting the grid units with respect to the
SIDEN of the pattern.

2. IMAGE REGISTRATION ANALYSIS

2.1. Notation and Problem Formulation

Let p 2 L2
(R2

) be a visual pattern. In order to study the image regis-
tration problem analytically, we adopt a representation of p in an ana-
lytic and parametric dictionary manifold

D = {�
�

: � = ( , ⌧
x

, ⌧
y

,�
x

,�
y

) 2 �} ⇢ L2
(R2

). (1)

Here, each atom �
�

of the dictionary D is derived from an ana-
lytic mother function � by a geometric transformation specified by
the parameter vector �, where  is a rotation parameter, ⌧

x

and ⌧
y

denote translations in x and y directions, and �
x

and �
y

represent
an anisotropic scaling in x and y directions. � is the transforma-
tion parameter domain over which the dictionary is defined. Defin-
ing the spatial coordinate variable X = [x y]

T 2 R2⇥1, we will
refer to the mother function as �(X). Then an atom �

�

is given by
�

�

(X) = �(��1
 

�1
(X � ⌧)), where

� =

»
�

x

0

0 �
y

–
,  =

»
cos( ) � sin( )

sin( ) cos( )

–
, ⌧ =

»
⌧

x

⌧
y

–
.

(2)
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It is shown in [9] (in the proof of Proposition 2.1.2) that the lin-
ear span of a dictionary D generated with respect to the transformation
model in (1) is dense in L2

(R2
) if the mother function � has nontrivial

support (unless �(X) = 0 almost everywhere). In our analysis, we
choose � to be the Gaussian function �(X) = e�X

T
X

= e�(x2+y

2)

as it has good time-localization and it is easy to treat in derivations due
to its well-studied properties. This choice also ensures that Span(D)

is dense in L2
(R2

); therefore, any pattern p 2 L2
(R2

) can be ap-
proximated in D with arbitrary accuracy. We assume that a sufficiently
accurate approximation of p with finitely many atoms in D is available

p(X) ⇡
KX

k=1

�
k

�
�k (X) (3)

where K is the number of atoms used in the representation of p, �
k

are
the atom parameters and �

k

are the atom coefficients.
Throughout the discussion, T = [T

x

T
y

]

T 2 S1 denotes a unit-
norm vector and S1 is the unit circle in R2. We use the notation tT
for translation vectors, where t � 0 denotes the magnitude of the vec-
tor (amount of translation) and T defines the direction of translation.
We consider the squared-distance between the reference pattern p(X)

and its translated version p(X � tT ), which is the continuous domain
equivalent of the SSD measure that is widely used in registration meth-
ods. The squared-distance in the continuous domain is given by

f(tT ) = kp(X)�p(X�tT )k2 =

Z

R2
(p(X)�p(X�tT ))

2dX (4)

where the notation1 k.k stands for the L2-norm for vectors in L2
(R2

)

and the `2-norm for vectors in R2.
The global minimum of f is at the origin tT = 0. Therefore, there

exists an open neighborhood of 0 within which the restriction of f to
a ray tT

a

starting out from the origin along an arbitrary direction T
a

is
an increasing function of t > 0 for all T

a

. This allows us to define the
Single Distance Extremum Neighborhood (SIDEN) as follows.

Definition 1. We call the set of translation vectors

S = {0} [ {!T T :T 2 S1, !T > 0, and

df(tT )

dt
> 0 for all 0 < t  !T}

(5)

the Single Distance Extremum Neighborhood (SIDEN) of p.

Note that the origin {0} is included separately in the definition of
SIDEN since the gradient of f vanishes at the origin and therefore
df(tT )/dt|

t=0 = 0 for all T . The SIDEN S ⇢ R2 is an open neigh-
borhood of the origin such that the only stationary point of f inside
S is the origin. Therefore, when a translated version p(X � tT ) of
the reference pattern is aligned with p(X) with a local optimization
method like a gradient descent algorithm, the local minimum achieved
in S is necessarily also the global minimum.

Given a reference pattern p, we would like now to find an analytical
estimation of S. However, the exact derivation of S requires the calcu-
lation of the exact zero-crossings of df(tT )/dt, which is not easy to do
analytically. Instead, one can characterize the SIDEN by computing a
neighborhood Q of 0 that lies completely in S; i.e., Q ⇢ S. Q can be
derived by using a polynomial approximation of f and calculating, for
all unit directions T , a lower bound �

T

for the supremum of !T such
that !T T is in S. This not only provides an analytic estimation of the
SIDEN, but also defines a set that is known to be completely inside the
SIDEN. The regions S and Q are illustrated in Figure 1.

1Since it is clear from the context which one of these norms is meant, we
denote these two norms in the same way for simplicity of notation.

Q

S
δT

ωT

f(tT)

R
2

0

Fig. 1. SIDEN S is the largest open neighborhood around the origin within
which the distance f is increasing along all rays starting out from the origin.
Along each unit direction T , S covers points !T T such that f(tT ) is increasing
between 0 and !T T . The estimate Q of S is obtained by computing a lower
bound �

T

for the first zero-crossing of df(tT )/dt.

2.2. Estimation of SIDEN

We now derive Q in an analytic and parametric form. In the following,
we consider T to be a fixed unit direction in S1. We derive Q ⇢ S
by computing a �

T

, which guarantees that df(tT )/dt > 0 for all 0 <
t  �

T

. In the derivation of Q, we need a closed-form expression for
df(tT )/dt. Since f is the distance between two patterns represented
in terms of Gaussian atoms, it involves the integration of the product of
pairs of Gaussian atoms. These integrations yield the following terms,
which are explained in more detail in [10]

⌃

jk

:=

1

2

`
 

j

�2
j

 

�1
j

+ 

k

�2
k

 

�1
k

´

a
jk

:=

1

2

T T

⌃

�1
jk

T, b
jk

:=

1

2

T T

⌃

�1
jk

(⌧
k

� ⌧
j

)

c
jk

:=

1

2

(⌧
k

� ⌧
j

)

T

⌃

�1
jk

(⌧
k

� ⌧
j

), Q
jk

:=

⇡ |�
j

�
k

|e�cjk

p
|⌃

jk

|
.

Notice that a
jk

> 0 and c
jk

� 0 since kTk = 1 and ⌃
jk

, ⌃�1
jk

are
positive definite matrices. By definition, Q

jk

> 0 as well. We are now
ready to state our result about the estimation of the SIDEN.

Theorem 1. The region Q ⇢ R2
is a subset of the SIDEN S of the

pattern p if Q = {tT : T 2 S1, 0  t  �
T

}, where �
T

is the only

positive root of the polynomial |↵4|t3 � ↵3t
2 � ↵1 and

↵1 =

KX

j=1

KX

k=1

�
j

�
k

Q
jk

(2 a
jk

� 4 b2
jk

)

↵3 =

KX

j=1

KX

k=1

�
j

�
k

Q
jk

„
�8

3

b4
jk

+ 8 b2
jk

a
jk

� 2 a2
jk

«

↵4 = �1.37

KX

j=1

KX

k=1

|�
j

�
k

|Q
jk

exp

 
b2
jk

a
jk

!
a
5/2
jk

are constants depending on T and on the parameters �
k

of the atoms

of p.

The proof of Theorem 1 is given in Appendix A.1 of [10], which is
an accompanying technical report. The proof applies a Taylor expan-
sion of df(tT )/dt, and derives a �

T

such that df(tT )/dt is positive for
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all t  �
T

. Therefore, along each direction T , �
T

constitutes a lower
bound for the first zero-crossing of df(tT )/dt. Varying T over the unit
circle, one obtains a closed neighborhood Q of 0 that is a subset of S.
This analytic estimate provides a guarantee for the range of translations
tT over which p(X) can be exactly aligned with p(X � tT ).

2.3. Variation of SIDEN with Smoothing

In this section, we examine how smoothing the reference pattern p with
a low-pass filter influences its SIDEN. We assume a Gaussian kernel
for the filter. As the reference pattern is sparsely represented in a para-
metric form in a Gaussian dictionary, its convolution with a Gaussian
filtering function is also sparsely representable in the same dictionary.
Therefore, the choice of the Gaussian kernel provides an immediate
interpretation of our SIDEN estimation results for smoothed versions
of the reference pattern. We assume that p is filtered with a Gaus-
sian kernel of the form 1

⇡⇢

2 �⇢

(X) with unit L1-norm. The function
�

⇢

(X) = �(⇤

�1
(X)) is an isotropic Gaussian atom with the diagonal

scale matrix ⇤ having ⇢ on the diagonal entries. The scale parameter ⇢
controls the size of the Gaussian kernel. The smoothed version of the
reference pattern p(X) is given by

p̂(X) =

1

⇡⇢2
�

⇢

(X) ⇤ p(X) =

KX

k=1

�
k

1

⇡⇢2
�

⇢

(X) ⇤ �
�k (X)

(6)

by linearity of the convolution operator. As shown in [10], the filtered
pattern is obtained as p̂(X) =

P
K

k=1
ˆ�

k

�
�̂k (X), where the smoothed

atom �
�̂k (X) has parameters

⌧̂
k

= ⌧
k

, ˆ

 

k

=  

k

, �̂
k

=

q
⇤

2
+ �2

k

, ˆ�
k

=

|�
k

|
|�̂

k

|�k

. (7)

Therefore, the change in the pattern parameters due to the filtering
can be captured by substituting the scale parameters �

k

of atoms with
�̂

k

and replacing the coefficients �
k

with ˆ�
k

. Now, considering the
same setting as in Section 2.1, where the target pattern p(X � tT )

is exactly a translated version of the reference pattern p(X), we
examine how the volume of the SIDEN changes when the reference
and target patterns are low-pass filtered as it is typically done in
multiscale image registration algorithms. Hence, we analyze the
variation of the smoothed SIDEN estimate ˆQ corresponding to the
distance ˆf(tT ) between p̂(X) and p̂(X � tT ) with respect to the filter
size ⇢. Since the smoothed pattern has the same parametric form as
the original pattern, the variation of ˆQ with ⇢ can be analyzed easily
by examining how the parameters involved in the derivation of the
SIDEN, e.g., â

jk

, ˆb
jk

, ˆ�
k

, �̂
k

, depend on ⇢. We use the notation ˆ

(.)
for referring to the parameters corresponding to the filtered versions of
the Gaussian atoms. We now give our main result, which summarizes
the dependence of the smoothed SIDEN estimate on the filter size ⇢.

Theorem 2. Let V (

ˆQ) denote the volume (area) of the SIDEN

estimate

ˆQ for the smoothed pattern p̂. Then, the order of dependence

of the volume of

ˆQ on ⇢ is given by V (

ˆQ) = O(1 + ⇢2
).

Theorem 2 is proved in [10, Appendix A.2]. The proof is based on
the examination of the order of variation of â

jk

, ˆb
jk

, ĉ
jk

, ˆQ
jk

with ⇢,
which is then used to derive the dependence of ˆ�

T

on ⇢. The theorem
shows that the neighborhood of translation vectors inside which the
reference pattern p̂(X) can be perfectly aligned with p̂(X � tT ) using
a descent method expands at the rate O(1 + ⇢2

) with respect to the
increase in the filter size ⇢. Here, the order of variation O(1 + ⇢2

) is
obtained for the estimate ˆQ of the SIDEN. Since ˆQ ⇢ ˆS for all ⇢, one
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Fig. 2. The variations of the true distance !̂T of the boundary of ˆS to
the origin and its estimation ˆ�

T

with respect to the filter size

immediate observation is that the rate of expansion of the SIDEN ˆS
must be at least of O(1+⇢2

); i.e., V (

ˆS) � V (

ˆQ) = O(1+⇢2
). Note

that the dependence of V (

ˆS) on ⇢may get above this rate for particular
reference patterns. For instance, for patterns that consist only of atoms
with coefficients of the same sign, there exists a threshold value ⇢0 of
the filter size such that for all ⇢ > ⇢0, ˆS = R2 and thus V (

ˆS) = 1
[10, Proposition 4 ].

2.4. Evaluation of SIDEN by experiments

We now evaluate our theoretical results about SIDEN estimation with
an experiment that compares the estimated SIDEN to the true SIDEN.
We generate a reference pattern consisting of 40 randomly selected
Gaussian atoms with random coefficients, and choose a random unit
direction T . Then, we determine the distance2 !̂T of the true SIDEN
boundary from the origin along T , and compare it to its estimation ˆ�

T

for a range of filter sizes ⇢. The distance !̂T is computed by searching
the first zero-crossing of d ˆf(tT )/dt numerically, while its estimate ˆ�

T

is computed according to Theorem 1. We repeat the experiment 300
times with different random reference patterns p and directions T ; and
average the results. In 44% of the trials, d ˆf(tT )/dt has been exper-
imentally seen to have no zero-crossings when the pattern is filtered
sufficiently. The distance !̂T and its estimation ˆ�

T

are plotted in Fig-
ure 2 for the remaining 56% of the patterns. The figure shows that both
!̂T and ˆ�

T

have an approximately linear dependence on ⇢. This is an
expected behavior, since ˆ�

T

= O
“
(1 + ⇢2

)

1/2
”
⇡ O(⇢) for large ⇢.

The estimate ˆ�
T

is smaller than !̂T since it is a lower bound for !̂T . Its
variation with ⇢ is seen to capture well the variation of the true SIDEN
boundary !̂T .

3. APPLICATION TO PARAMETER DOMAIN SAMPLING

We now demonstrate the usage of our SIDEN estimate in the construc-
tion of a grid in the translation parameter domain that is used for image
registration. We have shown that small translations, i.e., vectors in Q,
can be perfectly recovered by minimizing the distance function with
descent methods. However, the perfect alignment guarantee is lost for
relatively large translations that are outside Q. Hence, we propose to
construct a grid in the translation parameter domain and estimate large
translation vectors with the help of the grid. In particular, we describe a
grid design procedure such that any translation vector tT lies inside the
SIDEN of at least one grid point. Such a grid guarantees the recovery
of the translation parameters if the distance function is minimized with

2With an abuse of notation, the parameter denoted as !̂T in Section 2.4
corresponds in fact to sup !̂T in the definition of SIDEN in (5).
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a gradient descent method that is initialized with the grid points. In
order to have a perfect recovery guarantee, each one of the grid points
must be tested. However, as this is computationally costly, we pro-
pose to use the following two-stage optimization instead, which offers
a good compromise with respect to the accuracy-complexity tradeoff.
First, we search for the grid vector that gives the smallest distance be-
tween the image pair, which results in a coarse alignment. Then, we
refine the alignment with a gradient descent method initialized with
this grid vector.

We now explain the grid construction. From Theorem 1, one can
verify that the estimation �

T

of the SIDEN boundary along the direc-
tion T is symmetric and it satisfies �

T

= ��T

. Therefore, one can
easily determine a grid unit in the form of a parallelogram that lies
completely inside Q and tile the (tT

x

, tT
y

)-plane with these grid units.
This defines a regular grid in the (tT

x

, tT
y

)-plane such that each point
of the plane lies inside the SIDEN of at least one grid point. As the
SIDEN increases with the filter size, the area of the grid units expand
at the rate O(1+⇢2

) and the number of grid points decrease at the rate
O
`
(1 + ⇢2

)

�1
´

with ⇢.
The construction of a regular grid in this manner is demonstrated for

a digit pattern. In Figure 3(a), the reference pattern and its translated
versions corresponding to the neighboring grid points in the first and
second directions of sampling are shown. In Figure 3(b), the reference
pattern is shown when smoothed with a filter of size ⇢ = 0.15, as well
as the neighboring patterns in the smoothed grid. The corresponding
grids are displayed in Figures 3(c) and 3(d), where the SIDEN esti-
mates Q, ˆQ and the grid units are also plotted. One can observe that
smoothing the pattern results in a coarser grid. In Figure 4, we plot
the variation of the number of grid points with the filter size for the
random patterns of the previous experiment and the digit pattern. The
results confirm that the number of grid points decreases monotonically
with the filter size, as stated by Theorem 2, which suggests that the
number of grid points must be of O

`
(1 + ⇢2

)

�1
´
. Finally, the experi-

ments in [10] show that this registration method indeed has an optimal
alignment performance.

4. CONCLUSION

We have presented an analysis of hierarchical image registration
with descent-type local minimizers. We have examined the prob-
lem of aligning a reference and a target pattern that differ by a two-
dimensional translation. We have derived an estimation of the neigh-
borhood of translations for which the image pair can be exactly aligned
with a local optimizer. Then we have investigated how the area of this
neighborhood varies with the size of the filter used in the coarse-to-fine
registration process. Our finding is that the area of this neighborhood
increases quadratically with the filter size, therefore, smoothing the
patterns improves the well-behavedness of the distance function. We
have used our results in the construction of a multiscale regular grid in
the translation parameter domain that guarantees the exact alignment
of a reference pattern with its translated versions. The fact that the
number of grid points is inversely proportional to the square of the fil-
ter size shows that filtering is useful for decreasing the computational
complexity of image alignment.
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Abstract—In light of the ever-increasing demand for new spec-
tral bands and the underutilization of those already allocated, the
new concept of Cognitive Radio (CR) has emerged. Opportunistic
users could exploit temporarily vacant bands after detecting the
absence of activity of their owners. One of the most crucial tasks
in the CR cycle is therefore spectrum sensing and detection
which has to be precise and efficient. Yet, CRs typically deal
with wideband signals whose Nyquist rates are very high. In this
paper, we propose to reconstruct the spectrum of such signals
from sub-Nyquist samples in order to perform detection. We
consider both sparse and non sparse signals as well as blind and
non blind detection in the sparse case. For each one of those
scenarii, we derive the minimal sampling rate allowing perfect
reconstruction of the signal spectrum in a noise-free environment
and provide recovery techniques. The simulations show spectrum
recovery at the minimal rate in noise-free settings.

I. INTRODUCTION

Spectral resources are traditionally allocated to primary
users (PUs). As most are already licensed, new applications
can hardly ever obtain access to free frequency bands. Para-
doxally, the over-crowded spectrum is usually significantly
underutilized as numerous studies have shown [1]–[3]. In order
to respond to the increasing demand for spectrum usage from
new users, the concept of Cognitive Radio (CR) [4], [5] has
recently been considered. In this approach, secondary users
opportunistically use temporarely vacant spectrum bands when
their owners are inactive.

In this scheme, the CR has to constantly monitor the spec-
trum and detect the PUs’ activity in order to select unoccupied
bands, before and throughout its transmission. Obviously, the
detection has to be extremely reliable and fast. On the other
hand, it is worthwhile for the CR to sense a wide band of
spectrum simultaneously, in order to increase the probability of
finding a vacant spectral band. Nyquist rates of such wideband
signals are very high and sometimes cannot even be met by
today’s best analog-to-digital converters (ADCs). Moreover,
the tremendous amount of samples such high rates generate
have to be processed by the CR, slowing down the digital
detection process.

To overcome the rate bottleneck, several new sampling
methods have recently been proposed [6]–[8] that reduce the
sampling rate in multiband settings below the Nyquist rate. In
[6]–[8], the authors derive the minimal sampling rate allowing
for perfect signal reconstruction in noise-free settings and

provide sampling and recovery techniques. However, when the
final goal is spectrum sensing and detection, reconstructing the
original signal is unnecessary. In this paper, we propose to only
reconstruct the signal spectrum from sub-Nyquist samples,
in order to perform signal detection. In [9], the authors
propose a method to estimate finite resolution approximations
to the true spectrum exploiting multicoset sampling. Spectrum
reconstruction is also considered in [10] both in the time
and frequency domains. However, no analysis on the minimal
sampling rate ensuring perfect reconstruction of the spectrum
was performed.

We consider the class of wide-sense stationary multiband
signals, whose frequency support lies within several con-
tinuous intervals (bands). We will consider three different
scenarii: (1) the signal is not assumed to be sparse, (2) the
signal is assumed to be sparse and the carrier frequencies
of the narrowband transmissions are known, (3) the signal is
sparse but we do not assume carrier knowledge. We consider
the sampling methods proposed in [6]–[8] and use a similar
recovery technique to those derived in [9], [10] in order to
reconstruct the signal spectrum from the sub-Nyquist samples.
Our main contribution is deriving the minimal sampling rate
allowing for perfect reconstruction of the spectrum in a noise-
free environment, for each one of the above three cases. We
show that the rate required for spectrum reconstruction is half
the rate that allows for perfect signal reconstruction, for each
one of the scenarii, namely the Nyquist rate, the Landau rate
[11] and twice the Landau rate [7].

This paper is organized as follows. In Section II, we present
the stationary multiband model and formulate the problem.
Section III describes the sub-Nyquist sampling stage and the
spectrum reconstruction. In Section IV, we derive the minimal
sampling rate for each one of the three scenarii described
above. Numerical experiments are presented in Section V.

II. SYSTEM MODEL AND GOAL

A. System Model

Let x(t) be a real-valued continuous-time signal, supported
on F = [�TNyq/2,+TNyq/2]. Formally, the Fourier transform
of x(t) defined by

X(f) =

Z 1

�1
x(t)e�j2⇡ftdt (1)
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is zero for every f /2 F . We denote by fNyq = 1/TNyq the
Nyquist rate of x(t). We assume that x(t) is composed of
up to Nsig uncorrelated stationary transmissions with disjoint
frequency supports. The bandwidth of each signal does not
exceed 2B (where we consider both positive and negative
frequency bands together) [6]. We consider three different
scenarii.

1) No sparsity assumption: In the first scenario, we assume
no a priori knowledge on the signal and we do not suppose
that x(t) is sparse, namely 2NsigB  fNyq .

2) Sparsity assumption and non blind detection: Here,
we assume that x(t) is sparse, namely 2NsigB ⌧ fNyq .
Moreover, the support of the potentially active transmissions
is known and correspond to the frequency support of licensed
users defined by the communication standard. However, since
the PUs’ activity can vary over time, we wish to develop a
detection algorithm that is independent of a specific known
signal support.

3) Sparsity assumption and blind detection: In the last
scenario, we assume that x(t) is sparse but we do not assume
any a priori knowledge on the carrier frequencies.

B. Problem Formulation

In each one of the scenarii defined in the previous section,
our goal is to assess which of the Nsig transmissions are active
from sub-Nyquist samples of x(t). For each signal, we define
the hypothesis Hi,0 and Hi,1, namely the ith transmission is
absent and active, respectively.

In order to assess which of the Nsig transmissions are active,
we will first reconstruct the spectrum of x(t). In our first and
third scenarii, we fully reconstruct the spectrum. In the second
one, we exploit our prior knowledge and reconstruct it only
at the potentially occupied locations. We can then perform
detection on the fully or partially reconstructed spectrum. Note
that, to do so, we do not sample x(t) at its Nyquist rate, nor
compute its Nyquist rate samples. For each one of the scenarii,
we derive the minimal sampling rate enabling perfect spectrum
reconstruction in a noise-free environment.

III. SUB-NYQUIST SAMPLING AND SPECTRUM
RECONSTRUCTION

We consider two different sampling schemes: multicoset
sampling [7] and the modulated wideband converter (MWC)
[6] which were previously proposed for sparse multiband
signals. We show that the reconstruction stage is identical
for both schemes. In this section, we reconstruct the whole
spectrum. In Section IV-B, we show how we can reconstruct
the spectrum only at potentially occupied locations when we
have a priori knowledge on the carrier frequencies.

1) Multicoset sampling: Multicoset sampling [12] can be
described as the selection of certain samples from the uniform
grid. More precisely, the uniform grid is divided into blocks
of N consecutive samples, from which only M are kept. The
ith sampling sequence is defined as

xci [n] =

⇢
x(nTNyq), n = mN + ci,m 2 Z

0, otherwise, (2)

where 0 < c1 < c2 < · · · < cM < N�1. Let fs = 1
NTNyq

� B

be the sampling rate of each channel and Fs = [�fs/2, fs/2].
Following the derivations from multicoset sampling [7], we
obtain

z(f) = Ax(f), f 2 Fs, (3)

where zi(f) = Xci(e
j2⇡fTNyq), 0  i  M � 1 is the DTFT

of the multicoset samples and

xk(f) = X

✓
f +

Kk

NTNyq

◆
, 1  k  N, (4)

where K = {(�N�1
2 , . . . , N�1

2 )} for odd N (see [7] for even
N ). Each entry of x(f) is referred to as bin since it consists
of a slice of the spectrum of x(t). The ikth element of the
M ⇥N matrix A is given by

Aik =
1

NTNyq
ej

2⇡
N ciKk . (5)

2) MWC sampling: The MWC [6] is composed of M
parallel channels. In each channel, an analog mixing front-end,
where x(t) is multiplied by a mixing function pi(t), aliases
the spectrum, such that each band appears in baseband. The
mixing functions pi(t) are required to be periodic. We denote
by Tp their period and we require fp = 1/Tp � B. The
function pi(t) has a Fourier expansion

pi(t) =
1X

l=�1
cile

j 2⇡
Tp

lt
. (6)

In each channel, the signal goes through a lowpass filter with
cut-off frequency fs/2 and is sampled at the rate fs � fp.
For the sake of simplicity, we choose fs = fp. The overall
sampling rate is Mfs where M  N = fNyq/fs. Repeating
the calculations in [6], we derive the relation between the
known DTFTs of the samples zi[n] and the unknown X(f)

z(f) = Ax(f), f 2 Fs, (7)

where z(f) is a vector of length N with ith element zi(f) =
Zi(ej2⇡fTs). The unknown vector x(f) is given by (4). The
M ⇥N matrix A contains the coefficients cil:

Ail = ci,�l = c⇤il. (8)

For both sampling schemes, the overall sampling rate is

ftot = Mfs =
M

N
fNyq. (9)

A. Spectrum Reconstruction

We note that the systems are identical for both sampling
schemes. The only difference is the sampling matrix A. We
assume that A is full spark in both cases [6], [7]. We thus
can derive a method for spectrum reconstruction for both
sampling schemes together. We define the autocorrelation
matrices Rz = E[z(f)zH(f)] and Rx = E[x(f)xH(f)]. Then
from (3), we have

Rz = ARxA
H. (10)
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Here the exposant H denotes the Hermitian operation. Our
goal is to recover Rx from Rz.

Since x(t) is a wide-sense stationary process, we have [13]

E[X(!)X⇤(⌫)] = 2⇡Px(!)�(! � ⌫) (11)

where Px(!) denotes the spectrum of x(t). Therefore Rx is a
diagonal matrix with Rx(i, i) = Px(f + i

NTs
) [9]. It follows

that

rz = (A⇤ ⌦A)vec(Rx) = (A⇤ ⌦A)Brx , �rx, (12)

where � = (A⇤ ⌦ A)B. Here the exposant ⇤ denotes the
conjugate operation. Here ⌦ is the Kronecker product, rz =
vec(Rz), B is a N2 ⇥ N selection matrix that has a ”1” at
the jth column and the [(j � 1)N + j]th row, 1  j  N and
zeros elsewhere.

We wish to recover rx from rz. In the next section, we will
derive the conditions on the sampling rate for (12) to have a
unique solution.

IV. MINIMAL SAMPLING RATE

A. No sparsity Constraints

The system defined in (12) is overdetermined for M2 � N ,
if � is full column rank. The following proposition provides
the condition for the system defined in (12) to have a unique
solution. Due to lack of space, the proofs of the following two
propositions are omitted here and will be found in a future
paper.

Proposition 1. Let A be a full spark M⇥N matrix (M  N )
and B be a N2 ⇥ N selection matrix that has a ”1” at the
jth column and the [(j � 1)N + j]th row, 1  j  N and
zeros elsewhere. The matrix C = (A⇤ ⌦A)B is full column
rank if M2 � N and 2M > N .

From Proposition 1, (12) has a unique solution if M2 � N
and 2M > N . This can happen even for M < N which is
our basic assumption. If M � 2, we have M2 � 2M . Thus,
in this case, the values of M for which we obtain a unique
solution are N/2 < M < N .

In this case, the minimal sampling rate is

f(1) = Mfs >
N

2
B =

fNyq

2
. (13)

This means that even without any sparsity constraints on
the signal, we can retrieve its spectrum by exploiting its
stationary property, whereas the measurement vector z exhibits
no stationary constraints in general.

B. Sparsity Constraints - Non-Blind Detection

We now consider the second scheme, where we have
a priori knowledge on the frequency support of x(t) and
we assume that it is sparse. Instead of reconstructing the
entire spectrum, we propose to exploit our knowledge of the
signal’s potential frequencies in order to further reduce the
reconstruction problem and only reconstruct the potentially
occupied bands.

In this scenario, the only non zero elements of Rx are
Kf ⌧ N diagonal elements. The reduced dimensionality
spectrum is defined as

r̂x = Mfrx. (14)

Here Mf 2 RKf⇥N is a matrix with elements equal to 1
at the indices of potential non-zero entries and r̂x 2 CKf⇥1.
Furthermore, we also define G to be the N ⇥Kf matrix that
selects the corresponding Kf columns of � and ˆ

� = �G.
The reduced problem can then be expressed as

rz = ˆ

�r̂x. (15)

The following proposition provides the condition for the
system defined in (12) to have a unique solution.

Proposition 2. Let A be a full spark M⇥N matrix (M  N )
and B be defined as in Proposition 1. Let C = (A⇤ ⌦A)B
and G be the N ⇥Kf that selects any Kf < N columns of
C. The matrix D = CG is full column rank if M2 � Kf and
2M > Kf .

In this case, the minimal sampling rate is

f(2) = Mfs >
Kf

2
B = NsigB. (16)

Landau [11] developed a minimal rate requirement for
perfect signal reconstruction in the non-blind setting, which
corresponds to the actual band occupancy. Here, we find that
the minimal sampling rate for perfect spectrum recovery is
half the Landau rate.

C. Sparsity Constraints - Blind Detection

We now consider the second scheme, namely x(t) is sparse,
without any a priori knowledge on the support. In the previous
section, we showed that ˆ

� is full column rank, for any choice
of Kf columns of � (that correspond to Kf columns of A),
if M2 � Kf and 2M > Kf . Therefore, for M � 2, if rx is
M -sparse, it is the unique sparsest solution of (12).

In this case, the minimal sampling rate is

f(3) = Mfs > KfB = 2NsigB. (17)

As expected, this is twice the rate obtained in the previous
case. As in signal recovery, the minimal rate for blind recon-
struction is twice the minimal rate for non-blind reconstruction
[7].

V. SIMULATION RESULTS

We now demonstrate spectrum reconstruction from sub-
Nyquist samples obtained close to the minimal sampling rate
for the first and third scenarii, respectively. We use the MWC
analog front-end [6] for the sampling stage.

It is interesting to notice that (12), which is written in
the frequency domain, is valid in the time domain as well.
We can therefore estimate rz(f) and reconstruct rx(f) in the
frequency domain, or alternatively, we can estimate rz[n] and
reconstruct rx[n] in the time domain. In order to estimate the
autocorrelation matrix Rz(f), we first compute the estimates
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of zi(f), 1  i  M , ẑi(f), using FFT on the samples zi[n]
over a finite time window. We then estimate the elements of
Rz(f) as

ˆ

Rz(i, j, f) =
1

P

PX

p=1

ẑ

p(i, f)ẑp(j, f), f 2 Fs, (18)

where P is the number of frames for the averaging of the
spectrum and ẑ

p(i, f) is the value of the FFT of the samples
zi[n] at the frequency f and the pth frame. In order to estimate
the autocorrelation matrix Rz[n] in the time domain, we
perform a convolution between the samples zi[n] over a finite
time window as

ˆ

Rz[i, j, n] =
1

P

PX

p=1

zpi [n] ⇤ zpj [n], n 2 [0, T/TNyq]. (19)

We first consider the spectrum reconstruction of a non
sparse signal. Let x(t) be white Gaussian noise with variance
100, and Nyquist rate fNyq = 10GHz with two stop bands. We
consider N = 65 spectral bands and M = 33 analog channels,
each with sampling rate fs = 154MHz and with Ns = 131
samples each. The overall sampling rate is therefore equal to
50.77% of the Nyquist rate. Figure 1 shows the original and
the reconstructed spectrum at half the Nyquist rate (both with
averaging over P = 1000).

Fig. 1. Original and reconstructed spectrum of a non sparse signal at half
the Nyquist rate.

We now consider the blind reconstruction of a sparse signal.
Let the number of potentially active transmissions Nsig = 6
and the actual number of active transmissions be 3. Each
transmission is white Gaussian noise with variance 100 and
Nyquist rate fNyq = 10GHz, filtered by a bandpass filter
whose central frequency is drawn uniformly at random and
whose bandwidth is B = 120Mhz. We consider N = 75
spectral bands and M = 13 analog channels, each with sam-
pling rate fs = 133MHz and with Ns = 131 samples each.
The overall sampling rate is equal to 110% of the minimal

rate (17). Figure 2 shows the original and the reconstructed
spectrum at 17.3% of the Nyquist rate (both with averaging
over P = 1000 frames).

Fig. 2. Original and reconstructed spectrum of a non sparse signal at 17.3%
of the Nyquist rate.

We note that the difference between the original and the
reconstructed spectrum comes from the fact that the matrix
Rx(f) is not perfectly diagonal.
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Abstract—We propose a dimensionality reducing matrix
design based on training data with constraints on its Frobenius
norm and number of rows. Our design criteria is aimed at
preserving the distances between the data points in the dimen-
sionality reduced space as much as possible relative to their
distances in original data space. This approach can be considered
as a deterministic Bi-Lipschitz embedding of the data points.
We introduce a scalable learning algorithm, dubbed AMUSE,
and provide a rigorous estimation guarantee by leveraging game
theoretic tools. We also provide a generalization characterization
of our matrix based on our sample data. We use compressive
sensing problems as an example application of our problem,
where the Frobenius norm design constraint translates into the
sensing energy.

I. INTRODUCTION

Embedding of high dimensional data into lower dimen-
sions is almost a classical subject. Random projections is one
way of doing such embeddings and this method rely on the
famous Johnson-Lindenstrauss (JL) lemma [1]. Recently, JL
mappings have also found use in compressed sensing (CS),
which is a promising alternative to Nyquist sampling [2].
The current CS theory uses random, non-adaptive matrices
and provide recovery guarantees for highly under sampled
signals. An key component in the analysis of CS recovery
is the restricted isometry property (RIP), [3], [4].

Definition 1 ([3]): A matrix � satisfies the RIP of order
k if the following holds for all vectors z, which has at most
k nonzero entries (i.e., k-sparse):

(1� �k)kzk2
2

 k�zk2
2

 (1 + �k)kzk2
2

. (1)

The RIP constant (RIC) of � of order k is the smallest �k
for which (1) holds. In the sequel, we use � without explicit
reference to k for the RIC.

In this paper, we consider adaptivity in matrix design.
Our setting is as follows: we are given a representative data
set which can well-approximate an unknown signal. Using this
data set, we would like to design a CS matrix that incorporates
time and energy constraints while trying to approximate the
best RIP matrix. We provide that the embedding we learn is
also generalizable to some extent, that is, if a signal is drawn
within ✏ of the data set, then the matrix will have good RIC.
We formulate the matrix learning problem into a semidefinite
program (SDP) and propose an algorithm leveraging tools
from game theory.

This work was supported in part by the European Commission under Grant
MIRG-268398, ERC Future Proof, SNF 200021-132548.

The main contribution of this work is that, to the best
of our knowledge, it is the first deterministic design that is
adaptive to data, uses RIP and gives provable approximation
guarantees. A salient feature of our approach is that the design
has the digital fountain property, which makes it nested, that
is, if the measurements are not enough, we can still increase
the measurements without changing the previous rows of the
matrix. In addition, our approach incorporates an important
criteria: the energy constraint, which may also be important
for applications beyond CS. The algorithm we propose is also
highly scalable, that is, it works in linear space in the matrix
size because it only keep the matrix factors. Experimentally,
using the matrices we design for CS seems promising as our
matrices outperform those of random projections.

Notation: We define the set of k-sparse vectors as
⌃k := {z 2 Rn

: kzk
0

 k}; and the set ⌅r :=�
X 2 Sn⇥n

+

: rank(X)  r and kXk
tr

 �
 

for scalars r > 0

and � > 0, where Sn⇥n
+

is the set of positive semidefinite
(PSD) matrices. We denote the n-dimensional simplex by �

n.
Definition 2 ([5]): Given xl 2 X ⇢ ⌃k we define the set

of normalized secants vectors of X as:

S(X ) :=

⇢
vij =

xi � xj

kxi � xjk2 for i 6= j

�
. (2)

Ouline: Section II is problem statement with a bit of
background; while Section III formulates the problem and
presents the algorithm. We analyse the algorithm and give
generalization bounds in Section IV, followed by empirical
results from simulations and conclusions in Sections V and
VI respectively.

II. BACKGROUND AND PROBLEM DESCRIPTION

The CS literature heavily relies on random matrices in
establishing recovery guarantees. There has also been also
progress in obtaining structured matrices via randomization.
However, for CS to live up to its promise, real applications
must be able to use data adaptive matrices. Attempts have
been made in this direction that include what is referred to
as optimizing projection matrices which entails reducing the
correlation between normalised data points (dictionary) of the
given data set, see [6], [7]. Our work is in this direction as
is [5]. Precisely, this work build on what was done in [5] by
learning a projection (embedding) matrix from a given data
set via the RIP. However, in sharp contrast to [5], our solution
provides rigorous approximation guarantees.
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To set up the problem, let us assume that we are given a set
of p � n sample points (training set) X = {xj}pj=1

. Then we
impose that the embedding matrix we are learning � satisfy
RIP on the pairwise distances of the points in X , that is �
satisfies (1) with z replaced by xi�xj for all xi,xj 2 X where
i 6= j. � is bi-Lipschitz due to the RIP construct. Theoretical
guarantees for this approach relies on results from differential
geometry, see [5] and the references therein.

If we replaced z in (1) by xi � xj and normalized
the pairwise distances, then the RIP condition (1) on S(X )

becomes (1 � �)  vT
ij�

T�vij  (1 � �). This expression
simplifies to |vT

ij�
T�vij�1|  � for each i 6= j. Re-indexing

the vij to vl for l = 1, . . . ,M , where M =

�p
2

�
, we form the

M secant vectors S(X ) = {v
1

, . . . ,vM} into an n⇥M matrix
V = [v

1

, . . . ,vM ] and let B = �T�. Then we define a linear
transform A : Sn⇥n

+

! RM as:

A (B) := diag
�
VTBV

�
, (3)

where diag(H) denotes a vector of the entries of the principal
diagonal of the matrix H. Note that the rank of B is the same
as that of � and B is a PSD self-adjoint matrix. In addition,
we place a constraint on the energy of B to be a fixed budget,
say b, which adds a trace constraint to our problem and in
practice may translates for example to having the entries of
� to all have a certain magnitude range. So our problem of
adaptively learning an energy-aware RIP matrix � and an RIC
� is equivalent to the following trace constrained affine rank
minimization (ARM) problem:

min
B

kA (B)� 1Mk1
s.t. B ⌫ 0, rank(B) = r, trace(B) = b.

(4)

In [5], they solve a different problem by constraining the
value of �. Then they use eigen-decomposition to reach a
number of samples. We directly take the constraints, design
the matrix and give approximation guarantees. In our case,
our algorithm returns the factors directly, which reduces the
post processing costs such as taking eigendecompositions.

III. PROPOSED DESIGN AND OUR ALGORITHM

Problem (4), as is common practice for ARM problems,
can be relaxed as follows:

min

B
ky �A(B)k1

s.t. rank(B)  r and kBk
tr

 b.
(5)

where y = 1M and kBk
tr

 b captures the PSD and the trace
constraints. Based on the work in [8], we reformulate (5) as
a minimax game next.

A. Reformulation of (5)

We first define a linear map A
+

: Sn⇥n ! R2M where
A

+

(B) is a concatenation of A(B) and �A(B) that is:

A
+

(B) = [A(B)

T ,�A(B)

T
]

T , and correspondingly set
f = [yT ,�yT

]

T . Therefore, we have

ky �A(B)k1 = max

i2[2M ]

| [A
+

(B)� f ]i | =
max

i2[2M ]

eTi (A
+

(B)� f) = max

N2�

2M
L(N,B), (6)

where L(N,B) := hN, (A
+

(B)� f)i and ei is the canonical
basis vector. The last equality in (6) is due to the fact that the
maximum of a linear program occurs at a boundary point of
the simplex �

2M . This reduces problem (5) to a minimax
problem:

min
B2⌅r

max
N2�

2M
L(N,B) (7)

where ⌅r is the primal set, �

2M is the dual set and the
mapping L : ⌅r ⇥ �

2M ! R is referred to as the
loss function in game theory. We would need the following
L
max

:= maxN,B |L(N,B)| = kA(B)k1 + kyk1. Note
that A⇤

+

: R2M ! Sn⇥n, which is the adjoint of A
+

, can
be expressed in terms of the adjoint of A, denoted by A⇤,
precisely A⇤

+

(w) = A⇤
(w

1

�w
2

) for w = [w
1

,w
2

]

T where
w

1

,w
2

2 RM .

B. AMUSE algorithm

We now propose an algorithm that solves the minimax
game (7) with provable theoretical guarantees: see Algorithm
1. It is important to note that the algorithm works with rank-1
updates Bt (in a matter similar to the conditional gradient
descent algorithms [9]). As a result, after r iterations, our
algorithm returns an estimator bB =

1

r

Pr
t=1

Bt. As we do not
explicitly compute the product of the factors, the algorithm
is scalable since each factor corresponds to 1 measurement.
Moreover, we bound the recovery error as thus:

kA(

bB)� yk1  min

B2�⇤
r

kA (B)� yk1 +O
✓

1p
r

◆
.

This is the first approximation bound for obtaining such
sensing matrices.

Essentially, the MUSE for ARM (AMUSE) algorithm we
propose is a modification of the Multiplicative Update Selector
and Estimator (MUSE) algorithm for learning to play repeated
games proposed in [8]. The MUSE itself can be thought of as a
restatement of the Multiplicative Weights Algorithm (MWA),
which in turn uses the Weighted Majority Algorithm, see
[8] and references therein. We also point out also that the
multiplicative updating has connections to Frank-Wolfe and
related algorithms [10].

Steps 2 and 3 of the loop of AMUSE performs the
multiplicative update of the dual variable N and the update is
exactly the same as in MUSE for a given primal variable at
iteration t, Bt. Therefore the step size ⌘ remains the same as in
the MUSE algorithm, [8]; that is ⌘ = ln

⇣
1 +

p
2 ln(2M)/r

⌘
.

As a result, the theoretical guarantees given in [8] for MUSE
also holds for AMUSE. Basically, for a fixed matrix at iteration
t, Bt, the proof for the multiplicative update in [8] for the
vector case remains the same.
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Algorithm 1 MUSE for ARM (AMUSE)
Input: y, ⌘
Output: bB ⇡ B⇤ with rank(bB)  r
Initialize N1 = 1

2M 12M

For t = 1, . . . , r do
1. Find Bt = argminkBk

tr

1 L(Nt,B)

2. Set Qt+1
j = Nt

j · e
⌘·L(ej ,B

t
)

L
max for j 2 [2M ]

3. Update Nt+1 = Qt+1

P
2M
j=1

Qt+1

j

End for
Return bB = 1

r

Pr
t=1 B

t

Note that the main and crucial difference between
AMUSE and MUSE is the first step of the loop where we
update our primal variable B given our dual variable at
iteration t, Nt, by Bt

= argminkBk
tr

1

L(Nt,B). These
updates have rank 1 and hence their linear combination, bB,
has rank at most r, since rank is sub-additive.

AMUSE is used to approximate problem (4) by rescaling
to meet the trace constraint. The parameter ⌘ remain the same
and L

max

= 1 + max

i
max

j
v2ij where vij is the (i, j) entry

of V.

IV. ANALYSIS

A. AMUSE guarantees

The following theorem formalizes our claim that the
AMUSE algorithm outputs an approximate solution bB with
rank(bB)  r with a bounded `1 loss in the measurement
domain after r iterations. The proof of this theorem use
Lemma 4.1 of [8].

Theorem 1: Let AMUSE return bB after r iterations. Then
rank(bB)  r and kA(

bB)� yk1 is at most

kek1 +

⇣
1 +

p
2

⌘
·
⇣
2kA(

bB)k1 + kek1
⌘r

ln(2M)

r
,

where e measures the perturbation of the linear model.
Proof: We sketch the proof as follows, for details see

[8]. By the definition of A, y and L, kA(

bB) � yk1 =

max

N
L(N, bB). Then we first show that min

B
max

N
L(N,B) +

(1 +

p
2)L

max

r
ln(2M)

r
upper bounds max

N
L(N, bB), a key

ingredient of which is the min-max theorem. Next we deduce
that min

B
max

N
L(N,B) = min

B
kA(B)�yk1  kek1. Then,

using the triangle inequality we bound L
max

by bounding
kyk1 as thus: L

max

= kA(B)k1 + kyk1 which is upper
bounded by 2kA(B)k1 + kek1.

Furthermore, we bound the error of the output of AMUSE
for the RIP matrix learning problem in Corollary 1 which
follows from Theorem 1.

Corollary 1: Let AMUSE learn an RIP matrix bB from a
given data set X after r iterations with RIC b�. Assume that
the optimal RIP matrix for that X has RIC �⇤. Then bB has

rank(bB)  r and

kA(

bB)� 1Mk1  �⇤ + 2(1 +

p
2)

r
ln(2M)

r
.

This implies that if the optimal solution �⇤ has RIC �⇤

on the training set, then our approximation, b�, of �⇤ also
satisfies RIP on these data points but with a slightly larger
constant ˆ�  �⇤ +O (1/

p
r). As the dimensions increase, we

approximate the best RIP constant for the given dataset.

B. Generalization bounds

Interestingly, we can provably approximate the optimal
RIC even for points that are outside our sample points as stated
in the following proposition.

Proposition 1: Given the pair � and � as the optimal
solution to (4), � applied to any z with kz � xk

2

 ✏ for
all x 2 X and ✏ 2 [0, 1) gives an RIC, ¯�, bounded as follows:

¯�  (� + ✏)/(1� ✏). (8)

Proof: Since � is linear w.l.o.g let kxk
2

= 1. For any
z such that kz � xk

2

 ✏ and kzk
2

= 1 then k�zk
2

can be
written as:

k� (x� (z � x)) k
2

 k�xk
2

+ k�(z � x)k
2

using the triangle inequality. Let ↵
1

be the smallest constant
such that k�zk

2

 (1 + ↵
1

)kzk
2

then with the definition of
� from the above inequality we have

k�zk
2

 (1 + �)kxk
2

+ (1 + ↵
1

)kz � xk
2

.

Evaluating and upper bounding the norms and using the
definition of ↵

1

gives

(1 + ↵
1

)  (1 + �) + (1 + ↵
1

)✏.

This simplifies to ↵
1

 (� + ✏)/(1 � ✏). Similarly, we lower
bound k�zk

2

and have an ↵
2

to be the largest constant such
that k�zk

2

� (1 � ↵
1

)kzk
2

, this leads to a bound on ↵
2

as
thus: ↵

2

 (� + ✏)/(1 + ✏). The RIC, ¯�, is therefore given
by max(↵

1

,↵
2

) and for the values of ✏ considered this is ↵
1

,
hence (8).

V. EMPIRICAL RESULTS

We use the synthetic data set of images of translations
of white squares in a black background from [5]. In the first
experiment we investigate the dependence of RIC we learn
on the number of rows (or rank) of the � we learn. Here,
we use M = 2000 number of secants vectors. We use the
same for PCA projected to meet the trace constraint of our
problem (4) and also generate a random Gaussian matrix also
constrained to have trace as our problem. Figure 1 displays
this comparison, where our method clearly outperforms PCA
and random designs.

In the second experiment we learn a � from the data and
use it to encode a randomly selected subset of X corrupted
with Gaussian noise of varying signal-to-noise ratio (SNR).

Proceedings of the 10th International Conference on Sampling Theory and Applications

362



0.2 0.4 0.6 0.8 1
6

8

10

12

14

16

18

20

22

24

δ̂

R
a
n
k
/n

u
m

b
e
r 

o
f 
m

e
a
s
u
re

m
e
n
ts

 

 

AMUSE

PCA

Random

Fig. 1. A plot of the number of measurements (or rank of the b�) as a function
of the RIC b� for data points with an ambient dimension n = 256.

We then do Basis Pursuit denoising to decode these points.
For comparison we use a Gaussian matrix with the trace-
constrained and compute the mean-square error (MSE) over
the subset. The results are displayed in Figure 2, which
show that our approach outperforms the random projections
due to its adaptivity to the underlying data manifold. Note
that in this experiment, we simply searched over Frobenius
norm constraint to approximate the RIC without any energy
constraint.
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Fig. 2. CS recovery performance of our adaptive approach compared to energy
constrained random projections.

VI. CONCLUSIONS

We reformulate the adaptive learning of a data embedding
into an optimization problem and propose an algorithm that
approximately solves this problem with provable guarantees.
We show generalizability of our embedding to a test data
set ✏ away from the training set in terms of the RIC of
the embedding matrix learnt. Our experiments show better
performance of our derived matrices as compared to random
designs with regard to the empirical RIC and CS recovery.
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Abstract—Affine rank minimization algorithms typically rely

on calculating the gradient of a data error followed by a singular

value decomposition at every iteration. Because these two steps

are expensive, heuristic approximations are often used to reduce

computational burden. To this end, we propose a recovery scheme

that merges the two steps with randomized approximations, and

as a result, operates on space proportional to the degrees of

freedom in the problem. We theoretically establish the estimation

guarantees of the algorithm as a function of approximation

tolerance. While the theoretical approximation requirements are

overly pessimistic, we demonstrate that in practice the algorithm

performs well on the quantum tomography recovery problem.

I. INTRODUCTION

In many signal processing and machine learning applica-
tions, we are given a set of observations y 2 Rp of a rank-r
matrix X? 2 Rm⇥n as y = AX?

+ " via the linear operator
A : Rm⇥n ! Rp, where r ⌧ min{m,n} and " 2 Rp is
additive noise. As a result, we are interested in the solution of

minimize
X2Rm⇥n

f(X)

subject to rank(X)  r,
(1)

where f(X) := ky � AXk22 is the data error. While the
optimization problem in (1) is non-convex, it is possible to
obtain robust recovery with provable guarantees via iterative
greedy algorithms (SVP) [1], [2] or convex relaxations [3], [4]
from measurements as few as p = O(r(m+ n� r)).

Currently, there is a great interest in designing algorithms
to handle large scale versions of (1) and its variants. As a
concrete example, consider quantum tomography (QT), where
we need to recover low-rank density matrices from dimen-
sionality reducing Pauli measurements [5]. In this problem,
the size of these density matrices grows exponentially with
the number of quantum bits. Other collaborative filtering
problems, such as the Netflix challenge, also require huge
dimensional optimization. Without careful implementations
or non-conventional algorithmic designs, existing algorithms
quickly run into time and memory bottlenecks.

These computational difficulties typically revolve around
two critical issues. First, virtually all recovery algorithms
require calculating the gradient rf(X) = 2A⇤

(A(X)�y) at
an intermediate iterate X, where A⇤ is the adjoint of A. When
the range of A⇤ contains dense matrices, this forces algorithms
to use memory proportional to O(mn). Second, after the iter-
ate is updated with the gradient, projecting onto the low-rank
space requires a partial singular value decomposition (SVD).

This is usually problematic for the initial iterations of convex
algorithms, where they may have to perform full SVD’s. In
contrast, greedy algorithms [2] fend off the complexity of full
SVD’s, since they need fixed rank projections, which can be
approximated via Lanczos or randomized SVD’s [6].

Algorithms that avoid these two issues do exist, such
as [7]–[10], and are typically based on the Burer-Monteiro
splitting [11]. The main idea in Burer-Monteiro splitting is to
remove the non-convex rank constraint by directly embedding
it into the objective: as opposed to optimizing X, splitting
algorithms directly work with its fixed factors UVT

= X in
an alternating fashion, where U 2 Rm⇥r̂ and V 2 Rn⇥r̂

for some r̂ � r. Unfortunately, rigorous guarantees are
difficult.1 The work [12] has shown approximation guarantees
if A satisfies a restricted isometry property with constant
�2r  2/(100r) (noiseless), where  = �1(X?

)/�r(X?
), or

�2r  1/(3200r2) for a bound independent of . The authors
suggest that these bounds may be tightened based on the good
empirical performance of the algorithm.

In this paper, we merge the gradient calculation and the
singular value projection steps into one and show that this
not only removes a huge computational burden, but suffers
only a minor convergence speed drawback in practice. Our
contribution is a natural but non-trivial fusion of the Singular
Value Projection (SVP) algorithm in [1] and the approxi-
mate projection ideas in [2]. The SVP algorithm is a hard-
thresholding algorithm that has been considered in [1], [13].
Inexact steps in SVP have been considered as a heuristic [13]
but have not been incorporated into an overall convergence
result. A non-convex framework for affine rank minimization
(including variants of the SVP algorithm) that utilizes inexact
projection operations with provable signal approximation and
convergence guarantees is proposed in [2]. Both [1], [2] do
not consider splitting techniques in the proposed schemes.

In this work, departing from [1], [2], we engineer the
SVP algorithm to operate like splitting algorithms that directly

work with the factors; this added twist decreases the per
iteration requirements in terms of storage and computational
complexity. Using this new formulation, each iteration is
nearly as fast as in the splitting method, hence removing a

1If r̂ & p
p, then [11] shows their method obtains a global solution, but

this is impractical for large p. Moreover, it is shown that the explicit rank r̂
splitting method solves a non-convex problem that has the same local minima
as (1) (if r̂ = r). However, the non-convex problems are not equivalent

(e.g. U = 0, V = 0 is a stationary point for the splitting problem whereas
X = 0 is generally not a stationary point for (1)).
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drawback to SVP in relation to splitting methods. Furthermore,
we prove that, under some conditions, it is still possible to
obtain perfect recovery even if the projections are inexact.
Such characterizations have been used for convex [3] and non-
convex [1], [2] algorithms to obtain approximation guarantees.

II. PRELIMINARY MATERIAL

Notation: P⌦ is an orthogonal projection onto the closed
set ⌦ when it exists, and Pr stands for P{X:rank(X)r} (which
does exist by the Eckart-Young theorem). Computer routine
names are typeset with a typewriter font.

R-RIP: The Rank Restricted Isometry Property (R-RIP)
is a common tool used in matrix recovery [1]–[3]:

Definition 1 (R-RIP for linear operators on matrices [3]). A

linear operator A : Rm⇥n ! Rp
satisfies the R-RIP with

constant �r(A) 2 (0, 1) if, 8X 2 Rm⇥n
with rank(X)  r,

(1� �r(A))

��X
��2
F
 ��AX

��2
2
 (1 + �r(A))

��X
��2
F
. (2)

We use the short notation �r to mean �r(A).

Additional convex constraints: Consider the variant
minimize
X2Rm⇥n

f(X)

subject to rank(X)  r, X 2 C,
(3)

for a convex set C. Our main interests are C+ = {X : X ⌫ 0}
and the matrix simplex C� = {X : X ⌫ 0, trace(X) = 1}.
In both cases the constraints are unitarily invariant and the
projection onto these sets can be done by taking the eigenvalue
decomposition and projecting the eigenvalues. Furthermore,
for these specific C, P{X:rank(X)r}\C = PC �Pr (see [14]).

Approximate singular value computations: The stan-
dard method to compute a partial SVD is the Lanczos method.
However, the method is somewhat hard to parallelize and it
lacks theoretical bounds of the form used in Theorem 1.

Algorithm 1 RandomizedSVD

Finds Q such that X ⇡ PQX = QQ⇤X
Require: Function h :

eZ 7! X eZ
Require: Function h

⇤
:

eQ 7! X⇤ eQ
Require: r 2 N // Rank of output
Require: q 2 N // Number of power iterations to perform

1: ` = r + ⇢ // Typical value of ⇢ is 5
2: ⌦ a n⇥ ` standard Gaussian matrix
3: W  h(⌦)

4: Q QR(W ) // The QR algorithm to orthogonalize W
5: for j = 1, 2, . . . , q do

6: Z  QR(h

⇤
(Q))

7: Q QR(h(Z))

8: end for

9: Z  h

⇤
(Q)

10: (U,⌃, V ) FactoredSVD(Q, I`, Z)

11: Let ⌃r be the best rank r approximation of ⌃
12: return (U,⌃r, V )

Algorithm 2 FactoredSVD(

eU, eD, eV )

Computes the SVD U⌃V ⇤
of the matrix X implicitly given by

X =

eU eDeV ⇤

1: (U,RU ) QR(

eU)

2: (V,RV ) QR(

eV )

3: (u,⌃, v) DenseSVD(RU
eDR⇤

V )

4: return (U,⌃, V ) (Uu,⌃, V v)

As an alternative, we turn to randomized linear algebra.
On this front, we restrict ourselves to algorithms that re-
quire only multiplications, as opposed to sub-sampling en-
tries/rows/columns, as sub-sampling is not efficient for the
application we present. The randomized approach presented in
Algorithm 1 has been rediscovered many times, but has seen
a recent resurgence of interest due to theoretical analysis [6]:

Theorem 1 (Average Frobenius error). Suppose X 2 Rm⇥n
,

and choose a target rank r and oversampling parameter ⇢ � 2

where ` := r + ⇢  min{m,n}. Calculate Q and PQ via

RandomizedSVD using q = 0 and set

eX = PQX. Then

EkX� eXk2F  (1 + ✏) kX�Xrk2F
where Xr is the best rank r approximation in the Frobenius

norm of X,

eX has rank `, and ✏ = r
⇢�1 .

The theorem follows from the proof of Thm. 10.5 in
[6]. The expectation is with respect to the Gaussian r.v. in
RandomizedSVD. For the sake of our analysis, we cannot
immediately truncate eX to rank r since then the error bound
in [6] is not tight enough. Thus, since eX is rank `, in practice
we even observe that kX � eXk2F < kX �Xrk2F , especially
for small r, as shown in Figure 3. The figure also shows that
using q > 0 power iterations is extremely helpful, though this
is not taken into account in our analysis since there are no
useful theoretical bounds. Note that variants for eigenvalues
also exist; we refer to the equivalent of RandomizedSVD as
RandomizedEIG, which has the property that U = V and
⌃ need not be positive (cf., [6])

III. A PROJECTED GRADIENT DESCENT ALGORITHM

Our approach is based on the projected gradient descent:

Xi+1 = P✏
r(Xi+1 � µirf(Xi)), (4)

where Xi is the i-th iterate, rf(·) is the gradient of the
loss function, µi is a step-size, and P✏

r(·) is the approximate
projector onto rank r matrices given by RandomizedSVD.
If we include a convex constraint C, then the iteration is

Xi+1 = PC(P✏
r(Xi+1 � µirf(Xi))). (5)

In practice, Nesterov acceleration improves performance:

Yi+1 = (1 + �i)Xi � �iXi�1 (6)
Xi+1 = P(Yi � µirf(Yi)), (7)
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Algorithm 3 Efficient implementation of SVP, K = {R,C}
Require: step-size µ > 0, measurements y, initial points u0 2

Km⇥r, v0 2 Kn⇥r, d0 2 Kr, (opt.) unitarily invariant
convex set C

Require: Function A : (u, d, v) 7! A(u diag(d)v⇤)
Require: Function At : (z, w) 7! A⇤

(z)w
Require: Function At

⇤
: (z, w) 7! (A⇤

(z))⇤w
1: v�1  0, u�1  0, d�1  0

2: for i = 0, 1, . . . do

3: Compute �i // See text
4: uy  [ui, ui�1], vy  [vi, vi�1]

5: dy  [(1 + �i)di,��idi�1]

6: z A(uy, dy, vy)� y // Compute the residual
7: Define the functions

h : w 7! uy diag(dy)v⇤yw � µAt(z, w)
h

⇤
: w 7! vy diag(dy)u⇤

yw � µAt⇤
(z, w)

8: (ui+1, di+1, vi+1) RandomizedSVD(h,h⇤, r)
9: di+1  PC(di+1) // Optional

10: end for

11: return X  uidiv⇤i // If desired

where �i is chosen �i = (↵i�1� 1)/↵i and ↵0 = 1, 2↵i+1 =

1 +

p
4↵2

i + 1 [15] (see [2]). Algorithm 3 shows details for
low-memory implementation. The implementation of A and
At depends on the structure of A in the specific problem.

IV. CONVERGENCE

We assume the observations are generated by y = AX?
+

" where " is a noise term (not to be confused with ✏). In the
following theorem, we will assume that kAk2  mn/p, which
is true for quantum tomography [16]; if A is a normalized
Gaussian, then this assumption holds in expectation.

Theorem 2. (Iteration invariant) Pick an accuracy ✏ = r
⇢�1 ,

where ⇢ is defined as in Theorem 1. Define ` = r+ ⇢ and let

c be an integer such that ` = (c � 1)r. Let µi =
1

2(1+�cr)
in

(4) and assume kAk2  mn/p and f(Xi) > C2k"k2, where

C � 4 is a constant. Then the descent scheme (4) or (5) has

the following iteration invariant

Ef(Xi+1)  ✓f(Xi) + ⌧k"k2, (8)

in expectation, where

✓  12 · 1 + �2r
1� �cr

·
✓

✏

1 + �cr
· mn

p
+ (1 + ✏)

3�cr
1� �2r

◆
,

and

⌧  1 + �2r
1� �cr

·
✓
12 · (1 + ✏)

✓
1 +

2�cr
1� �2r

◆
+ 8

◆
.

The expectation is taken with respect to Gaussian random

designs in RandomizedSVD. If ✓  ✓1 < 1 for all

iterations, then limi!1 Ef(Xi)  max{C2, ⌧
1�✓1

}k"k2.

Each call to RandomizedSVD draws a new Gaussian r.v.,
so the expected value does not depend on previous iterations.
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Fig. 1. (Left) Convergence rate as a function of parameters to
RandomizedSVD/RandomizedEIG. (Right) Scaling plot for computation
time of RandomizedEIG.

The expected value of the function converges linearly at rate
✓ to within a constant of the noise level, and in particular, it
converges to zero when there is no noise.

Unfortunately, the theorem imposes overly pessimistic
values for ✏. The bound on ✓ should be less than 1 in
order to have a contraction. This gives the requirement that
�cr . 1/200, which is reasonable (cf. [12]). However, it
also imposes2 12

1��2cr
· ✏mn

p < 1
2 , which means that we need

✏ . p
24mn . For quantum tomography, m = n and p = O(rn),

so we require " . r/n. From Theorem 1, our bound on ✏ is
r/(⇢� 1), so we require ⇢ ' n, which defeats the purpose of
the randomized algorithm (in this case, one would just perform
a dense SVD). Surprisingly, numerical examples in the next
section show that ⇢ can be nearly a small constant, so the
theory is not sharp.

V. NUMERICAL EXPERIMENTS

We apply the algorithm to the quantum tomography
problem, which is a particular instance of (1). For details,
we refer to [5]. The salient features are that the variable
X 2 Cn⇥n is constrained to be Hermitian positive-definite,
and that, unlike many low-rank recovery problems, the linear
operator A satisfies the R-RIP: [16] establishes that Pauli
measurements (which comprise A) have R-RIP with over-
whelming probability when p = O(rn log

6 n). In the ideal
case, X? is exactly rank 1, but it may have larger rank due to
some (non-Gaussian) noise processes, in addition to AWGN
". Furthermore, it is known that the true solution X? has
trace 1, which is also possible to exploit in our algorithmic
framework. Each component of the linear operator A has a
special Kronecker product structure, which we exploit in order
to keep memory low, using custom parallel code.

Figure 1 (left) plots convergence and accuracy results for a
quantum tomography problem with 8 qubits and p = 4rn with
r = 1. The SVP algorithm works well on noisy problems but
we focus here on a noiseless (and truly low-rank) problem in
order to examine the effects of approximate SVD/eigenvalue
computations. The figure shows that the power method with
q � 1 is extremely effective (if q = 0, then ⇢ ' 20 still
leads to convergence). When p is smaller and the R-RIP is
not satisfied, taking ⇢ or q too small can lead to divergence.

2For the details, see the extended version at http://arxiv.org/abs/1303.0167.
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The right subfigure of Figure 1 shows that the low-memory
implementation has time complexity O(n2

) up to n = 2

16.
The left subfigure of Figure 2 reports the median error on

10 test problems across a range of p. Here, X? is only approxi-
mately low rank and y is contaminated with noise. We compare
the convex approach [5], the “AltMinSense” approach [12],
and a standard splitting approach. AltMinSense and the convex
approach have poor accuracy; the accuracy of AltMinSense
can be improved by incorporating symmetry, but this changes
the algorithm fundamentally and the theoretical guarantees are
lost. The splitting approach, if initialized correctly, is accurate,
but lacks guarantees. Furthermore, it is slower in practice due
to slower convergence, though for some simple problems it is
possible to accelerate using L-BFGS [10].

Figure 3 tests Theorem 1 by plotting the value of

e✏ = kX� eXk2F /kX�Xrk2F � 1

(which is bounded by ✏) for matrices X that are generated by
the iterates of the algorithm. The algorithm is set for r = 1 (so
X is the sum of a rank 2 term, which includes the Nesterov
term, and the full rank gradient), but the plots consider a range
of r and a range of oversampling parameters ⇢. Because eX has
rank ` = r + ⇢, it is possible for e✏ < 0, as we observe in the
plots when r is small and ⇢ is large. For two power iterations,
the error is excellent. In all cases, the observed error e✏ is much
better than the bound ✏ from Theorem 1.

Finally, to test scaling to very large data, we compute a
16 qubit state (n = 65536), using a known quantum state as
input, with realistic quantum mechanical perturbations (global
depolarizing noise of level � = 0.01; see [5]) as well as
AWGN to give a SNR of 30 dB, and p = 5n = 327680

measurements. The first iteration uses Lanczos and all sub-

sequent iterations use RandomizedEIG using ⇢ = 5 and
q = 3 power iterations. On a cluster with 10 computers, the
mean time per iteration is 401 seconds. After 1270 iterations,
kX�X?kF = 0.0256; see Figure 2 (right).

VI. CONCLUSION

Randomization is a powerful tool to accelerate and scale
optimization algorithms, and it can be rigorously included
in algorithms that are robust to small errors. In this paper,
we leverage randomized approximations to remove memory
bottlenecks by merging the two-key steps of most recovery
algorithms in affine rank minimization problems: gradient
calculation and low-rank projection. Unfortunately, the current
black-box approximation guarantees, such as Theorem 1, are
too pessimistic to be directly used in theoretical characteri-
zations of our approach. For future work, motivated by the
overwhelming empirical evidence of the good performance
of our approach, we plan to directly analyze the impact of
randomization in characterizing the algorithmic performance.
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Abstract—Recent developments in [1] and [2] introduced a
novel regularization method for compressive imaging in the con-
text of compressed sensing with coherent redundant dictionaries.
The approach relies on the observation that natural images
exhibit strong average sparsity over multiple coherent frames.
The associated reconstruction algorithm, based on an analysis
prior and a reweighted `1 scheme, is dubbed Sparsity Averaging
Reweighted Analysis (SARA). We review these advances and
extend associated simulations establishing the superiority of
SARA to regularization methods based on sparsity in a single
frame, for a generic spread spectrum acquisition and for a
Fourier acquisition of particular interest in radio astronomy.

I. INTRODUCTION

Consider a complex-valued signal x 2 CN , assumed to
be sparse in some orthonormal basis  2 CN⇥N , and also
consider the measurement model y = �x+n, where y 2 CM

denotes the measurement vector, � 2 CM⇥N with M < N
is the sensing matrix and n 2 CM represents the observation
noise. The most common approach in compressed sensing
(CS) is to recover x from y solving the following convex
problem [3]:

min

¯↵2CN
k ¯↵k

1

subject to ky � � ¯

↵k
2

 ✏, (1)

where ✏ is an upper bound on the `
2

norm of the noise and k·k
1

denotes the `
1

norm of a complex-valued vector. The signal
is recovered as ˆ

x =  ˆ

↵, where ˆ

↵ denotes the solution to (1).
Such problems that solve for the representation of the signal in
a sparsity basis are known as synthesis-based problems. The
standard CS theory provides results for the recovery of x from
y if � obeys a Restricted Isometry Property (RIP) and  is
orthonormal [3]. However, signals often exhibit better sparsity
in an overcomplete dictionary [4]–[6].

Recent works have begun to address the case of CS with
redundant dictionaries. In this setting the signal x is expressed
in terms of a dictionary  2 CN⇥D, N < D, as x =  ↵,
↵ 2 CD. Rauhut et al. [7] find conditions on the dictionary  
such that the compound matrix � obeys the RIP to accurately
recover ↵ by solving a synthesis-based problem. Candès et
al. [8] provide a theoretical analysis of the `

1

analysis-based
problem. As opposed to synthesis-based problems, analysis-
based problems recover the signal itself solving:

min

¯x2CN
k †

¯

xk
1

subject to ky � �¯

xk
2

 ✏, (2)

where  † denotes the adjoint operator of  . The aforemen-
tioned work [8] extends the standard CS theory to coherent and

redundant dictionaries, providing theoretical stability guaran-
tees based on a general condition of the sensing matrix �,
coined the Dictionary Restricted Isometry Property (D-RIP).

In [1] and [2], we proposed a novel sparsity analysis prior
for compressive imaging in the context of CS with coherent
and redundant dictionaries, relying on the observation that
natural images are simultaneously sparse in various frames,
in particular wavelet frames, or in their gradient. Promoting
average sparsity over multiple frames, as opposed to single
frame sparsity, is an extremely powerful prior. The asso-
ciated reconstruction algorithm, based on an analysis prior
and a reweighted `

1

scheme, is dubbed Sparsity Averaging
Reweighted Analysis (SARA)1.

In this work, we review and further discuss these recent
advances. The superiority of SARA to regularization methods
based on sparsity in a single frame, as established through
simulations for a generic spread spectrum acquisition, is de-
scribed with an additional extensive visual support. Moreover,
we bring a novel illustration for a realistic continuous Fourier
sampling strategy of particular interest for radio interferometry
in astronomy. We finally discuss possible avenues to establish
explicit theoretical stability results for the algorithm.

II. SPARSITY AVERAGING REWEIGHTED ANALYSIS

Natural images are often complicated and encompass sev-
eral types of structures admitting sparse representations in
different frames. For example, piecewise smooth structures
exhibit gradient sparsity, while extended structures are better
encapsulated in wavelet frames. Observing that natural images
actually exhibit sparsity in multiple frames, we hypothesise
in [1] and [2] that average sparsity over multiple coherent
frames represents a strong prior. We thus proposed the use of
a dictionary composed of a concatenation of q frames, i.e.

 =

1

p
q
[ 

1

, 
2

, . . . , q], (3)

with  2 CN⇥D, N < D, and an analysis `
0

prior,

k †
¯

xk
0

⇠ 1

q

qX

i=1

k †
i ¯xk0, (4)

to promote this average sparsity. Note that in this setting
each frame contains all the signal information as opposed to

1In [9], similar ideas were applied to the reverberant audio source separation
problem exploiting sparsity in a redundant short time Fourier transform.
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component separation approaches such as [4] and [5]. Also
note on a theoretical level that a single signal cannot be
arbitrarily sparse simultaneously in a set of incoherent frames.
For example, a signal extremely sparse in the Dirac basis
is completely spread in the Fourier basis. As discussed in
[2], each frame,  i, should be highly coherent with the other
frames in order for the signal to have a sparse representation
in  . Concatenation of the first eight orthonormal Daubechies
wavelet bases (Db1-Db8) is an example of interest. The first
Daubechies wavelet basis, Db1, is the Haar wavelet basis.
It can be used as an alternative to gradient sparsity, usually
imposed by a total variation (TV) prior, to promote piecewise
smooth signals. The Db2-Db8 bases provide smoother de-
compositions. Coherence between the bases is ensured by the
compact support of the Daubechies wavelets.

A reweighted `
1

minimization scheme [10] promotes av-
erage sparsity through the prior (4). The algorithm replaces
the `

0

norm by a weighted `
1

norm and solves a sequence of
weighted `

1

problems with weights essentially the inverse of
the values of the solution of the previous problem:

min

¯x2CN
kW †

¯

xk
1

subject to ky � �¯

xk
2

 ✏, (5)

where W 2 RD⇥D is a diagonal matrix with positive weights.
The solution to (5) is denoted as �(y,�,W, ✏). We update the
weights at each iteration, i.e. after solving a complete weighted
`
1

problem, by the function f(�, a) / (� + |a|)�1, where a
denotes the coefficient value estimated at the previous iteration
and � plays the role of a stabilization parameter, avoiding
undefined weights when the signal value is zero. Note that as
� ! 0 the solution of the weighted `

1

problem approaches the
solution of the `

0

problem. We use a homotopy strategy and
solve a sequence of weighted `

1

problems with a decreasing
sequence {�(t)}, with t denoting the iteration time variable.

The sparsity averaging reweighted analysis (SARA) algo-
rithm is defined in Algorithm 1, with  defined as in (3).
A rate parameter � 2 (0, 1) controls the decrease of the
sequence through �(t)

= ��(t�1). However, the noise standard
deviation �↵ in the representation domain, rough estimate for
a baseline above which significant signal components could be
identified, serves as a lower bound: �(t) � �↵ =

p
M/D�n,

with �n the noise standard deviation in measurement space.
As a starting point we set ˆx(0) as the solution of the `

1

problem
and �(0)

= �s

�
 †

ˆ

x

(0)

�
, where �s(·) takes the empirical

standard deviation of a signal. The re-weighting process
ideally stops when the relative variation between successive
solutions is smaller than some bound ⌘ 2 (0, 1), or after the
maximum number of iterations allowed, N

max

, is reached. We
fix ⌘ = 10

�3 and � = 10

�1.

III. SIMULATIONS

In this section, the superiority of SARA to regularization
methods based on sparsity in a single frame, as established
through simulations in the context of a generic spread spec-
trum acquisition, is described with a new extensive visual
support. Moreover, we bring a novel illustration for a realistic

Algorithm 1 SARA algorithm
Input: y, �, ✏, �↵, �, ⌘ and N

max

.
Output: Reconstructed image ˆ

x.
1: Initialize t = 1, W(0)

= I and ⇢ = 1.
2: Compute

ˆ

x

(0)

= �(y,�,W(0), ✏), �(0)

= �s

�
 †

ˆ

x

(0)

�
.

3: while ⇢ > ⌘ and t < N
max

do
4: Update W(t)

ij = f
⇣
�(t�1), ↵̂(t�1)

i

⌘
�ij ,

for i, j = 1, . . . , D with ˆ

↵

(t�1)

=  †
ˆ

x

(t�1).
5: Compute a solution ˆ

x

(t)
= �(y,�,W(t), ✏).

6: Update �(t)
= max{��(t�1),�↵}.

7: Update ⇢ = kˆx(t) � ˆ

x

(t�1)k
2

/kˆx(t�1)k
2

.
8: t t+ 1

9: end while
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Figure 1. Reconstruction quality results for Lena in the context of a spread
spectrum acquisition. Left: original image. Right: SNR results against the
undersampling ratio for an input SNR of 30 dB (average values over 100
simulations are shown with corresponding standard deviations).

continuous Fourier sampling strategy of particular interest for
radio interferometry.

For the first experiment we recover a 256⇥ 256 version of
Lena from compressive measurements. The spread spectrum
technique described in [11] is used as measurement operator.
We compare SARA to analogous analysis algorithms, and their
reweighted versions, changing the sparsity dictionary  in (2)
and (5) respectively. Three different dictionaries are consid-
ered: the Daubechies 8 wavelet basis, the redundant curvelet
frame [6] and the concatenation of the first eight Daubechies
bases described above for SARA. The associated algorithms
are respectively denoted BPDb8, Curvelet and BPSA for the
non reweighted case. The reweighted versions are respectively
denoted RW-BPDb8, RW-Curvelet and SARA. Additionally,
we also compare to the TV prior, where the TV minimization
problem is formulated as a constrained problem like (2), but
replacing the `

1

norm by the image TV norm. The reweighted
version of TV is denoted as RW-TV. Since the image of
interest is positive, we impose the additional constraint that
¯

x 2 RN
+

for all problems. The reconstruction quality of SARA
is evaluated as a function of the undersampling ratio M/N ,
for M/N in the range [0.1, 0.9]. The input SNR is set to 30
dB. The SNR results comparing SARA against all the other
benchmark methods are shown in the right panel of Figure 1.
The results demonstrate that SARA outperforms state-of-the-
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Figure 2. Reconstruction example of Lena for spread spectrum acquisition, with M = 0.2N and input SNR set to 30 dB. First and third columns show the
reconstructed images and the second and fourth columns show the error images. First row: BPSA(24.4 dB) and SARA (27.9 dB). Second row: TV(26.3 dB)
and RW-TV (26.6 dB). Third row: BPDb8 (21.4 dB) and RW-BPDb8 (21.2 dB). Fourth row: Curvelet (18.7 dB) and RW-Curvelet (18.3 dB).

art methods for all undersampling ratios. RW-TV provides the
second best results. BPSA achieves better SNRs than BPDb8,
curvelet and their reweighted versions for all undersampling
ratios. It also achieves similar SNRs to TV in the range 0.4-
0.9. Figure 2 presents a visual assessment for M = 0.2N ,
showing both reconstructed and error images. SARA provides
an impressive reduction of visual artifacts relative to the other
methods in this high undersampling regime. In particular RW-
TV exhibits expected cartoon-like artifacts. Other methods
do not yield results of comparable quality, either in SNR or
visually, with associated reconstructions full of visual artifacts.

The second experiment illustrates the performance of SARA
in the context of radio interferometric imaging by recovering
a 256 ⇥ 256 version of the well known M31 galaxy from
simulated continuous Fourier samples associated with a real-

istic radio telescope sampling pattern (superposition of arcs
of ellipses). The number of measurements is M = 9413,
affected by 30 dB of input noise. The dictionary for SARA
is the concatenation of the first eight Daubechies bases and
the Dirac basis. The Dirac basis is added given the sparsity in
image space due to the large field of view. For comparison, we
use two different methods: BP, constrained `

1

-minimization in
the Dirac basis (used as benchmark in the field), and BPDb8,
constrained analysis-based `

1

-minimization in the Db8 basis.
Figure 3 shows the original test image, the sampling pattern
and the corresponding dirty image, i.e. the inverse Fourier
transform of the measurements, with non-measured points set
to zero. The reconstructed images for BP, BPDb8 and SARA
are also reported. Once more, SARA provides not only a
drastic SNR increase but also a significant reduction of visual
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Figure 3. Radio Astronomy example. From left to right. Top row:
original test image in log10 scale and Fourier sampling pattern. Middle
row: corresponding dirty image in linear scale and reconstruction results for
BP (3.9 dB) in log10 scale. Bottom row: reconstruction results for BPDb8
(10.3 dB) and SARA (14.1 dB) in log10 scale.

artifacts relative to the other methods.

IV. CONCLUSION AND DISCUSSION

In this paper we have reviewed recent advances in the
average sparsity model and the associated algorithm SARA.
Extended simulations demonstrating the superiority of SARA
for compressive imaging reconstruction were described. Novel
results on the application of SARA to a realistic radio inter-
ferometric imaging scenario were also described.

Future work will concentrate on finding a theoretical frame-
work for the average sparsity model. In [2] we have put
average sparsity in the context of theory developed in [8].
However, specialized results for the particular case of con-
catenation of frames (or orthogonal bases) are needed. The
co-sparsity analysis model [12] proposes a general framework
for general analysis operators. Similar properties to the D-
RIP coined ⌦-RIP are introduced in [13] to analyze greedy
algorithms in the context of the co-sparsity analysis model.
It would be interesting to explore the connections between
average sparsity and the co-sparsity model to have an estimate
on the number of measurements needed for reconstruction
compared to single frame representations.

The proposed approach relies on the observation that natural
images exhibit strong average sparsity, i.e. the signals of inter-
est have so-called simultaneous structured models. Recently, it
was shown in [14] that combinations of convex relaxations of
the individual structured models do not yield better results than
an algorithm that exploits only one of the structured models,
while non-convex approaches that approximate the simultane-
ous model can exploit the multiple structured models. Those
results suggest that the re-weighting approach in SARA to
approximate the `

0

norm is fundamental to exploit average
sparsity, as observed in the simulation results (see the gap
between SARA and BPSA in Fig. 1 and Fig. 2).
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Abstract—We study the existence of dual certificates in convex

minimization problems where a rank-1 matrix X0 is to be

recovered under semidefinite and linear constraints. We provide

an example where such a dual certificate does not exist. We

prove that dual certificates are guaranteed to exist if the linear

measurement matrices can not be recombined to form something

positive and orthogonal to X0. If the measurements can be

recombined in this way, the problem is equivalent to one

with additional linear constraints. That augmented problem is

guaranteed to have a dual certificate at the minimizer, providing

the form of an optimality certificate for the original problem.

I. INTRODUCTION

We consider the problem of showing that X0 = x0x
⇤
0 is a

minimizer to the semidefinite program

min f(X) subject to X ⌫ 0,A(X) = b. (1)

for x0 2 Rn, X 2 S
n

is a symmetric real n ⇥ n matrix, f
is convex and continuous everywhere, and A is linear, and
A(X0) = b 2 Rn. Let hX,Y i = tr(Y ⇤

X) be the Hilbert-
Schmidt inner product. Matrix orthogonality is understood to
be with respect to this inner product. The linear measurements
A(X) = b can be written as

A(X)
i

= hX,A

i

i = b

i

for i = 1, . . . ,m

for certain symmetric matrices A

i

. Note that the adjoint of A
is given by A⇤

� =
P

i

�

i

A

i

.
One problem of this form is phase retrieval via PhaseLift,

where f(X) = tr(X) and A

i

= z

i

z

⇤
i

for vectors z

i

[3].
Another example is the corresponding sparse recovery problem
with f(X) = kXk1+c tr(X), where the first term is the entry-
wise `

1 norm of X [6].
In these matrix recovery problems, a recovery result that X0

is a minimizer is often proved by constructing a dual certificate
(or approximation thereof) at X0. Similar to [5] and [2], we
call Y 2 S

n

a dual certificate at X0 if
8
><

>:

Y = A⇤
�+Q 2 �@f(X0)

Q � 0

Q ? X0.

(2)

If a dual certificate exists at X0 then X0 is a minimizer of (1).
Further, it is straightforward to prove that existence of a dual
certificate at X0 is equivalent to (1) satisfying strong duality
with dual attainment by (�, Q).

In the development of convex programs for matrix recov-
ery, it is desirable to know if strong duality holds. Without
guarantees of existence, attempting to analytically construct
dual certificates in particular problems may be futile. Under
strong duality, negative results guaranteeing that X0 is not
a minimizer could be proven by showing no dual certificate
exists, as done in [6].

The perspective of this note is to ease proofs of new
semidefinite relaxations, rather than easing their computation.
In particular, we are concerned with conditions on A

i

under
which problem (1) has a dual certificate at the minimizer X0

or can be augmented into an equivalent problem that does.

A. Counterexample
Though sufficient, existence of a dual certificate (2) is not

necessary for X0 to minimize (1). Consider the following
problem:

min
1

2
kXk2 subject to X ⌫ 0,

⌧
X,

✓
0 0
0 1

◆�
= 0, (3)

⌧
X,

✓
1 1
1 1

◆�
= 1,

where k · k is the Frobenius norm. To analyze this problem,
we recall the fact that

X ⌫ 0 and hX, qq

⇤i = 0 for q 2 Rn ) Xq = 0

) hX, y ⌦ qi = 0 for any y, (4)

where y ⌦ q = yq

⇤ + qy

⇤ is the symmetric tensor product.
Using (4), we can see that any feasible X satisfies

⌧
X,

✓
0 1
1 0

◆�
= 0. (5)

Hence, the minimizer and only feasible point of (3) is

X0 =

✓
1 0
0 0

◆
.

In this example, the subdifferential of f(X) = 1
2kXk2

contains only the single element @f(X0) = {X0}. Again
using (4), we note that the dual certificate conditions (2) can
not be satisfied because there is no (Q,�) such that

�
✓
1 0
0 0

◆
= �1

✓
0 0
0 1

◆
+ �2

✓
1 1
1 1

◆
+Q.
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for Q � 0, Q ? X0. If we were to supplement (3) with the
constraint (5), the conditions (2) could be satisfied for some
(Q,�).

B. Constraint Qualifications
It is well known that semidefinite programs of form (1)

can have a nonzero duality gap or can have a Lagrangian
dual problem for which the dual optimum is not attained [10],
[12]. A constraint qualification (CQ) is a condition such that
strong duality and dual attainment is ensured. For example,
the presence of a strictly feasible X � 0 such that A(X) = b,
is a constraint qualification and is known as Slater’s condition
[1].

Slater’s condition can be insufficient for low-rank matrix
recovery problems. As in the counterexample, if a linear
combination of the A

i

are nonnegative and orthogonal to X0,
then there is no strictly feasible point. Additional constraint
qualifications can be found in [11], [12].

The work in this paper will be based of the following
constraint qualification. The Rockafellar-Pshenichnyi condi-
tion [4], [7], [12], [13] in the present context is that X0

minimizes (1) if and only if there exists a Y 2 (�@f(X0))\
@I

X⌫0,A(X)=b

(X0), where I

X⌫0,A(X)=b

is the indicator func-
tion of the feasible set. Let the cone of candidate dual
certificates be

S :=

(
X

i

�

i

A

i

+Q | Q � 0, Q ? X0

)
, (6)

= @I

X⌫0(X0) + @IA(X)=b

(X0). (7)

A constraint qualification is thus that

@I

X⌫0(X0) + @IA(X)=b

(X0) = @I

X⌫0,A(X)=b

(X0). (8)

This constraint qualification is a weakest constraint qualifica-
tion because it is independent of f [12].

One way to interpret this CQ is in terms of extremal direc-
tions. We say that A is an extremal direction of X0 relative
to the feasible set if hA,Xi  hA,X0i for all feasible X.

Any element of S is an extremal direction of X0, but S

does not necessarily contain all directions in which X0 is
extreme. The set of all such directions is the subdifferential
@I

X⌫0,A(X)=b

(X0). The CQ (8) is that S contains all direc-
tions in which X0 is extreme. Note that @I

X⌫0,A(X)=b

(X0)
is the negative polar cone of the tangent cone of the feasible
set at X0.

C. Sufficient condition for dual certificate existence
Avoiding the pathology of the counterexample, we present

a condition for which dual certificates are guaranteed to exist.

Theorem 1. Let X0 minimize (1). If @A 2 span{A
i

} such
that A ⌫ 0 and A ? X0, then strong duality holds and a dual
certificate exists at X0.

That is, the pathology of the counterexample arrives because
there is a linear combination of A

i

that is positive semi-definite
and orthogonal to X0. If this case is excluded, a dual certificate
necessarily exists at the rank-one solution X0.

D. Weaker sufficient condition for dual certificate existence

If there is a positive semi-definite measurement matrix
A that is orthogonal to X0, then (4) provides additional
constraints on X that may or may not be implied by the linear
constraints A(X) = b alone. For any q 2 Range(A), and for
any y, all feasible X satisfy hX, y ⌦ qi = 0. Hence y ⌦ q is
an extremal direction of X0, and must be in S in order for
strong duality to hold. We say that S is complete at X0 if the
following condition holds:

If A = A⇤
� ⌫ 0, A ? X0, then

y ⌦ q 2 S for all y and for all q 2 Range(A). (9)

Theorem 2. Let X0 minimize (1). If S satisfies the com-
pleteness condition (9) then strong duality holds and a dual
certificate exists at X0.

E. General certificate form

As the counterexample illustrates, the problem (1) may not
contain the linear equations hX, y⌦qi = 0 for the q described
in section I-D. In this case, the optimality certificate for (1) can
be expressed as a dual certificate for the problem augmented
with linear constraints implied by X ⌫ 0 and A(X) = b.
This augmented problem is equivalent to (1) and satisfies the
conditions of Theorem 2. Hence, its dual contains the form of
the optimality certificate for (1).

The following procedure outlines a process for augmenting
the measurement matrices {A

i

} in such a way that there exists
a dual certificate of the form

P
i

�

i

A

i

+Q for Q � 0, Q ? X0:
1) Consider all A ⌫ 0, A 2 span{A

i

}, hA,X0i = 0.
2) Write each A =

P
k

c

k

q

k

q

⇤
k

with c

k

> 0.
3) For each coordinate basis element e

j

, if e

j

⌦ q

k

/2
span{A

i

}, append hX, e

j

⌦ q

k

i = 0 to A(X) = b.
4) Repeat until A remains unchanged.
This process will produce a set S satisfying (9), and

it will terminate after finitely many repetitions because
rank(span{A

i

}) increases each time. Each added measurement
is implied by the constraints of (1) and does not change the
underlying problem.

This process can be viewed as a regularization of the convex
problem (1). It differs from a minimal cone regularization
because the positive semidefinite cone constraint is kept [10],
[12]. Another regularization approach in the literature is the
extended Lagrange-Slater Dual (ELSD), which is an alterna-
tive to the Langrangian dual that guarantees strong duality
at the expensive of polynomially many additional variables
[9], [10]. The regularization procedure above is different from
ELSD because it get strong duality while keeping the standard
Lagrangian dual. The dual variables can hence be viewed as
Lagrange multipliers for direct or implied measurements of
the matrix X0. Unfortunately, the procedure above can not be
written down mechanically, whereas the ELSD can. Hence, it
is less useful for performing the semidefinite optimization than
it is as a theoretical process for ensuring that a dual certificate
exists.
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II. PROOFS

A. Notation

For a subspace V ⇢ Rn, let V

? be the orthogonal
complement with respect to the ordinary inner product. Let
I

V

? be the matrix corresponding to orthogonal projection of
vectors onto V

?. Let P
V

?X = I

V

?XI

V

? be the projection
of symmetric matrices onto symmetric matrices with row and
column spans in V

?. Let P
x

?
0

be the special case in the
instance where V = span{x0}. In the special case where x0

is the coordinate basis element e1, P
x

?
0
X is the restriction of

X to the lower-right n � 1 ⇥ n � 1 block. Let the indicator
function for the set ⌦ be I⌦(X), which is zero on ⌦ and
infinity otherwise.

B. Proof of Theorems

Under the assumptions of Theorem 1, the set S trivially
satisfies the completeness condition (9). The theorem is thus a
special case of Theorem 2, and we will prove them together.
As per the constraint qualification (8), it suffices to prove
the following technical lemma. This main technical lemma
establishes additivity of subgradients of a class of indicator
functions. The primary direction uses a separating hyperplane
argument to build an item in the subgradient. That argument
requires S be closed, as proven in Lemma 2. It also hinges on
Lemma 4 which classifies when perturbations from X0 remain
positive semidefinite.

Lemma 1. Let X0 = x0x
⇤
0 and A(X0) = b. S satisfies the

completeness condition (9) if and only if

@I

X⌫0,A(X)=b

(X0) = @I

X⌫0(X0) + @IA(X)=b

(X0). (10)

Proof of Lemma 1: We omit the proof that ¬(9) ) ¬(10).
Now, we show (9) ) (10). One inclusion in (10) is

automatic:

@I

X⌫0,A(X)=b

(X0) = @(I
X⌫0 + IA(X)=b

)(X0) (11)
� @I

X⌫0(X0) + @IA(X)=b

(X0). (12)

To prove the other inclusion, we let Y /2 S = @I

X⌫0(X0) +
@IA(X)=b

(X0). We will show that Y /2 @I

X⌫0,A(X)=b

(X0)
by exhibiting a feasible X such that hY,X �X0i > 0.

As we will prove in Lemma 2, (9) implies that S is closed.
By the separating hyperplane theorem, for any Z /2 S, there
exists a ⇤

Z

such that

A(⇤
Z

) = 0, (13)
h⇤

Z

, Qi  0 for all Q � 0, Q ? X0, (14)
h⇤

Z

,Mi = 0 if ±M 2 S, (15)
h⇤

Z

, Zi > 0. (16)

We observe that (14) implies P
x

?
0
⇤
Z

⌫ 0.

Let B = {qq⇤ | qq⇤ ? X0, qq
⇤
/2 S}. We will build a ⇤̃

satisfying the following properties:

A(⇤̃) = 0, (17)
h⇤̃, Qi  0 for all Q � 0, Q ? X0, (18)
h⇤̃,Mi = 0 if ±M 2 S, (19)
h⇤̃, qq⇤i > 0 for all qq⇤ 2 B. (20)

We build ⇤̃ through the following process. Choose a q1q
⇤
1 2 B

and find a corresponding ⇤
q1q

⇤
1
. Restrict B to a set B̃

containing only the elements that are orthogonal to ⇤
q1q

⇤
1
.

All elements in B \ B̃ have a positive inner product with
⇤
q1q

⇤
1
. Choose q2q

⇤
2 2 B̃ and find ⇤

q2q
⇤
2
. Further restrict B̃

to only the elements that are orthogonal to ⇤
q2q

⇤
2
. Now, all

elements in B \ B̃ have a positive inner product with ⇤
q1q

⇤
1

or
⇤
q2q

⇤
2

. Repeat this process until B is empty. The process will
complete after a finite number of repetitions because the set
B̃ is restricted to a space of strictly decreasing dimension at
each step. Let ⇤̃ =

P
i

⇤
qiq

⇤
i
. We observe (17)–(19) hold due

to (13)–(15). Every element of B has a positive inner product
with ⇤

qiq
⇤
i

for some i. Hence, we have (20).
Let ⇤ = ⇤

Y

+"⇤̃, where " is small enough that h⇤, Y i > 0.
By Lemma 4, if (a) P

x

?
0
⇤ ⌫ 0 and (b) ⇤ ? qq

⇤ and qq

⇤ ?
X0 ) ⇤ ? x0⌦q, then there exists � > 0 such that X0+�⇤ ⌫
0. By (14) and (18), (a) holds. To show (b) holds, we consider
a qq

⇤ ? ⇤, qq⇤ ? X0. By (20) and the definition of ⇤, qq⇤
must be in S. By (9), ±x0 ⌦ q 2 S. Hence, by (15) and (19),
⇤ ? x0 ⌦ q, and (b) holds.

As given by Lemma 4, let X = X0 + �⇤. Because X ⌫ 0
and A(⇤) = 0, X is feasible. Additionally, hY,X �X0i > 0
because h⇤, Y i > 0. Hence, Y /2 @I

X⌫0,A(X)=b

(X0).

The hyperplane separation argument above requires that S
be closed. The following lemma reduces the closedness of
S ⇢ S

n

to an n � 1 ⇥ n � 1 case without the orthogonality
constraint, which is proved in Lemma 3.

Lemma 2. If S = {
P

i

�

i

A

i

+Q | Q � 0, Q ? X0} satisfies
the completeness condition (9) then S is closed.

Proof of Lemma 2: Without loss of generality let
X0 = e1e

⇤
1. This can be seen by letting V be an orthogonal

matrix with x0/kx0k in the first column, and by considering
the set V

⇤
SV . If necessary, linearly recombine the A

i

such
that the first columns of A1, . . . , A`

are independent and the
first columns of the remaining A

`+1, . . . , Am

are zero.
Consider a Cauchy sequence A

(k) +Q

(k) ! X , where
A

(k) =
P

m

i=1 �
(k)
i

A

i

. We will establish that X 2 S. Because
Q

(k) � 0 and Q

(k) ? e1e
⇤
1, it is zero in the first row and

column. Hence the first column of
P

`

i=1 �
(k)
i

A

i

converges to
the first column of X . By independence, we obtain that �(k)

i

converges to some �

(1)
i

for each 1  i  `. As a result,

mX

i=`+1

�

(k)
i

A

i

+Q

(k) ! X,
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where X = X�
P

`

i=1 �
(1)
i

A

i

, and X is zero in the first row
and column.

The problem has now been reduced to one of size n�1⇥n�
1 without an orthogonality constraint, and Lemma 3 completes
the proof. Let Ã

i

be the lower-right n� 1⇥n� 1 sub matrix
of A

i

. Let S̃ = {
P

m

i=`+1 �i

Ã

i

+ Q̃ | Q̃ � 0} 2 S
n�1. If

q̃q̃

⇤ 2 S̃ then
✓
0
q̃

◆✓
0
q̃

◆⇤
2 S. By (9),

✓
0
ỹ

◆
⌦
✓
0
q̃

◆
2 S 8y 2

Rn�1. By independence of the first columns of A1, . . . , A`

,
ỹ ⌦ q̃ 2 S̃. The conditions of Lemma 3 are met. Hence, X =P

m

i=`+1 �
(1)
i

A

i

+ Q

(1) with Q

(1) � 0, Q(1) ? e1e
⇤
1. We

conclude X 2 S and S is closed.

The closedness of S above relies on the closedness of a
lower dimensional S̃ without the orthogonality constraint.

Lemma 3. The set S̃ = {
P

i

�

i

A

i

+Q | Q � 0} ⇢ S
n

is
closed if

qq

⇤ 2 S̃ ) y ⌦ q 2 S̃ 8y. (21)

Proof of Lemma 3: Consider a Cauchy sequence A

(k)+
Q

(k) ! X , where A

(k) =
P

i

�

(k)
i

A

i

. Let V = span{q |
qq

⇤ 2 S̃}. For each q 2 V , (21) gives that y ⌦ q 2 S̃ 8y.
Because P

V

? is the projection of matrices onto matrices with
row and column spaces living in V

?,

±(X � P
V

?X) 2 S̃ for any X. (22)

The Cauchy sequence satisfies

P
V

?A
(k) + P

V

?Q
(k) ! P

V

?X. (23)

If kP
V

?A
(k)kF ! 1, then kPV ?A

(k)kF

kPV ?Q

(k)kF
! 1 and

D
PV ?A

(k)

kPV ?A

(k)kF
,

PV ?Q

(k)

kPV ?Q

(k)kF

E
! �1 as k ! 1. The sets {A 2

P
V

?span A

i

}\ {kAkF = 1} and {Q � 0}\ {kQkF = 1} are
compact. Hence hA,Qi achieves its minimum. That minimum
value must be �1, which implies that there exists a nonzero,
positive semidefinite matrix �Q 2 P

V

?span A

i

. This is is
impossible by the construction of V . Suppose P

V

?A⇤
� ⌫ 0.

By (22), we see P
V

?A⇤
� 2 S̃. Hence every rank-1 component

qq

⇤ of P
V

?A⇤
� ⌫ 0 belongs to S̃. We reach a contradiction

because q would belong to V and can not be in the column
space of P

V

?A⇤
�.

Hence, P
V

?A
(k) has a bounded subsequence. Thus, there

is a further subsequence that converges and P
V

?X is of the
form P

V

?(
P

i

�

(1)
i

A

i

+Q

(1)). By (22), we conclude X =P
m

i=1 �
(1)
i

A

i

+Q

(1) with Q

(1) � 0.

The following lemma establishes a necessary and sufficient
condition for when a symmetric perturbation from a positive
rank 1 matrix remains positive.

Lemma 4. Let X0 = x0x
⇤
0 2 Rn⇥n. X0 + �⇤ ⌫ 0 for some

� > 0 if and only if (a) P
x

?
0
⇤ ⌫ 0 and (b) ⇤ ? qq

⇤ and
q ? x0 ) ⇤ ? x0 ⌦ q.

Proof: Without loss of generality, assume X0 = e1e
⇤
1. In

this case P
x

?
0

is the restriction to the lower-right n�1⇥n�1

block. Let ⇤
x

?
0
2 S

n�1 be that lower-right block of ⇤. Write
the block form

⇤ =

✓
⇤11 ⇢

⇤

⇢ ⇤
x

?
0

◆
.

First we prove X0+�⇤ ⌫ 0 ) (a) and (b). We immediately
have (a) because X0 is zero on the lower-right subblock. Using
a Schur complement, if 1 + �⇤11 > 0, then

X0 + �⇤ ⌫ 0 , ⇤
x

?
0
� �

1 + �⇤11
⇢⇢

⇤ ⌫ 0. (24)

If necessary, � can be reduced to enforce 1+ �⇤11 > 0. If (b)
does not hold, then there is ⇠ 2 Rn�1 such that ⇤

x

?
0
? ⇠⇠

⇤

and ⇢ 6? ⇠. By testing against ⇠, we see ⇤
x

?
0
� �

1+�⇤11
⇢⇢

⇤ 6⌫ 0
Second, we prove (a) and (b) ) X0 + �⇤ for some � > 0.

Assume (a) and (b) hold. Using the property (24) about Schur
complements, it suffices to show

⇤
x

?
0
� �

1 + �⇤11
⇢⇢

⇤ ⌫ 0. (25)

Let V = span {q | ⇤
x

?
0

? qq

⇤} ⇢ S
n�1. There is some ✏

such that ⇤
x

?
0
⌫ ✏I

V

? . If not, there would be a sequence of
x

(") 2 V

? such that kx(")k = 1 and 0 < x

(")⇤
x

?
0
x

(")⇤
<

". Such x

(") would have a convergent subsequence to some
x

(0) 2 V

? such that x(0)⇤
x

?
0
x

(0)⇤ = 0, which is impossible.
We note that for any q 2 V , (b) guarantees ⇢ ? q.

Hence ⇢ 2 V

? and there is a sufficiently small � such that
�

1+�⇤11
⇢⇢

⇤ � "I

V

? . We conclude that (25) holds, and hence
9� > 0 such that X0 + �⇤ ⌫ 0.
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Abstract—We present significantly improved estimates for

the restricted isometry constants of partial random circulant

matrices as they arise in the matrix formulation of subsampled

convolution with a random pulse. We show that the required

condition on the number m of rows in terms of the sparsity s
and the vector length n is m & s log2 s log2 n.

I. INTRODUCTION

The theory of compressed sensing is based on the obser-
vation that many natural signals are approximately sparse in
appropriate representation systems, that is, only few entries
are significant. The goal of the theory is to devise methods to
recover such a signal x from linear measurements

y = �x.

For example, it has been shown [1] that under the assumption
of a small restricted isometry constant on the matrix �,
approximate recovery via `

1

-minimization

min

z

kzk
1

subject to �z = y,

(where kzk
p

denotes the usual `
p

-norm) is guaranteed even in
the presence of noise.

Here, for a matrix � 2 Rm⇥n and s < n, the restricted
isometry constant �

s

= �

s

(�) is defined as the smallest
number such that

(1� �

s

)kxk2
2

 k�xk2
2

 (1+ �

s

)kxk2
2

for all s-sparse x.

If a matrix has a small restricted isometry constant, we also
say that the matrix has the restricted isometry property (RIP).

A class of measurement models that is of particular rele-
vance for sensing applications is that of subsampled convolu-
tion with a random pulse. In such a model, the convolution of
a signal x 2 Rn with a random vector ✏ 2 Rn given by

x 7! ✏ ⇤ x, (✏ ⇤ x)
k

=

nX

j=1

✏

(k�j) mod n

x

j

.

is followed by a restriction P

⌦

to a deterministic subset of
the coefficients ⌦ ⇢ {1, . . . , n} and normalization of the
columns. The resulting measurement map is linear; its matrix
representation � given by

�x =

1p
m

✏ ⇤ x

is called a partial random circulant matrix. In this paper,
we will focus on the case that the random vector ✏ is a
Rademacher random vector, that is, its entries are independent
random variables with distribution P(✏

i

= ±1) = 1/2. Note,
however, that the corresponding results in [2] consider more
general random vectors.

The problem of proving the RIP for subsampled convolu-
tions has first been considered in [3]; these results have later
been improved in [4]. In [5], a similar problem is considered.
Both the sampling sets and the generators, however, are
chosen at random. In contrast, our result below holds for
an arbitrary fixed sampling sets ⌦ ⇢ {1, . . . , n}, which is
important in applications since in many practical problems, it
is natural or desired to consider structured sampling sets such
as ⌦ = {L, 2L, 3L, . . . ,mL} for some L 2 N; these sets are
clearly far from being random.

This paper is structured as follows. In Section II, we present
our main result and compare it to the previously best known
results. Section IV formulates the problem in terms of chaos
processes and presents bounds for such processes in terms of
complexity parameters, which are introduced before that in
Section III. These bounds are then used to prove the main
result in Section V.

II. MAIN RESULT

Theorem II.1. ([2]) Let � 2 Rm⇥n be a draw of a partial
random circulant matrix generated by a Rademacher vector
✏. If

m � c�

�2

s (log

2

s)(log

2

n), (1)

then with probability at least 1�n

�(logn)(log

2
s), the restricted

isometry constant of � satisfies �

s

 �. The constant c > 0 is
universal.

This result improves the best previously known estimates
for a partial random circulant matrix [4], namely that m �
C

�

(s log n)

3/2 is a sufficient condition for achieving �

s

 �

with high probability. In particular, Theorem II.1 removes the
exponent 3/2 of the sparsity s, which was already conjectured
in [4] to be an artefact of the proof.

Remark II.2. In certain application scenarios, the ambient
dimension n as well as the number of measurements m may
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be given, while one is interested on the sparsity level that still
guarantees recovery. To obtain such a bound, we estimate the
logarithmic factors in s by log(n), so we obtain the condition
s  m

log

4
(n)

. Again, the dependence is linear up to logarithmic
factors, which cannot be guaranteed using previous bounds.

III. IMPORTANT CONCEPTS AND DEFINITIONS

In the proof, two types of complexity parameters of a set of
matrices A will play an important role. The first one, denoted
by d

F

(A) and d

2!2

(A), is the radius of A in the Frobenius
norm kAk

F

=

p
tr(A

⇤
A) and the operator norm kAk

2!2

=

supkxk21

kAxk
2

, respectively. That is, d
F

(A) = sup

A2A
kAk

F

and d

2!2

(A) = sup

A2A
kAk

2!2

. The second one, Talagrand’s

functional �
2

(A, k·k
2!2

), is given by the following definition.

Definition III.1 ([6]). For a metric space (T, d), an admissible
sequence of T is a collection of subsets of T , {T

s

: s � 0},
such that for every s � 1, |T

s

|  2

2

s

and |T
0

| = 1. Then the
�

2

functional is given by

�

2

(T, d) = inf sup

t2T

1X

s=0

2

s/2

d(t, T

s

),

where the infimum is taken with respect to all admissible
sequences of T .

Recall that for a metric space (T, d) and u > 0, the covering
number N(T, d, u) is the minimal number of open balls of
radius u in (T, d) needed to cover T . The �

2

-functionals can
be bounded in terms of such covering numbers by the well-
known Dudley integral (see, e.g., [6]). A formulation specific
to a set of matrices A endowed with the operator norm is

�

2

(A, k · k
2!2

)

 C

Z
d2!2(A)

0

p
logN(A, k · k

2!2

, u)du (2)

for some absolute constant C.

IV. REFORMULATION AS A CHAOS PROCESS

Let � be a partial circulant matrix based on a Rademacher
vector, then

�

s

(�) = sup

x2S

n�1

| suppx|s

��k�xk2
2

� 1

��

= sup

x2S

n�1

| supp x|s

����
�� 1p

m

P

⌦

x ⇤ ✏
��2
2

� 1

����

= sup

x2S

n�1

| suppx|s

��kV
x

✏k2
2

� EkV
x

✏k2
2

��
,

where V

x

is defined through V

x

y :=

1p
m

P

⌦

x ⇤ y.

As it turns out, the expression kV
x

✏k2
2

is a Rademacher
chaos process, that is, it is of the form h✏,M✏i. This obser-
vation was already exploited in [4] to obtain their suboptimal

bounds. Our result, however, incorporates the additional ob-
servation that the matrix M in the above scenario is V x

⇤
V x,

hence positive semidefinite.
In the following, we will provide a bound for suprema of

chaos processes under such structural assumptions. That is, we
study expressions of the form

sup

A2A

��kA✏k2
2

� EkA✏k2
2

��
.

Here A is an arbitrary set of matrices, which is assumed to
be symmetric, i.e., A = �A.

Theorem IV.1 ([2]). Let A ⇢ Rm⇥n be a symmetric set of
matrices and let ✏ be a Rademacher vector of length n. Then

E sup

A2A

��kA✏k2
2

� EkA✏k2
2

��

 C

1

�
d

F

(A)�

2

(A, k · k
2!2

) + �

2

(A, k · k
2!2

)

2

�

=: C

1

E.

Furthermore, for t > 0,

P
✓
sup

A2A

��kA✏k2
2

� EkA✏k2
2

�� � C

2

E + t

◆

 2 exp

✓
�C

3

min

⇢
t

2

V

2

,

t

U

�◆
,

where U = d

2

2!2

(A) and

V = d

2!2

(A)(�

2

(A, k · k
2!2

) + d

F

(A)).

The constants C

1

, C

2

, C

3

> 0 are universal.

The proof of this theorem is based on decoupling and a
chaining argument, see [2].

V. PROOF OF THEOREM II.1

The proof will be mainly based on Theorem IV.1. Thus we
need to control the parameters d

2!2

(A), d
F

(A), as well as
�

2

(A, k · k
2!2

) for the set

A = {V
x

: x 2 D

s,N

},

where
D

s,N

= {x 2 RN

: | suppx|  s}.

Since the matrices V

x

consist of shifted copies of x in all
of their m nonzero rows, the `

2

-norm of each nonzero row is
m

�1/2kxk
2

; thus kV
x

k
F

= kxk
2

 1 for all x 2 D

s,N

and

d

F

(A) = 1.

To bound d

2!2

(A), we will use a Fourier domain descrip-
tion of �. Let F by the unnormalized Fourier transform
with elements F

jk

= e

2⇡ijk/n. As the Fourier transform
diagonalizes the convolution operator, for every 1  j  n,
F (x ⇤ y)

j

= (Fx)

j

· (Fy)

j

. Therefore,

V

x

⇠ =

1p
m

P

⌦

F

�1c
XF ⇠,
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where c
X = diag(Fx) is the diagonal matrix, whose diagonal

is the Fourier transform Fx. In short,

V

x

=

1p
m

b
P

⌦

c
XF ,

where b
P

⌦

= P

⌦

F

�1. Now observe that for every x 2 D

s,N

with the associated diagonal matrix c
X ,

kV
x

k
2!2

=

1p
m

k b
P

⌦

c
XF k

2!2


r

n

m

kP
⌦

F

�1k
2!2

kcXk
2!2

 1p
m

kcXk
2!2

=

1p
m

kFxk1. (3)

Setting kxkc1 := kFxk1 we observe that

kFxk1  kxk
1


p
skxk

2


p
s

for every x 2 D

s,N

, and hence

d

2!2

(A) 
p
s/m.

Next, to estimate the �

2

functional, recall from (2) that

�

2

(A, k · k
2!2

)


Z

d2!2(A)

0

log

1/2

N(A, k · k
2!2

, u)du,

where C is an absolute constant. By (3),

kV
x

� V

y

k
2!2

= kV
x�y

k
2!2

 m

�1/2kx� ykc1,

and hence for every u > 0,

N(A, k · k
2!2

, u)  N(D

s,N

,m

�1/2k · kc1, u).

Such covering numbers and the corresponding Dudley integral
have been bounded before, e.g., in the context of proving
the restricted isometry property for partial random Fourier
matrices [7]. The resulting bound for the �

2

-functional is

�

2

(A, k · k
2!2

)  C

r
s

m

(log s)(log n),

where C is an absolute constant. This implies that

�

2

(A, k · k
2!2

)  C

c

�

for the given choice of m.
Now, by choosing the constant c in (1) appropriately, one

obtains
E  �

2C

2

,

where E and C

2

are chosen as in Theorem IV.1. Then Theorem
IV.1 yields

P(�
s

� �)  P (�

s

� C

2

E + �/2)  exp(�C

3

(m/s)�

2

),

which, after possibly increasing the value of c enough to
compensate C

3

, exactly amounts to the probability bound
given in the theorem.
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Fig. 1. Empirical recovery rate from partial random circulant measurements
for n = 500, m = 100, and different sparsity levels

VI. NUMERICAL ILLUSTRATION

We illustrate our results by a numerical example, consider-
ing signals of length n = 500 and m = 100 measurements,
letting the sparsity vary. We used a partial random circulant
matrix based on a Bernoulli vector, where the rows are selected
at random. The plot shows the empirical success rate, that is,
in which fraction of the trials the correct signal was recovered
(see Figure 1). One should note that our rather simple tests
depict the non-uniform success rate: Given a signal, what
is the probability that it can be recovered from randomly
generated measurements? What we proved above are uniform
recovery guarantees: With high probability, a single randomly
chosen matrix allows for the recovery of all sparse vectors.
This property is much harder to check, as one needs to find
the worst vector. While we leave such tests in the context
of partial random circulant matrices for future work, we note
that strategies to check for this property have been investigated
recently in [8].

VII. CONCLUSION

In this paper we derive bounds on the embedding dimension
necessary for a partial random circulant matrix, which is linear
in the sparsity. This improves on previous results, in which the
sparsity appears with an exponent of 3

2

.
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Abstract—In this paper, we present the theory and some
new applications of linear, multivariate, sampling Kantorovich
operators. By means of the above operators, we are able to
reconstruct pointwise, continuous and bounded signals (func-
tions), and to approximate uniformly, uniformly continuous
and bounded functions. Moreover, the reconstruction of signals
belonging to Orlicz spaces are also considered. In the latter
case, we show how our operators can be used to approximate
not necessarily continuous signals/images, and an algorithm for
image reconstruction is developed. Several applications of the
theory in civil engineering are obtained. Thermographic images,
such as masonries images, are processed to study the texture of
the buildings, thus to separate the stones from the mortar and
finally a real-world case-study is analyzed in terms of structural
analysis.

I. INTRODUCTION

In [1] the authors introduced the linear sampling Kan-
torovich operators and studied, in particular, their convergence
in the general setting of Orlicz spaces, in one-dimesional case.
Later these results have been extended in [8] to the multivariate
setting, in [12], [9] to the nonlinear case and in a more general
context in [13], [2].

In this paper, we obtain applications to civil engineering by
using the linear multivariate sampling Kantorovich operators
(Sw)w>0, defined by

(Swf)(x) :=

X

k2ZZn

�(wx� tk)

"
w

n

Ak

Z

Rw
k

f(u) du

#
, (I)

for every x 2 IR

n, where f : IR

n ! IR is a locally integrable
function such that the above series is convergent for every x 2
IR

n. Here � : IR

n ! IR is a kernel function satisfying suitable
properties, tk = (tk1 , ..., tkn) is a vector where (tki)ki2ZZ ,
i = 1, ..., n is a sequence of real numbers with some properties
and where

R

w
k :=


tk1

w

,

tk1+1

w

�
⇥

tk2

w

,

tk2+1

w

�
⇥ ...⇥


tkn

w

,

tkn+1

w

�
,

w > 0 and Ak = �k1 ·�k2 · ... ·�kn with �ki := tki+1� tki ,
i = 1, ..., n. For the study of the above family (I), see [8].
The sampling series (I) represents a Kantorovich version of
the generalized sampling operators introduced by P.L. Butzer
and his school at Aachen (see e.g. [4]). Here, in place of the
sample values f(k/w) one has an average of f in a small

pluri-rectangle containing k/w (here instead of k, we have a
general sequence tk, obtaining a non uniform sampling). This
situation very often occurs in Signal Processing, when one
cannot match exactly the ”node” tk/w: this represents the so
called ”time-jitter error”. Therefore our theory reduces time-
jitter errors calculating the information in a neighborhood of
a point rather than exactly at that point.
For the sampling Kantorovich operators (I), we study the
pointwise convergence for continuous and bounded func-
tions, the uniform convergence, for uniformly continuous and
bounded functions, and the modular convergence, for functions
belonging to Orlicz spaces (see e.g. [3]). The latter case, allows
to treat the case of Lp-signals, i.e., not necessarily continuous
signals; note that in multivariate setting, when one deals with
images, discontinuities are concentrated in the contours or
edges of the image itself, in terms of jumps of grey levels (see
[8], [9]). To show the versatility of our theory, we study various
applications to civil engineering images. In this subject the
images, in particular thermographic images, are used to make
non-invasive investigations of structures, to analyze the story
of the buildings or of the building walls, to make diagnosis and
monitoring buildings, and to make structural measurements.
The thermography is a remote sensing technique, performed by
the image acquisition in the infrared. Moreover, these images
are also used in civil engineering for image texture, i.e., for
the separation between the bricks and the mortar in masonries
images. Unfortunately, the direct application of the image
texture algorithm to the thermographic images, can produce
errors, as an incorrect separation between the bricks and the
mortar. Then, we use the sampling Kantorovich operators to
process the thermographic images before to apply the texture.
In this way, the result produced by the texture becomes more
refined and therefore we can apply structural analysis to a real-
world case-study after the calculation of the various parameters
involved.

A. Approximation results

In this section, we treat the main approximation results
for the multivariate sampling Kantorovich operators. In what
follows, we denote by tk = (tk1 , ..., tkn) a vector where each
(tki)ki2ZZ , i = 1, ..., n is a sequence of real numbers with
�1 < tki < tki+1 < +1, limki!±1 tki = ±1, for every
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i = 1, ..., n, and such that there exist �, � > 0 for which
�  �ki := tki+1 � tki  �, for every i = 1, ..., n.

A function � : IR

n ! IR will be called a kernel if it satisfies
the following properties:

• (�1) � 2 L

1
(IR

n
) and is bounded in a neighborhood of

0 2 IR

n;
• (�2) For every u 2 IR

n,
X

k2ZZn

�(u� tk) = 1;

• (�3) For some � > 0,

m�,⇧n
(�) = sup

u2IRn

X

k2ZZn

��
�(u� tk)

��·
��
u� tk

���
2

< +1,

where k · k2 denotes the usual Euclidean norm.
We may now state the following theorem for the linear
multivariate sampling Kantorovich operators (I) based upon
the kernel function �.

Theorem 1: Let f : IR

n ! IR be a continuous and bounded
function. Then, for every x 2 IR

n,

lim

w!+1
(Swf)(x) = f(x).

In particular, if f : IR

n ! IR is uniformly continuous and
bounded, then

lim

w!+1
kSwf � fk1 = 0,

where k · k1 denotes the usual sup-norm.
We now recall some basic fact concerning Orlicz spaces,

see e.g. [11], [3].
Let ' : IR

+
0 ! IR

+
0 be a '-function, i.e. ' satisfies the

following assumptions:
1) ' (0) = 0, ' (u) > 0 for every u > 0;
2) ' is continuous and non decreasing on IR

+
0 ;

3) limu!1 '(u) = +1.
For a fixed '-function ', one can consider the functional I' :

M(IR

n
) ! [0,+1], where M(IR

n
) denotes the set of all

measurable functions f : IR

n ! IR. We define

I

'
[f ] :=

Z

IRn

'(|f(x)|) dx, (f 2 M(IR

n
)) .

The Orlicz space generated by ' is defined by

L

'
(IR

n
) := {f 2 M (IR

n
) : I

'
[�f ] < 1, for some � > 0} .

We can introduce in L

'
(IR

n
), a notion of convergence, called

”modular convergence”, which induces a topology (modular
topology) on the space ([11], [3]). Namely, we will say that a
net of functions (fw)w>0 ⇢ L

'
(IR

n
) is modularly convergent

to a function f 2 L

'
(IR

n
) if

lim

w!+1
I

'
[�(fw � f)] = 0

for some � > 0.
Now, by means of a modular estimate for the operators (I)

and using a density result, we may state the following modular
convergence theorem for the sampling Kantorovich operators
(based upon the kernel function �) in Orlicz spaces.

Theorem 2: Let ' be a convex '-function. For every f 2
L

'
(IR

n
), there exists � > 0 such that

lim

w!+1
I

'
[�(Swf � f)] = 0.

Now, choosing '(u) = u

p, 1  p < 1, we have L

'
(IR

n
) =

L

p
(IR

n
) and I

'
[f ] = kfkpp, where k ·kp is the usual Lp-norm.

Then, from Theorem 2 we obtain the following corollary.
Corollary 1: For every f 2 L

p
(IR

n
), 1  p < +1,

lim

w!+1
kSwf � fkp = 0.

The corollary above, allows us to reconstruct L

p-signals (in
L

p-sense), therefore not necessarily continuous. Other exam-
ples of Orlicz spaces for which the theory can be applied, are
given by the Zygmund spaces (or interpolation spaces) and by
the exponential spaces, see e.g. [11], [3], [1], [8].

B. The choice of the kernels
In the theory of sampling Kantorovich operators an impor-

tant role is played by the kernels �. A procedure to construct
examples of multivariate kernel is to use product kernels by
means of one-dimensional kernels. For a sake of simplicity, we
consider our operators in case of uniform sampling (tk = k),
and denote by �1, ...,�n, the one-dimensional kernels �i :

IR ! IR satisfying conditions (�1), (�2) and (�3) for n = 1.
In [4], [8] is proved that the multivariate function

�(x) :=

nY

i=1

�i(xi),

for every x = (x1, ..., xn) 2 IR

n, is a multivariate kernel for
our operators (Sw)w>0 satisfying the assumption of the theory.
Then, it is now sufficient to give examples of one-dimensional
kernels satisfying (�1), (�2) and (�3). Remarkable examples
of kernels with compact support, are given by the well-known
central B-spline of order k 2 IN , defined by

Mk(x) :=
1

(k � 1)!

kX

i=0

(�1)

i

✓
k

i

◆✓
k

2

+ x� i

◆k�1

+

.

where the function (x)+ := max {x, 0} denotes the positive
part of x 2 IR (see [1], [12], [8]). Other well-known examples
of one-dimensional kernels are given by the Jackson-type
kernels, defined by

Jk(x) = cksinc2k(
x

2k⇡↵

), x 2 IR,

with k 2 IN , ↵ � 1, for a suitable constant ck and where the
sinc-function is defined by

sinc(x) :=

(
1, x = 0,

sin(⇡x)

⇡x

, otherwise,

(see [5], [1]).
It is also possible to consider kernels which are not of

product type. For instance, one can take into consideration
radial kernels, i.e., functions for which the value depends on
the Euclidean norm of the argument only. Example of such a
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kernel can be given, for example, by the Bochner-Riesz kernel,
defined as follows

b

↵
(x) := 2

↵
�(↵+ 1)kxk�(n/2)+↵

2 B(n/2)+↵(kxk2),

for x 2 IR

n, where ↵ > (n� 1)/2, B� is the Bessel function
of order � and � is the Euler function. For more details about
this matter, see e.g. [4].

C. Applications to Image Processing
In this section, we show how the multivariate sampling Kan-

torovich operators can be applied to process digital images, see
[8], [9]. Every bi-dimensional grey scale image A (matrix)
can be modeled as a step function I , with compact support,
belonging to L

p
(IR

2
), 1  p < +1. The most natural way

to define I is:

I(x, y) :=

mX

i=1

mX

j=1

aij · 1ij(x, y) ((x, y) 2 IR

2
),

where 1ij(x,y), i, j = 1, 2, ...,m, are the characteristics
functions of the sets (i� 1, i]⇥ (j� 1, j] (i.e. 1ij(x,y) = 1,
for (x, y) 2 (i � 1, i] ⇥ (j � 1, j] and 1ij(x,y) = 0

otherwise). Note that the above function I(x, y) is defined
in such a way that, to every pixel (i, j) it is associated the
corresponding grey level aij . Then, we can now consider the
family of bivariate sampling Kantorovich operators applied to
the function I , (SwI)w>0 (for some kernel �) that approximate
I in L

p-sense. Now, in order to obtain a new image (matrix)
that approximates the original one, it is sufficient to sample
SwI (for some w > 0) with a fixed sampling rate. In particular,
we can reconstruct the approximating images (matrices) taking
into consideration different sampling rates and this is possible
since we know the analytic expression of SwI .

Obviously, if the sampling rate is chosen higher than the
original sampling rate, one can get a new image that has a
better resolution than the original one’s. The above procedure
has been implemented by using MATLAB, in order to obtain
an algorithm based on the multivariate sampling Kantorovich
theory.

D. Applications to civil engineering images
In this section, we propose some new applications of the

algorithm, based on the multivariate sampling Kantorovich
operators, to civil engineering images.

The most widely used images in this areas are the ther-
mographic images, largely used to make diagnosis and mon-
itoring buildings, and to make structural measurements. The
thermography is a remote sensing technique, performed by the
image acquisition, in the infrared. The thermographic images
are obtained by the thermograph, that in practice consists in
a thermal camera for detecting radiation in the infrared range
of the electromagnetic spectrum, and perform measurements
related with the emission of this radiation. This tool is able to
detect the temperatures of the bodies analyzed by measuring
the intensity of infrared radiation emitted by the body under
examination. All the objects at a temperature above absolute
zero emit radiation in the infrared range. The thermography

allows to avoid the use of invasive techniques of investigation
for buildings. Moreover, these images are also used in civil
engineering for image texture, i.e., for the separation between
the bricks and mortar in masonries images. The image texture
algorithm performs as follows: first of all we apply a median
filter to the image using a suitable mask, then the image
is converted into a black and white image by means of a
suitable thresholding, in order to obtain a consistent separation
of the phases; the area consisting of white pixels denote
the inclusions (stones or bricks) and the remaining areas of
black pixels denotes the mortar joints. Finally, morphological
operators are used to enhance the quality of the separation
of the phase: closing of the area to eliminate salt-and-pepper
noise, erosion and dilation to smooth the contours of the
inclusions. The image obtained is characterized by a consistent
separation of phases, where each stone is surrounded by mortar
joints and unrealistic conjunction of inclusions is avoided as
much as possible (see e.g. [6]).

The direct application of the image texture algorithm to the
thermographic images, can produce errors (see e.g. Figure 2
(left) and (right)), as an incorrect separation between the bricks
and the mortar. Then, we can use the sampling Kantorovich
operators (see in Figure 1 (left) for the original termographic
image of a masonry, and Figure 1 (right) for a reconstruction)
to process the thermographic images before to apply the
texture, in order to obtain images suitable for the application of
the texture algorithm (see e.g. the comparison between Figure
2 (left) and (right)).

Fig. 1. Recontruction of the original image (left, 75 ⇥ 75 pixel) by the
sampling Kantorovich operators with the bivariate Jackson kernel with k = 4
and ↵ = 1, for w = 40 (right, 450 ⇥ 450 pixel)

In order to perform structural analysis, the mechanical
characteristics of an homogeneous material equivalent to the
original heterogeneous material are sought (see e.g. [7]). The
equivalence is in the sense that, when subjected to the same
boundary conditions, the overall response in terms of mean
values of stresses and deformations is the same, see e.g.
[10]. In particular, the equivalent elastic properties taking into
account the effective characteristics of the micro-structure can
be estimated by a suitable choice of two kinds of boundary
conditions: i) in terms of displacements (essential boundary
conditions); ii) in terms of forces (natural boundary condi-
tions). In order to solve the boundary condition problem, the
Finite Element Method (F.E.M.) is used.
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Fig. 2. On the left, we have the image texture of the original image of
Figure 1 (left). On the right, we have the image texture of Figure 1 (right),
reconstructed by the sampling Kantorovich operators.

The estimated mechanical properties can be used to analyze
a real-world case-study. In particular the proposed approach
allows to overcome some difficulties, that arise when dealing
with the vulnerability analysis of existing structures, which
are: i) the knowledge of the actual geometry of the walls (in
particular the identification of hidden doors and windows); ii)
the identification of the actual texture of the masonry and the
distribution of inclusions and mortar joints, and from this iii)
the estimation of the elastic characteristics of the masonry.
It is noteworthy that, for item i) the engineer has limited
knowledge, due to the lack of documentation, while for items
ii) and iii) he usually use tables proposed in technical manuals
and standards which however give large bounds in order to
encompass the generality of the real masonries.

E. Future developments

A future development of the present paper is to study appli-
cations of the algorithm based on the sampling Kantorovich
operators to biomedical images. In biomedicine, images cover
a fundamental role for the clinical diagnosis, surgery (En-
dovascular aneurysm repair - EVAR), and for the patient
follow up. For this purpose, it reveals of a certain importance
that the contours of the biomedical images are clearly visible.
Then becomes important having at disposal an algorithm for
image reconstruction and enhancement. Our aim is to treat
images in the field of Vascular Surgery, in collaboration with
a group of radiologists and vascular surgeons of the sections of
Vascular and Endovascular Surgery and Diagnostic Radiology
and Interventional of the University of Perugia. In particular
our aim is to apply our algorithm to images related to the
aneurysmal aortic and steno-obstructive pathology of epiaortic
and peripheral vessels in order to improve the medical diag-
nosis.

II. CONCLUSION

In this paper, we present the theory of the multivariate
sampling Kantorovich operators. Approximation results are
given in various settings. Applications of the theory to Image
Processing are also shown. In particular, new applications of
the algorithm based on the sampling Kantorovich operators to
civil engineering images are obtained. The applications related

to image texture algorithm is significant, and of practical utility
in seismic engineering.
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Abstract—The concept of the number of degrees of freedom of

band-limited signals is discussed. Classes of band-limited signals

obtained as a result of successive application of the truncated

direct and truncated inverse Fourier transforms are shown to

posses a finite number of degrees of freedom.

I. INTRODUCTION

Let a signal f be ⌦-band-limited, i.e. representable as

f(t) =

1

2⇡

Z ⌦

�⌦
F (!) e

it!

d!. In accordance with the famous

Whittaker–Kotel’nikov–Shannon (WKS) sampling theorem [1]
f can be fully reconstructed from its uniformly distributed

samples f

✓

⇡k

⌦

◆

, k = 0,±1,±2, . . . ,

f(t) =

1
X

k=�1
f

✓

⇡k

⌦

◆

sin ⌦

�

t� ⇡k

�

⌦

�

⌦

�

t� ⇡k

�

⌦

�

. (1)

A common notion in the field is that, upon a certain duration
T , this signal has no more than 2K + 1, K = [⌦T/(2⇡)]

1

degrees of freedom, since it can be completely recovered from
just 2K + 1 of its samples taken at the points k⇡/⌦ 2
(�T/2, T/2), as if f(t) ⌘ 0 outside (�T/2, T/2). This notion
is refuted by the fact that a function cannot be simultaneously
time- and band-limited [2].

The function f

K

obtained from the sampling formula (1)
by truncating the series to a finite number of terms, |k| 
K, is ⌦-band-limited and coincides with f at each sampling
point t

k

, k = 0,±1, . . . ,±K. On the other hand, at any other
time moment t the difference between f(t) and f

K

(t) may be

arbitrary large, depending on the values f
✓

⇡k

⌦

◆

from outside

the interval (�T/2, T/2).
Nonetheless, for band–limited functions essentially concen-

trated inside a finite time interval the concept of the number of
degrees of freedom (NDF) makes a certain sense. For various
definitions of signal concentration in the time domain we refer
the reader to the monograph [3] and the literature cited therein.
The sinc-function translates themselves are not highly con-
centrated inside this interval, therefore the classical sampling
formula does not enable such a definition. Instead another
formulation of the sampling theorem given by G. Walter and
X. Shen in [4] will be helpful. The newly formulated sampling

1here square brackets denote the integer part

theorem employs the eigenfunctions of the finite, i.e. truncated
to a finite interval, Fourier transform (TFT)2. The NDF of an
essentially concentrated in the time domain signal can then
be defined as the number of the TFT eigenfunctions which
suffices to well-approximate this signal.

With a help of the sampling formula one can easily synthe-
size a signal of any desired NDF. This means that without an
additional knowledge about the signal, the number of signal
samples contributing significantly to the sampling series is not
known a priori. However for particular classes of band–limited
functions the upper bounds on this number and therewith on
the NDF can be effectively computed. Thus in [4] it was shown
that, if an ⌦-band-limited signal is highly concentrated in
I

T

= (�T/2, T/2) and its Fourier transform is sufficiently
smooth, it has [⌦T/⇡] + 1 degrees of freedom, the same
number as the above erroneous explanation would give.

Yet the smoothness of the Fourier transform seems to be
a too rigorous requirement. Even the TFT eigenfunctions,
though proved to be the most concentrated in the time domain
among other band-limited functions, have jumps in the fre-
quency domain. The Fourier transforms of the convolutions of
the ⌦-band-limited TFT eigenfunctions are also discontinuous.
Still they are highly concentrated in the interval (�2⌦, 2⌦)

and require no more than 2⌦

2
/⇡ + 1 of

p
2⌦-band-limited

TFT eigenfunctions for reconstruction via the Walter-Shen
sampling formula [5].

In the present work we shall introduce a wide variety of
classes of band-limited functions with a given NDF, one of
them includes the convolutions of the TFT eigenfunctions
as particular examples. The relevant upper bounds for the
truncation error of the sampling series will be derived. We
shall also touch upon a possible generalization to higher
dimensions.

We begin with a brief survey of known results related to
TFT eigenfunctions.

II. BAND–LIMITED FUNCTIONS

As is well-known [1], the Paley–Wiener space,

PW
a

:=

(

f(x)

�

�

�

f(x) =

1

2⇡

a

Z

�a

e

i xy

g(y) dy, g 2 L2(�a, a)

)

.

2Since the acronym FFT stands commonly for the fast Fourier transform,
we use the abbreviation TFT for the finite Fourier transform.
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is a reproducing kernel Hilbert space with the reproducing
kernel

G(x, y) :=

sin a (x� y)

⇡(x� y)

.

This follows from the Fourier inversion formula ˆ

F [f ] (y) =

�̂

a

(y) g(y), which holds for all functions from PW
a

. Here
ˆ

F [·] stands for the Fourier transform and �̂

a

is the operator
of multiplication by �

a

(·), whereas �
a

(·) is the characteristic
function of the interval I

a

�a(x) =

⇢

1, x 2 I

a

,

0, x 2 R \ I
a

.

The classical WKS sampling formula

f(x) =

1
X

k=�1
f

✓

⇡k

a

◆

sin a

�

x� ⇡k

�

a

�

a

�

x� ⇡k

�

a

�

, for 8f 2 PW
a

,

(2)
reflects the fact that the sequence of point evaluation function-

als G

✓

⇡ k

a

, y

◆

, k = 0,±1, . . . , forms an orthonormal basis

in PW
a

[1].
Yet Eq. (2) is easy to obtain via the direct integration of the

Fourier expansion of the associated function g 2 L2(Ia):

g(y) =

r

1

2a

1
X

k=�1
g

k

e

�i⇡ky/a

=

1

2a

1
X

k=�1
f

✓

⇡k

a

◆

e

�i⇡ky/a

,

(3)
since the Fourier coefficients g

k

, k = 0, 1, 2, . . ., are

g

k

:=

r

1

2a

a

Z

�a

e

i⇡k y/a

g(y) dy =

r

1

2a

f

✓

⇡k

a

◆

.

The series in the right–hand side of Eq. (3) converges in
L2(�a, a). As a consequence, the sampling formula converges
both in the L2–norm and uniformly on R.

III. PROLATES—EIGENFUNCTIONS OF THE TRUNCATED
FOURIER TRANSFORM

Another sampling formula invented and studied in [4] is
written in terms of the TFT eigenfunctions. The TFT operator
ˆ

F

a

is first introduced as acting on L2(�a, a) by

ˆ

F

a

[g](x) =

1

2⇡

a

Z

�a

e

i xy

g(y) dy, x 2 (�a, a). (4)

Its eigenfunctions  
l

(a, x) =  

l

(x) defined at x 2 (�a, a)

via the equation

µ

l

 

l

(x) =

1

2⇡

a

Z

�a

e

i xy

 

l

(y) dy, l = 0, 1, . . . , (5)

are ordered according to the absolute magnitude of the asso-
ciated eigenvalues, |µ0| > |µ1| > . . . . One can choose  

l

to
be real valued and normalized, so that

k 
l

k2
a

=

a

Z

�a

( 

l

(x))

2
dx = 1.

Eqs. (4), (5) are then used to extend the functions in the
left hand side to the entire real axis. Therewith an operator
is defined that maps L2(Ia) on the Paley–Winer space PW

a

.
We shall keep for this operator the same notation ˆ

F

a

, similarly
the extensions of the TFT eigenfunctions are hereafter denoted
by  

l

, since it shall not cause any ambiguity. One can also
define ˆ

F

a

as the composition ˆ

F

a

:=

ˆ

F � �̂
a

: L2(R) ! PW
a

.
Evidently  

l

extended to R are the eigenfunctions of ˆ

F � �̂
a

.
The double definition of the TFT operator provides a double

set of properties of its eigenfunctions. Thus functions  
l

are
pairwise orthogonal both on the finite interval I

a

and on R,
a

Z

�a

 

l

(x) 

s

(x) dx = �

ls

,

1
Z

�1

 

l

(x) 

s

(x) dx =

1

�

l

�

ls

,

where �
l

:= |µ
l

|2/2⇡. In addition to that  
l

form a basis both
in L2(�a, a) and in PW

a

.
Besides, for all l = 0, 1, · · · ,

1

2⇡

a

Z

�a

e

�ixy

a

Z

�a

e

i⇠y

 

l

(⇠)d⇠ =

a

Z

�a

sin a (x� ⇠)

⇡(x� ⇠)

 

l

(⇠) d⇠ = �

l

 

l

.

This means that  
l

are eigenfunctions of the operator ˆ

G

a

:

L2(Ia) ! L2(Ia),

ˆ

G

a

[g](x) :=

a

Z

�a

sin a (x� y)

⇡(x� y)

g(y) dy, g 2 L2(Ia), (6)

whereas �
l

are the corresponding eigenvalues, here �
l

are the
same as defined above.

Like Eq. (5), the latter equation remains valid outside the
interval I

a

. Note that ˆ

G

a

=

ˆ

F

�1 � �̂
a

� ˆ

F � �̂
a

. In other words,
ˆ

G

a

is the truncated direct Fourier transforms followed by the
truncated inverse Fourier transform. The operator ˆ

G

a

plays a
key role in the further consideration.

Remarkable properties of the TFT eigenfunctions have
been widely discussed, see e.g. [2], [4], [6], [7]. Below
we shall cite only those properties which are important for
the present analysis. Among others, of special interest is
the concentration property of the TFT eigenfunctions [2],
namely that in the Paley-Wiener space PW

a

the function
 0 is the most concentrated inside the interval I

a

, since

�0 =

k 0kIa
k 0kR

yields the largest possible value for the ratio

kfk
Ia

kfkR
. In general, denote by PW l

a

the orthogonal comple-

ment to Span{ 0, 1, . . . , l�1} in PW
a

, then

�

l

=

k 
l

k
Ia

k 
l

kR
= max

f2PW

l
a

kfk
Ia

kfkR
.

An exceptional feature of eigenvalues �
l

is that �
l

are close
either to zero or to one, and the number of �

l

close to one

does not exceed L =



2 a

2

⇡

�

[6].

Thus, one can see a qualitative difference between the TFT

eigenfunctions of indices l <

2 a

2

⇡

and those of l >

2 a

2

⇡

:
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although each  

l

is the most concentrated among functions

from PW l

a

, only the first


2 a

2

⇡

�

are really concentrated

on I

a

. The integral equation (5) does not account for this
difference. In order to understand this feature, we recall that
after an appropriate scaling TFT eigenfunctions coincide with
the prolate spheroidal wave functions of zero order [2], and
they are therefore often referred to as prolates.

IV. PROLATE SPHEROIDAL WAVE FUNCTIONS

A representative overview of the prolate spheroidal wave
functions (PSWF) is given in [8] (see also the literature cited
therein). At any point ⇠ 6= ±1, a PSWF of zero order S(c, ⇠) =
S(⇠) obeys the prolate spheroidal wave equation

d

d⇠

(1� ⇠

2
)

d

d⇠

S +

⇥

�+ c

2
(1� ⇠

2
)

⇤

S = 0, (7)

remaining bounded at the singular points ⇠ = ±1,

|S(⇠)| < 1, ⇠ ! ±1. (8)

Both singularities at the points ⇠ = ±1 are regular and limit-
point. In the neighborhood of ⇠ = 1 Eq. (7) has two linearly
independent solutions [8]

S

(1)
(⇠) ⇠ const, S

(2)
(⇠) ⇠ ln(1� ⇠

2
), ⇠ ! 1,

of which only the first one is bounded.
Solutions of Eq. (7) which are bounded at both singu-

lar points simultaneously exist not for all �. Eq. (7) and
the boundedness conditions (8) define a self-adjoint singular
Sturm–Liouville eigenvalue problem on the interval (�1, 1).
The eigenfunctions S

l

(⇠) of this problem are called angular
PSWF. They are ordered by the number of internal zeros and

normalized by the condition kS
l

k(�1,1) =

1
R

�1
S

2
l

(⇠) d⇠ = 1.

For the associated eigenvalues one can prove that

�c

2
< �0 < �1 < . . . < �

l

< . . . .

At infinity any solution of Eq. (7) vanishes as (1/⇠). In
particular, solutions bounded at ⇠ = 1 enjoy the asymptotic
behaviour

S

l

(⇠) =

A

l

c⇠

cos

✓

c⇠ � l + 1

2

⇡

◆

+ O
✓

1

⇠

2

◆

, ⇠ ! 1. (9)

In what follows A

l

is chosen to match at ⇠ = ±1 the angular
function. A simple relation links then the functions S

l

and  
l

:

a =

p
c,  

l

(a, x) =

1p
a

S

l

✓

c,

x

a

◆

, l = 0, 1, · · · . (10)

This means that the prolates  
l

and the sinc-function trans-
lates have the same rate of vanishing at infinity, which seems
to contradict the concentration property of prolates. However
Eq. (7) gives us a key to eliminating the apparent contradiction.

As was shown in [9], the properties of solutions of Eq. (7)
depend dramatically on whether � is positive or negative.
Below we add to the detailed analysis provided in [9] a few
more features explaining the concentration phenomenon. To
this end, we study the behavior of a bounded solution of

Eq. (7) inside the interval where the product of (1�⇠2) and the
potential Q(⇠) = �+ c

2
(1� ⇠2) is negative. For �c

2
< � < 0

this is the interval (⇠
T

, 1), while for � > 0 it is (1, ⇠
T

), where
⇠

T

=

p

1 + �/c

2 being the turning point of Eq. (7).
The following lemma is easy to prove.

Lemma 1. Let �c

2
< � < 0 and ⇠

T

be the turning point of
Eq. (7), so that Q(x) < 0 on the interval (⇠

T

, 1). If S(⇠) is a
solution of Eq. (7) bounded at ⇠ = 1, then neither S(⇠) nor
S

0
(⇠) vanish inside the interval (⇠

T

, 1).

Proof: On integrating Eq. (7) multiplied by S(·) over an
interval (⇠, 1), one obtains:

(1� ⇠

2
)S

0
(⇠)S(⇠) =

1
Z

⇠

n

Q(⌘)S

2
(⌘)� (1� ⌘

2
) [S

0
(⌘)]

2
o

d⌘.

The right hand side above is strictly negative on (⇠

T

, 1).
As is readily seen, the logarithmic derivative of a bounded

solution, �(⇠) = S

0
(⇠)/S(⇠), satisfies the equation

(1�⇠2)�0
= �Q(⇠)+2 ⇠���2

(1�⇠2), ⇠ 2 (⇠

T

, 1). (11)

Besides, the expansion �(⇠) = �/2 + (c

2
+ �/2 + �

2
/4)(1�

⇠)/2 + . . . holds near the point ⇠ = 1 [10]. Straightforward
but rather tiresome analysis of the direction field in (11) shows
that for ⇠ 2 (⇠

T

, 1)

�(⇠) <

Q(⇠)

⇠ +

p

⇠

2 � (1� ⇠

2
)Q(⇠)

<

�+ c

2
(1� ⇠

2
)

1 +

p
1� �

< 0.

This means that S(⇠) decays exponentially fast in (⇠

T

, 1).
Thus, the smaller the index l of the eigenvalue �

l

, the higher
the ratio

S

l

(⇠

T

)

S

l

(1)

= � exp

⇢

Z 1

⇠T

�

l

(⇠) d⇠

�

,

hence the smaller the factor A
l

in (9) and therewith the smaller
the contribution from outside the interval(�1, 1) to the total
norm kS

l

kR.
Similar analysis done for � > 0 shows that the factor A

l

grows up with l in accordance with the exponential increase
of S

l

on (1, ⇠

T

). As a result, the contribution from the interval
(�1, 1) to kS

l

kR becomes negligibly small as l ! 1.
Note that the number of negative eigenvalues �

l

of the prob-
lem (7)–(8) was proved in [9] not to exceed 2c/⇡ = 2a

2
/⇡.

V. WALTER-SHEN SAMPLING FORMULA AND THE RANGE
OF THE OPERATOR ˆ

G

a

In terms of prolates the sampling formula becomes [4]

f(x) =

⇡

a

1
X

k=�1
f

✓

⇡k

a

◆ 1
X

l=0

�

l

 

l

✓

⇡k

a

◆

 

l

(x)

=

⇡

a

1
X

l=0

�

l

( 1
X

k=�1
f

✓

⇡k

a

◆

 

l

✓

⇡k

a

◆

)

 

l

(x). (12)

Here, the order of double summation is interchangeable, both
double series converging in L2-norm and uniformly on R.
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Because of the double summation, the sampling formu-
lae (12) look more cumbersome than (2), however in practical
calculations series (12) may be more advantageous than the
classical one. Moreover, the following estimate, similar to that
of Lemma 4 in [4] (see also [3]), allows one to truncate the
summation on k to a few terms:

⇥

l

:= �

l

X

|k|>a

2
/⇡

 

2
l

✓

⇡k

a

◆

 C

p

�

l

(1� �

l

). (13)

One sees that the contribution from samples  
l

(⇡k/a), |k| >
a

2
/⇡, is small both for l < 2a

2
/⇡ and for l > 2a

2
/⇡.

Consider the range of the operator ˆ

G

a

, Rg(

ˆ

G

a

). Clearly,
prolates  

l

are in Rg(

ˆ

G

a

).

Let f(x) 2 Rg(

ˆ

G

a

), i.e. f(x) =

a

Z

�a

sin a (x� y)

⇡(x� y)

g(y) dy

for some g 2 L2(Ia). Denote the Fourier coefficients of the
functions f and g in the basis of prolates by ˜

f

l

and g̃

l

,
respectively. Then the truncation error caused by neglect of
the contribution from  

l

at l > L is

"

L

:=

�

�

�

f �
X

lL

˜

f

l

 

l

�

�

�

R
 p

�

L+1

�

�

�

g �
X

lL

g̃

l

 

l

�

�

�

Ia

,

which is very small, provided that L > 2a

2
/⇡.

In view of (13), the truncation of the inner sum in (12) at
some K > a

2
/⇡ causes the error

"

2
L,K

:=

�

�

�

f

L

(x)� ⇡

a

X

lL

X

|k|K

�

l

f

✓

⇡k

a

◆

 

l

✓

⇡k

a

◆

 

l

(x)

�

�

�

2

R


X

|k|>K



f

✓

⇡k

a

◆�2
X

lL

⇥

l

.

Summarizing, we conclude that the NDF of functions in
Rg(

ˆ

G

a

) is [2a

2
/⇡] + 1.

VI. SAMPLING IN Rg (G⌦,T

)

The range of the operator ˆ

G

a

is not the only class of
band-limited functions for which the above truncation error
estimates hold. Consider the operator G⌦,T

:

G⌦,T

[g] (x) :=

1

2⇡

ˆ

F

�1 � �̂⌦ � ˆ

F � �̂
T

[g] (x)

=

T

Z

�T

sin ⌦ (x� y)

⇡(x� y)

g(y) dy.

On substituting into the above equation new variables ⌘ =

p

⌦/T y and ⇠ =
p

⌦/T x, we obtain

˜

f(⇠) = f

 

r

⌦

T

⇠

!

=

a

Z

�a

sin a (⇠ � ⌘)

⇡(⇠ � ⌘)

g

 

r

T

⌦

⌘

!

d⌘ ,

where a

2
= ⌦T . As a result, the function ˜

f(⇠) 2 Rg (G

a

)

and has [2⌦T/⇡] + 1 degrees of freedom.

The convolution of two TFT eigenfunctions �

nm

(x) :=

1
R

�1
 

n

(a, x� y) 

m

(a, y) dy is a–band–limited and hence

�

nm

(x) ⇡ ⇡

a

X

lL, |k|K

�

l

(a)�

nm

✓

⇡k

a

◆

 

l

✓

a,

⇡k

a

◆

 

l

(a, x) .

On the other hand, one can prove that �
nm

(x) 2 Rg (G

a,2a).
Therefore ˜

�

nm

(x) = �

nm

(x/

p
2) 2 Rg

�

G

p
2a

�

and

�

nm

(x) ⇡ ⇡p
2a

X

l,|k|4a2
/⇡

�

l

⇣p
2a

⌘

�

nm

✓

⇡k

2a

◆

⇥  

l

✓p
2a,

⇡kp
2a

◆

 

l

⇣p
2a,

p
2x

⌘

.

The latter sampling formula shows better accuracy than the
previous one, even if the number of samples and prolates
involved in calculations is the same.

VII. GENERALIZATION TO HIGHER DIMENSIONS

In [12] the eigenfunctions of the 2D Fourier transform
truncated to a circle of finite radius a were represented
through the eigenfunctions of the truncated Hankel transforms
(THT) of different angular numbers m. Recently in [11] the
number of THT eigenvalues close to one was proved not to
exceed a

2
/⇡�m/2. The same number defined the NDF of a

class of Hankel-band-limited functions analogous to Rg

�

ˆ

G

a

�

.
This results can easily be generalized to the case of higher
dimensions in accordance with the discussion in [13].
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Abstract—This contribution presents first results on two pro-
posed methods to trace sound objects within texture sounds. We
first discuss what we mean by these two notions and explain
how the properties of a sound that is known to be textural are
exploited in order to detect changes which suggest the presence
of a distinct sound event. We introduce two approaches, one is
based on Gabor multipliers mapping consecutive time-segments
of the signal to each other, the other one on dictionary learning.
We present the results of simulations based on real data.

I. INTRODUCTION

Sound signals play a central role in human life and the
manner sound is perceived is highly sophisticated, complex
and context-dependent. In some applications, one may be
interested in distinguishing between what may be called a
”sound object” and more textural sound components consti-
tuting an acoustical background. The notion of sound object
(”objet sonore”) was introduced by Pierre Schaeffer [10] as a
generalization of the concept of a musical note, in particular
their definition implies a time-limitation of sound objects.

Human listeners tend to perceive sound in a structured
manner, with the ability to focus and de-focus. Whether a
particular event is experienced as a relevant sound structure as
opposed to background, textural sound, seems to depend both
on cultural and educational background, cp. [5], that may be
shared by a group of listeners. From a certain point of view,
the perception of sound components as background (textural)
sound or object (compactly structured) sound, depends on the
”zoom” the listener wishes to adopt or unconsciously assumes.
In this contribution, we attempt to mimic these observations
in a technical way, by ”defining” a sound to be textural if it
does not change certain characteristics which are first to be
determined from a certain amount of data. In that sense, we
need the a priori knowledge that a particular part of a signal
represents textural sound segments. Any signal components
representing a significant change are then considered to be
new objects in the sense of not belonging to the previous
texture sound or background. By definition, a characterizing
feature of texture sounds, in particular as opposed to the signal
components we would like to call sound objects, is some kind
of stationarity over an extended period of time; while micro-
changes are always present, the listener integrates them as part
of the texture, at least after some time has passed. Therefore,
any two sufficiently long slices of a pure texture sound can,
and should, be assumed to be correlated. This observation

leads us to the following approach: given a signal which
is known to present a texture sound, we learn its inherent
characteristics. Using the information gained from the learning
step, we can then look for significantly different, hence salient,
signal components, which we then define to represent a sound
object.

For both the learning and the observation period, we divide
the signal into overlapping time-slices. Then, during observa-
tion, we look for substantial changes from one part of the
signal to another, which would indicate the presence of a
sound object. We are going to quantify, what we mean by
substantial changes, by means of two technical tools: sparsity
in an appropriate dictionary and similarity of Gabor trans-
forms. Based on these two tools, we introduce two methods
to scan texture signals for the presence of what may be
conceived as sound objects. While the proposed framework
may also be useful for the task of detecting audio events, this
application is not the primary motivation for our study. The
latter, challenging task addressed in the framework of CASA 1

requires a much wider and more elaborate evaluation stage and
is beyond the scope of the current contribution. Here, we are
primarily motivated by a different challenge, which parallels
the cognitive process sketched above: we mimic a situation
in which a user/listener makes real-time decisions about the
property of an event occurring in the signal to be or not to be
a sound object which deserves attention. We divide the signal
into overlapping slices. In the first approach we propose, we
make use of Gabor transforms; more precisely, the variations
of the Gabor coefficients between different slices of the signal
are tracked by investigating corresponding Gabor multipliers.

The second proposed method is by means of the exploitation
of sparsity constraints via dictionary learning. Given a part of
a texture sound which is known to be free of sound objects,
we learn a dictionary such that each slice admits a sparse
approximate representation in that dictionary. We then scan
the signal piece by piece by checking its reconstruction error
with respect to the corresponding dictionary, in order to detect
in which intervals of time an object may occur.

The two methods and the involved tools are presented in
the next section. Then, some promising results of preliminary
simulations are presented in Section III and we conclude with
a short discussion and perspectives.

1Computational Auditory Scene Analysis, cp. [13].
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II. TECHNICAL TOOLS FOR SOUND OBJECT TRACING

The proposed methods aim at deciding about the presence
of distinct sound objects within a signal whose first section
is known to be textural. Both methods give a decision about
the presence or absence of an object within a given slice of
the signal. This can be seen as a first step in exact object
localization in terms of precise onset and offset times, and
later extraction. We will see in Section III that the proposed
methods are designed particularly for longer signals and
should be applicable to online-applications.

Before describing the two methods in detail we recall some
definitions from Gabor analysis and fix notation. We will be
working with square integrable functions L2(R), with norm
‖·‖2 induced by an inner product 〈f, g〉 =

∫
R
f(t)g(t) dt,

f, g ∈ L2(R). For f ∈ L2(R) and ω, τ ∈ R, the operators
Mωf(t) = e2πiωtf(t) and Tτf(t) = f(t − τ) are called
frequency and time shift operators, respectively. A collection
G(g, a, b) = {gk,l := MblTakg}k,l∈Z is called a Gabor frame
for L2(R) if the operator Sg,g

Sg,gf =
∑

k,l∈Z

〈f, gk,l〉gk,l for all f ∈ L2(R) (1)

is bounded and invertible on L2(R).2.
For every frame G(g, a, b) there exists a function γ, called
dual window, such that G(γ, a, b) is again a frame, called dual
Gabor frame, and f = Sg,γf = Sγ,gf for all f ∈ L2(R).

Let f ∈ L2(R) be a background, texture signal. We divide
it into overlapping slices fi, i ∈ Z, in the following way:
fi(t) = f(t) for t ∈ [αi,βi] with αi−1 < αi ≤ βi−1 and
αi+1 ≤ βi < βi+1.

A. Gabor Multipliers

We first describe the method based on Gabor multipliers.
This method not only allows to detect a change but also gives
more information on the time-frequency location of a potential
object. Let G(g, a, b) be a Gabor frame and G(γ, a, b) its dual
frame. Let m = {mk,l}k,l∈Z be a bounded complex-valued
sequence. Then the Gabor multiplier associated to (g, γ, a, b)
with symbol, or mask, m is given by

Gmf =
∑

k,l∈Z

mk,l〈f, gk,l〉γk,l . (2)

The operator Gm is well defined and bounded on L2(R) [4].

In [8] the authors addressed the problem of transforming
one signal into another by means of linear operators. They
focus on Gabor multipliers as the transforming operators.
More precisely, for two signals f1 and f2, given dual frames
G(g, a, b) and G(γ, a, b), the objective is to find a symbol m
such that the Gabor multiplier Gm takes f1 into f2 subject
to certain constraints on the mask m. The constraints on the
mask can be sparsity in time-frequency plane or total energy.

2Note that the coefficients 〈f, gk,l〉 in Sg,g are samples of a short-time
Fourier transform of f at sampling points (ak, bl).

An optimal mask, subject to given constraints is a solution to
the following minimization problem

min
m

‖f1 −Gmf2‖
2
2 subject to d(m) < ε , (3)

where d we can chosen to be, for example d(m) = λ‖|m|−
1‖1, to promote sparsity, or d(m) = λ‖m − 1‖22 to control
total energy, where λ is a sparsity prior tuning the influence
of the second term in (3).

For texture sounds, the slices fi, as defined in the previous
section, are similar, hence also their Gabor transforms. The
grade of similarity is learned from the first part of the signal,
which is known to be textural. Then, a symbol mi of a Gabor
multiplier transforming fi to fi+1, fi+1 = Gmi

fi, is close
to one, or in other words d(mi) is close to zero. During the
learning phase, the parameter λ should be tuned to yield small
deviations from the constant mask m = 1.
Now, the problem of detecting a sound object versus a sta-
tionary background is based on studying masks mi. If mi is
significantly different from 1, or d(mi) > ε for some chosen
ε > 0, then the slices fi and fi+1 differ significantly which
leads us to assuming the presence of an object in slice fi+1.

a

B. Dictionary Learning with Sparsity Prior

Given a dictionary D ∈ CK×L, K < L and a signal f ∈
CK , we say that f admits an S−sparse approximation over
D if one can find an approximation of f by S atoms from D.
In other words, we are looking for coefficients x ∈ CL, such
that

f ≈ Dx while ‖x‖0 ≤ S. (4)

Here, ‖·‖0 is a pseudo-norm counting the non-zero entries
in x. Finding the best solution to (4) is an NP-hard problem;
however by relaxing the counting pseudo-norm to an (1 norm,
it becomes a convex optimization problem that can be tackled
with many existing efficient algorithms, such as basis pursuit
(BP) [2], orthogonal matching pursuit (OMP) [12] or FOCUSS
[9]. A dictionary yielding sparse approximate representation
for a class of signals can be learned from a sufficient number of
data samples. Let F be a set of N signals fi ∈ CK , collected
into a matrix of size K × N , for which one would like to
find a dictionary such that each signal in the group admits an
S−sparse approximate representation. A dictionary with the
desired properties can be built by finding a solution to the
following minimization problem

min
X,D

N−1∑

i=0

‖fi −Dxi‖
2
2 subject to, for every i ‖xi‖0 ≤ S ,

(5)
where X ∈ CL×N is the matrix of coefficients xi ∈ CL.
Among many algorithms addressing the problem of dictionary
learning are K-SVD [1], maximum likelihood methods [7] or
the MOD method [3].

For a given texture sound f , we observe the first couple
of seconds of the signal and learn a dictionary which gives
a sparse approximate representation thereof. We build the
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training data set F by considering slices of first L samples
of f , each of length K with M ≥ 0 samples of overlap,
i.e. fi(k) = f(i(K − M) + k) where k = 0, . . . ,K − 1
and i = 0, . . . , N − 1. Then, assuming ongoing textural
characteristics of f , the slices fi for i ≥ N also admit sparse
approximate representation in the same dictionary while no
significant changes occur. In detail, let ε > 0 be given. If
it is possible to find a vector xi of coefficients such that
‖fi − Dxi‖2 ≤ ε while ‖xi‖0 = S is satisfied, then we
conclude no presence of a sound object. However, if the above
relation is violated, we can assume additional components in
fi that are not correlated with elements of D. We scan the
signal f slice by slice and verify its representation in D.

III. SIMULATIONS

We present numerical results based on two classes of texture
sounds f : (heavy) rain and washing machine noise. In order
to give a proof of concept, we apply the suggested methods
to finding synthetic signals s which unambiguously qualify as
sound objects within the background signals; we use damped
sums of six different harmonics of 0.5 seconds length. The
SNR3 of the objects present in the texture sound is between
−5dB and −7.5dB. Note that the sound-files corresponding
to the examples as well as supplementary examples, codes and
extensions are available at the website homepage.univie.ac.at/
monika.doerfler/SoundObj.html.

A. Gabor Multiplier

For the Gabor multiplier approach, we choose slices of
approximately half a second (20480 samples) length with 75%
overlap. We use a standard tight Gabor frame with a Hann
window of length 1024 and 75% overlap. The spectrogram
of the test signal is depicted in the upper plot of Fig. 1. The
three harmonic and compactly supported synthetic signals are
clearly visible. The lower plot shows the deviation ‖|m|−1‖1
for the mask corresponding to the transition between two time-
slices. Based on the first, purely textural part of the signal,
λ is tuned in order to allow only negligible deviation of the
absolute value of m from 1. During our experiments, it turned
out that the success depends heavily on an appropriate choice
of λ, which was chosen to be 1.2 in the first example.

The second example, the distinct noise produced by a
washing machine, is a more complex texture sound. Here, the
situation is more difficult, since the ”stationarity” of the texture
is present on a larger scale, as visible in its spectrogram, shown
in Figure 2, upper display. For this example, we had to allow
for a much smaller λ = 0.01, i.e. for significant deviations
from a constant mask, in oder to obtain meaningful results.
Therefore, as opposed to the previous example, we obtain
much higher values of the deviation ‖|m| − 1‖1 also for the
textural part. In Figure 3, we show two masks occurring in
the investigation of this example; it is clearly visible, that this
particular signal contains a lot of energy in low frequency

3We define the signal to noise ratio (SNR) by SNRdB =
10 log10(‖s‖

2
2
/‖f‖2

2
), given in dB, by where f is the background signal,

which can be seen as ”noise” in which s, the sound object is to be traced.
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Fig. 1. Detection of sound objects in background noise (Rain) using Gabor
multipliers approach.
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Fig. 2. Detection of a sound object in background noise (Washing machine)
using Gabor multipliers approach.

bands, with a certain periodicity (also audible in the signal).
It is quite obvious that, without taking these changes of energy
into account, no meaningful transition can be expected. On the
other hand, inspection of the part of the mask that is related to
the sound object has a clear local persistence in time which the
texture part lacks, but which is typical for harmonic signals.
It is planned to exploit this kind of a priori knowledge - or
assumption - about the objects one is interested in, in order
to improve the method’s success and reliability. In particular,
the models introduced as structured or social sparsity, cp. [6],
[11], show promising results in first experiments and will be
further exploited.
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B. Sparse Dictionary Representation

We applied the second, dictionary-based method to the
signals presented in the previous section; we chose time-
slices of 256 samples length and 50% overlap. It turned out
during the experiments, that, in the evaluation step, smaller
overlap is possible and does not deteriorate the results, since
the time-resolution given by the slice-length of about 6ms
is fine enough. The resulting evaluation criteria, namely
approximation error for a maximum number of atoms and
level of sparsity for a chosen error tolerance, are shown in
Figure 4. Obviously, both criteria show significant deviation
from the texture level during the duration of the sound
objects. It should be noted that the amplitude of the time-
signals don’t visibly increase during the sound objects, also
cf. homepage.univie.ac.at/monika.doerfler/SoundObj.html to listen
to the audio files.

IV. DISCUSSION AND PERSPECTIVES

We presented two methods for sound object tracing in
background, texture signals. Both methods exploit the assumed
quasi-stationary character of texture signals and decide that a
’foreign’ sound object should be present, if that stationarity is
lost. The suggested methods and numerical experiments need
to be extended to a much larger samples of both texture sounds
and sound objects in order to draw reliable conclusions about
the situations in which the proposed models give satisfactory
results; furthermore, there are several open questions as to
how long the slices of the signal should be, in both the sparsity
method and Gabor multipliers, and what kind of Gabor frames
to choose for the latter approach. These questions will be
investigated in detail in ongoing work on the topic and results
will be presented on the companion website.
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Abstract—By use of window functions, time-frequency analysis
tools like Short Time Fourier Transform overcome a shortcoming
of the Fourier Transform and enable us to study the time-
frequency characteristics of signals which exhibit transient os-
cillatory behavior. Since the resulting representations depend on
the choice of the window functions, it is important to know how
they influence the analyses. One crucial question on a window
function is how accurate it permits us to analyze the signals in
the time and frequency domains. In the continuous domain (for
functions defined on the real line), the limit on the accuracy
is well-established by the Heisenberg’s uncertainty principle
when the time-frequency spread is measured in terms of the
variance measures. However, for the finite discrete signals (where
we consider the Discrete Fourier Transform), the uncertainty
relation is not as well understood. Our work fills in some of the
gap in the understanding and states uncertainty relation for a
subclass of finite discrete signals. Interestingly, the result is a close
parallel to that of the continuous domain: the time-frequency
spread measure is, in some sense, natural generalization of the
variance measure in the continuous domain, the lower bound
for the uncertainty is close to that of the continuous domain,
and the lower bound is achieved approximately by the ‘discrete
Gaussians’.

I. INTRODUCTION

Fourier Transform, due to the fact that it is a global
transform, is not well-suited for the analysis of signals that
exhibit transient behavior. This is a rather significant drawback
since such signals exist in abundance. One way to remedy
this shortcoming is the use of window functions: a window
function enables us to localize the function to some specific
interval of interest that we want to look at. This gives rise
to time-frequency analysis and makes it possible for us to
study the frequency structure of functions at varying points in
time. Just like Fourier analysis, time-frequency analysis is a
fundamental tool in science, especially in signal processing.

In this article, we define the Fourier Transform f̂ of a
complex-valued function f defined on the real line R via

f̂(⇠) :=

Z

R
f(t)e�2⇡i⇠t dt, ⇠ 2 R. (1)

The Windowed Fourier Transform of f with a given window
function g : R ! C would then be defined as

Vg(⌧, ⇠) :=

Z

R
f(t)g(t� ⌧)e�2⇡i⇠t dt, ⌧, ⇠ 2 R.

If g and ĝ are supported near the origin, one may interpret
that Vgf(⌧, ⇠) is the ‘⇠-frequency content of f at time ⌧ ’.

Unfortunately, such an ideal interpretation cannot become
a reality; the well-known uncertainty principles expresse the

idea that there is a fundamental limit on how g and ĝ can
be simultaneously localized in the two domains. The most
famous formulation of the uncertainty principle is given by
the Heisenberg-Pauli-Weyl inequality (see, e.g., [1]):

Theorem 1: For f 2 L2(R), define the variance of f by

vf := min
a2R

1

kfk22

Z 1

�1
(t� a)2|f(t)|2 dt. (2)

Then,
vfvf̂ � 1

16⇡2
.

Equality holds if and only if f is a multiple of 'a,b, defined
by

'a,b(t) := e2⇡ib(t�a)e�⇡(t�a)2/c

for some c > 0.
We may define the mean of f by

µf := argmin
a2R

1

kfk22

Z 1

�1
(t� a)2|f(t)|2 dt.

Clearly, the smaller vf is, the more concentrated the function
f is around µf . In other words, vf is a measure of time-
spreading of f . Similarly, vf̂ is a frequency-spreading measure
of f . Thus, the Heisenberg-Pauli-Weyl inequality expresses the
intrinsic limit on how well an L2(R) function can be localized
on the time-frequency plane. Moreover, the theorem also tells
us what the minimizing functions are.

While the Heisenberg Uncertainty Principle gives us a clear
picture of what can be achieved for time-frequency localization
for the continuous functions defined on R, our discussion so
far is somewhat detached from reality; we can only consider
functions defined on finite intervals in real life. Furthermore,
in this day and age of computers, processing can be done
only when the signal can be stored in memory. Therefore, the
signals are discrete and finite.

A pertinent question is: what can be said about the un-
certainty for the time-frequency analysis when the Discrete
Fourier Transform is used? Is there any relation between the
uncertainties for the continuous and the discrete cases? To our
knowledge, surprisingly little is known for this problem, and
this is the area that we aim to contribute to with our work.

II. DISCRETE UNCERTAINTY RELATIONS: SOME RELATED
WORKS

In this section, we discuss some works in the literature
which may serve as an introduction to the problem that we
are interested in.
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A. Uncertainty for Continuous Functions Defined on the Cir-
cle

The Fourier series for periodic functions may be viewed
as something intermediate between the continuous Fourier
Transform for functions on the real line and the discrete
Fourier Transform for finite signals. It could be a good starting
point of our discussion on the uncertainty for discrete signals.

For a 2⇡-periodic function f , the Fourier coefficients for f
is defined by

f̂(k) :=
1

2⇡

Z 2⇡

0
f(t)e�ikt dt, k 2 Z.

Remarks on notations: For lightness, we will sacrifice
the precision and use the same notation f̂ to mean various
different Fourier Transforms whose meaning will become clear
depending on what f is. Such a convention extends to k · k as
well. We also point out that the definition of the continuous
Fourier Transform f̂ used in this subsection is defined without
the 2⇡-factor in (1).

The question we are interested in is how concentrated, or
conversely how spread, f and f̂ are. We note that even though
f̂ is a discrete sequence, there is no problem in defining the
variance of it; we need only to replace the integral in (2) with
an analogous sum. The mean µf̂ can be similarly defined. The
situation is different for f . The issue is that we cannot simply
compute

1

kfk22

Z 2⇡

0
t|f(t)|2 dt

for the mean of f . Such a quantity fails to take the periodicity
into account.

A different way to characterize ‘the mean value’ had been
proposed (see [2]):

⌧(f) :=
1

kfk22

Z 2⇡

0
eit|f(t)|2 dt.

The periodicity is clearly reflected in ⌧(f). With that, one
defines ‘the variance’ of f as

1

kfk22

Z 2⇡

0
|eit � ⌧(f)||f(t)|2 dt = 1� ⌧(f)2.

With these time-frequency spread measures, the uncertainty
relation for the continuous functions on the circle was shown
to be as follows:

�

1� ⌧(f)2
�

vf̂ � ⌧(f)2

4
. (3)

Note that unlike in the continuous setting, the quantity on the
right-hand side depends on the function f . Therefore, if we
were to use (1 � ⌧(f)2)vf̂ as the measure of uncertainty of
f , the equality in (3) does not immediately imply that f is
a minimizer of the uncertainty. A simple way to bypass this
issue is to define the time spread of f as

vf :=
1� ⌧(f)2

⌧(f)2
.

A more precise description of the resulting uncertainty prin-
ciple is given as follows [3], [4]:

Theorem 2: For a function f 2 AC2⇡ with f 0 2 L2([0, 2⇡])
where f is not of the form ceikt for any c 2 C, k 2 Z, it holds
that

vfvf̂ >
1

4
.

The lower bound is not attained by any function, but is best
possible. Here, AC2⇡ is the class of 2⇡-periodic absolutely
continuous functions.

One reservation towards this result is that the meaning of the
so-called angular spread vf is not very intuitive. In addition,
the theorem does not give any guide on what functions may
have the uncertainty product close to the lower bound.

A result in [5] sheds some light on the second problem.
The authors used a process of periodization and dilation to
show that a sequence of functions achieve the uncertainty for
functions defined on the real line in the limit. They proved:

Theorem 3: For an admissible function f (defined on the
real line),

lim
a!1

1

a2
vfa = vf , lim

a!1
a2vf̂a = vf̂ ,

where
fa(t) :=

p
a
X

k2Z
f(a(t+ 2⇡k)).

Therefore,
lim
a!1

vfavf̂a = vfvf̂ .

We remind the reader that the definitions of vfa and vf are
quite different.

Since the minimum of vfvf̂ is known to be 1/4 and is
achieved by (essentially) Gaussian functions, the theorem pro-
vides a way to build periodic functions that are asymptotically
optimal in the given measure of time-frequency spreads. We
will see that our result shares some similarity with this.

Another way to obtain periodic functions which nearly
achieve the uncertainty bound is by computing directly with
numerical optimization [6]. In this approach, Parhizkar et
al. fixed the angular spread at a prescribed level and then
searched for functions that minimize the frequency spread
with the given angular spread. They formulated the problem
as a quadratically constrained quadratic program and hence
enabled efficient computations of desired window functions.

For more results for uncertainties for functions on the circle
which include different spread measures, refer to [7]–[9].

B. Sparsity and Entropy

There are several works in the literature on the uncertainty
relation for finite discrete signals where the Discrete Fourier
Transform is considered; see, e.g., [10]–[16]. Most results
in these can be generically stated as �(x) + �(x̂) � cs or
�(x)�(x̂) � cp for some constants cs and cp where �(x)
measures the spread of x. In [10]–[13], �(x) is chosen to be
kxk0, i.e., the sparsity or the number of non-zero entries of x.
In [16], the entropy of x, S(x), is used for �(x). For more on
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these and other topics regarding uncertainty principle, refer to
[17].

While these results are deep and important with much im-
pact, we note that kxk0 and S(x) (and other similar measures)
do not reflect properly the underlying geometry. For example,
if x consists of two pulses, kxk0 = 2 no matter where the
pulses are. However, in many contexts, we clearly regard x

is more localized/concentrated if the pulses are next to each
other.

Another potential drawback is that the minimizers of these
uncertainty measures tend to be the picket-fence signals (Dirac
comb). From the perspective of window signals, those are
intuitively regarded as poorly localized on the time-frequency
plane. These are the reasons why we insist on the definitions
in Section III-A.

Before closing the section, we mention the work [18]. In
this work, they consider two operators (which may not even be
self-adjoint) in a Hilbert space and derive related uncertainty
relations. Since their result is general, one can apply it in the
setting that we are interested in and obtain some uncertainty
relation. For appropriate choice of operators, one may obtain a
result that would be close to ours. While interesting, we think
this is not a simple task. We also point out that our result
links uncertainty relations in two different domains, which is
not addressed by [18].

III. CONNECTION BETWEEN DISCRETE AND CONTINUOUS
UNCERTAINTY RELATIONS

In this section, we present the main result of this paper.

A. Discretized Time-Frequency Spreads Measures

Let us fix a positive integer N and consider the space CN

of N -dimensional signals. For our purposes, we will regard a
vector x 2 CN as defined on N uniformly spaced points

DN :=
n

� N

2
+ 1,�N

2
+ 1, . . . ,

N

2

o

/
p
N.

With this understanding, the Discrete Fourier Transform x̂ 2
CN of x 2 CN is defined by

x̂(k) :=
1p
N

X

j2DN

x(j)e�2⇡jk, k 2 DN .

The inverse transform has the following form:

x(j) =
1p
N

X

k2DN

x̂(k)e2⇡jk, j 2 DN .

Next, we consider a measure of spread of a vector x 2 CN .
For this, we go back to (2) and adapt it to our setting. Viewing
|t� a| as the distance between t and a, it is natural to define
the variance v

x

of x 2 CN by

v
x

:= min
a2IN

1

kxk22

X

j2DN

d(j, a)2|x(j)|2

where IN denotes interval (�
p
N,

p
N ]/2 and d(j, a) is the

distance between j and a. Now note that our definition of
Discrete Fourier Transform assumes that the signals in CN are

p
N -periodic. Taking this into account, we define the distance

between two points j and a by

d(j, a) := min
l2

p
NZ

|j � a� l|.

Finally, we may define the mean µ
x

of x to be the minimizing
value a 2 IN of the right-hand side expression above for v

x

.
Note that v

x̂

is identically defined.

B. No Uncertainty?

With our definition of uncertainty v
x

v
x̂

, there cannot be
any uncertainty principle in the conventional sense. Clearly,
for any x 2 CN , we have v

x

 N/4 and v
x̂

 N/4. On
the other hand, the vector x that is supported at the origin
satisfies v

x

= 0. Hence, v
x

v
x̂

= 0. It appears that there is no
uncertainty at all and that we can do as well as we want!

Of course, such a claim is non-sense, and it runs counter
to our intuition that we could not have a signal localized
simultaneously in both domains as accurate as we wanted.
A closer look at the case v

x

v
x̂

= 0 reveals why we came
to this conclusion. The signal x̂ is globally supported but v

x̂

fails to express the badness in frequency localization since it is
always bounded above by N/4. In contrast, one would have
had vf̂ = 1 in such cases. One way to resolve this issue
would be to re-define v

x̂

(and v
x

) in a way so that v
x̂

= 1
in this kind of signals x. However, we will not take this route
since the argument in Section III-A shows that v

x

is a sensible
way to gauge the time spread of x. How can we formulate a
sensible uncertainty principle then?

C. Uncertainty for a Subclass of Discrete Signals

As seen in III-B, there are signals that we clearly want to
exclude from our consideration. Thus, it makes sense to restrict
our attention to a subclass of signals in CN in order to exclude
the cases where x or x̂ are ‘globally supported’.

Based on the similarity between the discrete and the contin-
uous Fourier Transforms, it is natural to suspect that discrete
finite samples of Gaussian functions might be optimal win-
dows for the Discrete Fourier Transform. While this appears
reasonable, it looks difficult to show its validity rigorously.
Moreover and perhaps obviously, taking discrete finite samples
of Gaussian functions would be a bad idea unless they happen
to be nearly zero outside the sampling interval. This leads us
to introduce ‘admissible functions’ for our discussion.

We say that f 2 L2(R) is (N, ✏)-localized if

|f(t)|  ✏

|t|2 , |t| �
p
N

2
, (4)

and that a signal x 2 CN is admissible with constant ✏ if

x(j) = xf (j) := N�1/4
X

l2
p
NZ

f(j + l), j 2 DN

for a function f with (N, ✏)-localized functions f , f 0, f̂ , f̂ 0.
That is, admissible vectors in CN are obtained by uniformly
sampling

p
N -periodized localized functions in L2(R).

Our main result is the following:
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Theorem 4: Suppose that f 2 L2(R) is localized in time-
frequency domain with constant ✏. Then,

p

vfvf̂ (1�
p
✏) 

p
v
x

v
x̂

 p

vfvf̂ (1 +
p
✏),

where x := xf . Thus, if x is an admissible signal, then

v
x

v
x̂

� (1�
p
✏)2

16⇡2
.

To give some idea of the proof, we ask first: Why do we
associate xf to f instead of sampling the function directly
without periodizing it? Upon some reflection, the periodization
seems to be natural given the well-known phenomenon of
folding (aliasing) associated with sampling approach. It is
the periodization that makes the two endpoints of DN to
be neighbors when the sampling is done. Another crucial
reason for us to introduce xf in that way is the observation
that x̂f = xf̂ , which is a standard consequence of Poisson
Summation Formula. Thanks to this identity, we need only to
show that v

x

and v
x̂

are good approximations of vf and vf̂ ,
respectively. To show that v

x

and vf are close to each other,
we show that relevant moments of x and f are very close.
For this purpose, we apply the Poisson Summation Formula
and the Parseval’s identity. This is also where we use (N, ✏)-
localizedness of f , f 0, f̂ , and f̂ 0. A detailed proof of Theorem
4 will be given in an up-coming work.

IV. DISCUSSION AND CONCLUSION

One implication of Theorem 4 is that, if we were to consider
only the admissible signals in CN as windows – which is
not unreasonable in many applications since one would like
to have ‘smooth’ and ‘fast-decaying’ windows for the time-
frequency analysis – thanks to Theorem 1, we can easily
construct nearly optimal windows for the Discrete Fourier
Transforms by periodizing Gaussian functions and taking
finite uniform samples as long as the Gaussian functions are
supported essentially on the interval of sampling. This is a
mild requirement due to the exponential decay of the Gaussian
functions, especially when N is large.

We must keep in mind that ‘discrete gaussians’ above are,
a priori, nearly optimal only among admissible signals in CN ;
however, we will demonstrate in the up-coming work that the
near optimality of the discrete gaussians may be valid for
‘all signals’ in CN . More theoretical evidence related to the
near optimality of the discrete Gaussians will be given there.
We also show by numerical computation that the uncertainty
bound is indeed very close to 1/(16⇡2).

To conclude, we asserted that the uncertainty products of
admissible signals with constant ✏ in CN are bounded below
by constant close to 1/(16⇡2). Based on this claim, we derived
that the discrete Gaussians are near optimal windows among
the admissible signals.

Even though the near optimality of the discrete Gaussians
among all signals is strongly suspected, a definitive proof
is still missing and remains as future work. Also, as a side
problem, it would be interesting to study the characteristics of
the discrete Gaussians that arise from Gaussian functions with

wide support. For example, are those signals near optimal in
some other sense?

Finally, we mention the question of optimal windows for
distinguishing, e.g., linear chirps. In our follow-up, we take the
approach of this work and try to establish, at least formally,
that modulated discrete Gaussians (so that they themselves are
linear chirps) are nearly optimal as well.
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[1] K. Gröchenig, Foundations of Time-Frequency Analysis, ser. Appl.
Numer. Harmon. Anal. Birkhäuser Boston, 2001.
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Abstract—A new simulation method for continuous time digital
signal processing RF architectures is proposed. The approach
is based on a discrete time representation of the input signal
combined with a linear interpolation. Detailed theoretical calcu-
lations are presented, which prove the efficiency of the simulation
when dealing with narrowband RF signals. We show that, when
compared to a discrete time simulation, for the same simulation
error, a decrease of almost two orders of magnitude is expected
in the necessary number of input samples.

I. INTRODUCTION

Continuous time (CT) digital signal processing systems have
been extensively studied over the past years. These systems
rely on a continuous time level crossing (CT-ADC) analog to
digital conversion stage followed by a continuous time digital
signal processor (CT-DSP) block (Fig. 1). In some cases, the
CT-DSP output is feedback to the input of the CT-ADC in
order to enhance the performance of the conversion. One
interesting property of these systems is that no quantization
noise is observed because no quantization error is ever made.
Furthermore, [1] shows that the data rate requirements are
more relaxed as compared to those of synchronous systems.
The CT design has been extensively deployed for low power,
low frequency applications such as voice processing [2], fast
control loops [3] and sensor interfacing [4].

With the recent advances in the deep submicron CMOS
technologies, it has become possible to greatly increase the
speed of the CT ADCs and of the CT-DSPs. The CT-ADCs
have become good candidates for use in direct RF quantization
architectures as they solve two important problems. First,
the clockless design of these ADCs can greatly reduce the
power consumption of the RF receiver. Second, their power
consumption depends on input activity: when no input signal
is present, the dynamic power consumption drops to 0. An RF
implementation of a CT digital signal processing system has
been presented in [5].

One of the remaining challenges in designing RF CT digital
processing systems is efficient simulation. Fig. 1 presents a
general representation of such a system. The simulation of
the CT-DSP part can easily be done using an event driven
approach, where level crossing events propagate from one sys-

N 
CT ADC CT DSP 

DAC 

N 

input output 

Fig. 1. Generic representation of a CT digital signal processing architecture.
The system is composed of a CT ADC, a CT-DSP block and a DAC for
feedback.

tem block to another with a certain behavioral and time delay
model. However, the efficient generation of the level crossing
events (referred to as timestamps) remains problematic since
it is difficult to obtain a high precision on the time of the level
crossings while using a fast simulator.

Analog simulation can be used for precise device level sim-
ulations, but it is too slow for architecture exploration needed
to determine the specifications of the involved building blocks.
On the other hand, discrete time simulation provides a fast and
simple way of simulating CT digital signal processing archi-
tectures with a precision that depends on the ratio between the
sampling frequency and the useful signal frequency (referred
to as oversampling ratio - OSR). Since most of the current CT-
DSP circuits are low frequency implementations, high OSR
simulations are affordable. However, for RF implementations
which operate at GHz frequency and require high frequency
resolution, a brute increase of the OSR would greatly increase
simulation time.

In this paper we present a hybrid simulation used for times-
tamp generation which attempts to minimize the simulation
error while maintaining a low computational complexity. The
rest of the article is organized as follows: Section 2 details
the basic principles of the simulation; Section 3 provides a
theoretical background for the simulation error computation
for sinusoidal signals; Section 4 extends the validity of the
results presented in Section 3 to general RF modulated sig-
nals. Section 5 applies these results to modulations used for
IEEE 802.11a and IEEE 802.11b standards. The frequency
representation of the error is discussed in Section 6. Lastly,
Section 7 concludes the paper.
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Lj 

b) 
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Fig. 2. Level crossing error committed by the proposed hybrid simulation (a) and a discrete time simulation (b).

II. SIMULATION OVERVIEW

The basic principle used by the proposed hybrid simulation
is presented in Fig. 2(a). Like the discrete time simulation
(Fig. 2(b)), the proposed method uses a discrete time rep-
resentation of the input signal but with a lower OSR. For
each level crossing, a first order interpolation is used to
determine the timestamp. In this case, the input signal crosses
the level Lj and is sampled at time instants ti and ti+1. The
interpolation produces the timestamp th(Lj) which, in the case
of RF signals, is a much better approximation of the real
level crossing time tc(Lj) than the result of a synchronous
simulation: ti+1.

In order to compare the different simulation methods,
performance metrics need to be defined. The two possible
performance criteria would be simulation time and simulation
error. Since this paper aims to provide readers with insight into
architecture level simulations of CT digital signal processing
RF systems, the analog simulation is not a good candidate
because it is too slow and complex. For the rest of this article
the hybrid and the discrete time simulations will be compared,
while analytical calculations will be used as benchmark for
precision. Finally, as an objective simulation time evaluation,
the required OSR for each simulation will be compared for a
given upper bound on the committed error.

We define the simulation error energy as the energy of the
difference between a perfect CT signal and the respective
simulation output. Considering a quantization step of q, the
error energy for a level crossing is expressed in (1) for the
hybrid simulation and in (2) for the discrete time simulation.

eh(Lj) = q2 |tc(Lj)− th(Lj)| (1)

ed(Lj) = q2 |tc(Lj)− ti+1| (2)

Using this we can now define the signal to noise ratio (SNR)
of the simulation as the ratio between the signal energy and
the error energy. This expression will be used for performance
evaluation for the rest of this article. For an input signal V (t)
of duration T which crosses levels L1 to Ln we have that:

SNR =

∫ T

0
V (t)2dt

n
∑

p=1

e(Lp)
(3)

III. SINUSOIDAL INPUT

For a sinusoidal input in the form of V (t) = A sin (2πft),
the simulation error can be computed analytically for both

simulation scenarios. As defined in Fig. 2, we have Vi and
Vi+1 the signal samples before and after the level crossing,
aj = Lj −Vi and bj = Vi+1−Lj . The error for a single level
crossing as defined in (1), can be further developed as:

eh(Lj) = q2
∣

∣

∣

∣

1

2πf
arcsin

Lj

A
−

(

ti + aj
Ts

Vi+1 − Vi

)
∣

∣

∣

∣

(4)

The difference between two consecutive samples (Vi+1 and
Vi) around the level Lj is approximated using a second order
Taylor series:

Vi+1 − Vi =
2π

OSR

(

√

A2 − (Lj − aj)
2 − π

Lj − aj
OSR

)

(5)

For simple input signals, precise expressions can be found
for aj , but since we require results which apply to more
general cases, we opt for a statistical approach. In this case, aj
can be approximated as a uniform random variable bounded
by the difference between two consecutive samples, as defined
in (5). The resulting interval is expressed as follows:

−
2π

OSR

(

√

A2 − L2
j − π

Lj

OSR

)

< aj <

<
2π

OSR

(

√

A2 − L2
j − π

Lj

OSR

) (6)

Finally, the error corresponding to each level crossing can
be computed using the definition of the expected value of (4)
given the specific distribution of aj :

E[eh(Lj)] =

∫

aj

eh(Lj)P (aj)daj (7)

This integral is nontrivial, but can easily be computed
numerically. By replacing this expression in (3) the theoretical
value of the SNR can be computed.

Similarly, the discrete time simulation SNR can be com-
puted using:

ed(Lj) = q2
∣

∣

∣

∣

1

2πf

(

arcsin
Lj

A
− arcsin

Lj + bj
A

)
∣

∣

∣

∣

(8)

By symmetry, bj is a uniform random variable defined over
the same interval as aj (6).

These theoretical calculations are compared with simulation
results. For a given number of bits, we plot the corresponding
SNR obtained from the hybrid and the discrete time simulation
as well as the values predicted by the theory. Using a sinusoid
quantized over 5 bits, we plot the results in Fig. 3. Similarly,
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Fig. 3. SNR versus the OSR for the hybrid and discrete time simulation
using a single sinusoidal input quantized over 5 bits.
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Fig. 4. SNR versus the number of bits for the hybrid and discrete time
simulation using a single sinusoidal input oversampled by a factor of 64.

Fig. 4 shows the evolution of the simulation error versus the
number of bits for an OSR of 64.

As we can see, the theoretical results are closely matched
by the simulation. The maximum difference is only about 2dB
and comes from the approximations related to the linearization
of the sine function over small intervals. Moreover, there is a
significant gain in using the hybrid simulation as opposed to
the discrete time simulation. For a given SNR of, for example
50 dB, a reduction of a factor greater than 27 is expected in the
representation of the input signal. The corresponding speedup
gain of the hybrid simulation will be slightly less than 27

because extra interpolation points need to be computed.

IV. SIMPLE MODULATED SIGNALS

In this section we will extend the previously derived results
to a more general case. An RF signal can be represented as a
sine wave carrier with phase and amplitude modulation:

V (t) = A(t)sin(2πft+ φ(t)) (9)

By supposing that A(t) and φ(t) vary slowly with respect
to the sinusoid and by following the same procedure as before,
the error committed by the hybrid simulation for each level
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Fig. 5. SNR versus the OSR for the hybrid and discrete time simulation for
an amplitude and phase modulated sine quantized over 5 bits.

crossing Lj can be derived:

eh(Lj) =q2
∣

∣

∣

∣

1

2πf
arcsin

Lj

A(ti)
−

−

(

ti + aj
Ts

Vi+1 − Vi

)
∣

∣

∣

∣

(10)

As in the previous case, aj can be defined as a uniform
random variable. Its interval of variation can be derived from
(6) by replacing the old constant amplitude value (A) with the
new time varying amplitude defined in (9), equal to A(t).

It is interesting to note that the phase component φ(t)
completely cancels out in the error expression (10). This result
can be easily interpreted by the slow variation of φ(t) with
respect to the sinusoid. At any given time t, the phase is
expected to remain constant for at least one period of the
sinusoid, which is equivalent to a phase shifted version of
the signal used in the previous section. Since the previously
derived results do not depend on the initial phase of the signal,
it follows that the simulation error for modulated signals is
only determined by the amplitude modulation term A(t).

In order to compare the theoretical results with a simulation,
simple analytical expressions have been chosen for A(t) and
φ(t) so that the true level crossing times can be computed:
A(t) = k1t and φ(t) = k2t. As in the previous case, we use a
5 bit quantizer. k1 is chosen so that the amplitude modulation
term varies from 0 to full scale over 32 periods of the carrier
sinusoid. The phase modulation constant k2 is chosen so that
the phase varies from 0 to 2π over the same number of carrier
periods. The results are shown in the Fig. 5.

Once again we see a very good agreement between the
simulation and the theory. The proposed hybrid simulation
greatly decreases the OSR required for a given SNR. More
importantly, the results in this section prove that the previously
derived formulae can be used to compute the expected value
of the simulation error for any narrowband RF signal, as long
as its discrete time baseband representation is known.

V. GENERAL MODULATED SIGNALS

In this section we will study the simulation performance
for IEEE 802.11a and IEEE 802.11b signals. The signals are
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Fig. 6. SNR versus OSR for two wireless standards: 802.11a and 802.11b
using the proposed hybrid simulation as well as a discrete time simulation

quantized over 5 bits and the results using the previously
derived theory are plotted in Fig. 6. Since both standards
have similar baseband amplitude distributions, the obtained
SNRs are also very similar. Furthermore, the use of the
hybrid simulation drastically reduces the necessary discrete
time representation of the input signal for a given error limit.
At 40 dB precision, a hybrid simulation only requires an input
OSR of 64 instead of 4096 required by the discrete time
simulation.

VI. ERROR IN THE FREQUENCY DOMAIN

Until now the total absolute error introduced by the simula-
tion has been derived. However, when dealing with RF signals,
it is interesting to study the repartition of this simulation
error over the frequency spectrum. Since most RF signals
use different frequency bands, in order to provide a fair
comparison, the simulation error will be integrated between
0 Hz and the maximum useful frequency contained in the
input signal.

For white noise, an SNR gain of the form 20 log BW
Fs

would
be expected, but this is not be the case. The error, as expressed
earlier, is the difference between the simulation output and a
perfect level crossing version of it. However, as it has been
shown in [6], a level crossing signal has frequency components
which contain the fundamental frequency, as well as all of
its harmonics with no noise in-between. By limiting the
bandwidth of our signal, we will be cutting off high frequency
noise as well as parts of our signal - more specifically - its
harmonics.

In this section we will consider a sinusoidal input signal
at 1 GHz frequency, quantized over 4 bits. The band limited
simulation error is compared to the total error for both the
hybrid and the discrete time simulation in the Fig. 7. Before
analyzing the results, it is important to note that a non-uniform
discrete time Fourier transform (NDFT) has been used, since
the samples from the hybrid simulation are not periodic. A
classic DFT would have required to synchronously resample
the asynchronous output of the hybrid simulation which would
have introduced another error component.
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Fig. 7. Total SNR and band limited SNR versus the OSR for a sinusoidal
input using the proposed hybrid simulation and the discrete time simulation

The band limited results show an even higher gain in
precision for the hybrid simulation compared to the discrete
time simulation. Using the proposed hybrid simulation, 50dB
SNRs can be expected using input OSRs as low as 32.

VII. CONCLUSION

In this paper we have presented a detailed account of the
error introduced by a new simulation method for CT digital
signal processing RF systems. The proposed method combines
the discrete time and the continuous time approaches by using
an oversampled version of the input signal and a first degree
interpolation in order to enhance the precision of the level
crossing times. It has been shown that the proposed simulation
greatly decreases the simulation time when compared to
a purely discrete time approach. Moreover, the expressions
derived in this paper enable the computation of the simulation
error prior to the actual simulation for any RF signal which
has a known baseband representation.

The proposed simulation method has been successfully used
to study the tradeoffs for the building block parameters used
in two CT digital signal processing RF architectures.

REFERENCES

[1] M. Miskowicz, Send-On-Delta Concept: An Event-Based Data Reporting
Strategy, Sensors, 6(1), 2006, pp. 49–63.

[2] B. Schell, Y. Tsividis, A Continuous-Time ADC/DSP/DAC System With
No Clock and With Activity-Dependent Power Dissipation, IEEE Journal
of Solid-State Circuits, 43(11), 2008, pp. 2472–2481.

[3] Z. Zhao, V. Smolyakov, A. Prodic, Continuous-Time Digital Signal
Processing Based Controller for High-Frequency DC-DC Converters,
Applied Power Electronics Conference, Anaheim, February 25 - March
1, 2007, pp. 882–886.

[4] V.N. Manyam, D. Chhetri, J.J. Wikner, Clockless Asynchronous Delta
Modulator Based ADC for Smart Dust Applications, IEEE/IFIP 19th
International Conference on VLSI and System-on-Chip, Hong Kong,
October 1-3, 2011, pp. 331–336.

[5] M. Kurchuk, C. Weltin-Wu, D. Morche, Y. Tsividis, Event-Driven
GHz-Range Continuous-Time Digital Signal Processor With Activity-
Dependent Power Dissipation, IEEE Journal of Solid-State Circuits 47(9),
2012, pp. 2164–2173.

[6] B. Schell, Y. Tsividis, Analysis and simulation of continuous-time digital
signal processors. Signal Processing, 89(10), 2009, pp. 2013–2026.

Proceedings of the 10th International Conference on Sampling Theory and Applications

419



Shift-Variance and Cyclostationarity of
Linear Periodically Shift-Variant Systems

Bashir Sadeghi and Runyi Yu
Department of Electrical and Electronic Engineering

Eastern Mediterranean University
Gazimagusa, via Mersin-10, Turkey 99628

bashir.sadeghi@cc.emu.edu.tr and yu@ieee.org

Abstract—We study shift-variance and cyclostationarity of
linear periodically shift-variant (LPSV) systems. Both input and
output spaces are assumed to be of continuous-time. We first
determine how far an LPSV system is away from the space of
linear shift-invariant systems. We then consider cyclostationarity
of a random process based on its autocorrelation operator.
The results allow us to investigate properties of output of an
LPSV system when its input is a random process. Finally,
we analyze shift-variance and cyclostationarity of generalized
sampling-reconstruction processes.

Keywords: cyclostationarity, generalized sampling processes,
linear periodically shift-variant systems, shift-variance

I. INTRODUCTION

Shift-variance and cyclostationarity are two important issues
in the study of linear shift-variant systems and random pro-
cesses. They have found applications in many fields, including
communication and signal processing. See [2], [4] and the ref-
erence therein. Recently, Aach and Führ studied shift-variance
properties of multirate filterbanks with either deterministic
or random inputs [2]. They analyzed shift-variance of the
filterbank and calculated the cyclostationarity of its output.
For generalized sampling processes, we also performed shift-
variance analysis in the deterministic setting [11]. It is the
purpose of this paper to report our extension of the results to
linear periodically shift-variant LPSV systems whose inputs
and outputs are both of continuous-time.

As in [2], we also consider the effect of LPSV systems
on the deterministic and random signals. We apply a norm
in a Hilbert space of linear systems. The distance between
the LPSV system and the space of linear shift-invariant (LSI)
systems is then used to measure the shift-variance of the LPSV
system. To study cyclostationarity of random processes, we
also follow the idea of [2] to link the cyclostationarity to the
shift-variance of the associated autocorrelation operator (or
function). This is because a random process is wide sense
stationary (WSS) if and only if (iff) the operator is shift-
invariant; and it is wide sense cyclostationary (WSCS) iff the
operator is LPSV. We then obtain a kind of cyclostationarity
based on the shift-variance level of the autocorrelation opera-
tor. This cyclostationarity also characterizes the distance from
the autocorrelation of a random process to the autocorrelation
of a nearest WSS process.

Finally we treat generalized sampling-reconstruction pro-
cesses as a particular application. For minimum error recon-

struction, we assume that the sampling and reconstruction
kernels form Riesz dual basis [9]. The expected shift-variance
and cyclostationarity of the output signal are then determined.
Two illustrative examples are provided.

For brevity most derivations and proofs are omitted.

II. SHIFT-VARIANCE OF LPSV SYSTEMS

We start this section with some basic definitions. The main
aim is to determine the nearest shift-invariant system for any
LPSV system.

Let L2 be the Hilbert space of square integrable continuous-
time functions. Let H(L2 → L2) : x(t) "→ y(t) be a bounded
linear system. Denote by B the linear space of all bounded
systems. For each T > 0, BT denotes the subspace of bounded
LPSV systems with period T (T -LPSV); and B0 the subspace
of all bounded shift-invariant systems. Note that B0 ⊂ BT .

For every H ∈ BT , we can specify it with its response to
shifted impulse function δs(·) = δ(·− s). Let the response be
Hδs(t) = h(t, t− s). Then the output of H is given as

y(t) = Hx =

∫ ∞

−∞
h(t, s)x(t− s) ds (1)

Throughout the paper we assume that H ∈ BT , or equivalently
h(t+ T, s) = h(t, s).

Since h(t, s) is periodic in t with period T , we can express
the impulse response as Fourier series

h(t, s) =
∑

k∈Z

hk(s) e
jkω0t (2)

where ω0 = 2π/T and the coefficients are

hk(s) =
1

T

∫ T

0
h(t, s) e−jkω0t dt (3)

Let ĥ(t, ξ) be Fourier transform of h(t, s) with respect to s.
As a function of t, ĥ(t, ξ) is also periodic with period T . Thus
we can express it as Fourier series

ĥ(t, ξ) =
∑

k∈Z
ĥk(ξ) e

jkω0t (4)

where

ĥk(ξ) =
1

T

∫ T

0
ĥ(t, ξ) e−jkω0t dt (5)

Note that ĥk(ξ) is actually the Fourier transform of hk(s).
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We define a norm of H by

‖H‖2 =
1

T

∫ T

0
‖Hδs(·)‖22 ds (6)

By change of variable, we get

‖H‖2 =
1

T

∫ T

0

∫ ∞

−∞
|h(t, s)|2 ds dt (7)

And using Parseval’s relation, we can express the norm in the
Fourier domain:

‖H‖2 =
∑

k∈Z

∫ ∞

−∞
|hk(s)|2 ds

=
1

2π

∑

k∈Z

∫ ∞

−∞
|ĥk(ξ)|2 dξ (8)

Let G ∈ B0 and g be its impulse response i.e., g(t) = Gδ(t).
The distance (squared) between H and G can be calculated
as

d2(H,G) = ‖H −G‖2

=
1

T

∫ T

0

∫ ∞

−∞
|h(t, s)− g(s)|2 ds dt

=

∫ ∞

−∞
(|h0(s)− g(s)|2 +

∑

k $=0

|hk(s)|2) ds(9)

The above expression allows us to determine the nearest
system G0 ∈ B0. It is specified by the impulse response

g0(s) = h0(s) =
1

T

∫ T

0
h(t, s)dt (10)

Note that G0 is the orthogonal projection of H onto the
subspace B0 and that the impulse response h0 is the DC
component of h(t, s).

Then we have the distance between H and B0:

d2(H,B0) =
1

T

∫ T

0

∫ ∞

−∞
|h(t, s)− g0(s)|2 ds (11)

That is,

d2(H,B0) =
∑

k $=0

∫ ∞

−∞
|hk(s)|2ds (12)

or

d2(H,B0) =
1

2π

∑

k $=0

∫ ∞

−∞
|ĥk(ξ)|2 dξ (13)

Note that h(t, s) − g0(s) is in the orthogonal complement
space of the shift-invariant subspace B0. Thus the LPSV
system H − G0 can be considered the shift-variant part of
H . Following [2], we can also define d(H,B0) as the shift-
variance level (denoted by SV2(H)) of H .

III. CYCLOSTATIONARITY OF RANDOM PROCESSES

In this section we shall study cyclostationarity of a random
process by linking it to the shift-variance of a linear system
that is determined by autocorrelation function of the process.

Let z : R → C be a zero-mean continuous-time random
process with E{|z(t)|2} < ∞, t ∈ R, where E denotes
the expectation operator. The autocorrelation function of z is
defined as rz(t, s) = E{z(t + s) z∗(t)}. The random process
z is called WSS if rz(t, s) is independent of time, t; and it is
WSCS with period T (T -WSCS) if rz(t+T, τ) = rz(t, s). The
notions for discrete-time random process are similarly defined.

We consider the autocorrelation operator Rz as a deter-
ministic linear system whose impulse responses are specified
as Rz δs = rz(t, t − s). It is assumed that Rz ∈ B. Note
that z is WSS iff Rz is shift-invariant system; and z is T -
WSCS iff Rz is T -LPSV system. This suggests that we can
characterize cyclostationarity of random process z by shift-
variance of linear system Rz . The amount of cyclostationarity
of z can be assessed in terms of the shift-variance measure of
Rz:

Cyc(z) = SV2(Rz) (14)

This measure quantifies the distance between the autocorrela-
tion function rz(t, τ) and the nearest autocorrelation function
of a WSS random process.

We point out that the degree of cyclostationarity (DCS)
defined in [9] is a normalized version of Cyc2(z), specifically

DCS(z) =
Cyc2(z)∫∞

−∞ |rz0(s)|2 ds
(15)

where rz0(t) is the impulse response of the nearest system in
B0.

IV. EXPECTED SHIFT-VARIANCE OF LPSV SYSTEMS
WITH RANDOM INPUT

Now assume that the input is random (for example, a WSS
process), how can we quantify the shift-variance of an LPSV
system? This problem was considered by Aach and Führ for
multirate discrete-time systems. They introduced the notation
of expected shift-variance, which is related not just to the
system itself, but also to the random input.

Similar to [1], introduce the commutator

[H, τs] = Hτs − τsH (16)

where τs : x(t) "→ x(t− s) is the shift operator. The expected
shift-variance of H with input x can then be defined as

ESV2(H,x) =
1

T 2

∫ T

0

∫ T

0
E(|[H, τs]x(t)|2) ds dt (17)

After some tedious calculations, we obtain in the time-domain
that

ESV2(H,x) = 2
∑

k $=0

∫ ∞

−∞

∫ ∞

−∞
h∗
k(t)hk(t− s)rx(s) ds dt

(18)
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Fig. 1. A generalized sampling and reconstruction process

and in the Fourier domain that

ESV2(H,x) =
1

π

∑

k $=0

∫ ∞

−∞
|ĥk(ξ)|2 Sx(ξ) dξ (19)

where Sx(ξ) is the power spectral density of x, i.e., the Fourier
transform of rx [7]. Note that the ESV tells how different the
expected value of the output to a shifted input from that of
shifted output.

Note that the ESV is zero iff the system is LSI. And the
Fourier domain expression (19) provides some insight as when
an LPSV system becomes LSI (see the examples at the end
of Section V).

V. GENERALIZED SAMPLING-RECONSTRUCTION
PROCESSES

Sampling-reconstruction process plays an important role
in signal processing and communication. In particular, the
generalized sampling-reconstruction theory of Unser and Al-
droubi [9] offers a versatile framework in studying many
problems of sampling beyond Shannon.

In this section, we investigate cyclostationarity and shift-
variance of generalized sampling-reconstruction processes
show in Fig. 1, where x is a zero-mean WSS random process;
and for minimum error between input signal and the output
signal (which is in the space of spanned by {ϕ(· − nT )}n),
ϕ̃(t) and ϕ(t) are assumed to be dual Riesz basis [9]. It is
well-known that sampling generally results in shift-variance
whereas reconstruction introduces cyclostationarity.

Consider the sampling first. The output of sampling u[n] is
given by 1

u[n] = 〈x, ϕ̃(·− nT )〉

=

∫ ∞

−∞
ϕ̃∗(t− nT )x(t) dt (20)

Note that u is of discrete-time and has autocorrelation function
ru[n, k]
=E{

∫∞
−∞

∫∞
−∞ϕ∗(t1−(n+ k)T )x(t1)ϕ(t2−nT )x∗(t2) dt1dt2}

(21)
By change of variable t1 − nT → t1 and t2 − nT → t2 we
get

ru[n, k] =

∫ ∞

−∞

∫ ∞

−∞
ϕ̃∗(t1 + kT ) ϕ̃(t2) rx(t1 − t2)dt1dt2

(22)
Since ru above is independent of n, thus it is a WSS discrete
random process and the power spectral density of u is

Su(e
jξT ) =

1

T

∑

n∈Z

| ˆ̃ϕ(ξ + 2nπ/T )|2 Sx(ξ + 2nπ/T ) (23)

1Note that the integration for random signals is in the mean square sense [5].

In the reconstruction part, the output is

y(t) =
∑

n∈Z

u[n]ϕ(t− nT ) (24)

and its autocorrelation function becomes

ry(t, s) =
∑

n1,n2∈Z

ϕ(t+s−n1T )ϕ
∗(t−n2T )ru[n1−n2] (25)

Note that ry(t+ T, s) = ry(t, s), thus y is T -WSCS.
In order to analyze the shift-variance of system H in Fig. 1,

we need to determine its input-output relation. By direct
substitution and change of variable, we obtain that

y(t) = Hx =

∫ ∞

−∞
h(t, s)x(t− s) ds (26)

where

h(t, s) =
∑

n∈Z

ϕ̃∗(t− s− nT )ϕ(t− nT ) (27)

is the impulse response. It can be shown that h(t + T, s) =
h(t, s) and

ĥk(ξ) =
1

T
ˆ̃ϕ∗(ξ)ϕ̂(ξ + kω0) (28)

Since ˆ̃ϕ(ξ)
∑

k∈Z |ϕ̂(ξ + kω0)|2 = T ϕ̂(ξ) [6], hence

‖H‖2 =

∫ ∞

−∞
|ϕ(t)|2dt (29)

Apply the results in previous sections, we can obtain the
following results:

Cyc2(y) =
1

2π T 2

∑

k $=0

∫ ∞

−∞
|ϕ̂(ξ) ϕ̂(ξ+2πk/T )Su(e

jξT )|2 dξ

(30)
and

ESV2(H,x) =
1

πT 2

∑

k $=0

∫ ∞

−∞
| ˆ̃ϕ(ξ)ϕ̂(ξ + 2πk/T )|2Sx(ξ)dξ

(31)
Finally, let us consider two examples. The first one is about

the traditional Shannon’s sampling. In this case the kernels
ϕ̃(t) = ϕ(t) = sinc(t/T )/

√
T . From equation (25) and (27)

it is not immediate that the output y is WSS for WSS input
and that the sampling-reconstruction system is LSI. On the
other hand if we examine (30) and (31), we can easily see
that Cyc(y) = ESV(H,x) = 0 for each x, since the Fourier
transform of ϕ is zero for |ξ| > π/T . Consequently the output
is WSS and the sampling-reconstruction process is LSI.

In the other example, ϕ is taken to be B-spline of various
order n [8] which is normalized such that

∫∞
−∞ |ϕ(t)|2dt = 1.

And for the input we take the unit variance white Gaussian
noise, hence Sx(ξ) = 1. Now the expected shift-variance
turns out to be equivalent to cyclostationarity: ESV(H,x) =√
2Cyc(y). Furthermore from (30) it follows that

Cyc2(y) = 1− 1

2π T 2

∫ ∞

−∞
|ϕ̂(ξ) ˆ̃ϕ(ξ)|2 dξ (32)

Consequently 0 ≤ Cyc(y) ≤ 1.
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For the zero order B-spline (a box), we obtain Cyc(y) =
0.5773 > 0.5. This result indicates that output is quite non-
stationary (in the wide sense). We also obtain numerical values
of Cyc(y) for other orders: they are 0.3546 (n = 1), 0.2864
(n = 2), 0.2485 (n = 3), and 0.2227 (n = 4). Again the output
is not WSS for all cases, but now the output y seems to be
more stationary than non-stationary as the order n increases.
We expect that Cyc(y) can become arbitrary small for n large
enough.

VI. CONCLUSION

We reported our latest study on shift-variance and cy-
clostationarity analysis of LPSV systems. We extended re-
cent similar results to systems with continuous-time input
and output, rendering our treatment of generalized sampling-
reconstruction processes. The extension enables us to define
and compute the following:

• a distance of an LPSV system to the nearest linear shift-
invariant system.

• a cyclostationarity of a WSCS random process
• the expect shift-variance of a generalized sampling pro-

cess and cyclostationarity of its output when the input is
WSS.
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Abstract—To process high-dimensional big data, we assume
that sufficiently small patches (or neighborhoods) of the data are
approximately linear. These patches represent the tangent spaces
of an underlying manifold structure from which we assume
the data is sampled. We use these tangent spaces to extend
the scalar relations that are used by many kernel methods to
matrix relations, which encompass multidimensional similarities
between local neighborhoods in the data. The incorporation
of these matrix relations improves the utilization of kernel-
based data analysis methodologies. However, they also result
in a larger kernel and a higher computational cost of its
spectral decomposition. We propose a dictionary construction
that approximates the oversized kernel in this case and its
associated patch-to-tensor embedding. The performance of the
proposed dictionary construction is demonstrated on a super-
kernel example that utilizes the Diffusion Maps methodology
together with linear-projection operators between tangent spaces
in the manifold.

I. INTRODUCTION

Recent methods for massive high dimensional data analysis
utilize a manifold structure on which data points are assumed
to lie. This manifold is immersed (or submersed) in an
ambient space that is defined by observable parameters. Kernel
methods such as Diffusion Maps (DM) [1] have provided
good results in analyzing such massive high dimensional data.
These methods are based on the spectral decomposition of
a kernel designed to incorporate scalar similarities between
data points. The resulting embedding of the data points into
an Euclidean space preserves the qualities represented by the
designed kernel.

Recently, DM was extended in several different ways to
handle the orientation in local tangent spaces [2]–[4]. The
relation between two patches is described by a matrix instead
of a scalar value. The resulting kernel captures enriched sim-
ilarities between local structures in the underlying manifold.
These enriched similarities can be used to analyze local areas
around data points instead of analyzing their specific locations.

The discussed enrichments increase considerably the kernel
size, which is a limiting factor in the applicability of kernel
methods to real problems. Considerable efforts have been
invested for example in [5], [6] and others in approximating the
spectral decomposition operator to become computationally
feasible. In this paper, we combine the patch-based embedding
from [3], [4] with the dictionary construction approach in [5]
to approximate the spectral decomposition of a non-scalar
kernel that utilizes the underlying patch structure inside the
ambient space.

II. PROBLEM SETUP

Let M be a d dimensional manifold that lies in the ambient
space m, where d ⌧ m, and let M ✓ m be a set of n
points sampled from it. Each point x 2 M has a d-dimensional
tangent space T

x

(M), which is a subspace of m. Let O
x

2
m⇥d, x 2 M , be a matrix whose columns o1

x

, . . . , od
x

2
m form an orthonormal basis of T

x

(M). If the manifold
is densely sampled, T

x

(M) can be approximated by a small
enough patch N(x) ✓ M around x 2 M . We will assume that
o1
x

, . . . , od
x

are the principal directions of N(x) and vectors in
T
x

(M) are expressed according to this basis.

A. Diffusion Maps
The original diffusion maps method [1] is based on defining

an isotropic kernel K as k(x, y) , e�
kx�yk

" , for every x, y 2
M, where " is a meta-parameter of the algorithm. This kernel
represents the affinities between points on the manifold. The
kernel is normalized with the degrees q(x) ,

R

y2M
k(x, y),

x 2 M to produce a stochastic transition operator P , with
p(x, y) = k(x,y)

q(x) , which defines a Markov process (i.e., a
diffusion process) over the manifold M. Its symmetric con-
jugate A, where a(x, y) =

p
q(x)p(x, y) 1p

q(y)
= k(x,y)p

q(x)q(y)
,

defines the diffusion affinities between data-points. Spectral
analysis of the diffusion affinity kernel A yields the eigen-
values 1 = �0 � �1 � . . . and their corresponding eigen-
vectors  0, 1, . . ., which are used to construct the desired
map that embeds each data point x 2 M onto the point
 (x) = (�

i

 
i

(x))�
i=0 for a sufficiently small �, which is the

dimension of the embedded space and depends on the decay
of the spectrum of A.

III. SUPER-KERNEL

For x, y 2 M , let O
xy

= OT

x

O
y

2 d⇥d, where O
x

and O
y

represent bases of the tangent spaces T
x

(M) and
T
y

(M), respectively. The matrix O
xy

represents a linear-
projection between these tangent spaces, and, in some sense,
the similarity between them. We will refer to it as a tangent
similarity matrix. We use the diffusion affinity kernel A and
the tangent similarity matrices O

xy

to define the following
super-kernel:

Definition 1. A super-kernel is a block matrix G 2 nd⇥nd

with n ⇥ n blocks and each block in it is a d ⇥ d ma-
trix. Each block G

xy

2 d⇥d of a Linear-Projection Dif-
fusion Super-kernel is defined as G

xy

, a(x, y)O
xy

=
a(x, y)OT

x

O
y

, x, y 2 M and represents the affinity between
the patches N(x) and N(y).
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We will use spectral decomposition for analyzing a super-
kernel G, and utilize it to embed the patches N(x) of the
manifold (for x 2 M ) into a tensor space. Let |�1| � |�2| �
. . . � |�

`

| be the ` most significant eigenvalues of G and let
�1,�2, . . . ,�` be their corresponding eigenvectors. According
to the spectral theorem, if ` is greater than the numerical rank
of G, then G ⇡

P
`

i=1 �i�i�
T

i

, where the eigenvectors are
treated as column vectors.

Each eigenvector �
i

, i = 1, . . . , `, is a vector of length
nd. We denote each of its elements as �

i

(oj
x

) where x 2 M
and j = 1, . . . , d. An eigenvector �

i

can also be regarded as a
vector of n sections, each of which is a vector of length d that
corresponds to a point x 2 M on the manifold. To express
this notion we use the notation 'j

i

(x) = �
i

(oj
x

) (for x 2
M, i = 1, . . . , `, j = 1, . . . , d). Thus, the section in �

i

, which
corresponds to x 2 M , is the vector ('1

i

(x), . . . ,'d

i

(x))T .
We use the eigenvalues and eigenvectors of G to construct

a spectral map whose definition is similar to the standard (i.e.,
classic) diffusion map: �(oj

x

) = (�1�1(oj
x

), . . . ,�
`

�
`

(oj
x

))T .
By using this construction, we get nd vectors of length `.
Each x 2 M corresponds to d of these vectors, i.e., �(oj

x

),
j = 1, . . . , d. We use these vectors to construct the tensor
T
x

2 `⌦ d for each x 2 M , whose coordinates are [T
x

]
ij

=
�
i

'j

i

(x), x 2 M, i = 1, . . . , `, j = 1, . . . , d. Each tensor T
x

represents an embedding of the patch N(x), x 2 M , into the
tensor space ` ⌦ d.

A. Mathematical properties

1) Spectral properties: The linear-projection operators,
which define the tangent similarity matrices by a LPD super-
kernel, express some important properties of the manifold
structure, e.g., curvatures between patches and differences in
orientation. While there might be other ways to construct
a super-kernel that expresses these properties, LPD super-
kernels do have an important property, which is given by the
following theorem:

Theorem 1. A LPD super-kernel G is positive definite and its
operator norm satisfies kGk  1.

Proof. Theorem 3.1 from [3] shows that linear-projection
super-kernels have a non-negative spectrum that is bounded
from above by the spectral norm of the used scalar affinities.
Following the footsteps of that proof in our case, with the
diffusion affinity kernel, which is positive definite and whose
spectral norm is one, yields the result in the theorem.

The patch-to-tensor embedding that is achieved by the LPD
super-kernel is defined by the spectral analysis of this super-
kernel. Therefore, the spectral properties of this super-kernel,
which are shown in Theorem 1, are crucial for the patch-based
data analysis that utilizes this embedding.

2) Embedded distances: The classical diffusion map pro-
vides an embedded space in which the Euclidean distance
between data points is equal to a diffusion distance in the
original ambient space. This diffusion distance measures the
distance between two diffusion “bumps” a(x, ·) and a(y, ·),

each of which is a row in the symmetric diffusion kernel that
defines the diffusion map. From a technical point of view,
this relation means that the Euclidean distance between two
arbitrary points in the range of a diffusion map is equal to
the Euclidean distances between the corresponding rows of
its symmetric diffusion kernel. The following theorem (whose
proof appears in [3]) shows a similar property of the LPD-
based patch-to-tensor embedding:

Theorem 2. Let x, y 2 M be two points on the manifold
and let T

x

and T
y

be their embedded tensors, then kT
x

�

T
y

k2
F

=
P

z2M

dP
j=1

k(a(x, z)OT

x

� a(y, z)OT

y

)oj
z

k2, where the

tensors are treated as matrices (i.e., their coordinate matrices)
when computing the Frobenius distance between them.

The vectors oj
z

in Theorem 2 are unit vectors that form an
orthonormal basis of the tangent space T

x

(M) at the point z 2
M . For each point z 2 M , the matrix [a(x, z)OT

x

�a(y, z)OT

y

]
is applied to each of these unit vectors and the squared lengths
of the resulting vectors are summed. These terms can be seen
as extensions of the terms (a(x, z)�a(y, z)) of the original dif-
fusion distance, which only consider the differences between
scalar affinities. Further explanations about the meaning of the
extended diffusion distance can be found in [3].

IV. OUT-OF-SAMPLE EXTENSION FOR VECTOR FIELDS

The presented patch-to-tensor embedding is based on the
spectral analysis of a large super-kernel G. In order to ap-
proximate this spectral decomposition, we will use a dictionary
(i.e., a set of representatives) and extend its results (using an
out-of-sample extension) to the entire dataset. This extension
method can also be utilized to extend this decomposition
either from the dictionary or from the dataset to new data
points. The super-kernel G can be regarded as an operator on
tangent vector fields of the manifold M restricted to a dataset
M . Therefore, the spectral decomposition of G consists of
eigenvector fields that span the range of G. Hence, an out-of-
sample extension of the eigenvector fields is equivalent to the
out-of-sample extension of vector fields in the range of G.

Out-of-sample extension of vector fields assumes an a priori
knowledge of a set of data points M and a corresponding
vector field where each vector lies on the respective local
tangent space. Consider a tangent vector field ~v : M ! d

such that ~v(x) 2 T
x

(M) for all x 2 M . Then, the given data
points are used to construct the super-kernel G. Since G is
positive definite (see Theorem 1), it is also invertible and its
range consists of all these vector fields.

The out-of-sample extension of a new data point under the
PTE settings aims to find the new corresponding vector in the
local tangent space of the new point. The extension coefficients
~u are designed to minimize kG~u� ~vk2 over the given set of
training data points. These coefficients, which minimize the
l2 norm, are computed by using the inverse of G such that
~u = G�1~v.

The coefficient vector ~u can be interpreted as a vector field
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~u : M ! d over the set of training points or, equivalently,

~v(x) =
X

y2M

G(x,y)~u(y), x 2 M, (1)

where ~u(y), y 2 M , are considered as the coefficients of the
vector field ~v according to the super-kernel G. Consider a new
data point x0 2 M\M with the matrix O

x

0 whose columns
o1
x

0 , . . . , od
x

0 form an orthonormal basis for the tangent space
T
x

0(M). We can extend the vector field to a new data point
x0 by setting the value ~v(x0) to be

~v(x0) ,
X

y2M

G̃(x0
,y)~u(y), (2)

where G̃(x0
,y) = p̄(x0, y)OT

x

0O
y

, y 2 M , are the non-scalar
affinity blocks between the new data point and the data points
in the dataset. The extension in Eq. 2 is consistent with the
values ~v(x), x 2 M , in Eq. 1.

While the new affinity blocks in Eq. 2 are not known in
advance as part of the super-kernel, they are easily computed
for any new data point. This approximation only considers
values of the vector field ~u for the data points in M , which
can be computed in advance by using the pseudo inverse of
the super-kernel G. This computation is not complicated, but
it is beyond the scope of this paper since it is not essential for
the presented dictionary construction. Therefore, this provides
a feasible out-of-sample extension of a vector field, which is
similar to the methods shown in [7], [8] for the scalar case.

The extension in Eq. 2 can be interpreted geometrically by
separately considering the projections and the scalar weights
in the affinity blocks of the super-kernel. First, the extension
projects the coefficient vector field ~u from the manifold M
to the tangent space T

x

0(M) of the new data point x0. This
projection expresses the coefficient vectors in local terms of
the manifold around x0. Then, the value of the vector field ~v
at x0 is computed by using a weighted sum of the projected
coefficient vectors on the tangent space T

x

0(M).

V. CONSTRUCTIVE PATCH SAMPLING

According to Lemma 3.3 in [3], the sum in Eq. 1 can be
rephrased in terms of the embedded tensors x 2 M to be

~v(x) =
X

y2M

T T

x

T
y

~u(y). (3)

However, due to linear dependencies between the embedded
tensors, this sum may contain redundant elements. Indeed, if
T
z

=
P

z 6=y2M

cz
y

T
y

for some scalar coefficients cz
y

2 , z 6=
y 2 M , then Eq. 3 becomes ~v(x) =

P
z 6=y2M

T T

x

T
y

(~u(y) +
cz
y

~u(z)). This enables us to eliminate the redundant tensors and
by applying an iterative approach, we obtain a small subset
linearly independent tensors that are sufficient for computing
Eqs. 1 and 2.

Similarly, we can use matrix coefficients instead of scalar
ones to incorporate reacher relations between tensors. There-
fore, T

z

is tensorialy dependent in {T
y

}
z 6=y2M

if T
z

=P
z 6=y2M

T
y

Cz

y

for some matrix coefficients Cz

y

2 d⇥d,
z 6= y 2 M . This dependency expresses more redundancies

than the standard linear dependency. As a result, we obtain a
sparser set of tensorialy independent tensors that enables us
to efficiently compute Eqs. 1 and 2. This set of representative
tensors constitutes a dictionary that compactly represents the
embedded tensor space.

A. Dictionary Construction

We use an iterative approach to construct the described
dictionary by a sequential scan of the data points in M . In
the first iteration, we define the scanned set X1 = {x1} and
the dictionary D1 = {x1}. At each iteration s = 2, . . . , n,
we have a new data point x

s

, the scanned set X
s�1 =

{x1, . . . , xs�1} from the previous iteration and the dictionary
D

s�1 that represents X
s�1. The dictionary D

s�1 is in fact
a subset of ⌘

s�1 data points from X
s�1 that are sufficient

to represent its embedded tensors. We define the scanned set
X

s

= X
s�1 [ {x

s

}. Our goal is to define the dictionary D
s

of X
s

, based on the dictionary D
s�1 with the new data point

x
s

. To do this, a dependency criterion has to be established. If
this criterion is satisfied, then the dictionary remains the same
such that D

s

= D
s�1. Otherwise, it is updated to include the

new data point D
s

= D
s�1 [ {x

s

}.
We use a dependency criterion that is similar to the approx-

imated linear dependency (ALD) criterion from [5]. The ALD
measures the distance between vector candidates and the span
by the dictionary vectors. In our case, we want to approximate
the tensorial dependency of T

x

s

on the tensors in the dictionary
D

s�1. Therefore, we define the distance of T
x

s

from the dictio-
nary D

s�1 as �
s

, min
C1,...,C⌘

s�1

��P⌘

s�1

j=1 T
y

j

C
j

� T
x

s

��2
F

,
where k·k

F

denotes the Frobenius norm, and C1, . . . , C⌘

s�1 2
d⇥d are matrix coefficients. The approximated tensorial

dependency (ATD) criterion is defined as �
s

 µ, for some
accuracy threshold µ > 0. If the ATD criterion is satisfied, then
the tensor T

x

s

can be approximated by the dictionary D
s�1,

using the matrix coefficients Cs

1 , . . . , C
s

⌘

s�1
of �

s

. Otherwise,
the dictionary has to be updated by adding x

s

to it. Lemma 3
(whose proof appears in [9]) shows that �

s

and the dictionary-
based approximation can be expressed in terms of the super-
kernel and without requiring knowledge of the embedded
tensors the embedded tensors.

Lemma 3. Let Ĝ
s�1 2 d⌘

s�1⇥d⌘

s�1 be the super-kernel
of the data points in D

s�1, and let H
s

2 d⌘

s�1⇥d be a
⌘
s�1 ⇥ 1 block matrix whose j-th d ⇥ d block is G(y

j

,x

s

),
j = 1, . . . , ⌘

s�1. Then, the optimal matrix coefficients in �
s

are the ⌘
s�1 blocks, of size d⇥ d, in Ĝ�1

s�1Hs

. The achieved
�
s

satisfies �
s

= tr[G(x
s

,x

s

) �HT

s

Ĝ�1
s�1Hs

].

Essentially, this lemma eliminates the need for prior knowl-
edge of the embedded tensors during the dictionary construc-
tion. At each iteration s, the criterion �

s

< µ is considered.
Based on this condition, we decide whether to add x

s

to the
dictionary or just approximate its tensor. The threshold µ is
given in advance as a meta-parameter and �

s

can be computed
by using Lemma 3. Therefore, the dictionary construction
process only requires knowledge of a relatively limited number
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of super-kernel blocks, which is determined by the size of the
dictionary and not by the size of the dataset.

VI. EXAMPLE: MNIST HANDWRITTEN DIGIT
CLASSIFICATION USING PATCH-BASED ANALYSIS

The patch-based methodology provides a general framework
that can be utilized to a wide spectrum of data analysis
tasks such as clustering, classification, anomaly detection and
related manifold learning tasks. In this section, we demonstrate
its utilization of the task of MNIST Handwritten digit classi-
fication. This experiment was done utilizing an of-the-shelve
computer with a I7 � 2600 quad core CPU and a 16GB of
DDR3 memory.

The MNIST database of handwritten digits [10] (available
from http://yann.lecun.com/exdb/mnist/) consists of a training
set of 60, 000 examples and a test set of 10, 000 examples.
Each digit example is given as a grey levels 28 ⇥ 28 image.
The digit images were centered by computing the center of
mass of the pixels, and a translation operation was preformed
to position this point at the center of the 28⇥28 field. MNIST
is a subset of a larger set available from NIST. Many machine
learning methods have been tested on this data set, hence
the recognition performance is highly competitive. Currently,
convolutional networks show a state-of-the-art recognition
accuracy with an error of 0.23% [11]. For our purpose, the
MNIST dataset provides a dataset of 70, 000 data points of
very high dimensional measurements of size 728 pixels per a
measured digit. In our experiments, we used the images as is.

The dictionary approximated patch-based embedding was
utilized to embed the MNIST dataset of 70, 000 examples by
the following steps. First, in each data point we identified the
150 nearest neighbors and computed the corresponding local
PCA. For each local tangent space, we kept the 3 significant
eigenvectors. Secondly, the diffusion affinities were computed
with " = 105 (see Section II-A), which is the Euclidean
distance mean of all pairwise data points. The proposed dictio-
nary construction with ATD threshold µ = 0.0001 identified
93 important patches and their corresponding local tangent
spaces. Finally, the approximated tensors were constructed
utilizing ` = 30. The labeling of each test data-point was esti-
mated using the label of the nearest training data-point, where
the pairwise distance was computed as the Frobenius norm of
the difference between the corresponding embedded tensors.
The resulting labeling error of the patch-based recognition
method is 5.8%. Table I compares the computational costs
of the straightforward implementation of the PTE algorithm
from [3] and the presented dictionary-based algorithm on the
MNIST dataset.

Size SVD Cost - Full G Dict. Size SVD Cost - Approx. G
70, 000 O

�
70, 0003 ⇥ 33

�
93 O (70, 000⇥ 77, 841)

TABLE I
COMPUTATIONAL COST OF THE SVD STEP IN THE DICTIONARY

APPROXIMATED PTE (SVD Cost - Approx. G) VS. THE FULL SVD OF THE
SUPER-KERNEL (SVD Cost - Approx. G) OF THE NIST DATASET.

Although we are not far away from the state-of-the-art
in digit recognition, the proposed method has the following
advantages: 1. It shows that patch processing can be practically
utilized for recognition and data analysis tasks. 2. Big high-
dimensional datasets can be processed on “cheap” hardware
such as in our case where the algorithm ran on less than 1000$
worth of hardware.

VII. CONCLUSIONS

The proposed construction in the paper extends the dic-
tionary construction in [5] by using the LPD super-kernel
from [3], [4]. This is done by an efficient dictionary-based
construction that assumes the data is sampled from an un-
derlying manifold while utilizing the non-scalar relations be-
tween manifold patches instead of considering individual data-
points. The constructed dictionary contains patches from the
underlying manifold, which are represented by the embedded
tensors from [3], instead of individual data points. Therefore,
it encompasses multidimensional similarities between local
areas of the data. The patch-based dictionary reduces the
computational costs of the spectral analysis in comparison to
the PTE [3], hence, it enables us to apply this patch processing
approach for datasets that were impractical to process and
embed before.
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Abstract—Sparse signal representations have emerged as pow-
erful tools in signal processing theory and applications, and serve
as the basis of the now-popular field of compressive sensing (CS).
However, several practical signal ensembles exhibit additional,
richer structure beyond mere sparsity. Our particular focus in
this paper is on signals and images where, owing to physical
constraints, the positions of the nonzero coefficients do not change
significantly as a function of spatial (or temporal) location.
Such signal and image classes are often encountered in seismic
exploration, astronomical sensing, and biological imaging. Our
contributions are threefold: (i) We propose a simple, deterministic
model based on the Earth Mover Distance that effectively captures
the structure of the sparse nonzeros of signals belonging to such
classes. (ii) We formulate an approach for approximating any
arbitrary signal by a signal belonging to our model. The key
idea in our approach is a min-cost max-flow graph optimization
problem that can be solved efficiently in polynomial time. (iii)
We develop a CS algorithm for efficiently reconstructing signals
belonging to our model, and numerically demonstrate its benefits
over state-of-the-art CS approaches.

I. INTRODUCTION

A signal (or image) is said to be k-sparse if only k of its
coefficients in a given basis expansion are nonzero; in other
words, the intrinsic information content in the signal is minis-
cule relative to its apparent size. This simple notion enables
a wide variety of conceptual and algorithmic techniques to
compress, reconstruct, denoise, and process practical high-
dimensional signals and images. Notably, sparsity serves as
the cornerstone of the field of compressive sensing (CS), an
interesting alternative to the classical Shannon/Nyquist theory
for signal sampling and reconstruction [1, 2]. A canonical
result in CS states that for a k-sparse signal of length n, merely
O(k log n/k) non-adaptive, linear measurements (samples)
suffice to ensure robust, efficient reconstruction. When k ! n,
this can lead to significant practical benefits.

In several practical applications, the nonzero coefficients of
signal ensembles exhibit additional, richer relationships that
cannot be captured by mere sparsity. Consider, for exam-
ple, a 2D “image” constructed by column-wise stacking of
seismic time traces (or shot records) measured by geophones
positioned on a uniform linear array. Assuming the presence
of only a few subsurface reflectors, the physics of wave
propagation dictates that such a 2D image would essentially
consist of a number of curved lines, possibly contaminated
with noise (see Figure 1). A convenient model for such an
image is to simply assume that each column is sparse; indeed,
such a sparsity assumption has been proven to be beneficial for

Fig. 1. Example of a seismic shot record (Sigsbee2A data set). The horizontal
axis corresponds with space (receiver) and the vertical axis with time. Note that
the large coefficients of neighboring columns are at similar locations.

efficient shot record sampling and reconstruction [3]. However,
while this assumption may suffice for some situations, such a
model cannot capture the the fact that the indices of the nonze-
ros change smoothly across adjacent columns. Such settings
are commonplace; for example, similar “line” singularities are
encountered in applications such as biological imaging and
radio-astronomy.

In this paper, we propose a deterministic model for sparse
signal ensembles where the locations of the nonzeros, or the
support, of a signal transforms continuously as a function
of spatial (or temporal) location. A key ingredient in our
model is the classical Earth Mover Distance (EMD) [4], and
we will call it the Constrained EMD model. Informally, our
proposed model assumes that: (i) each signal in our ensemble
is k-sparse, and (ii) the cumulative EMD between pairs of
adjacent signal supports is constrained to be no greater than
a nonnegative parameter B. The parameter B controls how
dramatically the support can vary across different signals; a
value of B = 0 indicates that the support remains invariant
across all signals in our ensemble, while a large value of B
admits potentially drastic changes across adjacent supports.

Next, given an arbitrary input signal (ensemble) x, we
develop an efficient algorithm to find a near-optimal !2-
approximation of x in the Constrained EMD model. We
show that the support of the optimal approximation can be
discovered by solving a small number of min-cost max-flow [5]
problems over a specially defined graph. Each intermediate
problem can be solved using existing, highly efficient net-
work optimization methods, and therefore the overall signal
approximation can be obtained in polynomial time.

Additionally, we demonstrate the advantages of the Con-
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strained EMD model, and the associated approximation algo-
rithm, in the context of compressive sensing. Geometrically,
the model is equivalent to a particular union of subspaces

of the ambient signal space. Therefore, we can leverage the
framework of model-based compressive sensing [6] to build
a new CS reconstruction algorithm that is specially tailored
to signal ensembles well-described by the Constrained EMD
model. We illustrate the numerical benefits of the new algo-
rithm in comparison with existing state-of-the-art CS recovery
approaches.

The rest of this paper is organized as follows. Section II
provides a brief introduction to structured sparsity and com-
pressive sensing. Section III introduces the constrained EMD
model and describes our main algorithm. Section IV illustrates
the advantages of our method with example reconstructions
of images and quantitative results of algorithm performance.
Section V concludes with a discussion of further directions.

II. BACKGROUND

A. Preliminaries

A signal x ∈ Rn is said to be k-sparse in the ortho-
basis Ψ if at most k < n coefficients of the basis expansion
α = ΨTx are nonzero. In this paper, we assume that the basis
Ψ is the identity matrix, while noting that all our results are
conceptually valid for general Ψ. The support of x is defined
as the set of indices corresponding to nonzero entries of x; this
can be represented by a binary vector s(x) ∈ {0, 1}n with at
most k ones. Denote the set of all k-sparse signals by Σk.
Geometrically, this set is equivalent to the union of the

(n
k

)

canonical k-dimensional subspaces of Rn.

B. Structured sparsity

Often, we possess some additional information about the
support of a sparse signal x. For example, suppose we are
interested in k-sparse signals with only a few permitted
configurations of s(x). This defines a union of subspaces

model A [7], comprising only mk canonical k-dimensional
subspaces of Rn, with mk <

(n
k

)
. Let x|Ω represent the entries

of x corresponding to the set of indices Ω ⊆ {1, . . . , n}, and
let ΩC denote the complement of the set Ω. Then, define:

A =
mk⋃

m=1

Xm, Xm := {x : x|Ωm
∈ R

k, x|ΩC
m
= 0}, (1)

where each subspace Xm contains all signals x with
supp(x) ∈ Ωm. In light of this definition, we view any such
union of subspaces as a structured sparsity model. As in the
general k-sparse case, given a signal x, we seek a signal x∗

such that x∗ ∈ A, and ‖x − x∗‖2 is minimized. We define
a model-projection algorithm as a procedure M(x, k) which
returns the best k-term approximation of a given signal under
the model A, i.e., x∗ = M(x, k).

C. Compressive Sensing

Suppose instead of collecting all the coefficients of a vector
x ∈ Rn, we merely record m = O(k log n/k) inner products
(measurements) of x with m < n pre-selected vectors, i.e.,

we observe an m-dimensional y = Φx, where Φ ∈ Rm×n.
The central tenet of compressive sensing (CS) is that x can
be exactly recovered from y, even though Φ is rank-deficient
(and therefore has a nontrivial nullspace). Numerous algo-
rithms for signal recovery have been developed; particularly,
iterative support selection algorithms (such as CoSaMP [8]
and IHT [9]) have emerged that are both numerically stable
and computationally efficient. Also, an added advantage is that
such iterative algorithms can be easily tailored to any arbitrary

structured sparsity model; this forms the central premise of
model-based compressive sensing framework, initially pro-
posed in [6]. In Section III below, we describe this further.

D. Related Work

There has been prior research on reconstructing time se-
quences of spatially sparse signals (e.g., [10]). Such ap-
proaches assume that the support of the signal (or even the
signal itself) does not change much between two consecutive
time steps. However, the variation between two columns a
and b was defined according to the !0 distance between
the supports ‖s(a) − s(b)‖0. In contrast, in this paper we
measure this difference according to the classical Earth Mover
Distance (EMD) (also variously known as the Mallows or the
Wasserstein distance) between the supports. As a result, our
model easily handles signals such as those in Figure 3, where
the supports of any two consecutive columns can potentially
be even disjoint, yet differ very little according to the EMD.

Another related work is that of [11], who proposed the
use of the EMD in a compressive sensing context in order
to measure the approximation error of the recovered signal.
In contrast, in this paper we are using the EMD to constrain
the support set of the signals.

III. THE CONSTRAINED EMD MODEL

Below, we interpret the signal x ∈ Rn as a matrix X ∈
Rh×w with n = hw. Furthermore, we denote the individual
columns of X with xi ∈ Rh for i ∈ [w].

A. Definitions

Definition 1: The EMD of two index sets A and B with
|A| = |B| is defined as:

EMD(A,B) = min
π:A→B

∑

a∈A

|a− π(a)|, (2)

where π ranges over all one-to-one mappings from A to B.

Definition 2: The support-EMD of two k-sparse vectors
a, b ∈ Rh is defined as:

sEMD(a, b) = EMD(supp(a), supp(b)). (3)

Definition 3: The Constrained EMD model is the set:

Ak,B = {X ∈ R
h×w : |supp(xi)| = k for i ∈ [w],

w−1∑

i=1

sEMD(xi, xi+1) ≤ B}.
(4)
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Fig. 2. A signal X with the corresponding flow network GX,k,λ. The
node costs are the squared amplitudes of the corresponding signal components
(negation omitted here). The capacities and edge costs are omitted for clarity.
All capacities in the flow network are 1. The edge costs are the vertical distances
between the start and end nodes.

The set Ak,B in (4) is a subset of the set of all k−sparse
signals Σk, and therefore the Constrained EMD model consti-
tutes a specific instance of a structured sparsity model (1). For
given dimensions of X , the Constrained EMD model has two
parameters: (i) k, the sparsity of each column xi and (ii) B,
the cumulative support-EMD of adjacent columns xi and xi+1.
Importantly, we note that we only constrain the EMD between
adjacent signal supports and not the actual signal coefficients.

B. Graph-Based Model-Projection

In order to use our Constrained EMD signal model within
a model-based compressive sensing framework, we need an
algorithm that approximates arbitrary signals with signals in
our model. Formally, we need a model-projection algorithm
M(x, k,B) that returns a x̂ ∈ Ak,B minimizing ‖x−x′‖2 for
all x′ ∈ Ak,B .

To achieve this, we use the following graph-based approach.
Observe that the support-EMD (3) of a pair of signals is the
minimal cost of a maximum bipartite matching of the two
support sets, where the edge costs are given by the absolute
difference between the indices. We extend this intuition to
ensembles of signals, via the notion of a flow network.

Definition 4: For a given signal X , sparsity k and parameter
λ, the flow network GX,k,λ consists of the following elements:

• The nodes comprise a source s, a sink t and a node vi,j
for i ∈ [h], j ∈ [w], i.e. one node per signal coefficient.

• G has an edge from every vi,j to every vk,j+1 for
i, k ∈ [h], j ∈ [w − 1]. Moreover, there is an edge from
s to every vi,1 and from every vi,w to t for i ∈ [h].

• The capacity of every edge and node is 1.
• The cost of a node vi,j is −x2

i,j . The cost of an edge

from vi,j to vk,j+1 is λ|i − k|. The cost of the source,
the sink and all edges incident to the source or sink is 0.

• The supply at the source, and the demand at the sink,
both equal k.

Figure 2 illustrates the construction of an example GX,k,λ.
Observe that for any GX,k,λ, a standard min-cost max-flow
optimization [5] through this network reveals a subset of
nodes S that corresponds to exactly k indices per column.
Moreover, this optimal flow minimizes the cost −‖X|S‖2 +
λ
∑w−1

i=1 EMD(si, si+1) over all choices of S. This cost in-
cludes both the fidelity of the signal projection as well as
the cumulative support-EMD across columns. The trade-off
between these two quantities is determined by the parameter

Algorithm 1 Model projection M(x, k,B)

λl ← 0,λh ← 1
do

λh ← 2λh

Run min-cost max-flow on GX,k,λh

while resulting support has total support-EMD > B.
do

λm ← (λh + λl)/2
Run min-cost max-flow on GX,k,λm

if resulting support has total support-EMD > B
λl ← λm

else
λh ← λm

while λh − λl > ελ
return x̂ corresponding to min-cost max flow on GX,k,λh

λ; for small values of λ, the resulting flow has a large support-
EMD and vice versa. Setting λ = 0 removes the EMD-
constraint while λ = +∞ is equivalent to selecting the
k rows with the largest amplitude sums. By systematically
varying the parameter λ, we can find a support S that belongs
to the Constrained EMD model Ak,B for a target B and
simultaneously maximizes the quality of the projection under
this constraint.

Algorithm 1 describes the entire model projection algorithm.
In order to solve the min-cost max-flow instances, it is possible
to exploit the special structure of the graph. Since all edges
and nodes have unit capacity, it is sufficient to find k cheap-
est augmenting paths in the flow network. Using Dijkstra’s
algorithm and assuming a square X , i.e. h = w =

√
n, each

min-cost max-flow can be found in O(kn3/2) time.

C. Compressive Sensing

The model projection method (Alg. 1) is useful in a number
of contexts. Here, we use Alg. 1 in order to develop a new
compressive sensing (CS) reconstruction algorithm specially
tailored to signals and images with line singularities. Since
the constrained EMD model essentially is a special structured
sparsity model Ak, as in (1), Alg. 1 provides an projection al-
gorithm for this model. Given such a projection algorithm, the
framework of model-based compressive sensing [6] suggests
that iterative support selection algorithms, such as CoSaMP
and IHT, can easily be modified in order to be tailored for
signals belonging to the constrained EMD model. Further, the
modified algorithms are provably stable, as well as provably
achieve successful recovery using fewer measurements than
the conventional (unmodified) algorithms.

We summarize our proposed CS recovery method as Alg.
2; we call it EMD-CoSaMP. The modification is simple:
simply replace the signal thresholding steps (3 and 6) by an
appropriate model projection step. A similar modification of
IHT can also be developed (the description of which we omit);
we will call it EMD-IHT. Below, we empirically illustrate the
benefits of our proposed model-based CS recovery algorithms.
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Algorithm 2 EMD-CoSaMP(Φ, y)

x̂0 ← 0, r ← y, i← 0
while not converged do

1. i← i+ 1
2. e← ΦT r
3. Ω← supp(M(e, 2k, 2B))
4. T ← Ω ∪ supp(x̂i−1)
5. z|T ← Φ†

T y, z|TC = 0
6. x̂i ←M(z, k, B)
7. r ← y − Φx̂i

return x̂← x̂i

Original CoSaMP EMD−CoSaMP

Fig. 3. Benefits of CS reconstruction using EMD-CoSaMP. (left) Original
image with parameters h = 100, w = 10, k = 2, B = 20, m = 80. (center)
CS reconstruction using CoSaMP [8]. (right) CS reconstruction using EMD-
CoSaMP. CoSaMP fails, while our proposed algorithm is able to perfectly
recover the image.

IV. NUMERICAL EXPERIMENTS

In all our experiments, we use the LEMON library [12]
in order to solve the min-cost max-flow subroutine in Alg. 1.
Figure 3 displays a test grayscale image of size 100×10 with
edge discontinuities such that the total sparsity is 2× 10 = 20
and the cumulative EMD across pairs of adjacent columns is
equal to B = 20. We measure linear samples of this image
using merely m = 80 random Gaussian measurements, and
reconstruct using CoSaMP as well our proposed approach
(EMD-CoSaMP). Each iteration of EMD-CoSaMP takes less
than three seconds to execute. As visually evident from Fig. 3,
CoSaMP fails to reconstruct the image, while our proposed
algorithm provides an accurate reconstruction.

Figure 4 displays the results of a Monte Carlo experiment
to quantify the effect of the number of random measure-
ments M required by different CS reconstruction algorithms to
enable accurate reconstruction. Each data point in Fig. 4 was
generated using 100 sample trials over randomly generated
measurement matrices. Successful recovery is declared when
the converged solution is within an !2 distance of 5% relative
to the Euclidean norm of the original image. We observe
that our proposed EMD-CoSaMP and EMD-IHT algorithms
achieve successful recovery with far fewer measurements than
their conventional (unmodified) counterparts.

V. CONCLUSIONS

We have proposed a deterministic structured sparsity model,
and associated model projection algorithm, based on the Earth
Mover Distance (EMD) for signals and images with line
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Fig. 4. Comparison of several reconstruction algorithms. The signal is
the same as in Figure 3. The probability of recovery is with respect to the
measurment matrix and generated using 100 trial runs. The recovery algorithms
using our constrained EMD model have a higher probability of recovery than
standard algorithms.

singularities. We leverage this algorithm to develop a new
compressive sensing (CS) recovery algorithm with significant
numerical benefits. We defer a full theoretical characterization
of our proposed CS recovery algorithm, as well as a thorough
study of practical applications such as seismic shot record
acquisition, to a future expanded version of this work.
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Abstract—In this work we extend the definition of modulation
spaces associated to Lebesgue spaces to Orlicz spaces and mixed-
norm Orlicz spaces. We give the definition of the Orlicz spaces
L�, a generalisation of the Lp spaces of Lebesgue. Therefore we
characterise the Young function � and give some basic properties
of this spaces. We collect some facts about this spaces that we
need for the time frequency analysis, then we introduce the Orlicz
modulation spaces. Finally we present a discretisation of the
Orlicz space and mixed-norm Orlicz space and a characterisation
of the modulation space by discretisation.

I. INTRODUCTION

The modulation spaces were introduced in 1983 by H.
Feichtinger. The idea is to impose a norm on the short-time
Fourier transform and to define Banach spaces of signals with
a given time-frequency behavior. Especially, the modulation
space M

p,q consists of all tempered distributions such that the
short-time Fourier transform is a function in the mixed-norm
Lebesgue space L

p,q . We will extend this concept and examine
modulation spaces associated to Orlicz spaces and mixed-norm
Orlicz spaces. The Orlicz spaces L� are a generalisation of the
L

p spaces of Lebesgue. For the Young function �(x) = |x|p
with p � 1, L�(µ) = L

p

(µ). In general, the function � is
a convex function, precisely a Young function. The mixed-
norm Orlicz spaces L�1�2 are vector-valued L

�2 spaces where
�1,�2 are Young functions. Since the function x 7! f(·, x)
takes values in the Banach space L

�2 , the mixed-norm Orlicz
spaces L

�1�2 arise by taking a L

�2 norm with respect to the
time variable x and an L

�1 norm with respect to the frequency
variable w. This can be considered as a generalisation of
the mixed-norm Lebesgue spaces L

p,q . As general setting let
(⌦,⌃, µ) be a measure space, where ⌦ is a set, ⌃ is a �-
algebra of ⌦ and µ a �-additive measure on ⌃ and f : ⌦! C
is a measurable function. We also assume that the measure µ

has the finite subset property, i.e., for E 2 ⌃ with µ(E) > 0

there exists a subset F 2 ⌃ with F ⇢ E and 0 < µ(F ) < 1.

II. ORLICZ SPACES AND MIXED-NORM ORLICZ SPACES

A. Definition and properties

Firstly we give the definition of a Young function � and
the �2-condition, which is a growth condition.
After that we introduce the Orlicz spaces and characterise
norms so that these spaces are Banach spaces. Then we
determine their corresponding dual spaces.

This section is based on the book [8] Theory of Orlicz spaces
of Rao and Ren.

Definition 1: (Young function) A convex function � : R !
R+ which satisfies the conditions:

1) �(�x) = �(x),�(0) = 0,
2) lim

x!1�(x) = +1,
is called Young function.
In the theory of Lebesgue spaces, the conjugate exponent q to
p is related to the dual space. By analogy, one can define the so
called complementary function, this function is the counterpart
to the conjugate exponent.

Definition 2: (Complementary function) If  : R ! R+ is
defined by  (y) = sup{x|y|��(x);x � 0}. Then  is called
the complementary function to the Young function �.

In the structure theory of Orlicz spaces a classification of
the Young function based on properties of their growth plays
a central role. Of particular importance for us will be the �2-
condition.

Definition 3: (�2-condition) A Young function � : R !
R+ is said to satisfy the�2-condition, if there exists a constant
K > 0 and x0 2 R+

0 , such that

�(2x)  K�(x) for all x � x0 � 0.

Hereafter we say that a �2-condition for � is regular if it
holds locally (for a x0 > 0) when the measure in L

�
(µ) is

finite and globally (for x0 = 0) when the measure is infinite.
Definition 4: (Orlicz space) The function space

L

�
(µ) =

⇢
f : ⌦! C (equivalence classes of) ⌃-measurable:
Z

⌦
� (↵|f |) dµ < 1 for at least one ↵ > 0

�

with � : R ! R+ a Young function, is called Orlicz space.
We next define norms on L

�
(µ).

Definition 5: (Gauge norm and Orlicz norm) The norm

N�(f) = inf

⇢
k > 0 :

Z

⌦
�

✓
|f |
k

◆
dµ  1

�

is called gauge norm of the Orlicz space L

�
(µ) for a Young

function � : R ! R+.
By using the complementary Young function we can define
another norm on L

�
(µ).
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Let (�, ) be a complementary pair of Young functions, then
we define the Orlicz norm as:

k.k
L

� : f 7! kfk
L

�= sup

⇢Z

⌦
|fg| dµ :

Z

⌦
 (|g|) dµ  1

�
.

The two norms defined on the Orlicz spaces are equivalent,
furthermore the Orlicz spaces with the corresponding norms
are Banach spaces.

Theorem 1: [8] [Proposition 4 3.3.III, Corollary 12 III.3.3]
Let (⌦,⌃, µ) be a measure space, (�, ) be a complementary
Young pair, then N�(f)  kfk

L

�  2N�(f) for f 2 L

�
(µ).�

L

�
(µ), N�(·)

�
and

�
L

�
(µ), k·k

L

�

�
are Banach spaces.

Since it is often useful to work with duality arguments in
proofs, we give a characterisation of the dual space to the
Orlicz space in the next theorem.

Theorem 2: [8] [Theorem 7, Corollary 9 IV.4.1] Let (�, )
be a complementary Young pair and � be �2-regular and
(⌦,⌃, µ) be �-finite. Then

�
L

�
(µ)

�⇤ is isometrically isomor-
phic to L

 
(µ).

We next extend the Orlicz space theory of C-valued func-
tions f : ⌦ ⇢ Rd ! C to functions f : ⌦ ⇢ Rd ! X whose
values lie in a Banach space X . Candidates for X are Orlicz
spaces L

�2 associated to a Young function �2.
Definition 6: (Mixed-norm Orlicz space) Let (⌦

i

,⌃

i

, µ

i

)

be measure spaces, (�
i

, 

i

) be complementary Young pairs
for i = 1, 2. Then the mixed-norm Orlicz space is

L

�1�2
= L

�1
(µ1, L

�2
(µ2))

=

⇢
f : ⌦1 ! L

�2
(µ2) strongly measurable on (⌦1,⌃1, µ1):

Z

⌦1

�1(↵N�2(f)) dµ1 < 1 for some ↵ > 0

�
.

The corresponding gauge norm N�1�2(·) = N�1(N�2(·)) is
given by:
N�1�2(f) = inf

⇢
k > 0 :

Z

⌦1

�1

✓
|N�2(f(·, w1))|

k

◆
dµ1(w1)  1

�
.

The Orlicz norm is similarly defined by

kfk�1�2 = sup

⇢Z

⌦1

����kf(·, w1)k
L

�2 · g(w1)

���� dµ1(w1) :

Z

⌦1

 1(|g(w1)|) dµ1(w1)  1

�
,

As in the case of the Orlicz spaces the mixed-norm Orlicz
spaces are also Banach spaces and it can be shown that the
norms are equivalent.

Theorem 3: Let (⌦

i

,⌃

i

, µ

i

) be measure spaces,
(�

i

, 

i

) be complementary Young pairs for
i = 1, 2, then (L

�1
(µ1, L

�2
(µ2)), N�1�2(·)) and

(L

�1
(µ1, L

�2
(µ2)), k·k

L

�1�2 ) are Banach spaces and
the norms are equivalent. Furthermore it follows

N�1�2(f)  kfk
L

�1�2  4N�1�2(f) for f 2 L

�1�2
.

If we assume that the Young functions are also strictly
convex the dual space to L

�1,�2 is isometrically isomorphic
to the space L

 1, 2 to the complementary functions.
Theorem 4: [8] [Theorem 4 VII.7.5] Let (⌦

i

,⌃

i

, µ

i

) be
measure spaces, (�

i

, 

i

) be complementary Young pairs
which are �2-regular and strictly convex for i = 1, 2. Then�
L

�1�2
�⇤ is isometrically isomorphic to L

 1 2 .

B. Useful properties for time frequency analysis
In this section we list properties of the Orlicz spaces which

are useful for time-frequency analysis. At first we mention
that the Orlicz norm and the mixed Orlicz norm are invariant
under translations, if the measure spaces are the Lebesgue
space (⌦

i

,⌃

i

, µ

i

) = (Rd

,Bd

, ��

d

) for i = 1, 2.

Lemma 1: Let �
i

be Young functions for i = 1, 2, then
L

�1
(��

d

) and L

�1�2
(��

2d
) = L

�1
( ��

d

, L

�2
(��

d

)) are invariant
under T

z

F := F (·� z) and we have

N�1(Tz

F ) = N�1(F ) for F 2 L

�1
(��

d

), z 2 Rd and
N�1�2(Tz

F ) = N�1�2(F ) for F 2 L

�1�2
(��

2d
), z 2 R2d

.

Futher one can also prove a Hölder inequality for Orlicz
spaces.

Lemma 2: (Hölder inequality)[8] [Proposition 1 III.3.3] Let
(⌦

i

,⌃

i

, µ

i

) = (Rd

,Bd

, ��

d

) and (�

i

, 

i

) be complementary
Young pairs for i = 1, 2. If F 2 L

�1
(��

d

) and G 2 L

 1
(��

d

),
then one has

Z

Rd

|F ·G| d��d  2 ·N�1(F )N 1(G).

If we assume in addition that �2 is �2-regular, then one has
for F 2 L

�1�2
(��

2d
) and G 2 L

 1 2
(��

2d
) the estimate

Z

Rd

Z

Rd

|F ·G| d��d d��d  4 ·N�1�2(F )N 1 2(G).

Now, we have a look at inclusion properties. If � is
continuous the Schwartz class S(Rd

) is embedded into the
Orlicz space L

�
(��

d

) and if also the complementary function
 is continuous then the functions in the Orlicz space define
tempered distributions.

Lemma 3: Let (�
i

, 

i

) be pairs of complementary Young
functions and �

i

be continuous for i = 1, 2, then

S(Rd

) ⇢ L

�1
(��

d

),

and L

�1
(��

d

) ⇢ S 0
(Rd

), if  1 is continuous.

And S(R2d
) ⇢ L

�1�2
( ��

2d
),

and L

�1�2
( ��

2d
) ⇢ S 0

(R2d
), if  1, 2 are continuous.

With the fact that (L

�
)

⇤ ⇠
=

L

 , we can extend a well
known convolution relation L

1
(Rd

) ⇤ L

p

(Rd

) ⇢ L

p

(Rd

) of
the Lebesgue spaces to the Orlicz spaces. Further one can
prove the following Young inequality.

Theorem 5: If F 2 L

1
(R2d

), G 2 L

�
(��

2d
) and � is a

�2-regular Young function, then

kF ⇤Gk
L

�  2kFk
L

1kGk
L

� .

If F 2 L

1,1
(R2d

), G 2 L

�1�2 and �
i

are �2-regular and
strictly convex Young functions for i = 1, 2, then

kF ⇤Gk
L

�1�2  4kFk
L

1,1kGk
L

�1�2 .
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III. ORLICZ MODULATION SPACES AND MIXED-NORM
ORLICZ MODULATION SPACES

We now have all the tools in place that we need to define and
analyse the modulation space associated to the Orlicz space.

Definition 7: (Orlicz modulation space)
Fix a non-zero window g 2 S(Rd

) and a Young function �.
Then the Orlicz modulation space M

�
(Rd

) is defined by

M

�
(Rd

) = {f 2 S 0
(Rd

) : V

g

f 2 L

�
(R2d

)}.

The norm on M

� is kfk
M

� = kV
g

fk
L

� .

In the same way we define the mixed-norm Orlicz modula-
tion space.
Therefore we replace only the Orlicz space L

� by the mixed-
norm Orlicz space L

�1�2 .
Definition 8: (Mixed-norm Orlicz modulation space)

Fix a non-zero window g 2 S(Rd

) and Young functions �
i

for i = 1, 2. Then the Orlicz modulation space M

�1�2
(Rd

)

is defined by

M

�1�2
(Rd

) = {f 2 S 0
(Rd

) : V

g

f 2 L

�1�2
(R2d

)}.

The norm on M

�1�2 is kfk
M

�1�2 = kV
g

fk
L

�1�2 .

Remark 1: Modulation spaces are a special case of the
coorbit spaces defined by H. Feichtinger and K.H. Gröchenig
[1], and Orlicz spaces are mentioned, without proof, as classes
of Banach function spaces Y suitable to define coorbit spaces
CoY . In this paper we make this remark more explicit by pro-
viding additional details such as associated discrete coefficient
spaces, relationship to tempered distributions, dual spaces, etc.
We would also like to point out that to our knowledge, mixed-
norm Orlicz spaces have not been considered previously.

Now we analyse a few properties of the Orlicz modulation
spaces. We start with the observation that the definitions of
these spaces are independent of the choice of a window g. In
addition, if the Young function is �2-regular, these spaces are
also Banach spaces.

Theorem 6: Assume that � is a �2-regular Young function
and its complementary function  is continuous. Then the def-
inition of M

�
(Rd

) is independent of the window g 2 S(Rd

)

and M

�
(Rd

) is a Banach space.
If we assume that the Young functions are also strictly

convex, we can show an analogous statement for the mixed-
norm Orlicz spaces.

Theorem 7: Let (�

i

, 

i

) be complementary Young pairs
which are �2-regular, strictly convex and continuous for
i = 1, 2. Then the definition of M�1�2

(Rd

) is independent of
the window g 2 S(Rd

) and M

�1�2
(Rd

) is a Banach space.
Furthermore, the duality between the Orlicz spaces L

� and
L

 suggests a similar statement for their modulation spaces.
This can be proved in the following theorem by using the
�2-condition for the Young function.

Theorem 8: If (�, ) is a complementary Young pair and if
� is�2-regular and continuous, then

�
M

�
(Rd

)

�⇤ ⇠
=

M

 
(Rd

)

under the duality
hf, hi =

ZZ

R2d

V

g0f(z)Vg0h(z) dz

for f 2 M

�
(Rd

) and h 2 M

 
(Rd

), g0 2 S(Rd

).
Let (�

i

, 

i

) be complementary Young pairs which are �2-
regular, strictly convex and continuous for i = 1, 2. Then�
M

�1�2
(Rd

)

�⇤ ⇠
=

M

 1 2
(Rd

) under the duality

hf, hi =
ZZ

R2d

V

g0f(z)Vg0h(z) dz

for f 2 M

�1�2
(Rd

) and h 2 M

 1 2
(Rd

), g0 2 S(Rd

).

IV. DISCRETE ORLICZ SPACE AND DISCRETE
MIXED-NORM ORLICZ SPACE

This space consists of all sequences for which the discrete
norm defined by the next definition is finite.

Definition 9: (Discrete Orlicz space) Let � be a Young
function, then the discrete Orlicz space is defined by

l

�
(Zd

) = {a = (a

n

)

n2Zd : n�(a) < 1},

where
n�(a) = inf

⇢
� > 0 :

X

n2Zd

�

✓
|a

n

|
�

◆
 1

�
.

Definition 10: (Discrete mixed-norm Orlicz space) Let
�1,�2 be Young functions, then the discrete mixed-norm
Orlicz space is defined by

l

�1�2
(Z2d

) = {a = (a

kn

)

k,n2Zd : n�1�2(a) < 1},

where
n�1�2(a) = inf

⇢
� > 0 :

X

k,n2Zd

�1

✓
n�2(|akn|)

�

◆
 1

�
.

With these definitions we can apply the theory of Atomic
Decomposition of H. G. Feichtinger and K. H. Gröchenig
presented in the paper [1]. In the context of Orlicz modulation
spaces we get the following result.

Theorem 9: (The Atomic Decomposition in M

�) [1] Let
� be a �2-regular Young function. For any g 2 S(Rd

) there
exist positive constants C0 and C1 (depending only on g) and
a neighbourhood U of the identity such that for an arbitrary
U -dense and relatively separated family X = (x

i

)

i2I

⇢ R2d

the following is true:
1) Analysis: There exists a bounded linear operator A :

M

� ! l

�
(X), i.e., writing ⇤ := (�

i

)

i2I

:= A(f)

one has n�(⇤)  C0kfk
M

� , such that every f 2 M

�

can be represented as f =

X

i2I

�

i

⇢(x

i

)g, where ⇢ is the

Schrödinger representation.
2) Synthesis: Conversely, assuming that X = (x

i

)

i2I

is
relatively separated, every ⇤ 2 l

� defines an element
f =

X

i2I

�

i

⇢(x

i

)g in M

� with kfk
M

�  C1n�(⇤).

In both cases convergence takes place in the norm of M�.
Moreover by using the results in [3] of H.G. Feichtinger,

K. H. Gröchenig and D. Walnut the orthonormal Wilson
bases are unconditional bases for some Orlicz modulation
spaces. Consequently in these cases M� and l

� are isomorphic
Banach spaces. Simple Wilson bases of exponential type are
given by the following construction.
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Definition 11: [3] A real-valued function  constructed,
such that | (x)|  Ce

�a|x| and | ˆ (t)|  Ce

�b|t|

and such that the  
ln

, l 2 N, n 2 Z, defined by
 0n(x) =  (x� n)

 

ln

(x) =

p
2 

�
x� n

2

�
cos(2⇡lx) l 6= 0, l + n 2 2Z

 

ln

(x) =

p
2 

�
x� n

2

�
sin(2⇡lx) l 6= 0, l + n 2 2Z+ 1

constitute an orthonormal basis for L2
(R).

In their work [3], H.G. Feichtinger, K. H. Gröchenig and D.
Walnut use the density of the functions with compact support
in the Banach function space. The following lemma gives a
characterisation of this density for Orlicz spaces.

Lemma 4: Let � be a Young function, �(x) = 0 if and only
if x = 0, and L

�
(R2

) be the associated Orlicz space on R2.
Then the bounded functions with compact support are dense
in L

�
(R2

) if the Young function satisfies the �2 condition.
If we have the �2-regularity of the Young function it

follows from [3].
Theorem 10: Assume that the Young function � satisfies

the �2 condition. Then the orthonormal Wilson bases are
unconditional bases for M�

(R).
Moreover we can characterise inclusion properties of Orlicz

modulation spaces by using properties of the corresponding
Orlicz sequence spaces as in [2]. Additionally we can translate
this to a comparison of Young functions.

Theorem 11: Let �1,�2,�
0
1,�

0
2 unbounded Young func-

tions. Then M

�1�
0
1 ⇢ M

�2�
0
2 if and only if l�1�

0
1 ⇢ l

�2�
0
2 if

and only if there are constants C1, C2 > 0 and t1, t2 � 0 such
that �2(t)  C1�1(t) for all 0  t  t1 and �0

2(t)  C2�
0
1(t)

for all 0  t  t2.
Next, we wanted to give, without proof, an example of an

embedding relation between Fourier-Lebesgue spaces and a
concrete Orlicz modulation spaces. This result is an extension
of the embedding theorems that Y.V. Galperin and K.H.
Gröchenig gave in her work [5].

Theorem 12: Suppose that g 2 S(Rd

), f 2 S 0
(Rd

), C >

0, N � 0 and |V
g

f(x,w)|  C(1+ |x|+ |w|)N for alle x,w 2
Rd and 0 < p  2, p  r, s  2,

1
s

+

1
s

0 = 1,

1
r

+

1
r

0 = 1. If
✓
ap�N

pd

+

1

r

� 1

p

◆✓
bp�N

pd

+

1

s

� 1

p

◆

>

✓
N

pd

+

1

p

� 1

s

0

◆✓
N

pd

+

1

p

� 1

r

0

◆

with all factors positive, then L

r

a

\FL

s

b

,! M

p,p

N
p ,

N
p

⇢ M

l

p ln l

.

V. CONCLUSION AND OUTLOOK

In this work we have presented and analysed modulation
spaces associated to Orlicz spaces and mixed-norm Orlicz
spaces. It is possible to extend the theory of modulation
spaces associated to Lebesgue space (understood as spaces
of tempered distributions) to more general Orlicz spaces and
mixed-norm Orlicz spaces. For some results the adaptation was
straightforward, but in other cases further conditions on the
Young function, in particular the �2 condition, are necessary
to obtain analogs to the results known for classical modulation
spaces.

The most general approach to modulation spaces follows [1]
and [2]. Here, the �2 condition is needed to characterise duals
of Orlicz modulation spaces (in particular in the mixed-norm
setting), but also to establish density of bounded functions with
compact support in the Orlicz space (needed, e.g., in Lemma
4, and subsequently in Theorem 10).
A more accessible, but less general approach is developed in
[6]. The adaptation of the arguments in [6] is often feasible
(and instructive), however, since duality plays a stronger role
here, the�2 condition is needed more often than in the general
case.

Furthermore we derive embedding results between Orlicz
modulation spaces by using the discretisation of the Orlicz
spaces, especially by using comparison of Young functions.
For a special Orlicz modulation space we can also give an
embedding relation of Fourier-Lebesgue spaces into this Orlicz
modulation space. But at this time it isn’t clear if this result
has also an interpretation as uncertainty principles as in [5].
Another topic of interest for further work are relations appli-
cations to entropy estimates.
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Lehrbuch Masterclass, Springer, 2004.

Proceedings of the 10th International Conference on Sampling Theory and Applications

435



Binary Reduced Row Echelon Form Approach for
Subspace Segmentation

Akram Aldroubi
Department of Mathematics

Vanderbilt University, Nashville, TN, 37212 USA
Email: akram.aldroubi@vanderbilt.edu

Ali Sekmen
Department of Computer Science

Tennessee State University, Nashville, TN 37209
Email:asekmen@tnstate.edu

Abstract—This paper introduces a subspace segmentation and

data clustering method for a set of data drawn from a union of

subspaces. The proposed method works perfectly in absence of

noise, i.e., it can find the number of subspaces, their dimensions,

and an orthonormal basis for each subspace. The effect of noise

on this approach depends on the noise level and relative positions

of subspaces. We provide a performance analysis in presence of

noise and outliers.

I. INTRODUCTION

The goal of subspace clustering is to identify all of the
subspaces that a set of data W = {w1, ..., wN

} 2 RD is drawn
from and assign each data point w

i

to the subspace it belongs
to. The number of subspaces, their dimensions, and a basis
for each subspace are to be determined even in presence of
noise, missing data, and outliers. In some subspace clustering
problems, the number M of subspaces or the dimensions of
the subspaces {d

i

}M
i=1 are known. A number of approaches

have been devised to solve the problem above or some of its
special cases. They are based on sparsity methods [1], [2], [3],
[4], algebraic methods [5], [6], iterative and statistical methods
[7], [8], [9], [10], [11], [12], and spectral clustering methods
[2], [3], [13], [14], [15], [16], [17], [18], [19].

In this work, we develop an algebraic method for solving
the general subspace segmentation problem for noiseless data.
For the case where all the subspaces are four dimensional,
Gear observed, without proof, that the reduced echelon form
can be used to segment motions in videos [20]. In this paper,
we develop this idea and show that the reduced row echelon
form can completely solve the subspace segmentation problem
in its most general version for noiseless data. For noisy
data, the reduced echelon form method does not work, and
a thresholding must be applied. The effect of the noise on the
reduced echelon form method depends on the noise level and
the relative positions of the subspaces.

A. Non-Linear Approximation Formulation

When M is known, the subspace segmentation problem,
for both the finite and infinite dimensional space cases, can be
formulated as follows:

Let B be a Banach space, W = {w1, . . . , wN

} a finite set of
vectors in B. For i = 1, . . . ,M , let C = C1⇥C2⇥· · ·⇥C

M

be
the cartesian product of M family C

i

of closed subspaces of
B each containing the trivial subspace {0}. Thus, an element

S 2 C is a sequence {S1, . . . , SM

} of M subspaces of B with
S

i

2 C

i

. An example for finite dimensions is when B = RD

and C is the family of all subspaces of RD of dimensions
less than or equal to D. An example for infinite dimensions is
when B = L

2
(RD

) and C is a family of closed, shift-invariant
subspaces of L2

(RD

) that are generated by finite generators.

Problem 1.

1) Given a finite set W ⇢ B, a fixed p with 0 < p  1,
and a fixed integer M � 1, find the infimum of the
expression

e(W,S) :=
X

w2W

min

1jM

d

p

(w, S

j

),

over S = {S1, . . . , SM

} 2 C, and d(x, y) := kx� ykB.
2) Find a sequence of M -subspaces So

= {So

1 , . . . , S
o

M

} 2
C (if it exists) such that

e(W,So

) = inf{e(W,S) : S 2 C}. (I.1)

In the presence of outliers, it is shown that p = 1 is a good
choice [21] and a good choice for light-tailed noise is p = 2.
The necessary and sufficient conditions for the existence of a
solution when p = 2 and B is a Hilbert space can be found in
[22].

Definition 1. For 0 < p  1, a set of closed subspaces C of
a Banach space B has the Minimum Subspace Approximation
Property p-(MSAP) if for every finite subset W ⇢ B there
exists an element S 2 C that minimizes the expression
e(W, S) =

P
w2W d

p

(w, S) over all S 2 C.

Under the assumption that each family of subspaces C

i

satisfies p-(MSAP), problem 1 has a minimizer [23]:

Theorem 1. If for each i = 1, . . .M , C
i

satisfies p-(MSAP),
then Problem 1 has a minimizing set of subspaces for all finite
sets of data.

Theorem 1 suggests an iterative search algorithm for the
optimal solution So. Obviously, this solution can be obtained
by Algorithm 1. This algorithm will work well if a good initial
partition is chosen. Otherwise, the algorithm may terminate in
a local minimum instead of the global minimum.
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Algorithm 1 Optimal Solution So

1: Pick any partition P 2 P(W)

2: For each subset W
i

in the partition P find the subspace
S

o

i

(P ) 2 C

i

that minimizes the expression e(W
i

, S) =P
w2Wi

d

p

(w, S)

3: while

MP
i=1

e(W
i

, S

o

i

(P )) > e(W,So

(P )) do

4: for all i from 1 to M do

5: Update W
i

= {w 2 W : d(w, S

o

i

(P )) 
d(w, S

o

k

(P )), k = 1, . . . ,M}
6: Update S

o

i

(P ) = argmin

S2Ci

e(W
i

, S)

7: end for

8: Update P = {W1, . . . ,WM

}
9: end while

10: So

= {So

1(P ), . . . , S

o

M

(P )}

II. SUBSPACE SEGMENTATION - NOISELESS CASE

In this section we consider the problem in which a set of
vectors W = {w1, . . . , wN

} are drawn from a union U =S
i2I

S

i

of M subspaces S

i

2 RD of dimension d

i

. In order
to find the M subspaces from the data set W it is clear that
we need enough vectors W = {w1, . . . , wN

}. In particular for
the problem of subspace segmentation, it is necessary that the
set W can be partitioned into M sets W = {W1, . . . ,WM

}
such that spanW

i

= S

i

, i = 1, . . . ,M . Thus, we need to
assume that we have enough data for solving the problem. In
particular, we assume that any k  d vectors drawn from a
subspace S of dimension d are linearly independent, and we
make the following definition.

Definition 1. Let S be a linear subspace of RD with dimension
d. A set of data W drawn from S ⇢ RD with dimension d

is said to be generic if (i) |W| > d, and (ii) every d vectors
from W form a basis for S.

Another assumption that we will make is that the union of
subspaces U =

S
i2I

S

i

from which the data is drawn consists
of independent subspaces:

Definition 2. (Independent Subspaces) Subspaces {S
i

⇢
RD}n

i=1 are called independent if dim(S1 + · · · + S

n

) =

dim(S1) + · · ·+ dim(S

n

).

Definition 3. Matrix R is said to be the binary reduced row
echelon form of matrix A if all non-pivot column vectors are
converted to binary vectors, i.e., non-zero entries are set to
one.

The following theorem suggests a very simple yet effective
approach to cluster the data points. The proofs of the following
Theorems can be found in [23].

Theorem 2. Let {S
i

}M
i=1 be a set of non-trivial linearly

independent subspaces of RD with corresponding dimensions
{d

i

}M
i=1. Let W = [w1 · · ·wN

] 2 RD⇥N be a matrix whose
columns are drawn from

S
M

i=1 Si

. Assume the data is drawn

from each subspace and that it is generic. Let Brref(W) be
the binary reduced row echelon form of W. Then

1) The inner product he
i

, b

j

i of a pivot column e

i

and a
non-pivot column b

j

in Brref(W) is one, if and only
if the corresponding column vectors {w

i

, w

j

} in W
belong to the same subspace S

l

for some l = 1, . . . ,M .
2) Moreover, dim(S

l

) = kb
j

k1, where kb
j

k1 is the l1-norm
of b

j

.
3) Finally, w

p

2 S

l

if and only if b
p

= b

j

or hb
p

, b

j

i = 1.

The data W can be partitioned into M clusters
{W1, . . . ,WM

}, such that spanW
l

= S

l

. The clusters can be
formed as follows: Pick a non-pivot element b

j

in Brref(W),
and group together all columns b

p

in Brref(W) such that
hb

j

, b

p

i > 0. Repeat the process with a different non-pivot
column until all columns are exhausted.

III. SUBSPACE SEGMENTATION - NOISY CASE

In practice the data W is corrupted by noise. In this case, the
Reduced Row Echelon Form (RREF)-based algorithm cannot
work, even under the assumption of Theorem 2, since the noise
will have two effects: 1) The rank of the data corrupted by
noise W + ⌘ ⇢ RD becomes full; i.e., rank(W + ⌘) = D;
and 2) Even under the assumption that r = D, none of the
entries of the non-pivot columns of rref(W+ ⌘) will be zero.
One way of circumventing this problem, is to use the RREF-
based algorithm in combination with thresholding to set to
zero those entries that are small. The choice of the threshold
depends on the noise characteristics and the position of the
subspaces relative to each other.

In general, dim(

P
M

i=1 Si

) = rank(W)  D, where D is
the dimension of the ambient space RD. After projection of
W, the new ambient space is isomorphic to Rr, where r =

rank(W), and we may assume that rank(W) = D. Without
loss of generality, let us assume that W =

⇥
A B

⇤
where

the columns of A form basis for RD, i.e., the columns of A

consist of d
i

linearly independent vectors from each subspace
S

i

, i = 1, . . . ,M . Let fW = W+N be the data with additive
noise. Then the reduced echelon form applied to fW is given
by rref(fW) =

h
I

e
A

�1 e
B

i
. Let b

i

and ˜

b

i

denote the columns

of B and e
B respectively, e

i

=

e
A

�1
˜

b

i

� A

�1
b

i

, � =

e
A � A,

and ⌫

i

=

˜

b

i

� b

i

. Let �
min

denote the smallest singular value
of A, then if ||�||  �

min

(A), we get

ke
i

k2  k⌫
i

k2
�

min

(A)

+

k�k
�

2
min

(A)

✓
1

1� k�k
�min(A)

◆
(kb

i

k2 + k⌫
i

k2),

(III.1)

where k · k denotes the operator norm k · k
`

2!`

2 . Unless
specified otherwise, the noise N will be assumed to consist
of entries that are i.i.d. N (0,�

2
) Gaussian noise with zero

mean and variance �

2. For this case, the expected value
of k�k can be estimated by Ek�k  C

p
D� [24]. Note

that to estimate the error in (III.1) we still need to estimate
�

min

(A). This singular value depends on the position of
the subspaces {S

i

}M
i=1 relative to each other which can be
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measured by the principle angles between them. The principle
angles between two subspaces F ,G, can be obtained using any
pair of orthogonal bases for F ,G as described in the following
Lemma [25]:

Lemma 1. Let F and G be two subspaces of RD with p =

dim(F)  dim(G) = q. Assume that QF 2 RD⇥p and QG 2
RD⇥q are matrices whose columns form orthonormal bases
for the subspaces F and G. If 1 � �1 � �2 � · · · � �

p

� 0

are the singular values of Q

t

FQG , then the principle angles
are given by

✓

k

= arccos(�

k

) k = 1, . . . , p. (III.2)

The dependence of the minimum singular value �min(A) on
the principle angles between the subspaces {S

i

}M
i=1 is given

in the theorem below, which is one of the two main theorems
of this section. The proofs are provided in [23].

Theorem 3. Assume that {S
i

}M
i=1 are independent subspaces

of RD with corresponding dimensions {d
i

}M
i=1 such thatP

M

i=1 di = D. Let {✓
j

(S

i

)}min(di,D�di)
j=1 be the principle

angles between S

i

and
P

` 6=i

S

`

. If A =

⇥
a1 . . . a

D

⇤

is a matrix whose columns {a1, . . . , aD} ⇢ [M

i=1Si

form a
basis for RD, with ka

i

k2 = 1, i = 1, . . . , D, then

�

2
min(A)  min

i

0

@
min(di,D�di)Y

j=1

�
1� cos

2
(✓

j

(S

i

))

�
1

A
1/D

,

(III.3)
where �min(A) is the smallest singular value of A.

Corollary 1. Under the same conditions of Theorem 3, a
simpler but possibly larger upper bound is given by:

�

2
min(A)  min

i

(1� cos(✓1(Si

))

1/D
4

1/D
, (III.4)

where ✓1(Si

) is the minimum angle between S

i

and
P

` 6=i

S

`

.

Theorem 4. Assume that {S
i

}M
i=1 are independent sub-

spaces of RD with corresponding dimensions {d
i

}M
i=1 such

that
P

M

i=1 di = D. Let {✓
j

(S

i

)}min(di,D�di)
j=1 be the prin-

ciple angles between S

i

and
P

` 6=i

S

`

. Assume that W =

[w1 · · ·wN

] 2 RD⇥N is a matrix whose columns are drawn
from

S
M

i=1 Si

and the data is generic for each subspace S

i

.
If P is a permutation matrix such that WP =

⇥
A

P

B

P

⇤
,

and A

P

is invertible, then

sup

P

{�2
min(AP

)}  min

i

0

@
min(di,D�di)Y

j=1

�
1� cos

2
(✓

j

(S

i

))

�
1

A
1/D

.

(III.5)
In particular,

sup

P

{�2
min(AP

)}  min

i

(1� cos(✓1(Si

))

1/D
4

1/D
, (III.6)

where ✓1(Si

) is the minimum angle between S

i

and
P

` 6=i

S

`

.

Remark 1. The value �min(AP

) can be arbitrarily close to
zero, thus, one of the goals is to find D columns of W that
form a basis such that �min(AP

) is as close to the upper
bound as possible without an exhaustive search.

IV. SUBSPACE SEGMENTATION ALGORITHM FOR NOISY
DATA

Algorithm 1 works perfectly in noiseless data. For noisy
data, the success of the algorithm depends on finding a good
initial partition. Otherwise, the algorithm may terminate at
a local minimum. Theorem 2 works perfectly for noiseless
data (it determines a basis for each subspace and it correctly
clusters all of the data points). An algorithm for implementing
Theorem 2 is given in [23]. However, it does not perform
very well when sufficiently large noise is present because any
threshold value will keep some of the values that need to be
zeroed out and will zero out some of the values that need to
be kept. However, the thresholded reduced echelon form can
be used to determine a set of clusters that can in turn be used
to determine a good initial set of subspaces in Algorithm 1.

For example, if the number of subspaces is known and
the subspaces have equal and known dimensions (assume that
there are M subspaces and each subspace has dimension d),
then Algorithm 2 below combines Algorithm 1 and Theorem 2
as follows: First, the reduced row echelon form rref(W) of W
is computed. Since the data is noisy, the non-pivot columns of
rref(W) will most likely have all non-zero entries. The error in
those entries will depend on the noise and the positions of the
subspaces as in (3). Since each subspace is d-dimensional, the
highest d entries of each non-pivot column is set to 1 and all
other entries are set to 0. This determines the binary reduced
row echelon form Brref(W) of W (note that, according to
Theorem 2, each non-pivot column of Brref(W) is supposed
to have d entries). M groups of the equivalent columns of
Brref(W) are determined and used as the initial partition for
Algorithm 1. This process is described in Algorithm 2. Note
that a dimensionality reduction is also performed to speed up
the process.

Remark 2. In Step-5 of Algroithm 2, Brref(W) is computed
by setting the highest d entries of each non-pivot columns to
1 and the others to 0. If we do not know the dimensions of
the subspaces, we may need to determine a threshold from the
noise characteristics and a priori knowledge of the relative
position of subspaces using (III.1) and (III.3).

Remark 3. In Step-7 of Algorithm 2, we find the sub-
space S

o

i

(P ) that minimizes the expression e(W
i

, S) =P
w2Wi

d

p

(w, S) for each subset W
i

in the partition P . For
data with light-tailed noise (e.g. Gausian distributed noise)
p = 2 is optimal and the minimum in Step-7 can be found using
SVD. For heavy-tailed noise (e.g. Laplacian distributed noise),
p = 1 is the better choice as described in the simulations
section.

Remark 4. In order to reduce the dimensionality of the
problem, we compute the SVD of W = U⌃V

t. In Algorithm 2,
each subspace is d-dimensional and there are M subspaces.
Therefore, it replaces W by (V

t

)

r

, where r = M⇥d is known
or estimated rank of W.
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Algorithm 2 Combined Algorithm - Optimal Solution So

Require: Normalized data matrix W.
1: Set r = M ⇥ d.
2: Compute the SVD of W and find (V

t

)

r

.
3: Replace the data matrix W with (V

t

)

r

.
4: Compute rref(W)

5: Compute Brref(W) by setting the highest d entries of
each non-pivot column to 1 and all the others to 0.

6: Group the non-pivot equivalent columns of Brref(W) into
M largest clusters {W1, . . . ,WM

} and set the initial
partition P = {W1, . . . ,WM

}.
7: For each subset W

i

in the partition P find the sub-
space S

o

i

(P ) that minimizes the expression e(W
i

, S) =P
w2Wi

d

p

(w, S).

8: while

MP
i=1

e(W
i

, S

o

i

(P )) > e(W,So

(P )) do

9: for all i from 1 to M do

10: Update W
i

= {w 2 W : d(w, S

o

i

(P )) 
d(w, S

o

k

(P )), k = 1, . . . ,M}
11: Update S

o

i

(P ) = argmin

S

e(W
i

, S)

12: end for

13: Update P = {W1, . . . ,WM

}
14: end while

15: So

= {So

1(P ), . . . , S

o

M

(P )}

V. EXPERIMENTAL RESULTS

We used the Hopkins 155 Dataset [6] to evaluate our
algorithm. The RREF-based algorithm is extremely fast and
works well with two-motion video sequences. The average and
median errors for all two-motion sequences are 11.45% and
6.78%, respectively (8.81% and 5.44% for checker, 16.04%
and 11.94% for traffic, and 17.25% and 12.69% for articulated
motion). However, the error is very high for three-motion
sequences and obviously it does not work well with such video
sequences. We believe that this is due to the fact that the noise
is correlated, and the minimum of Problem 1 does not give the
correct clustering for this case. The best clustering method to
date for clustering in this case is based on similarity between
trajectory vectors computed from local subspace estimations
[26].

VI. CONCLUSION

This paper introduces a simple and very fast approach
for subspace segmentation for data drawn from a union of
subspaces. In absence of noise, our approach can find the
number of subspaces, their dimensions, and an orthonormal
basis for each subspace. We provide an analysis of our theory
and determine its limitations and strengths in presence of
outliers and noise.
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Abstract—We describe several algorithms for matrix comple-
tion and matrix approximation when only some of its entries
are known. The approximation constraint can be any whose
approximated solution is known for the full matrix. For low
rank approximations, similar algorithms appear recently in the
literature under different names. In this work, we introduce
new theorems for matrix approximation and show that these
algorithms can be extended to handle different constraints such
as nuclear norm, spectral norm, orthogonality constraints and
more that are different than low rank approximations. As the
algorithms can be viewed from an optimization point of view,
we discuss their convergence to global solution for the convex
case. We also discuss the optimal step size and show that
it is fixed in each iteration. In addition, the derived matrix
completion flow is robust and does not require any parameters.
This matrix completion flow is applicable to different spectral
minimizations and can be applied to physics, mathematics and
electrical engineering problems such as data reconstruction of
images and data coming from PDEs such as Helmholtz’s equation
used for electromagnetic waves.

I. INTRODUCTION

Matrix completion and matrix approximation are important
problems in a variety of fields such as statistics [1], biology
[2], statistical machine learning [3], signal processing and
computer vision/image processing [4]. Rank reduction by ma-
trix approximation is important, for example, in compression
where low rank indicates the existence of redundant informa-
tion and matrix completion is important in collaborative filter-
ing, such as the Netflix problem and different reconstruction
problems. Usually, the matrix completion problem, is defined
as finding a matrix, with smallest possible rank, that satisfy
the existence of certain entries.

minimize rank (X)
subject to X

i,j

= M

i,j

, (i, j) 2 ⌦.
(I.1)

Since Eq. I.1 is an NP-hard problem, some relaxations meth-
ods have been proposed. The most popular relaxation is one
that replaces the rank by the nuclear norm:

minimize kXk⇤
subject to X

i,j

= M

i,j

, (i, j) 2 ⌦,
(I.2)

where kXk⇤ denotes the nuclear norm of X that is equal to
the sum of the singular values of X. A small value of kXk⇤ is
related to the property of having a low rank [5]. An iterative
solution, which is based on a singular value thresholding,

is given in [6]. A completion algorithm, based on the local
information of the matrix, is proposed in [7]. In this work,
a more robust and simple approach for solving a variety of
matrix approximation of certain entries by approximating the
full matrix is discussed. We approximate problems of the form

minimize kP⌦X� P⌦MkF
subject to f(X)  0,

(I.3)

given that the solution for

minimize kX�Mk
F

subject to f(X)  0
(I.4)

is known. Here, {P⌦X}
i,j

= X

i,j

if (i, j) 2 ⌦ and 0
otherwise. If f(X) is convex and satisfies some condition
(which is explained in the next sections), the algorithm finds
the global solution. Nevertheless, convergence is guaranteed,
but to a local solution. Then, we show how this algorithm can
be used for solving a variety of matrix completion problems
as well, such as spectral norm completion:

minimize kXk2
subject to X

i,j

= M

i,j

, (i, j) 2 ⌦,
(I.5)

Ky-Fan norm completion:

minimize kXk(k)
subject to X

i,j

= M

i,j

, (i, j) 2 ⌦,
(I.6)

where kXk(k) =
P

k

i=1 �i

(sum of largest k singular values).
Note that the spectral norm and the nuclear norm are a special
case of the Ky-Fan norm. We also discuss approximation
problems such as:

minimize kP⌦X� P⌦MkF
subject to XTX = I.

(I.7)

II. THEOREMS ON FULL MATRIX APPROXIMATION

The algorithm that approximates a matrix at certain points
requires from us to be able to approximate the matrix when
taking into account all its entries. Therefore, we review some
theorems on full matrix approximation theorems in addition
to the well known Eckart-Young theorem mentioned in the
introduction. The low rank approximation problem can be
modified to approximate a matrix under the Frobenius norm
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while having the Frobenius norm as a constraint as well instead
of having low rank. Formally,

minimize kX�Mk
F

subject to kXk
F

 �.

(II.1)

A solution for Eq. II.1 is given by X = M
kMkF

min(kMkF,�).
Proof: The expression kXk2

F

 �

2 can be thought of as
an m⇥n dimensional ball with radius � centered at the origin.
M is an m⇥n dimensional point. We are looking for a point X
on the ball kXk2

F

= �

2 that has a minimal Euclidean distance
(Frobenius norm) from M. If kMk

F

 � then X = M and
it is inside the ball having a distance of zero. If kMk

F

> �,
then the shortest distance is given by the line going from the
origin to M whose intersection with the sphere kXk2

F

 �

2

is the closest point to M. This point is given by X = M
kMkF

�.

An alternative approach uses the Lagrange multiplier in
a brute-force manner. This leads to a non-linear system of
equations, which are difficult to solve. Note that this problem
can be easily extended to the general case

minimize kPX� PMk
F

subject to kXk
F

 �.

(II.2)

Proof: The proof is similar to the previous one but here
we are looking for a point X on the sphere that is the closest
to a line whose points X0 2 H satisfy PX0 = PM. By geo-
metrical considerations, this point is given by X = PM

kPMk
F

�.

Hence, we showed a closed form solution for the problem in
Eq. II.2.
Another example is the solution to the problem:

minimize kX�Mk
F

subject to XTX = I.
(II.3)

This is known as the orthogonal Procrustes problem ( [8])
and the solution is given by X = UV⇤, where the SVD of
M is given by M = U⌃V⇤. The solution can be extended to
a matrix X satisfying XTX = D2, where D is a known or
unknown diagonal matrix. When D is unknown, the solution
is the best possible orthogonal matrix. When D is known, the
problem can be converted to become the orthonormal case (Eq.
II.3) by substituting X = VD where VTV = I. When D is
unknown, the problem can be solved by applying an iterative
algorithm that is described in [9].

We now examine the following problem:

minimize kX�Mk
F

subject to kXk2  �.

(II.4)

A solution to this problem uses the Pinching theorem ( [10]):

Lemma II.1 (Pinching theorem). For every matrix A and a
unitary matrix U and for any norm satisfying kUAU⇤k =
kAk then kdiag(X)k  kXk.

A proof is given in [12]. An alternative proof is given in
[14].

Lemma II.2 (Minimization of the Frobenius norm under the
spectral norm constraint). Assume the SVD of M is given by
M = U⌃V⇤ where ⌃ = diag(�1, ..,�n

). Then, the matrix
X, which minimizes kX�Mk

F

such that kXk2  �, is given
by X = U⌃̃V⇤ where �̃

i

are the singular values of ⌃̃ and
�̃

i

= min(�
i

,�), i = 1, . . . k, k  n.

Proof: kX�Mk
F

= kX�U⌃V⇤k
F

=
kU⇤XV �⌃k

F

. Since ⌃ is diagonal,
kdiag(U⇤XV)�⌃k

F

 kU⇤XV �⌃k
F

. From Lemma
II.1 we know that kdiag(U⇤XV)k2  kU⇤XVk2.
Therefore, U⇤XV has to be diagonal and the best
minimizer under the spectral norm constraint is
achieved by minimizing each element separately yielding
U⇤XV = diag(min(�

i

,�)), i = 1, . . . k, k  n. Hence,
X = U⌃̃V⇤.

The same argument that states that U⇤XV has to be
diagonal, can also be applied when the constraint is given by
the nuclear norm. Define ⌃̃ = U⇤XV. We wish to minimize
k⌃̃ �⌃k

F

=
P

i

(�̃
i

� �

i

)2 s.t. kXk⇤ = k⌃̃k⇤ =
P

i

|�̃
i

| 
�, i = 1, . . . k, k  n. Note that �̃

i

has to be nonnegative
otherwise it will increase the Frobenius norm but will not
change the nuclear norm. Hence, the problem can now be
formulated as:

minimize
P

i

(�̃
i

� �

i

)2

subject to
P

i

�̃

i

 �,

�̃

i

� 0.
(II.5)

This is a standard convex optimization problem that can be
solved by methods such as semidefinite programming [11].
The exact same can be done to the Ky-Fan norm.

III. APPROXIMATION OF CERTAIN ENTRIES

Suppose we wish to approximate only certain entries of the
matrix, under different constraints, i.e. we are interested in
solving Eq. I.3, given that the solution of Eq. I.4 is known and
given by DM, where D is the solution operator. For example,
if the constraint is rank(X)  k DX is the truncated SVD
of X containing the first k singular values. Note that D is
not necessarily convex. We examine the following iterative
algorithm:

X
n+1 = D(X

n

� P(X
n

�M)). (III.1)

Eq. III.1 can be considered as a projected gradient algorithm
with unit step size, where the projection is given by D.

Theorem III.1 (Local Convergence). : Let ✏(X
n

) = kPX
n

�
PMk

F

be the error at the nth iteration, then ✏(X
n

) is
monotonically decreasing, and because it is bounded the
algorithm converges.

The proof for Theorem III.1 is given in [14]. Theorem III.1
does not say anything about convergence to the global solution.
However, when the projection D is convex and self adjoint
(D = D⇤) and the algorithm is modified to have adaptive step
size, that is:

X
n+1 = D(X

n

� µ

n

P(X
n

�M)), (III.2)
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and µ

n

= µ̃2�l[n] is computed by Armijo rule in a greedy
form, minimizing the error in every iteration:

l[n] = min{j 2 Z�0 : f(X
n,j

)
 f(X

n

)� �trace(rf(X
n

)T (X
n

� Z
n,j

))},
and Z

n,j

= D(X
n

� µ̃2�jrf(Xn)),
(III.3)

where f(X) = 1
2kPX�PMk2

F

, µ̃ > 0 and � 2 (0, 1), Then
the algorithm is guarantee to achieve the global solution [13].
This approach has two major problems:

• For the cases of interest, the operators for truncating the
nuclear and spectral norm, are not self-adjoint (D 6= D⇤)

• This approach requires applying the Armijo rule in every
iteration. This means several applications of the operator
D in each iteration which is usually computationally
expensive.

As for the first point, requiring the projection D to be
self-adjoint can be slightly more than needed for the global
convergence proof in [13]. This requirement is needed in order
to satisfy hX � Y,DX �Xi � 0 for Y = DY , which always
holds when D = D⇤, but also when D is as we defined in
Lemma II.2 and Eq. II.5.

Theorem III.2. Let D be the following projection (defined
as in Lemma II.2): Given the SVD of X is X = USV⇤, we
define D

�

X = US̃V

⇤ where s̃

i

=min(s
i

,�). Then, for every
matrices X and Y such that Y = DY, hX�Y,DX�Xi � 0

Proof: The condition hX � Y,DX � Xi � 0 can be
reformulated as

hX,X�DXi � hY,X�DXi, (III.4)

where kY k2  �.
First, note that the value of the right hand side is maximal

when Y and X�DX have the same angle (Cauchy-Schwartz
inequality). Hence, we define: X = US

X

V⇤, Y = US̃
Y

V⇤

and DX = US̃
X

V⇤. The tilde is for indicating that the
singular values of S̃ are smaller or equal to �.

We start by evaluating the left side of Eq.III.4:

hX,X�DXi = trace[S
X

(S
X

� S̃
X

)] =
X

i

s

x

i

(s
x

i

� s̃

x

i

).

(III.5)
Now, for s

x

i

 � we get (s
x

i

� s̃

x

i

) = 0. Hence, only when
s

x

i

> � the sum grows and the expression can be rewritten
as: hX,X�DXi = P

s

x

i

>�

s

x

i

(s
x

i

� s̃

x

i

)
We now observe the right side of Eq. III.4:

hY,X�DXi = trace[S̃
Y

(S
X

� S̃
X

)] =
X

i

s̃

y

i

(s
x

i

� s̃

x

i

).

(III.6)
Again, the elements that contribute to the sum are those for
which s

x

i

> �. Hence, on the right side we obtained: hY,X�
DXi = P

s

x

i

>�

s̃

y

i

(s
x

i

� s̃

x

i

).
Both expressions can be thought of as a sum of the positive

elements (s
x

i

� s̃

x

i

) with different coefficients. Both series
have the same length (s

x

i

> �) but the coefficient on the left
side is s

x

i

for i’s that give s

x

i

> � and the right hand series

coefficients are by definition (since kYk2  �) smaller than
�. Therefore, the sum of the left side is bigger than the sum
of the right side. This completes the proof.

This means that for the spectral norm, the algorithm con-
verges to the global solution. The exact same proof can be
done for the nuclear norm and Ky-Fan norm as well, showing
the algorithm converges to global solution.

Theorem III.3 (Optimal step size). For the matrix approxi-
mation problem (Eq. I.3) with convex D, the optimal step size
is given by µ

n

= 1.

The proof of Theorem III.3 is given in [14]. Note that this
holds for any case of projected gradient involving orthogonal
axes. Theorem III.3 states that in our case, when having a
convex constraint and projection, then Eq. III.1 converges
to the global solution. This means, that now we can solve
a variety of matrix approximation problem with reasonable
computation rate. Note, that we have shown that in some cases,
global solution is achieved even when the projection is not
self-adjoint (orthogonal). The next section shows, how this
very simple algorithm, can be applied to matrix completion
problems as well.

IV. MATRIX COMPLETION

Matrix completion is an important problem that has been
investigated extensively. The matrix completion problem dif-
fers from the matrix approximation problem by the fact that
the known entries must remain fixed while changing their role
from the objective function to be minimized to the constraint
part. A well investigated matrix completion problem appears
in the introduction as the rank minimization problem. Because
rank minimization is not convex and NP-hard, it is usually
relaxed for the nuclear norm minimization. Since for the
convex case, we have seen that Eq. III.1 converges to the
global solution, matrix completion can be achieved simply
by using binary search. The advantage of this approach over
other different approaches, which minimize the nuclear norm
for example, is that it is general and can be applied to other
problems that were not addressed such as minimizing the
spectral norm. Moreover, some algorithms such as the Singular
Value Thresholding (SVT) [6] require additional parameters ⌧

and � that affect the convergence and the final result, where
in this approach no external parameters are required (except
for tolerance for determining convergence).

This approach is detailed in Algorithm IV.1, which is robust
and does not require any tuning, other than tolerance threshold
for determining convergence. Algorithm IV.1 can be used for
a matrix completion under a variety of constraints.

Fig. IV shows Algorithm IV.1 results over a corrupted
image. In the corrupted image, squares of size 3 ⇥ 3 were
randomly removed from the image, destroying 18% of it. The
reconstruction is more difficult, since the damage is in squares
and not just irregular points. The original image nuclear norm
is 51, 625, the corrupted nuclear norm is 96, 500 and the norm
of the completed matrix is 50, 418. Minimizing nuclear norm
for image reconstructing is a well known method, as images
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Algorithm IV.1: Matrix Completion using Nuclear Norm
/ Spectral Norm Minimization

Input: M - matrix to complete, P - projection operator
that specifies the important entries,
tol - admissible approximation error, �

tol

- admissible
constraint accuracy
Output: X - Completed matrix

1: M PM
2: �

min

 0
3: �

max

 kMk⇤ (or kMk2 for the spectral norm)
4: � 0
5: repeat
6: �

prev

 �

7: � (�
min

+ �

max

)/2
8: X Approximate PM s.t. kXk⇤  � (or kXk2  �

for the spectral norm case)
9: error  kPX� PMk

F

10: if error > tol then
11: �

min

 �

12: else
13: �

max

 �

14: end if
15: until error < tol and |�� �

prev

| < �

tol

16: return X

Fig. IV.1. Singular values comparison between the different images.

usually have a low numerical rank as the singular values decay
very fast. It can be seen in Fig. IV that the singular values of
the reconstructed image, are almost identical to the original.
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Fig. IV.2. Corrupted dog image and the reconstructed image.
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Abstract—The initial training phase of machine learning al-
gorithms is usually computationally expensive as it involves the
processing of huge matrices. Evolving datasets are challenging
from this point of view because changing behavior requires
updating the training. We propose a method for updating the
training profile efficiently and a sliding window algorithm for
online processing of the data in smaller fractions. This assumes
the data is modeled by a kernel method that includes spectral
decomposition. We demonstrate the algorithm with a web server
request log where an actual intrusion attack is known to
happen. Updating the kernel dynamically using a sliding window
technique, prevents the problem of single initial training and can
process evolving datasets more efficiently.

Index Terms—perturbation theory, eigenvalue problem, dif-
fusion maps, dimensionality reduction, anomaly detection, web
traffic

I. INTRODUCTION

Evolving data that requires frequent updates to the training
is a challenging target when extracting constructive infor-
mation. The computational complexity of the training phase
increases with such datasets because an earlier profile may
not accurately represent the behavior of current data. There-
fore, the extracted profile has to be updated frequently. A
straightforward approach for updating the training profile is
to repeat the entire computational process that generated
the original profile. This paper summarizes a method for
efficiently updating the evolving profile.

A common practice in kernel methods is to extract features
from a high dimensional dataset, and to form a similarity graph
between the features in the dataset. In this research we apply
the Diffusion Maps (DM) methodology [1] to a web traffic
log. DM finds the embedded coordinates for a low-dimensional
representation of the data. This embedding is accomplished by
eigenvectors computation of the graph affinity matrix. Changes
in the affinity matrix will result in changes in the eigenvectors,
and thus will force us to compute them frequently. We use
a solution based on the Recursive Power Iteration algorithm
combined with the first-order approximation of the perturbed
eigenvectors and eigenvalues (eigenpairs) [2]. This enables us
to update the dataset profile by considering only the changes
in the original dataset, which also requires less computational
effort.

Since network data is dynamic and evolving, the embedded

low-dimensional space has to be updated as the training data
does not adequately represent the incoming data that did not
participate in the initial training phase. Even if most of the
network log lines in our interest window are unchanged, we
will still need to perform the entire computation since we
cannot determine the effect of such a change on the embedded
space. Therefore, the goal of the paper is to provide an efficient
method for updating the embedding coordinates without the
need to re-compute the entire SVD again and again over time.
We treat the log line feature changes as perturbations from
the original network log profile of the feature affinity matrix.
By applying a sliding window technique to the incoming
network data, we are able to process the data online, and
keep embedding it in the low-dimensional space. We test this
method on real web traffic data and compare our results to the
true classification.

II. RELATED WORK

Traditional computational methods such as the power it-
eration, inverse iteration and Lanczos methods operate in
the same way and compute the eigenpairs of each update
of the perturbed matrix. Here, the computation is performed
with a random guess as the initial input without taking the
unperturbed matrix and its eigenpairs into consideration.

Incremental versions of low-dimensional embedding al-
gorithms have been tailored specifically to fit local linear
embeddings (LLE) [3] and ISOMAP [4]. These algorithms
use modified manifold learning methods to process the data
iteratively. When a new data point arrives, these algorithms
add it to the embedding and then efficiently update all the
existing data points in the low-dimensional space.

Network security has been one focus among the machine
learning community. Kruegel and Vigna studied the parameters
of HTTP queries using a training step with unlabeled data with
various methods. Their character distribution analysis uses
similar feature extraction as our current study [5]. Hubballi
et al. described an n-gram approach to detect intrusions
from network packets [6]. Ringberg et al. studied IP packets
using principal component analysis-based dimensionality re-
duction [7]. Callegari et al. analyzed similar low-level packet
data [8].
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Diffusion maps have been also used for network security
problems. David studied the use of diffusion map methodology
for detecting intrusions in network traffic [9]. Network server
logs have also been studied with diffusion maps with an offline
approach using n-gram features and spectral clustering [10]. In
these works, data analysis was performed in a batch fashion,
processing all recordings as a single, offline dataset.

III. FINDING A LOW-DIMENSIONAL EMBEDDED SPACE

A. Diffusion Maps
Finding a low-dimensional embedded space is an important

step in understanding high-dimensional data more profoundly.
To better understand the proposed algorithm, we review the
DM methodology [1] that performs non-linear dimensionality
reduction. Given our web log feature matrix X , we define a
weighted graph over the log lines, where the weight between
lines i and j is given by the kernel k(i, j) , e

� kx
i

�x

j

k
" .

The degree of a log line (vertex) i in this graph is d(i) ,
P

j

k(i, j). Normalizing the kernel with this degree produces an

n⇥n row stochastic transition matrix whose cells are [P ]

ij

=

p(i, j) = k(i, j)/d(i) for log lines i and j. This defines a
Markov process over the network log features.

The dimensionality reduction achieved by this diffusion
process is a result of the spectral analysis of the kernel. Thus,
it is preferable to work with a symmetric conjugate to P that
we denote by A and its cells are denoted by

[A]

ij

= a(i, j) =

k(i, j)

p

d(i)

p

d(j)

=

p

d(i)p(i, j)

1

p

d(j)

. (1)

The eigenvalues 1 = �1 � �2 � . . . of P and their
corresponding eigenvectors v

k

(k = 1, 2, . . .) are derived from
the eigenvectors u

k

of A. The v

k

are used to obtain the desired
dimensionality reduction by mapping each i onto the data point
 (i) = (�2v2(i),�3v3(i), ...,��

v

�

(i)) for a sufficiently small
�, which depends on the decay of the spectrum of A [1].

In matrix notation, the operator A is defined as A =

D

� 1
2
KD

� 1
2

= D

1
2
PD

� 1
2 where D is the diagonal matrix

containing the d(i) value in cell D
ii

. To retrieve the eigenvec-
tors in columns V of P from the eigenvactors of A, we use
the transformation V = D

� 1
2
U where U is the eigenvector

column matrix of A. The eigenvectors V obtained for P are
scaled by dividing each one by the first value of the first
eigenvector.

B. Updating the Embedding
Once we have the DM embedding of the initial matrix A,

we need to keep updating the embedding for the next arriving
samples. By replacing the oldest samples with the newly
arriving ones, we can model such a change as a perturbation
matrix ˜

A of the matrix A. We assume that the perturbations are
sufficiently small, that is, k ˜A�Ak < " for some small ". Note
that ˜

A is symmetric since it represents the operator defined
in 1. We wish to update the eigenpairs of ˜

A based on A and
its eigenpairs. We now present the problem in mathematical
terms.

Given a symmetric n ⇥ n matrix A where its k dominant
eigenvalues are �1 � �2 � ... � �

k

and its eigenvectors are
�1,�2, ...,�k

, respectively, and a perturbed matrix ˜

A such that
k ˜A�Ak < ", find the perturbed eigenvalues ˜

�1 � ˜

�2 � ... �
˜

�

k

and its eigenvectors ˜

�1,
˜

�2, ...,
˜

�

k

of ˜

A in the most efficient
way [2].

In the next section, we explain how such processing can be
done using the recursive power iteration (RPI) algorithm.

IV. THE RECURSIVE POWER ITERATION (RPI)
ALGORITHM

A. Eigenpair First-Order Approximation

To efficiently update each eigenpair of the perturbed matrix
˜

A, we first compute the first-order approximation of each
eigenpair. Later, it will be used in our algorithm as the initial
guess for the RPI algorithm.

Given an eigenpair (�
i

,�

i

) of a symmetric matrix A where
A�

i

= �

i

�

i

, we compute the first-order approximation of the
eigenpair of the perturbed matrix ˜

A = A +�A. We assume
that the change �A is sufficiently small, which results in a
small perturbation in �

i

and �

i

. We look for ��

i

and ��

i

that satisfy the equation

(A+�A)(�

i

+��

i

) = (�

i

+��

i

)(�

i

+��

i

). (2)

Using the methods described by Shmueli et al. [2], we can
obtain the following first-order approximations for the eigen-
values and eigenvectors of ˜

A

˜

�

i

= �

i

+ �

T

i

[�A]�

i

(3)

and

˜

�

i

= �

i

+

X

j 6=i

�

T

j

[�A]�

i

�

i

� �

j

�

j

. (4)

B. The Recursive Power Iteration Method

The power iteration method has proved to be effective
when calculating the principal eigenvector of a matrix [11].
However, this method cannot find the other eigenvectors of the
matrix. In general, an initial guess of the eigenvector is also
important to guarantee fast convergence of the algorithm. In
Algorithm IV.1, which we call recursive power iteration (RPI),
the first-order approximations of the perturbed eigenvectors
of ˜

A are the initial guess for each power iteration. Once the
eigenvector ˜

�

i

is obtained in step i, we transform ˜

A into a
matrix that has ˜

�

i+1 as its principal eigenvector. We iterate
this step until we recover the k dominant eigenvectors of ˜

A.
The correctness of the RPI algorithm and its complexity

analysis are given in the original article [2].
The justification for this approach is that the first-order

approximation of the perturbed eigenvector is inexpensive, and
each RPI step guarantees that this approximation converges
to the actual eigenvector of ˜

A. The first-order approximation
should be close to the actual solution we seek and therefore
requires fewer iteration steps to converge.
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Algorithm IV.1: Recursive Power Iteration Algorithm

Input: Perturbed symmetric matrix ˜

A

n⇥n

, number of
eigenvectors to calculate k, initial eigenvectors
guesses {v

i

}k
i=1, admissible error err

Output: Approximated eigenvectors
n

˜

�

i

o

k

i=1
,

approximated eigenvalues
n

˜

�

i

o

k

i=1
1: for i = 1! k do
2: � v

i

3: repeat
4: �

next

 Ã�

kÃ�k
5: err

�

 k�� �

next

k
6: � �

next

7: until err
�

 err
8: ˜

�

i

 �

9: ˜

�

i

 �̃

T

i

Ã�̃

i

�̃

T

i

�̃

i

10: ˜

A ˜

A� ˜

�

i

˜

�

i

˜

�

T

i

11: end for

V. SLIDING WINDOW DIFFUSION MAP

Using DM to embed high volumes of data can be compu-
tationally intensive. It is even more challenging when the data
is generated online and needs to be processed continuously.
Therefore, we try to process the incoming data with iterative
methodology by using the sliding window model. A sliding
window X takes into account the n latest measurements. In
practice, it is an n ⇥m matrix with features on the columns
and samples on the rows. The samples are high-dimensional,
so the dimensionality of the sliding window is reduced from
m to d using DM. This n ⇥ d matrix X

r

now contains the
low-dimensional representation of the data. This reduction
is done each time a new sample appears and the window
moves. However, the consecutive update of the DM is a time-
consuming process that requires singular value decomposition
during each window.

When updating the window, we can replace the oldest
measurement with a new one in the matrix X , therefore
changing a single row in X . This means that one line and
one column of the K matrix in the DM algorithm change.
This change can be interpreted as a perturbation to the matrix
K, and furthermore to the matrix A, which is defined using the
K matrix. The RPI algorithm with first-order approximation
solves the eigenvectors for perturbed matrices. This leads us
to use the RPI algorithm instead of time-consuming SVD.

Algorithm V.1 outlines the sliding window DM method.
First, it solves the eigenvectors for the initial window using
SVD. Then the algorithm iteratively process the following
windows until no new samples are available.

There are, some practical problems with this approach. First,
the RPI algorithm might not be able to solve the eigenvectors
for some low-rank matrices. It is possible to prevent this
with standard SVD when a low-rank (or otherwise unsuitable)
matrix is encountered. Second, the window size itself has to be

Algorithm V.1: Sliding Window Diffusion Map with RPI
Input: Dataset X , window width n, embedded dimension k,

admissible error err.
Output: Anomaly score for points in X .

✏ estimate kernel parameter for first window of size n.
[K]

ij

 exp

⇣

� ||x
i

�x

j

||2
✏

⌘

, where i, j = 1 . . . n

D  diag(

P

n

i=1[K]

ij

)

A D

� 1
2
KD

� 1
2

U,⇤, U

T  SVD(A)

while new sample x

t

available, where t > n do
l t mod n

Replace the row l in X with the new sample x

t

.
Update both row l and column l of the affinity matrix
K.
D  diag(

P

n

i=1[K]

ij

)

˜

A D

� 1
2
KD

� 1
2

U,⇤ RPI with first-order approximation
(

˜

A,A, k, U,⇤, err)

V  D

� 1
2
U

V  V

V1,1

  V ⇤

Find anomalies in  and rate all samples in X .
A ˜

A

end while
Return aggregated anomaly scores for each sample in X .

decided. The changing scales of the data over time introduce a
challenge to the sliding window algorithm. The initial window
still determines the profile and scale for the beginning of the
analysis. Big windows cover a larger representation of the
data and thus include a more varied overview of the normal
behavior. With smaller windows, the percentage of anomalies
within the data might get too big, and detecting the normal
state becomes more difficult. Small windows, however, require
less computational time since they induce smaller matrices.
Optimal window size would therefore be the smallest possible
that contains a small enough percentage of anomalies within
the data, enabling it to capture the normal samples correctly.

Detecting the anomalies in the low-dimensional representa-
tion can be done in various ways. A straightforward approach
is to calculate distances between the embedded samples and
find the ones that deviate too far from the center of the dataset.
This and other spectral clustering methods give good results
for datasets that contain clear separation [12], [10]. Similarly,
k-means or any other clustering algorithm can find possible
normal as well as anomalous behavior in the data. The density
of points in the low-dimensional space tells how far they are
from the more clustered areas. These methods calculate the
distances to neighboring points [9]. All these methods usually
need a threshold value for the anomalous region.

In each iteration, we evaluate the anomaly level of the
samples within the window. Each sample gets a score if it
is classified as an anomaly according to the selected anomaly
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detection method. The scores of each sample are added as the
window moves. This cumulative anomaly score histogram may
be used to determine the anomaly level of a point. Scoring is
used because locally inside a window some samples might
appear anomalous but globally, considering the whole dataset,
they are not. Even if the sample looks like an anomaly in some
windows, it still gets only a few scores globally.

VI. EXPERIMENTAL RESULTS

For the experiment, we use a labeled proprietary dataset
of queries to a web server, which is known to contain some
network attacks. These web queries are in Apache combined
log text file. To extract numerical features from this text file,
only the changing parameter values are used. The frequencies
of 2-grams in these parameters are calculated to a matrix. In
this matrix, the rows represent the log lines, and the columns
represent the different 2-grams we found. The entries in this
matrix count how many times each specific 2-gram appeared
in the parameters of a log line. See [10] for more information
about this dataset and the feature extraction.

The web log we use has 4292 lines and contains 480
different 2-grams. Thus, the feature matrix has dimensions
4292 ⇥ 480. The experiment simulates the initial state when n

samples, or log lines, have arrived. When a new line arrives,
it is added to the current window, while the oldest sample
is removed from the matrix. This is continued until no new
samples are available. The algorithm tracks only the samples
within the window so that the dynamically changing nature of
the data can be followed. As the size of the window does not
change, the eigenpair problem stays reasonably sized.

Anomaly detection with Euclidian distances finds the most
deviating samples within a window. This leads to false alarms
when using simple normalized anomaly metrics because inside
a window a point might look anomalous. Its local abnormality
might be evident, but it should not be classified as one since
globally it is just a small deviation from the normal state. This
fact promotes thresholding the non-normalized but centered
low-dimensional representation d

k

= | 
k

�mean( 

k

)| within
one window using statistical threshold ✓

k

= c · std(d
k

),
where the parameter c has to be adjusted empirically, for each
dimension k in the embedded space.

Figure 1 illustrates the scores each point gets as the sliding
window moves. The number of times the data points are
classified anomalous are plotted against time. The window
width is set to n = 1000. This experiment uses only the second
eigenpair, k = 2,  2 for the low-dimensional presentation.
In our analysis, we use a value of c = 10 for the anomaly
threshold calculation. These scores themselves indicate in how
many windows each sample is considered anomalous: the data
points that are considered attacks are clearly seen from 2500
to 3500. Notice that a sample might be considered anomalous
in several windows, but in the global view it is not an anomaly.
Therefore, we use another threshold, which is the horizontal
red line in the figure. With this setup, we manage to reach an
accuracy of 92.5% and a precision of 99.7% after tuning the
parameters of the algorithm.

Fig. 1. The scores for each point with window size 1000 using the second
eigenvector. The more times the data point is classified anomalous, the higher
the score.
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Abstract—Sampling and perfect reconstruction of Finite rate
of innovation (FRI) signals, which are usually not bandlimited,
was introduced by Vetterli, Marziliano, and Blu [1].

A typical FRI reconstruction algorithm requires solving for
FRI signal parameters from a power-sum series. This in turn re-
quires annihilation filters and polynomial root-finding techniques.
These steps complicate the analysis of FRI signal reconstruction
in the presence of quantization. In this work, we introduce a
three-channel resistor-capacitor filter bank for the acquisition and
reconstruction of FRI signals consisting of stream of Diracs and
nonuniform splines. The effect of quantization error is derived for
our three-channel filter-bank scheme. However, the sampling-rate
required for our scheme is larger than the minimum sampling-
rate of FRI signals.

I. INTRODUCTION

Parametric signals with finite degrees of freedom per unit
time can be nonbandlimited [1]. E.g., for an integer K0 > 0

x(t) =
K0−1∑

k=0

ckδ(t− tk), ck, tk ∈ R, (1)

for all 0 ≤ k ≤ K0 − 1 is a parametric
signal specified by the 2K0 real-valued parameters
{(t0, c0), (t1, c1), . . . , (tK0−1, cK0−1)}. However, the Fourier
bandwidth of x(t) is infinite. If a signal is formed by the
superposition of shifted and scaled versions of a known
pulse, then the shifts and amplitudes of this pulse constitute
its degrees of freedom rather than its Fourier bandwidth.
Parametric signal class is large and it includes piecewise
polynomials and non-uniform splines [1]. Signals, which can
be specified by a finite number (or finite rate) of parameters
are finite rate of innovation (FRI) signals. For an FRI signal,
the degrees of freedom per unit time is the fundamental
quantity to be used for determining the sampling rate [1].

The stream of Dirac delta signals in (1) has been widely
studied due to its applicability in biomedical signal modeling,
ultra-wideband communications, and global positioning sys-
tem (e.g., see [2], [3]). Typically a power sum series has to be
solved to obtain the parameters of an FRI signal. The solution
involves annihilation filter and polynomial root finding [1], [4],
[5], [6]. This approach is not amenable to quantization error
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analysis [7]. To the best of our knowledge, closed-form upper-
bounds for quantization error in FRI signals are not known.

y(nTs)
h(t)

x(t) y(t)

Ts

Fig. 1. The FRI signal acquisition setup of Vetterli et al. [1] is
illustrated. The filter h(t) spreads the spikes thereby making y(t)
suitable for sampling. Typically h(t) is a Gaussian or a sinc-filter.

The acquisition filter h(t) in Fig. 1 is a design choice.
Consider FRI signals consisting of a stream of Dirac delta
signals or nonuniform splines. For these FRI signals, a new
sample acquisition setup consisting of a three channel resistor-
capacitor (RC) filter-bank is proposed in this work. For this
setup, closed-form upper bounds on error in FRI signal param-
eters due to quantization will be derived. Two channel or multi-
channel resistor-capacitor filter banks for the reconstruction
of stream of Diracs or other FRI signals, respectively, have
been considered in the past for perfect reconstruction [8],
[9]. However, these works do not study quantization and a
detailed scheme for the sampling of nonuniform splines have
not been suggested in them. The FRI signal reconstruction
method proposed in this work does not involve a power sum
series. This simplification, though, comes at a faster sampling
rate than the minimum required by FRI signal sampling. 1

Organization: Section II describes the signal model and our
acquisition filter. Related work is reviewed in Section III. Per-
fect reconstruction and quantized reconstruction are discussed
in Section IV. Conclusions are presented in Section V.

II. MODELING ASSUMPTIONS

A finite-duration FRI signal is completely characterized by
a finite number of parameters. Within the wide class of FRI
signals, we consider the following signal model in this work,

x(t) =
K0−1∑

k=0

ck,0δ(t− tk,0) + . . .+

Kp−1∑

k=0

ck,pδ
(p)(t− tk,p)

(2)

1See C1 in Sec. IV-A for the exact condition.
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where δ(r)(t) denotes the rth order derivative of the Dirac
delta signal. The time epochs tk,j $= tl,i if i $= j. Apart
from modeling neural signals, it is also known that non-
uniform splines can be reduced to the form of (2) after
differentiation operations [1]. Due to space constraints, the
signal model will be limited to stream of Dirac delta signal
and its first derivative. The analysis extends in an analogous
fashion to stream of Dirac delta signal and its higher order
derivatives. Denote xm

l := (xl, xl+1, . . . , xm) for m > l.
Given this signal, the parameters {(ci)Ki−1

0 , (ti)
Ki−1
0 }p−1

i=0 are
to be (approximately) obtained from a set of sampled and
quantized values obtained after filtering x(t).

An ideal first-order RC filter will be used to facilitate the
sampling of FRI signal in (2). Its impulse response is

hrc(t) = e−λtu(t),

where λ > 0 is the decay-rate and u(t) is the unit-step
function. This filter is causal and can be implemented by a
circuit consisting of single resistance of value R and single
capacitor of value C. The decay-rate is λ = 1/(RC). This
passive filter is one of the simplest to implement in practice.

III. PRIOR ART

Sampling and perfect reconstruction of FRI signals with
Gaussian and ideal lowpass acquisition filters was recently
studied by Vetterli, Marziliano, and Blu [1]. These filters
transform the problem of unknown Dirac delta signal (or its
derivative) locations tK−1

0 to that of frequency estimation of a
power sum series; the frequencies are estimated using annihila-
tion filters. This method works well for perfect reconstruction.

FRI signal in (1) has been studied in application areas such
as biomedical signal processing, ultra wideband communica-
tions, and global positioning system (e.g., see [2], [3]). Quanti-
zation noise analysis of FRI sampling and reconstruction has
not been addressed [1], [5], [6] since the annihilation filter
and polynomial root finding technique are complicated. Some
quantization and oversampling results pertaining to FRI signal
sampling are known in the literature [10]. Any closed-form
error analysis due to quantization is mostly unsolved to the
best of our knowledge.

In the presence of statistical sensing noise, the estimation of
FRI signal parameters has also been studied in the literature. A
qualitative analysis related to the numerical stability of some
of these algorithms is presented in [5]. Related work includes
the derivation of Cramer-Rao lower bounds for estimated poles
of the power-sum series under additive Gaussian noise in [11].
This analysis, however, is restricted to a maximum of two delta
functions.

IV. FRI SIGNAL RECONSTRUCTION AND QUANTIZATION

Our sampling scheme for FRI signals in (2) is presented
in two parts. Perfect reconstruction is presented first and
quantization analysis is discussed in the later section.

A. Perfect reconstruction of Dirac delta signals with RC filters

Conceptually, a term of the form ckδ(p)(t − tk), with p =
0, 1 has three degrees of freedom, namely, the constant ck, the
unknown order p, and the time instant tk. Three RC-filters in
parallel will be used to identify these three parameters. The
general signal model is given by

x(t) =
K0−1∑

k=0

ck,0δ(t− tk,0) +
K1−1∑

k=0

ck,1δ
(1)(t− tk,1). (3)

where the constants K0,K1 are positive integers. The time
epochs tk,j $= tl,i if i $= j. This signal class is obtained when
piecewise linear signals are subjected to two differentiation
operations. Consider the acquisition system shown in Fig. 2.
There are three parallel RC filters with distinct decay-rate
λ1,λ2, and λ3. These filter outputs will be used to reconstruct
the three degrees of freedom associated with every Dirac delta
signal or its derivative present in x(t).

Ts

y2(nTs)y2(t)

Ts

hrc,2(t)

y3(nTs)
hrc,3(t)

y3(t)

Ts

x(t)
hrc,1(t)

y1(t) y1(nTs)

Fig. 2. The three RC filters in parallel can be used to sample the signal
in (3), provided Ts satisfies Condition C1 and λ1,λ2,λ3 are distinct.

Consider δ(1)(t − t0) as the input to an RC filter. Since
delay and differentiation are linear time-invariant operations,
the output of an RC filter with decay-rate λ1 is given by

dh(t− t0)

dt
=

d
dt

[exp(−λ1(t− t0))u(t− t0)]

= δ(t− t0)− λ1 exp[−λ1(t− t0)]u(t− t0). (4)

Observe that, except at t = t0 and a proportionality constant
dependent on λ1, these outputs are the same as the response
of an RC filter to a Dirac delta signal at t = t0. Define T :=
{t0,0, . . . , t0,K0−1, t1,0, . . . , t1,K1−1}. The set T consists of all
the points where Dirac delta signal or its derivative is present
in the signal x(t). Using linearity and the derivation in (4), it
is straightforward to show that if x(t) in (3) is the input to
the system in Fig. 2, the output of the first filter is given by

y1(t) =
K0−1∑

k=0

ck,0h1(t− tk,0) +
K1−1∑

k=0

ck,1(−λ1)h1(t− tk,1).

The elements of T will be reordered for clarity in the
analysis. Reorder the elements of set T in an ordered set
{t0, t1, . . . , tK−1} where K = K0K1. Due to re-ordering,
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ti = tli,ji for some unique (li, ji) pair for each i. Thus,

y1(t) =
K−1∑

k=0

ckh1(t− tk) = e−λ1t
K−1∑

k=0

cku(t− tk)

for t /∈ T , where ck = clk,jk(−λ1)jk .2 The parameter ck
depends on λ1. The decay-rate λ1 is known but clk,jk and jk
are parameters to be obtained or approximated. After sampling
at nTs and multiplication by eλ1nTs , the following readings
are obtained provided nTs /∈ T :

eλ1nTsy1(nTs) =
K−1∑

k=0

cke
λ1tku(nTs − tk). (5)

Now the following condition is assumed:

C1: Ts < min
i
{ti − ti−1} and nTs $= ti for any i and n.

Under Condition C1, the different levels of the piecewise con-
stant discrete-time signal in (5) reveal the product ckeλttk =
clk,jk(−λ1)jk exp(λ1tlk,jk) one by one for different values of
k = 0, 1, . . . ,K−1. Under Condition C1, there is at least one
sample between consecutive shifted Dirac or its derivative in
x(t); thus, for each Dirac or its derivative at ti an integer
Ni ∈ Z exists such that

eλ1NiTsy1(NiTs)− eλ1Ni−1Tsy1(Ni−1Ts)

= cli,ji(−λ1)
jieλ1tli,ji . (6)

The value of λ1 is known. The following result of interest is
stated and proved next. All the logarithms have base e.

Proposition 4.1: Assume that three RC-filters in parallel
operate with distinct (λ1,λ2,λ3) and sampling rate Ts satisfies
Condition C1. Then there exist indices Ni, i = 0, 1, . . . ,K−1
such that eλ1NiTsy1(NiTs) =

∑i
k=0 ck exp(λ1tk). Define

dm(i) := eλmNiTsym(NiTs) − eλmNi−1Tsym(Ni−1Ts) for
m = 1, 2, 3. Choose (λ2)2 = λ1λ3. Then the parameters of
x(t) in (3) are given by the following set of equations,

tli,ji =
1

λ1 + λ3 − 2λ2
log

[
d1(i)d3(i)

d22(i)

]
, (7)

ji =
1

log
(

λ1
λ2

)
[
log

[
d1(i)

d2(i)

]
+ (λ2 − λ1)tli,ji

]
, (8)

and ci = (−λ1)
jicli,ji =

d1(i)

eλ1tli,ji
. (9)

Proof: The existence of Ni has been argued while deriv-
ing (6); it follows from the definition of the unit-step function
and (5). In the following equations, m takes the values 1, 2, 3.
The output of the three channels in Fig. 2 are given by,

ym(NiTs) = e−λmNiTs

i∑

k=0

cke
λmtk ,

or eλmNiTsyj(NiTs) =
i∑

k=0

cke
λmtk .

2At locations mentioned in this set T , Dirac delta signal and its derivatives
are present.

Upon successive subtraction, we get

dm(i) = eλmNiTsym(NiTs)− eλmNi−1Tsym(Ni−1Ts)

= ck exp(λmtk). (10)

The equations in (7), (8), and (9) follow from (10) by
simple algebraic manipulations and using λ2

2 = λ1λ3. Since
λ1,λ2,λ3 are in geometric progression. The arithmetic mean
of two unequal numbers is great than their geometric mean.
Hence, λ1+λ3 > 2λ2. This ensures that the expression in (7)
is well defined.

B. Quantization error in RC filter sampling scheme
In this section, it is assumed that ym(nTs) values are quan-

tized. Bounds on approximated parameters obtained through
Proposition 4.1 will be derived. To work with scalar quantizers
and maximum pointwise error, it is assumed that |ym(t)| is
bounded. Without loss of generality, |ym(t)| ≤ 1 for all t ∈ R.
A uniform scalar quantizer will be assumed for analysis, where
the quantizer precision is L-bits [12]. Let ŷm(nTs) be the
quantized value of ym(nTs). Define em(nTs) := ŷm(nTs) −
ym(nTs) Then, the following pointwise bound

|em(nTs)| = |ŷm(nTs)− ym(nTs)| ≤ 2−L

holds for uniform scalar quantizer [12]. With quantized sam-
ples ŷm(nTs), the approximate variables dm(i) have an error

|d̂m(i)− dm(i)|
= |eλmNiTsem(NiTs)− eλmNi−1Tsem(Ni−1Ts)|.

The FRI signal parameters can be approximated as follows:

t̂li,ji =
1

λ1 + λ3 − 2λ2
log

[
d̂1(i)d̂3(i)

d̂22(i)

]
, (11)

ĵi =
1

log
(

λ1
λ2

)
[
log

(
d̂1(i)

d̂2(i)

)
+ (λ2 − λ1)t̂li,ji

]
, (12)

and ĉli = (−λ1)
ĵi ĉli,ji =

d̂1(i)

exp(λ1t̂li,ji)
. (13)

Note that d̂m(NiTs) = ci(m)eλmti + em(NiTs)eλmNiTs −
em(Ni−1Ts)eλmNi−1Ts . The constant ci depends on m
through λm for m = 1, 2, 3. The main result is stated next.

Theorem 4.1: Let ŷm(nTs) be available with Ts satisfying
Condition C1 and m = 1, 2, 3. Let λ1,λ2,λ3 be distinct.
Define the approximations for FRI signal parameters as in
(11) and (13). Denote ∆ := λ1 + λ3 − 2λ2. Then,

|t̂i − ti| ≤ − 4

∆
min
m

log

[
1− 2−L(1 + eλmTs)

|ci(m)|

]

and
∣∣∣∣
ĉi(m)− ci(m)

ci(m)

∣∣∣∣

≤
[
1 +

2−L(1 + eλmTs)

|ci(m)|

] [
1− 2−L(1 + eλm∗Ts)

|ci(m∗)|

]−4λm
∆

− 1,

where m∗ is obtained by maximization as discussed in proof.
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Proof: The proof omits algebraic steps for brevity. Define

βm,i :=
em(NiTs)eλm[NiTs−ti] − em(Ni−1Ts)eλm[Ni−1Ts−ti]

ci(m)
.

Then

|βm,i| ≤
2−L|eλm[NiTs−ti]|+ 2−L|eλm[Ni−1Ts−ti]|

|ci(m)|

≤ 2−L(1 + eλmTs)

|ci(m)| (14)

since Ni can be chosen such that 0 < NiTs − ti < Ts. Using
quantized estimates d̂m(i), we get

d̂1(NiTs)

d̂2(NiTs)
=

ci(1)

ci(2)
e(λ1−λ2)ti

[
1 + β1,i

1 + β2,i

]
.

Similarly,

d̂3(NiTs)

d̂2(NiTs)
=

ci(3)

ci(2)
e(λ3−λ2)ti

[
1 + β3,i

1 + β2,i

]
.

Note that ci(1)ci(3) = (ci(2))2. Therefore,

d̂1(NiTs)d̂3(NiTs)

d̂22(NiTs)
= e(λ1+λ3−2λ2)ti

[
(1 + β1,i)(1 + β3,i)

(1 + β2,i)2

]
.

Taking logarithms on both sides, we get

|t̂i − ti| =
1

∆

∣∣∣∣log
[
(1 + β1,i)(1 + β3,i)

(1 + β2,i)2

]∣∣∣∣ .

≤ −4

∆
min
m

log

[
1− 2−L(1 + eλmTs)

|ci(m)|

]
.

=
−4

∆
log

[
1− 2−L(1 + eλm∗Ts)

|ci(m∗)|

]

The last inequality utilizes the inequality | log(1 + x)| ≤
− log(1 − x0) for all |x| ≤ x0. For very large values of
L, note that the error is decaying exponentially in L as
log(1− x) ≈ −x for very small values of x.

The error in ĉi(m) will be derived now. From the definition
of βm,i

ĉi(m) = ci(m)eλm(ti−t̂i)[1 + βm,i].

or
ĉi(m)− ci(m)

ci(m)
= eλm(ti−t̂i)[1 + βm,i]− 1.

Thus,
∣∣∣∣
ĉm,i − cm,i

cm,i

∣∣∣∣ = |eλm(ti−t̂i)[1 + βm,i]− 1|

≤ |eλm(ti−t̂i) − 1|+ |βm,ie
λm(ti−t̂i)|

Now we note that |eθ − 1| ≤ e|θ| − 1 for any θ. Therefore,
∣∣∣∣
ĉi(m)− ci(m)

ci(m)

∣∣∣∣

≤ eλm|ti−t̂i| − 1 + |βm,i|eλm|ti−t̂i|

≤ (1 + |βm,i|)
[
1− 2−L(1 + eλm∗Ts)

|ci(m∗)|

]−4λm/∆

− 1.

Substituting the upper-bound on βm,i from (14),
∣∣∣∣
ĉi(m)− ci(m)

ci(m)

∣∣∣∣

≤
[
1 +

2−L(1 + eλmTs)

|ci(m)|

] [
1− 2−L(1 + eλm∗Ts)

|ci(m∗)|

]−4λm
∆

− 1.

As for t̂i, if L is very large, then the error in ĉi(m) is
proportional to 2−L.

It must be noted that ĵi is either 0 or 1. For large-enough
L, this parameter can be recovered exactly since ji is discrete.
Due to space constraints the derivations for ĵi and condition
on L under which it can be recovered exactly is omitted.

V. CONCLUSIONS

In this work, a new sample acquisition method for sampling
and reconstruction of an important class of FRI signals was
explored. The new method, consisting of RC filters in parallel,
studied in this work does not require solving a power-sum
series, and ensuing annihilation filters or polynomial root
finding, to obtain the FRI signal parameters. The effect of
quantization error, in terms of upper bound on parameter
reconstruction error, was addressed for our setup. Quantization
error bounds are not available with the power-sum series
approach. If L bits are used for quantizing each sample, then
the reconstruction error was shown to be eventually decreasing
as 2−L. However, the sampling-rate required for our scheme
is larger than the minimum sampling-rate of FRI signals.
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Abstract—Many manifold learning methods require the estimation of
the tangent space of the manifold at a point from locally available
data samples. Local sampling conditions such as (i) the size of the
neighborhood and (ii) the number of samples in the neighborhood affect
the performance of learning algorithms. In this paper, we propose a
theoretical analysis of local sampling conditions for the estimation of
the tangent space at a point P lying on an m-dimensional Riemannian
manifold S in Rn. Assuming a smooth embedding of S in Rn, we estimate
the tangent space T

P

S by performing a Principal Component Analysis
(PCA) on points sampled from the neighborhood of P on S. Our analysis
explicitly takes into account the second order properties of the manifold
at P , namely the principal curvatures as well as the higher order terms.
Considering a random sampling framework, we leverage recent results
from random matrix theory to derive local sampling conditions for an
accurate estimation of tangent subspace. Our main results state that
the width of the sampling region in the tangent space guaranteeing an
accurate estimation is inversely proportional to the manifold dimension,
curvature, and the square root of the ambient space dimension. At the
same time, we show that the number of samples increases quadratically
with the manifold dimension and logarithmically with the ambient space
dimension.

I. INTRODUCTION

A data set that resides in a high-dimensional Euclidean space
and that is locally homeomorphic to a lower-dimensional Euclidean
space constitutes a manifold. For example, a set of signals that is
representable by a parametric model, such as parametrizable visual
signals or acoustic signals forms a manifold. Data manifolds are
however rarely given in an explicit form. The recovery of low-
dimensional structures underlying a set of data, also known as
manifold learning, has thus been a popular research problem in
the recent years [1], [2], [3]. Importantly, most manifold learning
methods rely on the assumption that the data has a locally linear
structure. Of course, for such an assumption to be valid at some
reference point on the manifold, one has to take into account (i) the
size of the neighborhood from which the samples are chosen and
also, (ii) the number of neighborhood points. For instance, if the
manifold is a linear subspace, then the neighborhood can be chosen
to be arbitrarily large and the number of samples needs to be simply
greater than the dimension of the manifold. However, most manifolds
are typically nonlinear, which prevents the selection of an arbitrarily
large neighborhood size. Hence, one might expect the existence of
an upper bound on the neighborhood size for a given estimation
accuracy. Furthermore, the number of necessary samples is likely to
vary according to the local characteristics of the manifold. In this
work, we present an analysis of the sampling problem and derive
conditions on the size of the sampling region and the number of
samples for an accurate estimation of the tangent space.

This work has been performed while the first author was with the Signal
Processing Laboratory LTS4 at EPFL.

The work has been partly funded by the Swiss National Science Foundation
under Grant 200020-132772.

There are many examples of dimensionality reduction algorithms
such as [3], [4], [5], [6], which apply a local Principal Component
Analysis (PCA) for the computation of the tangent space of the
manifold. The performance of Singular Value Decomposition (SVD)
or PCA under noise is a well-studied topic (see [7], [8], [9] and
references within). However these studies do not involve the geomet-
ric structure of the data. Only a few recent works have studied the
relation between PCA performance and data geometry. The work
in [10] generalizes the idea of diffusion maps in dimensionality
reduction [11] to vector diffusion maps. As part of their analysis,
the authors have shown in particular that when the size " of the
local area for tangent space estimation is set to " = O(K� 1

m+2
)

with K being the number of samples on the whole manifold and
m being the dimension of the manifold, then the deviation between
the estimated and the true tangent space is typically O("3/2

). Their
work however considers a global sampling from a compact manifold
while we focus here on the local manifold geometry. Finally, the
accuracy of tangent space estimation from noisy manifold samples
is analyzed in a work parallel to ours [12]. This study focuses on
manifolds that are embedded with exactly quadratic forms and poses
the sampling problem as the selection of a subset of samples from
a set of noisy samples given a priori. On the contrary, we analyze
more generic embeddings with arbitrary smooth functions and we
aim at characterizing a sampling strategy in terms of the sampling
width and density for noiseless manifold samples.

Our contribution in this paper can be summarized as follows.
Firstly, we determine a suitable upper bound on the size of the
neighborhood in the tangent space within which the manifold can be
sampled randomly. In the derivation of this bound, we consider the
asymptotic case K !1 with arbitrarily many manifold samples so
that the neighborhood size purely depends on the manifold geometry.
In particular, our analysis depends on (i) the maximum principal
curvature of the manifold and (ii) the deviation of the manifold
from its second-order approximation. Secondly, we compute a bound
on the minimum number of samples for accurate tangent space
estimation, given that the sampling is performed randomly in a
neighborhood whose size conforms with the aforementioned bound.
To this end, we utilize recent results from random matrix theory
[13], [14]. Combining the two above results, we give a complete
characterization of the local sampling conditions in Theorem 1.

The rest of the paper is organized as follows. Section II contains
the formal outline of the problem. In Section III we present the main
results along with a discussion. In Section IV we provide concluding
remarks and possible directions for future work.

II. PROBLEM SETUP

We consider an m-dimensional submanifold S of Rn with a
smooth embedding in Rn, n � m + 1. Let P 2 S be a manifold
point and N

"

(P ) denote an "-neighbourhood of P on S for some
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" > 0

N
"

(P ) = {M 2 S : kM � P k2  "}

where k . k2 stands for the `2-norm in Rn. Let T
P

S denote the
tangent space at P .

In our analysis, we represent the points in N
"

(P ) via tangent space
parameterization using local functions f

l

: T
P

S ! R. There exists
an " such that all points M 2 N

"

(P ) can be uniquely represented
in the form

[x̄T f1(x̄) . . . f
n�m

(x̄)]

T . (II.1)

Here x̄ = [x1 . . . x
m

]

T denotes the coordinates of the orthogonal
projection of manifold points onto T

P

S. Note that, in (II.1), the
coordinates are given with respect to the reference manifold point
P , which is taken as the local origin. Furthermore, aligning the coor-
dinate system with the tangent space at P , T

P

S can be represented
as

T
P

S = span {ē1, . . . , ēm

} ,

where ē
j

2 Rn denote the canonical vectors. Now, we further assume
the smoothness of the embedding to be Cr, r > 2, implying that each

f
l

: T
P

S ! R, l = 1, . . . , n�m,

is a Cr-smooth function in the variables (x1, . . . , xm

). Since
rf

l

(

¯

0) =

¯

0, we have the following identity by the Taylor expansion
of f

l

around the origin (P )

f
l

(x̄) = f
q,l

(x̄) + R
l

(x̄); l = 1, . . . , n�m (II.2)

where f
q,l

is a quadratic form and R
l

(x̄) is the remainder term of
O(k x̄ k32). The Hessian of f

l

at the local origin P can be represented
as

r2f
l

(

¯

0) = V
l

⇤

l

V T

l

,

where ⇤

l

= diag(K
l,1, . . . ,Kl,m

) and K
l,1, . . . ,Kl,m

are the prin-
cipal curvatures of the hypersurface

S
l

=

�
[x̄T f

l

(x̄)] : x̄ 2 T
P

S
 
⇢ Rm+1

defined by f
l

. We then define the maximum principal curvature at P
as K

max

:= K
l

0
,j

0 where (l0, j0) = argmax

l,j

|K
l,j

|. We consider

that the tangent space is estimated from sample points in N
"

(P )

through a PCA decomposition. More precisely, let us consider K
points {P

i

}K

i=1 sampled from N
"

(P ). Let M (K) denote the local
covariance matrix where

M (K)
=

KX

i=1

1

K
P

i

P T

i

= U⇤UT .

The matrices U and ⇤ 2 Rn represent respectively the eigenvector
and eigenvalue matrices of M (K) where

U = [ū1 . . . ū
m

. . . ū
n

]; ⇤ = diag(�1, . . . �m

, . . . �
n

),

with the ordering �1 � · · · � �
m

� · · · � �
n

. The optimal m-
dimensional linear subspace at P in the least squares sense is then
given by the span of the m largest eigenvectors of M (K), i.e.,

bT
P

S := span {ū1, . . . , ūm

} .

Hence, bT
P

S is the estimation of the true tangent space T
P

S at P
with PCA. This is illustrated in Fig. 1. Finally, we characterize the
accuracy of the tangent space estimation with the angle between bT

P

S
and T

P

S, where we use the angle definition given in [15].
We can now state our problem formally. Given the above setting,

we want to describe the conditions on the manifold samples {P
i

}K

i=1

P

P
2

P

P
1

P
2

P
3

T  SP

T  SP
^

N (P)
E

Fig. 1. The true tangent space T
P

S and the estimated tangent space bT
P

S
at point P .

such that for a given error bound � 2 (0, ⇡

2 ) on the tangent space
estimation,

|\bT
P

S, T
P

S| < � <
⇡

2

is ensured. In particular, for a given error bound �, we would like to
answer the following questions:

• Question 1: What would be a suitable upper bound on the
sampling distance; i.e., the distance from P

i

to P ?
• Question 2: Given that the points {P

i

}K

i=1 are sampled such
that the sampling distance satisfies the sampling distance bound,
what would be a suitable lower bound on the sampling density

K?
In particular, for large embeddding dimensions n, we would like

to determine the the dependency of the above bounds on n, m and
K

max

. In order to address these questions, we consider a random
sampling framework where we assume that the coordinates of the
orthogonal projections of manifold samples on T

P

S are distributed
uniformly in the region [�⌫, ⌫]

m 2 T
P

S. In other words, we assume
that

x
(i)
j

⇠ U [�⌫, ⌫] i.i.d. i = 1, . . . , K; j = 1, . . . , m

where U denotes the uniform distribution. Therefore, we characterize
the sampling distance in Question 1 by the parameter ⌫, which we
shall refer to as the sampling width in our analysis.

III. MAIN RESULTS

We now present our main results regarding the sampling of a
smooth manifold. First, since we consider the sampling of f

l

(x̄) over
the compact region [�⌫, ⌫]

m, R
l

(x̄) is bounded over this region.
Therefore, for each l there exists a constant C

s,l

> 0 such that

|R
l

(x̄)| < C
s,l

k x̄ k32 l = 1, . . . , n�m,

where C
s,l

depends on the magnitude of the third order derivatives
of f

l

in N
"

(P ). We denote

C
s

= max

l

C
s,l

, l = 1, . . . , n�m.

The empirical covariance matrix M (K) corresponding to the sam-
ples {P

i

}K

i=1 is in the form M (K)
= M

(K)
q

+ �

(K)

M (K)
q

=


A(K) B(K)

B(K)T
D(K)

�
, �

(K)
=


0 B

(K)
1

B
(K)T

1 D
(K)
1

�
.

Here M
(K)
q

is the covariance matrix associated with the quadratic
components f

q,l

(x̄) of the embeddings. The m ⇥ m matrix A(K)

gives the covariance of the tangential components x̄
i

of data points
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P
i

. As K ! 1, the matrix A(K) ! ⌫

2

3 I
m⇥m

approaches a
scaled version of the identity matrix; and therefore, the column space
of A(K) approaches the true tangent space T

P

S. The submatrices
B(K) and D(K) represent the error on account of the nonzero
manifold curvature at P , which stems from the second-order terms
f

q,l

. Meanwhile, �

(K) is an additional error term resulting from the
higher-order Taylor terms R

l

of the mappings f
l

. We give the explicit
formulation of B

(K)
1 and D

(K)
1 in [16, Section 4.4] and show that

their Frobenius norms kB(K)
1 k

F

and kD(K)
1 k

F

can be bounded as

k B
(K)
1 k

F

< k B1 kF,bound

:=

p
m(n�m)C

s

m3/2⌫4,

k D
(K)
1 k

F

< k D1 kF,bound

:= (n�m)C
s

m5/2⌫5
(C

s

m1/2⌫ + |K
max

|).

Now let us denote

B1 = E[B
(K)
1 ], D1 = E[D

(K)
1 ], and � = E[�

(K)
].

Due to the ergodicity of the sampling process, we have B1 =

lim

K!1B
(K)
1 , D1 = lim

K!1D
(K)
1 , and � = lim

K!1�

(K).
Consequently, one can show that [16]

kB1kF

< kB1kF,bound

, kD1kF

< kD1kF,bound

.

Equipped with the above definitions and properties, we are now
ready to state our main results about the sampling of smooth mani-
folds. We characterize the sampling conditions for accurate tangent
space estimation by first defining a region of sampling in the tangent
space and then determining the number of samples to be chosen
from this region. We begin with the region of sampling and present
in Lemma 1 the conditions on the sampling width ⌫ that guarantee
an upper bound on the angle between bT

P

S and T
P

S, provided that
the number of samples is arbitrarily large.

Lemma 1: Let the sampling width satisfy

⌫ <
1

[3((�2 + RL) + �3↵ + �4↵2
)]

1/2

where �2 = 4C
s

m2
(n � m)

1/2, �3 = 2(n � m)C
s

m5/2|K
max

|,
�4 = 2(n�m)m3C2

s

,

R = n�m, L =

m(5m + 4)|K
max

|2

180

and

↵ = min

�
(3(�2 + RL))

�1/2, (3�3)
�1/3, (3�4)

�1/4
 

.

Then, as K !1,

P
⇣
|\bT

P

S, T
P

S| > cos

�1
p

(1�m�21)

m

⌘
! 0

where

�1 =

k B1 kF,bound

⌫

2

3 �RL⌫4 � 2(k B1 kF,bound

+ k D1 kF,bound

)

.

The proof of Lemma 1 is presented in [16, Appendix A.4]. The
stated result is derived from the condition that the spectrum associated
with ⌫

2

3 I
m

, whose corresponding eigenvectors give the true tangent
space T

P

S, is separated from the spectrum of the error. There are
two sources of error here; namely, the curvature components f

q,l

which give rise to the correlation matrix D = lim

K!1D(K)

and the higher-order terms R
l

yielding the perturbation matrix
�. The lemma states that the angle |\bT

P

S, T
P

S| between the
estimated and true tangent spaces converges to the residual bound
cos

�1
p

(1�m�21)

m as the number of samples tends to infinity.
The error term m�2

1 can be interpreted as the bias error resulting

from the fact that a smooth embedding has a non-symmetric structure
around the origin in general. In particular, it is easily verifiable that
�1 ! 0 as ⌫ ! 0; i.e., the bias approaches zero as the sampling
width shrinks to 0. Also note that, when the f

l

’s are quadratic forms,
this bias term vanishes to yield �1 = 0, which is due to the symmetry
of quadratic forms around the origin [16].

We now proceed to the finite sampling case K < 1 and give
our complete main result. In Theorem 1, we state the sufficient
conditions on the sampling width ⌫ and the number of samples K,
such that the deviation |\bT

P

S, T
P

S| is suitably upper bounded with
high probability.

Theorem 1: Let s1 2 (0, 1) and s2 > e be fixed constants. Assume
that the sampling width ⌫ is such that

⌫ <

✓
s1

3[(�2 + s2RL) + �3↵ + �4↵2
]

◆1/2

.

For some ⌧ 2 (0, 1), let s3 > 0 be chosen such that

s3 <[(s1
⌫2

3

� s2RL⌫4
)� 2(k B1 kF,bound

+ k D1 kF,bound

)]

✓
⌧2

m
+ �2

f

◆1/2

� k B1 kF,bound

where

�
f

=

k B1 kF,bound

(s1
⌫

2

3 � s2RL⌫4
)� 2(k B1 kF,bound

+ k D1 kF,bound

)

.

Finally, let 0 < p1, p2, p3 < 1. Assume that the num-
ber of samples satisfies K > K

bound

, where K
bound

=

max{K(1)
bound

, K
(2)
bound

, K
(3)
bound

}

K
(1)
bound

=

6R
M

(1� s1)
2

log ((n�m + 1)/p1) ,

K
(2)
bound

=

R
D

s2RL

log((n�m)/p2)

log(s2/e)
,

K
(3)
bound

=

⌫6R
�

+

RB⌫

3
s3

3

s2
3/2

log(n/p3)

and

R
M

= m +

1

4

(n�m)m2⌫2|K
max

|2

R
D

=

1

4

(n�m)m2|K
max

|2, R
B

=

1

2

m3/2pn�m|K
max

|

R
�

=

m2|K
max

|2

12

max

⇢
(n�m),

R(5m + 4)

15

�
.

Then, with probability larger than 1� p1 � p2 � p3,

|\bT
P

S, T
P

S| < cos

�1
q

(1� ⌧2 �m�2
f

)

m.

The proof of Theorem 1 is presented in [16, Appendix A.5]. The
theorem builds on Lemma 1 that considers the case K !1. In the
proof of the theorem, in order to account for finite K, we use the
results of [13], [14] in order to probabilistically bound how much the
tangent space estimated with K samples deviates from the tangent
space in Lemma 1 estimated with infinitely many samples. The
parameters s

i

are used to make the link between the estimation error
and the sampling conditions (sampling width and sampling density),
whereas the probability constants p

i

establish the relation between
the error probability and the sampling density K.

Note that the tangent space estimation error in this case consists of
two terms - the variance term ⌧ due to finite sampling and the bias
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term �
f

resulting from the asymmetric manifold geometry, which is
the probabilistic counterpart of the bias term �1 in Lemma 1. In
particular, the number of samples K is related to the variance term
⌧ through the parameter s3, such that a larger number of samples
decreases the variance, bringing thus the estimation error closer to
its asymptotic value given in Lemma 1.

Remark: Let us now interpret our results with respect to the
variation of the sampling conditions with the manifold param-
eters. As shown in [16], the results of our analysis translate
into the fact that the choices ⌫ = O(n�1/2m�1|K

max

|�1
) and

K = O(⌧�2m2
log n) ensure for large n that |\bT

P

S, T
P

S| <

cos

�1
p

(1� ⌧2 �O(n�1m|K
max

|�4
))

m holds w.h.p. In this
work, the sampling width ⌫ is measured on the tangent
space T

P

S. However, using the estimation k.k
ambient space

⇡
O(k.k

tangent space

p
n/m), we see that the stated bound on ⌫

implies that the sampling width measured in the ambient space
must change at the rate O(⌫

p
n/m) = O(m�3/2|K

max

|�1
).

This practically means that, when applying PCA, the size of the
neighborhood around a reference point in the ambient space must
get smaller as the intrinsic dimension m or the curvature K

max

of
the manifold increases, whereas it is not affected by the ambient
space dimension n. On the other hand, the number of samples K
increases quadratically with m and logarithmically with n.

Let us now briefly discuss the usage of our results with regards
to two important application areas, namely (i) the discretization of a
manifold with a known parametric model - manifold sampling and
(ii) the recovery of the tangent space of a manifold from a given
set of data samples - manifold learning. In order to use our results
in a real application, the intrinsic dimension m of the manifold,
the curvature parameter K

max

, and the higher-order deviation term
C

s

have to be known or estimated. First, in a manifold sampling
application, m is already known and it is possible to estimate K

max

in the following ways. If the manifold conforms to a known analytic
model, it is easy to compute the values of the principal curvatures
and the higher-order terms from the Taylor expansion of the model.
If an analytic model is not known for the manifold, the curvature
of a manifold of known parameterization can be estimated using
results from Riemannian geometry such as [17, Section V] and [18,
Proposition 2]. On the other hand, in a manifold learning application
where only data samples are available, m, K

max

and C
s

are unknown
and need to be estimated. The estimation of the intrinsic dimension
of a data set has been studied in several works such as [19], [20] and
[21]. It is also possible to obtain an estimate of the curvature and the
deviation term C

s

from data samples using results such as in [22].

IV. CONCLUSIONS

We have presented a theoretical analysis of the tangent space
estimation at a point on a submanifold of Rn from a set of manifold
samples that are selected locally at random. We have considered
a setting where the manifold is embedded smoothly in Rn and
the tangent space is estimated with local PCA. We have derived
relations between the accuracy of the tangent space estimation and
the sampling conditions. In particular, we have examined the effect
of the local curvature of the manifold in tangent space estimation and
shown that the size of the sampling neighborhood shall be inversely
proportional to the manifold curvature. The presented study can be
used for obtaining performance guarantees in the discretization of
parametrizable data and in manifold learning applications. Finally,
our analysis assumes that the data samples are noiseless, i.e., the
data lies exactly on the manifold. A future research direction resides

therefore in the extension of the current results to a scenario where
data samples are corrupted with noise.
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Abstract—An interesting topic in compressive sensing concerns

problems of sensing and recovering signals with sparse repre-

sentations in a dictionary. In this note, we study conditions of

sensing matrices A for the `1-synthesis method to accurately

recover sparse, or nearly sparse signals in a given dictionary

D. In particular, we propose a dictionary based null space

property (D-NSP) which, to the best of our knowledge, is the

first sufficient and necessary condition for the success of the `1

recovery. This new property is then utilized to detect some of

those dictionaries whose sparse families cannot be compressed

universally. Moreover, when the dictionary is of full spark, we

show that AD being NSP, which is well-known to be only

sufficient for stable recovery via `1-synthesis method, is necessary

as well.

I. INTRODUCTION

Compressed sensing concerns the problem of recovering a
sparse signal x0 2 Cd from its undersampled linear measure-
ments y = Ax0 2 Cm, where the number of measurements m
is usually much less than the ambient dimension d. A vector
is said to be k-sparse if it has at most k nonzero entries.
The following linear optimization algorithm, also known as the
Basis Pursuit, can reconstruct x0 efficiently from a perturbed
observation y = Ax0 + w where kwk2  ✏ [8][4]:

x̂ = arg min
x2R

d
kxk1, subject to ky �Axk2  ✏. (1)

A primary task of compressed sensing is to choose appro-
priate sensing matrix A in order to achieve good performance
of (1). A matrix A is said to have the Restricted isometry
property (RIP) with order k if

(1� �)kxk22  kAxk22  (1 + �)kxk22 (2)

for any k-sparse vectors x. RIP is shown to provide stable
reconstruction of approximately sparse signals via (1) [5][8].
Moreover, many random matrices satisfy RIP with high prob-
ability [6], [14]. A matrix A is said to have the Null space
property of order k (k-NSP) if

8v 2 kerA\{0}, 8|T |  k, kv
T

k1 < kv
T

ck1.

NSP is known as a characterization of uniqueness of problem
(1) when there is no noise [10]. It has also been proven that
the NSP matrices admit a similar stability result as RIP does
except that the constants may be larger [1].

A recent direction of interest in compressed sensing con-
cerns problems where signals are sparse in an overcomplete

dictionary D instead of a basis, see [3], [13], [10], [11], [1],
[12], [9]. This is motivated by the widespread use of overcom-
plete dictionaries in signal processing and data analysis. Many
signals naturally possess sparse frame coefficients, such as
images consisting of curves (curvelet frame). In addition, the
greater flexibility and stability of frames make them preferable
for practical purposes in order to compensate the imperfectness
of measurements. In this setting, the signal x0 2 Cd can be
represented as x0 = Dz0, where z0 is k-sparse and D is a
d⇥ n matrix with n � d. The columns of D may be thought
of as an overcomplete frame or dictionary for Cd. The linear
measurements are y = Ax0.

A natual way to recover x0 from y is first solving

ẑ = arg min
z2R

n
kzk1, subject to y = ADz. (3)

for the sparse coefficients ẑ, then synthesizing it to obtain
x̂, i.e., x̂ = Dẑ. The resulting method is therefore called
`1-synthesis or synthesis based method [11], [13]. Since we
are only seeking the recovery of x0, we say the `1-synthesis
method (3) is successful when every minimizer ẑ of (3)
satisfies Dẑ = x0.

In the case when the measurements are perturbed, we
naturally solve the following:

ẑ = arg min
z2R

n
kzk1, subject to ky �ADzk  ✏. (4)

The work in [13] established conditions on A and D to
make the compound AD satisfy RIP. However, as pointed
in [3], [11], forcing AD to satisfy RIP or even the weaker
NSP implies the exact recovery of both z0 and x0, which is
unnecessary if we only care about obtaining a good estimate of
x0. In particular, if D is perfectly correlated (has two identical
columns), then there are infinitely many minimizers of (3) that
may be assigned to ẑ, but all of them lead to the true signal
x0. It seems reasonable to expect that similar result may hold
in the case of highly correlated dictionaries, since they are
only a small perturbation away from the perfectly correlated
ones.

A. Overview and main results

In this paper, we generalize the ordinary null space property
to the dictionary case (D-NSP), and prove in Theorem II.1
that this new condition is equivalent to the accurate recovery
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of sparse signals in dictionaries via `1-synthesis. Moreover, a
stability result is given in Theorem III.1. To the best of our
knowledge, these results are the first characterization of com-
pressed sensing with dictionaries via `1-synthesis approach.

Section IV studies more properties of D-NSP, and shows
that A has D-NSP is equivalent to AD has NSP as long as D is
of full spark (every d columns of D are linearly independent).
As a consequence, under the full spark assumption, the `1-
synthesis method cannot accurately recover the signals without
accurate recoveries of their sparse representations, therefore an
incoherent dictionary is needed under this circumstance.

All proofs of the theorems presented can be found in [7],
while some proofs are provided here.

II. A SUFFICIENT AND NECESSARY CONDITION FOR
NOISELESS SPARSE RECOVERY

In this section, we develop a sufficient and necessary
condition for the success of `1-synthesis method (3).We show
that the following property on A is a necessary and sufficient
condition for successfully recovering all signals in D⌃

s

via
(3), where D⌃

k

= {x : 9 z, such that x = Dz, kzk0  k} is
the set of signals that have k-sparse representations in D.

Definition 1 (Null space property of a dictionary D (D-NSP)).
Fix a dictionary D 2 Cd,n, a matrix A 2 Cm,d is said to
satisfy the D-NSP of order k (k-D-NSP) if for any index set
T with |T |  k, and any v 2 D�1(kerA\{0}), there exists
u 2 kerD, such that

kv
T

+ uk1 < kv
T

ck1. (5)

Theorem II.1. D-NSP is a necessary and sufficient condition
for `1-synthesis (3) to successfully recover all signals in the
set D⌃

k

.

Proof: Necessary part. We need to show that, if from
measurements taken by a sensing matrix A, `1-synthesis is
successful in recovering all signals in D⌃

k

, then A must be
k-D-NSP.

For any v 2 D�1(kerA/{0}) and any index set T with
|T | = k, we define x0 = Dv

T

be a signal in D⌃
k

, y = Ax0

be its measurements, and let x̂, ẑ be the reconstructed signal
and its coefficients from y via (3). If `1-synthesis is successful
for all signals in D⌃

k

, then we must have x̂ = x0, and so
ẑ = v

T

+ u with some u 2 kerD.
Observe that v

T

� v is also feasible to (3), but it is not
a minimizer since it cannot be representated in the form of
v
T

+ u with any u 2 kerD. Therefore, its `1 norm is strictly
greater than that of ẑ:

kv
T

+ uk1 < kv
T

� vk1 = kv
T

ck1,

implying A is k-D-NSP.
Sufficient part. Assuming A is k-D-NSP, we will show that

the `1 synthesis can recover all signals x 2 D⌃
k

from y = Ax.
Suppose to the contrary that there exists an x0 = Dz0 2 D⌃

k

,
such that its reconstruction x̂ = Dẑ is wrong. Then we must
have v := z0� ẑ 2 D�1(kerA/{0}). Let T be the support of

z0, by D-NSP, therefore there exists a u 2 kerD, such that
kv

T

+ uk1 < kv
T

ck1, i.e., kz0 � ẑ
T

+ uk1 < kẑ
T

ck1. Hence,

kz0+uk1  kz0�ẑ
T

+uk1+kẑ
T

k1 < kẑ
T

ck1+kẑ
T

k1 = kẑk1.

This is a contradicts to the assumption that ẑ is a minimizer.

Notice when D is the canonical basis of Cd, the D-NSP
is reduced to the normal NSP with the same order. In other
words, D-NSP is a generalization of NSP for the dictionary
case. It is, however, a nontrivial generalization.

The intuition of D-NSP rises from the fact that we are only
interested in recovering x0 instead of the representation z0.
As long as the minimizer ẑ lies in the affine plane z0+kerD,
our reconstruction is a success.

III. D-NSP BASED STABILITY ANALYSIS

It is known that the NSP is a sufficient and necessary
condition not only for the sparse and noiseless recovery, but
also for compressible signals with noisy measurement [1],
[15]. However, the stability analysis of NSP [1] cannot be
easily generalized to our case because essentially we need the
function f(v) = (kv

T

ck1�kv
T

+uk1)/kDvk2 to be bounded
away from zero. In the basis case, we have knowledge of f(v)
on a compact set, and consequently the extreme value theorem
can be applied to prove the exisitence of a positive lower
bound. In our case we do not have a compact set, therefore
other constructions to overcome this difficulty is necessary.

Definition 2 (Strong null space property of a dictionary D
(D-SNSP)). A sensing matrix A is said to have the strong
null space property with respect to D of order k (k-D-SNSP)
if for any index set T with |T |  k, and any v 2 ker(AD),
there exists u 2 kerD, such that

kv
T

ck1 � kv
T

+ uk1 � ckDvk2 (6)

D-SNSP is a stronger assumption than D-NSP by definition.
We prove that under this assumption, the `1-synthesis recovery
is stable with respect to perturbations on the measurement
vector y.

Theorem III.1. If A is k-D-SNSP, then any solution ẑ of
problem (4) satisfies

kDẑ � x0k2  C1�k

(z0) + C2✏.

where �
k

(z0) denotes the `1 residue of the best k-term
approximation to z0, C1, C2 are constants dependent on n,
the c in (6), the minimum singular values of A and D, but not
on x0.

Proof: Let x0 = Dz0 with z0 being an k-sparse repre-
sentation of x0. Let h = D(ẑ � z0), and decompose it as
h = Dw + ⌘ where Dw 2 kerA, ⌘ 2 kerA?. It is easy to
show that k⌘k2  1

⌫
A

kAhk2  2✏

⌫
A

with ⌫
A

being the smallest
singular value of A.

Define ⇠ = DT (DDT )�1⌘, then ⌘ = D⇠, and

k⇠k2  1

⌫
D

k⌘k2  2

⌫
A

⌫
D

✏. (7)
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Moreover, by our setting, D(ẑ � z0) = h = D(w + ⇠), and
therefore ẑ � z0 = w + ⇠ + u1 with some u1 2 kerD.

Let v = w + u1, then ẑ � z0 = v + ⇠ and v 2 ker(AD).
By the assumption of D-SNSP, there exists a u 2 kerD such
that (6) holds for u and v. Therefore,

kv + z0,T k1 � k � u+ z0,T k1
=kv

T

ck1 + kv
T

+ z0,T k1 � k � u
T

+ z0,T k1 � ku
T

ck1
�kv

T

ck1 � kv
T

+ u
T

k � ku
T

ck1
=kv

T

ck1 � kv
T

+ uk1 � ckDvk2 (8)

On the other hand, from the fact that ẑ is a minimizer, we
have

k � u+ z0,T k1 + kz0,T ck1 � k � u+ z0k1 = kẑk1
� kv + z0 + ⇠k1 � kv + z0k1 � k⇠k1
� kv + z0,T k1 � kz0,T ck1 � k⇠k1.

Rearrange the above inequality, we will obtain

kv + z0,T k1 � k � u+ z0,T k1  2kz0,T ck1 + k⇠k1. (9)

Combining (8) and (9), we get

kDvk2  2

c
kz0,T ck1+

1

c
k⇠k1  2

c
kz0,T ck1+

p
n

c
k⇠k2 (10)

In the end, using (10) and (7),

khk2 = kDv +D⇠k2 = kDv + ⌘k2  kDvk2 + k⌘k2

 2

c
kz0,T ck1 +

p
n

c
k⇠k2 +

1

⌫
A

2✏

 2

c
kz0,T ck1 +

2
p
n

c⌫
A

⌫
D

✏+
1

⌫
A

2✏.

It is natural to ask how much stronger this new assumption
is than D-NSP. We address this question partially in the next
section.

IV. A FURTHER STUDY OF D-NSP AND ADMISSIBLE
DICTIONARIES

This section explores the two assumptions D-NSP and D-
SNSP further for the purpose of answering the following
important questions: What kind of dictionaries will allow
sensing matrices A with few measurements to satisfy D-NSP?
How to find those sensing matrices given a dictionary?

We call a d ⇥ n dictionary D k-admissible if there exists
a measurement matrix A 2 Cm,d with m < d such that A is
k-D-NSP. We call D inadmissible if D is not k-admissible
for any k � 2. Intuitively speaking, D is not k-admissible
means that D⌃

k

cannot be universally compressed by any
linear matrix A.

The following proposition shows that adding repeated
columns to the dictionary D will not affect admissibility. This
is quite intuitive since we do not change the set D⌃

k

during
this procedure, and we only care about recovering the signal
x0 rather than the representation z0.

Proposition IV.1. Let D 2 Cd,n, and let I be any index set
I ⇢ {1, ..., n}. Define eD = [D,D

I

], then for any sensing
matrix A 2 Cm,n, we have A is D-NSP if and only if A is
eD-NSP.

Proposition IV.1 states that a perfectly correlated dictionary
D does not get in the way of the reconstruction of signals.
It is only natural to ask whether this is still the case for a
highly coherent dictionary. We answer this question partially
by showing a class of highly correlated dictionaries is inad-
missible. Moreover, equivalent conditions of D-NSP is given
in Section IV-B under the assumption that D is of full spark.

A. A Class of inadmissible matrices
The following theorem constructs a class of inadmissible

matrices with a one dimensional kernel.

Theorem IV.2. Given an orthonormal basis � = [�1, ...,�d

].

Let H =
d[

j=1

span{�
i

}d
i=1,i 6=j

be the union of the hyper-

planes spanned by every combination of d � 1 columns of
�. Then there exists a small constant r0 such that for every
v 2 B(�1, r0)\H where B(�1, r0) is the ball centered at �1

with radius r0, D = [�, v] 2 Cd,d+1 is inadmissible.

We need the following lemma for the proof of this Theorem.

Lemma IV.3. Suppose D is a d⇥ (d+1) dictionary. If there
exist T ⇢ {1, ..., d + 1} with |T | � 2 such that any vector
u 2 kerD\{0} satisfies

1. ku
T

k1 > ku
T

ck1, and
2. T c ⇢ supp(u),

Then D cannot be |T |-admissible.

For any vector w 2 Cn, we define kwkmin = min
1in

{|w
i

| 6=
0} to be the minimum magnitude in w.

Proof: Assume that the dictionary D defined in Lemma
IV.3 is |T |-admissible, we will show how this leads to a
contradiction.

Since D is admissible, then there exists at least one A that is
k-D-NSP. Pick one of them, and fix a v0 2 D�1(ker(A)\{0}).
Define ↵ = 2kv0k1/kukmin. Now that v0 + ↵u,�v0 + ↵u 2
D�1(ker(A)\{0}), by the definition of D-NSP, there exist
c1, c2 2 C such that

kv
T

+ ↵u
T

� c1uk1 < kv
T

c + ↵u
T

ck1, (11)

and

k � v
T

+ ↵u
T

� c2uk1 < k � v
T

c + ↵u
T

ck1. (12)

Therefore,

2↵ku
T

ck1 (13)
= kv

T

c + ↵u
T

ck1 + k � v
T

c + ↵u
T

ck1 (14)
> kv

T

+ ↵u
T

� c1uk1 + k � v
T

+ ↵u
T

� c2uk1(15)
= kv

T

+ (↵� c1)uT

k1 + |c1|kuT

ck1
+ k � v

T

+ (↵� c2)uT

k1 + |c2|kuT

ck1
� |2↵� c1 � c2|kuT

k1 + (|c1|+ |c2|)kuT

ck1, (16)
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where (14) follows from our assumption on ↵ and Assumption
2, while (15) from adding (11) and (12). Combining (13) and
(16) to get

ku
T

k1 < ku
T

ck1.

This is a contradiction to Assumption 1 of Lemma IV.3.

Proof of Theorem IV.2: Notice that ker(D) = span{u} with
u = (aT ,�1). Let T be an index set with |T | � 2 such that
{1, n + 1} 2 T . First, since v 62 H , then hv,�

i

i 6= 0 for
i = 1, ..., d . This means that all coordinates of u are nonzero,
so Assumption 2 of Lemma IV.3 holds. Second, we can pick
r0 small enough such that whenever v 2 B(�1, r), it holds
ku

T

k1 > ku
T

ck1, so Assumption 1 is satisfied.
Applying Lemma IV.3 completes the proof.
We have constructed an example of inadmissible dictionar-

ies of special sizes: d ⇥ (d + 1). The following proposition
asserts that this dictionary can be used to generate inadmissible
dictionaries of arbitrary dimension by adding appropriate
columns to it.

Proposition IV.4. If D = [B, v] where B is a full rank d ⇥
(n�1) matrix and v = B↵ with k↵k1  1, then A has D-NSP
implies that A has B-NSP with the same order k.

B. The relation between D-NSP and NSP

It is obvious that AD satisfies NSP implies A satisfies
D-NSP, which explains why imposing RIP or incoherence
conditions on AD could be too strong and unnecessary. To
explore how much room there is between these two conditions
can possibly answer the question whether we can allow
highly coherent dictionaries or not, since AD being NSP will
inevitably leads to the incoherence of D. Surprisingly enough,
we show that whenever D is of full spark, these two conditions
are equivalent.

A dictionary is of full spark means every d columns of this
matrix are linearly independent.

Theorem IV.5. The following conditions are equivalent under
the assumption that D is of full spark,

• A is k-D-NSP;
• AD is k-NSP;
• A is k-D-SNSP;
• For any v 2 kerAD, there exists a u such that

kv
T

+ uk1 < kv
T

ck1.

Remark IV.1. We comment that full spark is not a strong
assumption on matrices. In fact, full spark matrices is dense
in the space of matrices [2], and a large class of full spark
Harmonic frames is also constructed in [2].

Remark IV.2. Earlier we mentioned that we only care about
recovering the signals x and allow the recovery of their repre-
sentations z to be wrong. Theorem IV.5 tells us that when the
dictionary is of full spark this requirement is actually not any
looser than requiring both signals and their representations
to be recovered. In spite of being negative, this result is quite

important, since it has been largely thought that the opposite
is true.

Like the RIP, NSP is essentially an incoherence property
of a matrix. Hence a highly coherent dictionary D cannot
be NSP, nor can the composite AD be, because whichever
vector in kerD that fails to satisfy NSP, is also contained in
ker(AD). Consequently, the equivalence of the first two items
in Theorem IV.5 implies that if a highly coherent D is also
full spark, then it must be inadmissible.

Perfectly coherent dictionaries are not full spark, so they
can be and many of them are indeed admissible (Proposition
IV.1). However, if these dictionaries are perturbed a little bit,
then no matter how small the perturbations are, with proba-
bility one, they will turn into highly coherent and full spark
dictionaries and therefore become inadmissible. We conclude
that admissibility is not stable with respect to perturbations.
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Abstract—We provide conditions for exact reconstruction of

a bandlimited function from irregular polar samples of its

Radon transform. First, we prove that the Radon transform

is a continuous L2
-operator for certain classes of bandlimited

signals. We then show that the Beurling-Malliavin condition for

the radial sampling density ensures existence and uniqueness of

a solution. Moreover, Jaffard’s density condition is sufficient for

stable reconstruction.

I. INTRODUCTION

In computed tomography (CT), a central question is the
following: what kind of detail can be resolved from a par-
ticular CT scan (sinogram)? Notwithstanding the lack of a
clear definition of the term detail, in many applications a
satisfactory and useful answer is provided in terms of the
Nyquist frequency connected to the sampling geometry.

The “pure” case of reconstructing a function from its
possibly irregular samples has been solved nicely for classes
of bandlimited functions in terms of density theorems as
we will see in Section III of this paper. Due to difficulties
that arise when defining the Radon transform for bandlimited
functions, these results have not yet been used in the context
of CT. Instead, efforts revolved around the analysis of quasi-
bandlimited functions and the results bear the deficiency of
only asymptotically controllable errors [1], [2].

This paper closes this apparent gap in the literature, namely,
we show that the Radon transform can be defined in the
usual sense as a continuous L2-operator for certain classes of
bandlimited functions. The Radon transform of such signals
is itself bandlimited and it is shown that stable and exact
reconstruction of these signals from their irregularly sampled
Radon transforms is possible if the sampling set satisfies
certain density requirements.

The remainder of this paper is organized as follows: In
Section II we present current techniques in reconstruction of
the sampled Radon transform and how they relate to spaces
of bandlimited functions and sampling. In Section III we
provide a dense overview of results from sampling theory for
bandlimited functions. After showing continuity of the Radon
transform and its inverse for certain bandlimited functions in
Section IV, we will apply these results to the sampled Radon
transform in Section V.

II. MOTIVATION AND RELATED WORK

For efficient experimental design of CT scans, i.e. determi-
nation of a suitable sampling geometry or a posteriori choice of
function spaces for reconstruction, it is essential to understand
the discretization effects due to sampling. Furthermore, the
emergence of CT acquisition procedures involving incomplete
or irregular data calls for irregular sampling theory. Past
research has focused on functions that are simultaneously
essentially space- and band-limited, i.e., functions for which

Z

R2\BR

|f(x)|2 dx and
Z

R2\BR

|(Ff)(⇠)|2 d⇠

decay exponentially with the radius R of the ball BR. For these
functions, interleaved sampling geometries are more efficient
than regular sampling geometries [1], [2].

Bandlimitedness conditions also appear implicitly in recon-
struction techniques based on discretizations of the inverse
Radon transform. Filtered backprojection tacitly assumes that
the Radon transform is bandlimited and periodic in the radial
coordinate (for computation of a so-called absolute derivative
operator) and that quadrature rules for the angular integral (for
the backprojection) are exact—for example by assuming that
the angular component of the Radon transform has a finite
Fourier series representation [1].

Algorithms that are based on the Fourier slice theorem
commonly use some sort of Fast Fourier Transform (FFT)
for the radial variable to obtain the Fourier transform of
the unknown function on a polar grid. This operation is
either followed by interpolation onto a rectangular grid and
application of the two-dimensional inverse FFT—a process
known as gridding [3], [4]—or by using a version of the
two-dimensional inverse FFT for non-rectangular grids [5],
[6]. The assumptions are, again, that the Radon transform
Rf is bandlimited and periodic with respect to the radial
coordinate and that f is bandlimited and periodic in both
Cartesian variables.

Finally, algebraic reconstruction techniques can handle all
sorts of irregular grids and are very efficient. However, it is dif-
ficult to analyze irregular sampling with such methods. First,
it is hard to find function spaces for which the system matrix
is injective and second, the combined effects of regularization,
noise reduction, and early termination of iterative solvers are
hard to quantify and isolate from sampling effects.
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III. REVIEW OF SAMPLING THEORY FOR BANDLIMITED
FUNCTIONS

We provide a brief review of the available theorems and
techniques used for irregular sampling of bandlimited square-
integrable functions in one dimension. These results can be
extended to more dimensions when sampling on product grids.

Definition 1 (Paley-Wiener spaces). Let F denote the Fourier
transform. The Paley-Wiener space of R-radially bandlimited
and square-integrable functions is defined as

PWR(Rd) := {f 2 L2(Rd) : Ff |Rd\Bd
R
= 0},

where Bd
R is the d-dimensional ball with radius R. Similarly,

for r > 0, we define the space of bandpass functions as

BPrR(Rd) := {f 2 L2(Rd) : Ff |Rd\(Bd
R\Bd

r )
= 0}.

Let ⇤ ⇢ R be a uniformly discrete set of sample positions,
that is, inf�,µ |� � µ| > 0 for �, µ 2 ⇤ and � 6= µ. This
condition ensures that the sampling operator S⇤ : PWR(R) !
l2(⇤) is always a continuous linear operator into l2(⇤) [7].
For a fixed bandwidth R, sampling theory gives conditions in
terms of densities on the sampling set ⇤ under which functions
in PWR(R) can be identified by and reconstructed from its
values on ⇤. In particular, one wishes to establish whether [8]

• ⇤ is a set of uniqueness for PWR(R), i.e., the sampling
operator S⇤ is injective or whether

• ⇤ is a set of sampling for PWR(R), i.e., the sampling
operator S⇤ is continuous and continuously invertible on
its range.

Definition 2 (Densities). Let ⇤ ⇢ R be uniformly discrete
with 0 /2 ⇤ and with signed counting function N⇤(t), which
counts the number of points in the interval with endpoints 0
and t and has negative sign for t < 0.

i) The Beurling-Malliavin density is defined as

Dbm(⇤) = inf
c�0

c s.t.

8
<

:

9h 2 C1(R), 0  h0(t)  c,
Z

R

|N⇤(t)� h(t)|
1 + t2

dt < 1

9
=

; .

ii) The frame density is defined as

Df (⇤) := sup
�⇢⇤

sup
c�0

c s.t. N�(t)� ct = O(1),

where the supremum is over all subsets � for which the
asymptotics exist and Df (⇤) = 0 if no such subset exists.

These densities apply to reasonably general sampling sets. In
particular, the frame density is invariant under removals of
finitely many points, i.e., one arbitrarily sized “hole” is al-
lowed. In case of the Beurling-Malliavin density, it is possible
to construct grids with Dbm(⇤) = 1 that have infinitely many
“holes” of unbounded size [9]. If ⇤ is a set for which there
exists c > 0 and for which the asymptotics N⇤(t)�ct = O(1)
hold, one also says that ⇤ has uniform density c. Our definition
of the Beurling-Malliavin density can be found in [10]. It
is a simplification of the original exterior density Ae( dN⇤)
used by Beurling and Malliavin [11], which also applies for

sampling sets of complex numbers. The following theorem
encapsulates several decades of research [11], [12], [13], [14].

Theorem 1 (Sampling theorems). For ⇤ to be a set of
uniqueness for PW⇡(R)

(i) it is necessary that Dbm(⇤) � 1,
(ii) it is sufficient that Dbm(⇤) > 1.

For ⇤ to be a set of sampling for PW⇡(R)
(i) it is necessary that Df (⇤) � 1,

(ii) it is sufficient that Df (⇤) > 1.

In the above theorem, it is possible to replace ⇡ with
R > 0 and 1 with R/⇡ on the right hand side of the density
conditions. The last condition is known as Jaffard’s sufficient
condition.

Using the theory of frames, reproducing kernel Hilbert
spaces (RKHS), and tensor products, one can generalize these
results to two (and more) dimensions for Cartesian products
of sampling grids [8], [15]. A RKHS H with domain Rd is
a Hilbert space in which all point evaluations are continuous
linear functionals, i.e, for all x 2 Rd, the map f 7! f(x) is a
bounded linear functional in H [16]. Paley-Wiener spaces and
subspaces of L2(Rd) spanned by a finite number of functions
are examples of RKHS [17].

Theorem 2. Let H1 and H2 be RKHS of functions on R. If for
i = 1, 2, ⇤i is a set of uniqueness, resp. set of sampling, for
Hi, then ⇤1⇥⇤2 is a set of uniqueness, resp. set of sampling,
for H1 ⌦H2.

The result is a consequence of the fact that tensor products
of complete systems are complete in the tensor product space
and that tensor products of frames are frames in the tensor
product space [15].

IV. RADON TRANSFORM OF BANDLIMITED FUNCTIONS

In an effort to apply Theorem 1 to the irregularly sampled
Radon transform, we first need to ensure compatibility between
Paley-Wiener spaces and the Radon transform. Therefore, in
this section, we establish conditions under which the Radon
transform can be defined as a continuous and continuously
invertible L2-operator between subspaces of PWR(R2) and
PWR(R)⌦L2(S1), where S1 is the unit sphere in R2. Our ap-
proach contrasts with the conventional definition of the Radon
transform as a continuous—but not continuously invertible—
operator between L2(BR(R2)) and L2([�R,R] ⇥ S1). The
advantage of our definition is that for irregular sampling grids
of the form ⇤s ⇥ ⇤! with ⇤s ⇢ R and ⇤! ⇢ [0,⇡], we can
apply Theorems 1 and 2 to find conditions under which exact
and stable reconstruction of a function from its sampled Radon
transform is possible.

First, we present a counter example which highlights the
difficulties that arise when defining the Radon transform for
bandlimited functions. We will use the well-known Fourier
slice theorem, which provides the following decomposition of
the Radon transform for Schwartz functions f 2 S(R2):

(Rf)(s,!) = (F�1
s id�Ff)(s,!).
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Here, we denote the two-dimensional Fourier transform by F ,
the one-dimensional Fourier transform with respect to the ra-
dial coordinate by Fs, and the change from polar to Cartesian
coordinates by � : L2(R2) ! L2(R+ ⇥ S1,� d� ⌦ d!). By
explicitly considering the change of norms,

id : L2(R+ ⇥ S1,� d� ⌦ d!) ! L2(R⇥ S1, d� ⌦ d!),

we retain the L2-isometry property (up to some power of
2⇡) of the Fourier transforms and, hence, L2-continuity of
the overall operator is determined solely by that of the
change of norms.1 To show that the Radon transform is not
L2-continuous on PWR(R2), consider the sequence fn 2
PWR(R2) defined through its Fourier transform:

(Ffn)(⇠) =

(
|⇠|�1/2 if n�1  |⇠|  R,

0 otherwise.

Each fn is bandlimited, because (Ffn)(⇠) = 0 for |⇠| > R,
and fn 2 L2(R2), because Ffn 2 L2(R2) as

Z

R2

d⇠|(Ffn)(⇠)|2 =

Z

S1

d!

Z R

n�1

� d�
�����1/2

���
2

=

Z

S1

d!

Z R

n�1

d�

= 2⇡(R� n�1).

As can be seen, the norm of Ffn tends to
p
2⇡R and that of

fn to
p
R/(2⇡). On the other hand, the norm of (id�F)(fn)

with respect to the “flat” measure d� ⌦ d! and, hence, that
of Rfn in L2(R⇥ S1), is unbounded, because
Z

S1

d!

Z

R
d�|(�Ffn)(�,!)|2 = 2

Z

S1

d!

Z R

n�1

d�
�����1/2

���
2

= 2

Z

S1

d!

Z R

n�1

d���1

= 4⇡(lnR+ lnn),

which tends to infinity as n grows.2 Thus, the Radon transform
cannot be continuous on PWR(R2).

This defect of the Radon transform is a consequence of the
fact that the Fourier transforms of functions in PWR(R2) may
have mild singularities at the origin. If we restrict the Paley-
Wiener space to bandpass functions f 2 BPrR(R2), we can
easily verify the boundedness of the Radon transform:
Z

S1

d!

Z

R
d� |(Ff)(�,!)|2 = 2

Z

S1

d!

Z R

r
d� |(Ff)(�,!)|2

 2

Z

S1

d!

Z R

r
d�

�

r
|(Ff)(�,!)|2

= 2r�1

Z

R2

d⇠|(Ff)(⇠)|2.
The same calculation—replace r with R in the denominator
and turn around the inequality—also yields the lower bound

2R�1kfk2  kRfk2  2r�1kfk2.
1For � < 0 we define (id g)(�,!) = g(��,�!), which ensures that the

new variables can still be interpreted as polar coordinates.
2The factor 2 is a consequence of id mapping R+ to the whole real line.

This implies (e.g., [18], Thm. 4.48) closedness of the range
and existence of a continuous inverse of the Radon transform:

Theorem 3 (Radon isomorphism). The Radon transform is
a Hilbert space isomorphism between the Hilbert spaces
BPrR(R2) and R(BPrR(R2)) ⇢ L2(R⇥ S1, ds⌦ d!).

We can also characterize the range of the Radon transform
for bandpass functions. The theory of tensor products of
separable L2-spaces yields the decomposition [19]

L2(R⇥ S1) ' L2(R, ds)⌦ L2(S1, d!).

The Fourier slice theorem shows that if (Ff)(⇠) = 0 for
|⇠| < r and |⇠| > R, then (FsRf)(�,!) also vanishes for
� outside of [�R,�r][ [r,R]. Hence, if f 2 BPrR(R2), then
Rf 2 BPrR(R) ⌦ L2(S1). Similarly, for g 2 BPrR(R) ⌦
L2(S1) with g(s,!) = g(�s,�!), we can go the inverse
way of the Fourier slice theorem to define a function f =
F�1��1 id�1 Fsg. The same calculations as above show that
f 2 BPrR(R2) and since, by definition, g = Rf , we obtain:

Theorem 4 (Range theorem for bandpass functions).
The Radon transform maps BPrR(R2) isomorphically to
BPrR(R⇥ S1), where we define

BPrR(R⇥ S1) :=

(
f 2 BPrR(R)⌦ L2(S1)

with f(�s,�!) = f(s,!)

)
.

Remark that for g 2 BPrR(R⇥ S1), the Helgason-Ludwig
moment conditions [20] are automatically satisfied, because
Fsg and all of its derivatives vanish around the origin:
Z

R
g(s,!)skds =

✓
i

2⇡

◆k
dk

d�k
(Fsg)(0,!) = 0 8 k 2 N0.

V. SAMPLING THEOREMS FOR THE RADON TRANSFORM

The developments from the previous section allow us to ap-
ply the theory of bandlimited functions to the sampled Radon
transform. Because of the isomorphism property established
in Theorems 3 and 4, the sampled Radon transform operator
R⇤ : BPrR(R2) ! l2(⇤), f 7! ((Rf)(�))�2⇤ is continuous
and continuously invertible on its range exactly if the sampling
operator S⇤ : BPrR(R ⇥ S1) ! l2(⇤), g 7! (g(�))�2⇤ is
continuous and continuously invertible on its range; hence,
we can concentrate our analysis on the latter.

One possible way of getting rid of the symmetry require-
ment is to consider sampling sets of the form ⇤ ⇢ R⇥ [0,⇡]
and interpret the Radon transform as a map from BPrR(R2)
to BPrR(R)⌦ L2([0,⇡]). The inverse of the sampled Radon
transform is then given as R�1IS�1

⇤ , where I : BPrR(R)⌦
L2([0,⇡]) ! BPrR(R⇥ S1) is the isomorphism defined by

(If)(s,!) =
(
f(s, arg(!)) if 0  arg(!) < ⇡,

f(�s, arg(!)� ⇡) otherwise.

It is equally possible, but slightly more technical, to allow
for sampling grids ⇤ ⇢ R+ ⇥ [0, 2⇡]. However, due to space
limitations, we will postpone comments on that case to an
upcoming journal publication.
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Fig. 1. Example of an irregular polar sampling grid in parallel geometry
that is the Cartesian product of a radial and an angular irregular sampling
grid. All circles may be unequally spaced, but the angular pattern must be
the same on each circle. Only the first few circles are shown.

Lastly, we need to restrict the angular behavior of admitted
functions to some finite dimensional and, thus, automatically
RKHS subspace G ⇢ L2([0,⇡]). The finiteness condition is a
consequence of [0,⇡] being bounded. One can then always find
an angular sampling grid ⇤! ⇢ [0,⇡) with |⇤!| = dim(G)
which is a set of uniqueness and a set of sampling for G.

Theorem 5 (Sampling theorem for the Radon transform). Let
⇤! be a set of uniqueness and, thus, set of sampling for
some finite dimensional subspace G ⇢ L2([0,⇡]), ⇤s ⇢ R
a uniformly discrete set and let ⇤ = ⇤s ⇥ ⇤! . Let H ⇢
BPrR(R2) be defined as H = (R�1 � I)(BPrR(R)⌦G) and
let R⇤ : H ! l2(⇤) denote the sampled Radon transform.

(i) For R⇤ to be injective it is sufficient that Dbm(⇤s) >
R/⇡.

(ii) For R⇤ to be continuous and continuously invertible it
is sufficient that Df (⇤s) > R/⇡.

Proof: Due to Theorem 1, the conditions are sufficient
for ⇤s being a set of uniqueness, resp. set of sampling, for
PWR(R) and thus also for the subspace BPrR(R). With the
assumptions on ⇤! , we use Theorem 2 to see that ⇤ is a
set of uniqueness, resp. set of sampling, for BPrR(R) ⌦ G.
Hence, the sampling operator S⇤ : BPrR(R)⌦ G ! l2(⇤) is
injective, resp. continuous and continuously invertible on its
range. These properties pass to the sampled Radon transform
as all remaining operators are isomorphisms.

Figure 1 shows an example of an irregular sampling grid in
parallel geometry that is symmetric about the origin.

VI. CONCLUSION

As a consequence of the continuity of the inverse Radon
transform of bandpass functions shown in Theorem 3, the
reconstruction problem is not, strictly speaking, ill-posed, i.e.,
choosing BPrR(R2) for reconstruction is stabilizing.

We will provide a reconstruction formula in an upcoming
journal publication. For functions with finite angular Fourier
series, the sinc function expansion is particularly suited for
computation of the inverse Radon transform as all but a single
one-dimensional integration can be carried out analytically

Fig. 2. Comparison of the reconstructions of a circle as obtained by
Matlab’s iradon function (Image Processing Toolbox), which uses filtered
backprojection and a Ram-Lak filter, and a procedure that is based on sampling
theory, where sinc-functions for radial components and complex exponentials
for angular components were mapped through the inverse Radon transform.

using the theory of Bessel functions. To illustrate the prac-
ticality of our analytical reconstruction formula, we applied
our method to the reconstruction of a non radially bandlimited
image from its irregularly sampled Radon transform (Fig. 2).
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Abstract—We present a design scheme to generate tight and
semi-tight frames in the space of discrete-time periodic signals,
which are originated from four-channel perfect reconstruction
periodic filter banks. The filters are derived from interpolating
and quasi-interpolating polynomial splines. Each filter bank com-
prises one linear phase low-pass filter (in most cases interpolating)
and one high-pass filter, whose magnitude response mirrors that
of a low-pass filter. In addition, these filter banks comprise
two band-pass filters. In the semi-tight frames case, all the
filters have linear phase and (anti)symmetric impulse response,
while in the tight frame case, some of band-pass filters are
slightly asymmetric. We introduce the notion of local discrete
vanishing moments (LDVM). In the tight frame case, analysis
framelets coincide with their synthesis counterparts. However, in
the semi-tight frames, we have the option to swap LDVM between
synthesis and analysis framelets. The design scheme is generic,
and it enables to design framelets with any number of LDVM.
The computational complexity of the framelet transforms, which
consists of calculation of the forward and the inverse fast Fourier
transforms and simple arithmetic operations, practically does not
depend on the number of LDVM and on the size of the impulse
response of filters. The designed frames are used for restoration
of images, which are degraded by blurring, random noise and
missing pixels. The images were restored by the application of
the Split Bregman Iterations (SBI) method.

I. INTRODUCTION

Restoration of corrupted and/or damaged and/or noised
multidimensional signals is a major challenge that the sig-
nal/image processing community faces nowadays when rich
multimedia content is the most popular data that is being
transmitted over diverse networks types such as mobile. Qual-
ity degradation in multidimensional signals can come from
sampling, acquisition, transmission through noisy channels, to
name some. Restoration of multidimensional signals includes
denoising, deblurring, recovering missing or damaged samples
or fragments (inpainting in images), resolution enhancement
and super resolution. Recent developments in wavelet frames
(framelets) analysis provide innovative and powerful tools to
meet faithfully and robustly the above challenges. Framelets
produce redundant expansions whose valuable advantage is
their ability to restore missing and incomplete information and
to represent efficiently and compactly the data. In principle,
only part of the samples/pixels is needed for (near) perfect
object restoration. This approach, which is a variation of the
Compressive Sensing methodology, proved to be extremely
efficient for image restoration.

Practically, this approach is implemented via minimization
of a parameterized functional where the sparse representation
is reflected in the l

1

norm of the transform coefficients. The
k·k

1

minimization does not have an explicit solution and
can be resolved only by iterative methods. The so-called
split Bregman iteration (SBI) scheme, which was recently
introduced in [1], provided a fast and stable algorithm for
that. Variations of this scheme and its application to image
restoration using wavelet frames are described in [2], [3],
to mention a few. A variety of impressive results on image
restoration were reported in the last couple of years. A survey
is given in [4] while a recent development is described in [3].

Due to applications diversity, it is important to have a library
of wavelet frames in order to select a frame that fits best
a specific task. Forward and inverse transforms in iterative
algorithms are repeated many times, therefore, members in
this library must have fast and stable transforms implementa-
tion. Waveforms symmetry with the availability of vanishing
moments are also important in order to avoid distortions when
thresholding is used. To satisfy these requirements, most of
the framelet systems that were designed so far operate with
the compactly supported framelets and the transforms are
implemented by finite (and short) impulse response (FIR)
oversampled filter banks Thus, the number of framelet systems
available for applications is very limited. This number is even
smaller when the requirement is to have tight frames.

This limitation can be overcome by switching to a periodic
setting, which is the subject of this presentation. A variety of
four-channel PR filter banks, where the low-pass filters are
derived from interpolating and quasi-interpolating polynomial
splines, are designed. These filter banks generate a library
of 4- framelet periodic tight and the so-called semi-tight
frames with diverse properties. The transforms implementation
is reduced to application of the direct and the inverse fast
Fourier transforms (FFT) with simple arithmetic operations.
While implementation of SBI in non-periodic setting requires
multiple approximate solution of a system of equations by the
conjugate gradient method, the periodic implementation makes
it possible to avoid those procedures. This fact contributes
significantly to reduction of the implementation cost.

The designed framelets libraries were tested for image
restoration and demonstrated a high quality. Their diversity
enabled us to select a frame, which best fits each specific
application. In particular, in most of the experiments the semi-
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tight frames outperformed tight frames.

II. PERIODIC FILTER BANKS AND FRAME TRANSFORM

We call the N -periodic real-valued sequences x
def

=

{x[k]}, k 2 Z, x[k + N ] = x[k], N = 2

j , the discrete-time
periodic signals, which constitute an N -dimensional vector
space ⇧[N ]. We use the notation !

def

= e

2⇡i/N . The circular
convolution y[k] =

PN�1

k=0

h[k � l] x[l] of the signal x with
a signal h 2 ⇧[N ] is called p-filtering and the signal h is
called the p-filter. P-filtering results in multiplication of the
DFT: ŷ[n] = ˆ

h[n] x̂[n].
It is well known that the perfect reconstruction (PR) over-

sampled filter banks generate frames in the signal space [5].
We deal with four channel analysis ˜H def

=

n

˜hs
o

, and synthesis

H def

= {hs} , s = 0, ..., 3 with downsampling factor of 2, which
operate in the periodic signal space ⇧[N ]. Either of ˜H, and
H filter banks comprises one low-pass p-filter ˜h

0

and h0, one
high-pass ˜h

1

and h1 and two band-pass ˜h
s

and hs
, s = 2, 3,

p-filters, respectively. The subsequent application of the time-
reversed analysis and synthesis filter banks to an input signal
x 2 ⇧[N ] restores the signal:

y

s
[l] =

PN�1

k=0

˜

h

s
[k � 2l] x[k], s = 0, . . . , 3,

x[l] =

PS�1

s=0

PN/2�1

k=0

h

s
[l � 2k] y

s
[k].

(1)

Denote by
n

˜

 

s
[k] =

˜

h

s
[k]

o

and { s
[k] = h

s
[k]} the im-

pulse responses of the analysis and synthesis p-filters, respec-
tively. Equations (1) provide the frame expansion of a signal
x 2 ⇧[N ]:

x[l] =

3

X

s=0

N/2�1

X

k=0

 

s
[l � 2k]

D

x, ˜

 

s
[·� 2k]

E

. (2)

The 2-sample shifts of the signals ˜

 

s
[k] and  

s
[k] form

analysis and synthesis frames of the space ⇧[N ], respectively.
Together they constitute a bi-frame

n

˜F, F
o

. If the synthesis
framelets can be chosen to be equal to the analysis framelets
then the frame is tight.

III. DESIGN OF 4-CHANNEL PR FILTER BANKS

Denote by x
0

def

= {x[2k]} 2 ⇧[N/2] and x
1

def

= {x[2k + 1]}
the even and odd polyphase components of a signal x 2 ⇧[N ].
Then, the DFT of x is x̂[n] = x̂

0

[n]+!

n
x̂

1

[n]. Application of
the 4-channel PR filter bank to a signal x 2 ⇧[N ] can be ex-
pressed in a matrix form. Denote ~

Y [n]

def

= (

ˆ

ỹ

0

[n], ...,

ˆ

ỹ

3

[n])

T

and ~

X[n]

def

= (x̂

0

[n], x̂

1

[n])

T . Then, we have

~

Y [n] = P̃[�n] · ~X[n],

~

X[n] = P[n] · ~Y [n],

where the 4 ⇥ 2 analysis and the 2 ⇥ 4 synthesis polyphase
matrices are, respectively,

P̃[n]

def

=

 

ˆ

˜

h

0

0

[n] ...

ˆ

˜

h

3

0

[n]

ˆ

˜

h

0

1

[n] ...

ˆ

˜

h

3

1

[n]

!T

,

P[n]

def

=

✓

ˆ

h

0

0

[n] ...

ˆ

h

3

0

[n]

ˆ

h

0

1

[n] ...

ˆ

h

3

1

[n]

◆

.

The relations
P[n] · P̃[�n] = I

2

, (3)

is the condition for the pair
�

˜H, H
 

of filter banks to form a
PR filter bank.

a) Design: The matrix product in Eq. (3) can be split
into two products.

P01

[n] · ˜P01

[�n] +P23

[n] · ˜P23

[�n] = I
2

, (4)

P01

[n]

def

=

✓

ˆ

h

0

0

[n]

ˆ

h

1

0

[n]

ˆ

h

0

1

[n]

ˆ

h

1

1

[n]

◆

,

˜P01

[n]

def

=

 

ˆ

˜

h

0

0

[n]

ˆ

˜

h

0

1

[n]

ˆ

˜

h

1

0

[n]

ˆ

˜

h

1

1

[n]

!

,

P23

[n]

def

=

✓

ˆ

h

2

0

[n]

ˆ

h

3

0

[n]

ˆ

h

2

1

[n]

ˆ

h

3

1

[n]

◆

,

˜P23

[n]

def

=

 

ˆ

˜

h

2

0

[n]

ˆ

˜

h

2

1

[n]

ˆ

˜

h

3

0

[n]

ˆ

˜

h

3

1

[n]

!

.

A PR pair
n

H,

˜H
o

of filter banks generate a tight frame if
their polyphase matrices are linked as

P[n] =

˜P[n]

T () P01

[n] =

˜P01

[n]

T and P23

[n] =

˜P23

[n]

T
.

If the matrices P01

[n] =

˜P01

[n]

T
and P23

[n] 6=
˜P23

[n]

T
, n 2 Z, then the frame

n

˜F, F
o

is called semi-
tight.

The design of four-channel (semi-)tight filter banks begins
from a linear phase low-pass filter h0

=

˜h0, whose frequency
response (FR) ˆh0

[n] =

ˆ

h

0

0

[n]+!

�n
ˆ

h

0

1

[n] is a rational function
of !n

= e

2⇡in/N with real coefficients that has no poles for
n 2 Z. Assume ˆ

h

0

[n] is symmetric about the swap n !
�n, which implies that ˆ

h

0

0

[n] =

ˆ

h

0

0

[�n] and !

�n
ˆ

h

0

1

[n] =

!

n
ˆ

h

0

1

[�n]. The impulse response
�

h

0

[k]

 

is symmetric about
k = 0.

In addition, assume that P01

[n] =

˜P01

[n]

T and the product

P01

[n] ·P01

[�n] =

✓

↵[n] 0

0 �[n]

◆

(5)

is a diagonal matrix. The assumption in Eq. (5) implies the
condition ˆ

h

0

0

[n]

ˆ

h

0

1

[�n] +

ˆ

h

1

0

[n]

ˆ

h

1

1

[�n] = 0. The simplest way
to satisfy this condition is to define

ˆ

h

1

[n] = �ˆ

h

0

1

[�n] + !

�n
ˆ

h

0

0

[�n]

=) ↵[n] = �[n] =

�

�

�

ˆ

h

0

0

[n]

�

�

�

2

+

�

�

�

ˆ

h

0

1

[n]

�

�

�

2

.

The sequence !

n
ˆ

h

1

[n] = !

�n
ˆ

h

1

[�n] and, consequently,
the impulse response

�

h

1

[k]

 

is symmetric about k = 1. The
product

P23

[n] · ˜P23

[�n] = Q[n]

def

=

✓

t[n] 0

0 t[n]

◆

, (6)

where t[n]

def

= 1�
�

�

�

ˆ

h

0

0

[n]

�

�

�

2

+

�

�

�

ˆ

h

0

1

[n]

�

�

�

2

. Thus, the design of the
PR filter bank is reduced to factorization of the matrix Q[n].

There are many ways to factorize the matrix Q[n]. One way
is to define the matrices P23

[n] and ˜P23

[n] to be diagonal:

P23

[n] =

✓

ˆ

h

2

0

[n] 0

0

ˆ

h

3

1

[n]

◆

,

˜P23

[n]

def

=

 

ˆ

˜

h

2

0

[n] 0

0

ˆ

˜

h

3

1

[n]

!

.
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Consequently, we have to derive four sequences ˆ

h

2

0

[n], ˆ˜h2

0

[n],
ˆ

h

3

1

[n] and ˆ

˜

h

3

1

[n] such that

ˆ

h

2

0

[n]

ˆ

˜

h

2

0

[n] =

ˆ

h

3

1

[n]

ˆ

˜

h

3

1

[n] = t[n]. (7)

b) Tight frame filter banks: If the following inequality
holds

↵[n] =

�

�

h

0

0

[n]

�

�

2

+

�

�

h

0

1

[n]

�

�

2

> 1, n 2 Z, (8)

then, due to the symmetry of the rational functions ˆ

h

0

0

[n] and
ˆ

h

0

0

[n], the sequence t[n] is strictly positive rational function
of cos 2⇡n/N). Due to Riesz Lemma , it can be factorized
t[n] = T [n]T [�n], where T is a rational function of !n,
which does not have roots for n 2 Z. Thus, we define

ˆ

h

2

0

[n] =

ˆ

˜

h

2

0

[n] =

ˆ

h

3

1

[�n] =

ˆ

˜

h

3

1

[�n] = T [n]. (9)

The PR filter bank, whose filters are
ˆ

h

0

[n] =

ˆ

h

0

0

[n] + !

�n
ˆ

h

0

0

[n]

ˆ

h

2

[n] = T [n],

ˆ

h

1

[n] = �ˆ

h

0

1

[�n] + !

�n
ˆ

h

0

0

[�n],

ˆ

h

3

[n] = !

�n
T [�n],

generates a tight wavelet frame in the space ⇧[N ]. Certainly,
the symmetry of the FR ˆ

h

0

[n] does not guarantee the symme-
try of the FR ˆ

h

2

[n] and ˆ

h

3

[n].
c) Semi-tight frame filter banks: If the condition Eq. (8)

is not fulfilled then the sequence t[n] can be factorized as
t[n] = T [n]

˜

T [�n], where T [n] 6= ˜

T [n]. Thus, we obtain the
PR filter bank, whose filters are
ˆ

h

0

[n] =

ˆ

h

0

0

[n] + !

�n
ˆ

h

0

0

[n],

ˆ

h

1

[n] = �ˆ

h

0

1

[�n] + !

�n
ˆ

h

0

0

[�n],

ˆ

h

2

[n] = T

2

[n],

ˆ

˜

h

2

[n] =

˜

T

2

[n],

ˆ

h

3

[n] = !

�n
T

3

[n],

ˆ

˜

h

3

[n] = !

�n
˜

T

3

[n],

(10)
where T

2

[n]

˜

T

2

[�n] = T [n]

˜

T

3

[�n] = t[n]. The PR filter
bank defined by Eq. (10) generates a semi-tight frame in the
space ⇧[N ].

Remark 1: Since the rational function t[n] of !n is sym-
metric about the change n ! �n, then it can be factorized into
product of two symmetric rational functions T [n] and ˜

T [�n].
An additional advantage of the semi-tight design is the option
to swap approximation properties between the analysis and the
synthesis framelets.
As usual, a multiscale frame transform is implemented by
subsequent application of the frame transform to the low-
frequency array of the transform coefficients.

IV. SPLINE P-FILTERS

It was described above how to design a tight or a semi-
tight frame comprising four framelets starting from a low-
pass p-filter. A variety of such p-filters can be derived from
the theory of periodic splines ([6], for example). The p-filters
possess useful properties such as linear phase, flat spectra and
well localised impulse responses. The idea is to design an
N/2-periodic spline S

p
(t) of order p on the grid {k}, which

interpolates the even polyphase component x
0

of a signal x:
S

p
(k) = x[2k]. Then, in order to derive the spline’s values

at the intermediate points s

1

[k]

def

= S

p
(k + 1/2), which, in

a sense predict the odd polyphase component x
1

of x, the
signal x

0

should be filtered with some “prediction” p-filter:
ŝ

1

[n] = f

p
[n] x̂

0

[n]. Then, the interpolating low-pass p-filter is
defined as ˆ

h

0

[n]

def

= (1 + !

�n
f

p
[n]) /

p
2. The corresponding

high-pass p-filter is ˆ

h

1

[n]

def

= !

�n
(1� !

n
f

p
[�n]) /

p
2. The

filters f

p
[n] can be explicitly calculated for any order of a

spline. For all the orders except for p = 2 (piece-wise linear
spline) the p-filters have infinite impulse response. This fact
does not complicate the implementation, which consists of
application of the forward and inverse fast Fourier transforms
and simple arithmetic operations. The finite impulse response
(up to periodization) p-filters can be derived from quasi-
interpolating splines.

Because the conventional notion of vanishing moments is
not applicable to the periodic discrete-time setting, we use
the notion of the local discrete vanishing moments (LDVM).
Loosely speaking, a framelet has m LDVM if, being convolved
with a signal containing fragments of sampled polynomials of
degree m � 1, it eliminates these fragments. If the FR of a
p-filter comprises either the factor

�

1� !

2n
�r or the factor

sin

2r
⇡n/N then the corresponding framelet has 2r LDVM.

We designed a diverse collection of tight and semi-tight
frames originating from interpolating and quasi-interpolating
splines of different orders. Below are two examples.

d) Example 1: quadratic interpolating spline: p = 3:
The frequency response of low- and high-pass p-filters are

ˆ

h

0

[n] =

p
2

cos

4 ⇡n/N
cos

4 ⇡n/N+sin

4 ⇡n/N

ˆ

h

1

[n] = !

�n
p
2

sin

4 ⇡n/N
cos

4 ⇡n/N+sin

4 ⇡n/N .

In this case a symmetric factorization of the matrix Q[n]

defined in Eq. (6) is possible. Therefore the p-filters h2 and
h3, which complete the p-filters h0 and h1 to the PR filter
bank, have linear phase. Their frequency responses are

ˆ

h

2

[n] =

1

2

p
2

sin

2

2⇡n/N

cos

4

⇡n/N + sin

4

⇡n/N

= �!n
ˆ

h

3

[n].

The high-frequency framelet  1

= h1 has four LDVM, while
the framelets  l

= hl
, l = 2, 3, have two.

e) Example 2: quadratic quasi-interpolating spline: In
the tight frame derived from this spline the p-filters h2 and
h3 are non-symmetric. However, the semi-tight frame, where
those p-filters are antisymmetric proved to be highly efficient
in applications. The frequency response of low- and high-pass
p-filters are

ˆ

h

0

[n] =

1p
2

cos

4

⇡n
N

�

3� cos

2⇡n
N

�

ˆ

h

1

[n] =

!�n
p
2

sin

4 ⇡n
N

�

3 + cos

2⇡n
N

�

.

Denote
˜

T [n]

1

=

!4n�3!2n
+3�!�2n

8

T [n]

1

=

(

1�!2n
) (

�!4n�12!2n
+346�12!�2n�!�4n

)

1024

.

Then,

ˆ

h

2

[n] = T [n]

1

= �
ˆ

˜

h

3

[�n]

!

n
,

ˆ

˜

h

2

[n] =

˜

T [n]

1

= �
ˆ

h

3

[�n]

!

n
.
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Fig. 1. Top:FB generating tight frames: impulse and magnitude responses
derived from quadratic quasi-interpolating spline. Bottom: analysis and syn-
thesis band-pass filters for semi-tight frame

The high-frequency framelet  1 has four LDVM. We assign
three LDVM to the analysis framelet ˜

 

2 leaving only one
LDVM to the synthesis framelet  2 and vice versa for the
framelets ˜

 

3 and  

3. Figure 1 displays impulse and magni-
tude responses of the p-filters derived from quadratic quasi-
interpolating spline, which generate the tight and the semi-tight
frames. We observe that the impulse responses of the band-
pass p-filters for the tight frame are non-symmetric. The semi-
tight frame band-pass p-filters have anti-symmetric impulse
responses.

V. APPLICATION TO IMAGE RESTORATION

We designed a diverse library of tight and semi-tight frames,
which were extended to two dimensions via the tensor prod-
ucts of 1D framelets. The frames were tested in multiple
image restoration experiments where images were blurred,
affected by random noise and a significant number of pixels
were missing. For restoration, the SBI scheme [1] with the
designed frames was utilized. Performance of different frames
was compared. These experiments as well as the frame design
are described in details in [7]. In most cases semi-tight frames
were advantageous over respective tight frames. Especially
successful was the semi-tight frame presented in Example
2. However in some experiments, the frames derived from
higher order splines (thus having a big number of LDVM)
outperformed the frame derived from low-order splines.

f) “Boats” and “Fingerprint” images: The “Boats” im-
age was blurred by the motion kernel and its PSNR becomes
22.88 dB. Then, 70% of pixels were randomly removed. This
reduces the PSNR to 7.37 dB. The image restored using
the semi-tight frame from Example 2 with PSNR =30.28
dB. The “Fingerprint” image was affected by a strong zero-
mean white noise with STD � = 20 after being blurred
by the Gaussian kernel (PSNR=19.75 dB). Then, 50% of its
pixels were randomly removed and this produced PSNR=9.05
dB. The frame decomposition is implemented down to the
fifth level. The PSNR=23.75 dB result was achieved by the
application of the tight frame derived from the interpolating
spline of fifth order. In this frame, the high-frequency framelet
 

1 has six LDVM, while either of the framelets  2 and  3 has
three LDVM. Results of the above experiments are displayed
in Fig. 2. We observe that despite a strong degradation, which
made images almost undistinguishable, they are successfully
restored.

g) Restoration experiments for the “Window” image:
This image was taken from [8]. The image was blurred by

Fig. 2. “Boats” and “Fingerprint” images Top left in each quadruple –
original images. Bottom left – restored images

Fig. 3. “Window” image. Left quadruple – no-noise experiment. Right
quadruple – noise experiment

the motion kernel. In one experiment random noise presented
(PSNR= 23.56 dB), while in the other white noise with STD
� = 5 was added (PSNR= 23.19 dB). Then, 30% of pixels
were randomly removed. This reduces the PSNR to 10.22
dB and 10.20 dB, respectively. We compared the restoration
results with the respective results reported in [8]. In the no-
noise experiment the PSNR of the image restored by the semi-
tight frame described in Example 2 was 43.78 dB versus 40.25
dB in [8]. For the noise experiment the PSNR was 28.81 dB
versus 27. 76 dB in [8]. The restoration results are displayed
in Fig. 3.
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Abstract—In Compressed Sensing (CS), measurements of a
sparse vector are obtained by applying a sensing matrix. With the
means of CS, it is possible to reconstruct the sparse vector from a
small number of such measurements. In order to provide reliable
reconstruction also for less sparse vectors, sensing matrices are
desired to be of low coherence. Motivated by this requirement, it
was recently shown that low coherence sensing matrices can be
obtained by Best Antipodal Spherical Codes (BASC) [1]. In this
paper, the noise-resilience of the Orthogonal Matching Pursuit
(OMP) used in combination with low coherence BASC-based
sensing matrices is investigated.

I. INTRODUCTION

In Compressed Sensing (CS), one is particularly interested
in the sparsest solution to an underdetermined system of M
linear equations:

Ax = b.

This is commonly interpreted as acquiring a sufficiently
k-sparse vector x 2 RN from a small number of measure-
ments. A so called sensing matrix A 2 RM⇥N describes these
measurements enlisted in b 2 RM, where M is significantly
smaller than N .

However, for practical applications, measurement noise
will always be present. Therefore, an additional noise term
n 2 RM consisting of Gaussian distributed elements with zero
mean is usually considered in the system model (e.g. [2]):

Ax+ n = b+ n.

There are multiple approaches to reconstruct the sparse
vector ˆx out of its measurements b, e.g. the Basis Pursuit (BP)
and Basis Pursuit De-Noising (BPDN) algorithms [3] based on
convex relaxation, or greedy algorithms like the Orthogonal
Matching Pursuit (OMP) [4].

The selection of suitable sensing matrices A is crucial
for a successful reconstruction. There are multiple properties
providing conditions on sensing matrices, e.g. the worst-case
coherence µ between columns of the sensing matrix [5]–[9].
The worst-case coherence is defined by the maximal absolute
value of the inner product between two distinct columns of A:

µ = max

i 6=j

|a
i

· a
j

| , (1)

where a

i

is the ith column. Motivated by these coherence
properties, the construction of Best Antipodal Spherical Codes

(BASC)-based sensing matrices with low worst-case coherence
has been proposed in [1].

Other approaches for guarantees on successful reconstruc-
tion utilize the Restricted Isometry Property (RIP) [10]. Nor-
malized Gaussian random matrices are often used as sensing
matrices, because they fulfill the RIP with high probabil-
ity [10]. Due to its combinatorial nature, the direct evaluation
of a matrix for its RIP is not tractable. However, Monte Carlo
experiments can be performed, which indicate the suitability
of BASC-based sensing matrices with respect to the RIP [1].

The reason for using BASC-based sensing matrices and
their construction is briefly summarized in Section II as given
in [1]. An analysis on the noise-resilience based on numerical
simulations is given in Section III. In Section IV, conclusions
are provided as well.

II. BASC-BASED SENSING MATRICES

A. Spherical Codes
Any finite set of M points placed on the surface of the

N -dimensional unit sphere centered at the origin of the N -
dimensional Euclidean space RN is called a spherical code
and denoted by C

s

(N,M) [11]–[13]. A point of C
s

(N,M) =

{s
m

}M
m=1 is determined by its corresponding code word s

m

=

(s
m1, . . . , smn

, . . . , s
mN

) representing a unit position vector
(|s

m

| = 1,m = 1, . . . ,M) whose components s
mn

2 R
are the coordinates of the point in some reference Cartesian
coordinate system centered at the origin. Best Spherical Codes
(BSC), Cbs(N,M), are spherical codes which maximize the
minimal Euclidean (or angular) distance d

ml

= |s
m

� s

l

| be-
tween any two points (or equivalently, minimize the maximal
inner product of the corresponding code words). All rotations
of a BSC are usually regarded as the same, therefore, a BSC is
characterized only by its distance distribution D = {d

ml

}
m<l

.
For some specific (N,M) pairs (N > 2,M > N), the corre-
sponding BSC can be unique, however, there also exist (N,M)

pairs with more than one corresponding BSC (these BSCs have
different distance distributions but the same minimal distance).
For BASC, Cbas(N,M), the antipodal of each code word is
also a code word:

s

m

2 Cbas(N,M) () �s
m

2 Cbas(N,M).

This property can be used in order to construct low coherence
sensing matrices [1].
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B. Sensing Matrices Based on Spherical Codes
The M = N code words of a spherical code C

s

(N,M) can
be regarded as N columns of a sensing matrix A 2 RM⇥N .
It can be easily shown that the squared Euclidean distance
between code words is proportional to their inner product.
However, the worst-case coherence is defined over the absolute
value of the inner product, see Equation (1). Consequently,
the search for sensing matrices with smallest worst-case
coherence µ is transformed into the search for BASC with
N = M and M = 2N . The M

2 non-antipodal code words of
C

bas

(N,M) are the columns of the desired sensing matrix.

C. Obtaining BSC
The points of spherical codes can be considered as M

charged particles on the unit sphere acting in some field
of repelling forces [14]. Starting from any initial position,
such particles will move until the total potential energy of
the system approaches some local minimum. In any one of
these local minima the particles will settle causing a stable or
unstable equilibrium of mutual repelling forces. In [15], such
a generalized potential function, g(D), was introduced. For a
specific form of g(D) given in [16] by

g(D) =

X

m<l

|s
m

� s

l

|�(⌫�2), (2)

where ⌫ 2 N (⌫ > 2), it was shown that the global minimum
of g(D) is attained by a BSC if ⌫ !1.

As further summarized in [1], the set of fixed points of two
mappings can be regarded as the desired minima.

The first mapping F can be interpreted as collection of
effective forces f

m

acting on the code words s
m

of a spherical
code and is given by

F [C
s

(N,M)] =

n

f

m

(C
s

(N,M))

o

M

m=1

=

8

>

>

>

>

<

>

>

>

>

:

f

m

=

P

l 6=m

[(s

m

� s

l

)/|s
m

� s

l

|⌫ ]
�

�

�

�

�

P

l 6=m

[(s

m

� s

l

)/|s
m

� s

l

|⌫ ]

�

�

�

�

�

9

>

>

>

>

=

>

>

>

>

;

M

m=1

or, with the underlined denotation of unit vectors u =

u
|u| , by

8

<

:

f

m

=

X

l 6=m

s

m

� s

l

|s
m

� s

l

|⌫ =

X

l 6=m

�

ml

9

=

;

M

m=1

. (3)

With the help of F a second mapping can be defined by

�[C
s

(N,M)] =

n

s

m

+ ↵f
m

o

M

m=1
, (4)

where f

m

is given by (3) and ↵ 2 R. It is evident that the
mappings F and � have the same set of fixed points. For a
small enough “damping factor” ↵, the iterative process

C
s

(N,M)

(k+1)
= �(C

s

(N,M)

(k)
); k = 0, 1, . . . (5)

converges to one of the fixed points of the function �, and
consequently of F .

It was also shown [17] that, generally, for ⌫ large enough,
all fixed points correspond to spherical codes whose minimal
distances are close enough to the minimal distance of corre-
sponding BSCs. Consequently by finding any fixed point using
(5) with ⌫ large enough, the corresponding spherical code will
be very close to the best one.

D. Obtaining BASC

The construction of BSC can be easily adapted for BASC,
by considering additional antipodal points [1], leading to a new
mapping and new forces acting on the particles respectively:

8

<

:

f

m

=

X

l 6=m



s

m

� s

l

|s
m

� s

l

|⌫ +

s

m

+ s

l

|s
m

+ s

l

|⌫

�

9

=

;

M

m=1

. (6)

After the mapping (4) is applied, the antipodal points need to
be updated. The resulting algorithm is given in Fig. 1.

III. NOISE-RESILIENCE DETERMINED BY
NUMERICAL EVALUATIONS

The frequency of successful reconstruction1 is evaluated
over the sparsity of x, where the non-zero values are drawn
from a Gaussian distribution with zero mean and unit variance,
and over the Signal-to-Noise-(power)-Ratio SNR, with

SNR [dB] = 10 · log10

0

B

B

@

M
P

i=1
|b

i

|2

M
P

i=1
|n

i

|2

1

C

C

A

,

where b
i

and n
i

are the components of the corresponding
vectors b and n. For the construction of BASC-based matrices,
we used the initial values as given in the algorithm description
presented in Fig. 1. For the stopping criterion of the OMP
algorithm, we assume knowledge of the noise power: If the `2-
norm of the residual is less than the `2-norm of the noise plus
some small threshold

�

10

�6
�

, the OMP algorithm will stop.
Our simulations indicate that OMP also performs well for an
overestimation of the noise power, therefore, the assumption
of a known noise power is not too restrictive. All simulations
have been performed in MATLAB R� [18].

Column-normalized random matrices with entries drawn
from a Gaussian distribution have also been considered for
comparisons. For the numerical evaluation, a version of each
matrix type has been computed. The frequency of successful
reconstruction has been determined over 7500 simulations.
The corresponding result is shown in Fig. 2 and Fig. 3 for
matrices of size 64 ⇥ 128. We repeated such simulations
for multiple different realizations of the discussed matrices,
however, the results did not show significant differences.

As it can be seen in Fig. 2 and Fig. 3, the signal must be
strong enough in order to allow sparse recovery by the OMP.
For high SNR levels, the sparsity is the dominating factor,

1The reconstruction is considered to be successful, if the condition
|x̂� x| < 10�3 is fulfilled.
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1: procedure BASC-BASED SENSING MATRIX(M,N )
2: N  M
3: M  2N
4: ↵

init

 0.9
5: ⌫  2

6: ⌫
max

 2

10

7: i
max

 10

5

8: ✏ 10

�10

9: C
s

 arbitrary . Random spherical code
10: C

as

 [C
s

� C
s

] . Antipodal spherical code
11: ↵ ↵

init

12: while ⌫ < ⌫
max

do
13: FixedPoint false
14: i 0

15: while i < i
max

AND FixedPoint = false do
16: for m = 1 to M

2 do
17: f

m

 0
18: for l = 1 to M do
19: if l 6= m AND l 6= m+N then
20: f

m

 f

m

+

sm�sl

|sm�sl|⌫
21: end if
22: end for
23: end for
24: {s

m

}
M
2
m=1  

n

s

m

+ ↵f
m

o

M
2

m=1

25: {s
m

}M
m=1+M

2
 {�s

m

}
M
2
m=1

26: if all
�

�

�

f

m

� s

m

�

�

�

< ✏ then
27: FixedPoint true
28: end if
29: i i+ 1

30: end while
31: ⌫  2⌫
32: ↵ ↵init

⌫�1
33: end while
34: return A {s

m

}
M
2
m=1

35: end procedure

Fig. 1. The construction algorithm for BASC-based sensing matrices.

and it can be seen that the OMP performs better for BASC-
based matrices. Comparing the presented results with those
of [1], where a noise-free setting was investigated with a BP
algorithm, it is obvious that OMP gains more from the low
coherence BASC-based matrices than the BP algorithm.

In Fig. 4, the difference of the reconstruction frequencies
is shown in order to give a clearer comparison. Green areas
indicate that the OMP algorithm was more often successful
with the BASC-based matrix then with the normalized Gaus-
sian matrix. Red areas would indicate better results in favor of
the Gaussian matrices. Obviously, BASC-based matrices work
on average better with the OMP algorithm. However, it should
also be noted that this superiority is not always observable. For
certain individual realizations of the noise n and the sparse
vector x, the Gaussian matrices performed slightly better for
low SNR levels (10 � 20db). Taking more simulations into
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Fig. 2. Frequency of exact reconstruction for normalized Gaussian matrices
with M = 64 and N = 128.
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Fig. 3. Frequency of exact reconstruction for BASC-based matrices with
M = 64 and N = 128.

account, these differences average out cf. Fig. 4.

IV. CONCLUSIONS

The OMP algorithm clearly benefits more from the low
coherence of BASC-based sensing matrices than the BP al-
gorithm (cf. [1]).

For higher SNR levels, the lower coherence between the
columns of the BASC-based sensing matrices can be exploited
by the OMP, and therefore, a better performance can be
achieved in such situations.

However, no significant gain in performance can be ex-
pected for lower SNR regions.
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Fig. 4. Difference of the frequency of exact reconstruction between BASC-
based matrices and normalized Gaussian matrices. Both are of size M =
64 and N = 128. Green areas indicate better performance of BASC-based
matrices, whilst red areas show the same for Gaussian matrices.
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Abstract—The paper deals with the construction of Parseval
frames for L2(B(0, R)), the space of square integrable functions
whose domain is the ball of radius R. The focus is on Fourier
frames on a spiral. Starting with a Fourier frame on a spiral, a
Parseval frame that spans the same space can then be obtained
by a symmetric approximation of the original Fourier frame.

I. INTRODUCTION
Earlier work by Benedetto et al. [1], [2], [3], [4] gave the

construction of a set of points on a given spiral such that these
points give rise to a frame for L2(B(0, R)), the space of all
square integrable functions on the ball centered at the origin
and of radius R. This means that given a spiral Ac, the authors
in [1], [2], [3], [4] were able to construct a sequence of points
Λ on this spiral and its interleaves such that every signal f
belonging to L2(B(0, R)) can be written as

∑
λ∈Λ aλ(f)eλ

where eλ(x) = e2πix·λ. The incentive of choosing points
on a spiral comes from the applicability in MRI (Magnetic
Resonance Imaging) where a signal is sampled in the Fourier
domain along interleaving spirals, resulting in fast imaging
methods. For practical purposes, the reconstruction of signals
using such infinite frames entails inverting the frame operator
and/or using only finitely many samples. Such numerical is-
sues are mitigated if one can use a tight frame. The possibility
of expanding a function as a non-harmonic Fourier series was
discovered by Paley and Wiener. For a sequence Λ of real
numbers, it is natural to ask whether every band-limited signal
with spectrum E can be reconstructed in a stable way from
its samples {F (λ),λ ⊆ Λ}. Landau [5] proved a necessary
condition for {e2πix·λ,λ ∈ Λ} to be a frame for the space
of band-limited functions with spectrum E by relating the
lower density of Λ to the measure of E. There is an extensive
literature on the stable reconstruction problem, (see, e.g., [6],
[7], [8], [9], [10], [11]). Many of the contributions to this
area focus on the theoretical aspect, while our emphasis is on
explicit construction.
The main contribution of this article is to give an explicit

procedure to convert a frame which is not a tight frame into a
Parseval frame, with the requirement that each element in the
resulting Parseval frame can be expressed as a linear combina-
tion of the elements in the original frame. To be precise, this
requirement means that if {f1, f2, f3} is the original frame for
the Hilbert space H, and {g1, g2, g3} is the resulting Parseval
frame, then each gn is a linear combination of f1, f2, f3.
For any function f ∈ H, one has f =

∑3
n=1〈f, gn〉gn.

Since each gn is a linear combination of f1, f2, and f3, each
number 〈f, gn〉 can be calculated from the three numbers
〈f, f1〉, 〈f, f3〉, 〈f, f3〉. Hence, from the numbers 〈f, fn〉 for
n = 1, 2, 3, one can recover f . In the reconstruction formula
using the Parseval frame, only the measurements obtained
from the original frame are needed. This feature is extremely
important, especially in the aforementioned application to
MRI, when the measurements from the original frame are the
only available measurements. The procedure explained in this
article applies to other frames, and not just to Fourier frames,
but motivated by applications to medical imaging as in MRI,
the focus here is only on spiral sampling with Fourier frames.
In [12], Frank, Paulsen, and Tiballi obtain a Parseval frame

from a given frame that spans the same subspace as the
original frame and is closest to it in some sense, which they
call symmetric approximation. The approach used in [12] is to
use the polar decomposition of the synthesis operator of the
original frame. This idea inspires the method developed in the
present work to obtain Parseval frames for the spiral sampling
case. Presently, the work is only focused on finite frames. The
symmetric approximation of infinite Fourier frames on spirals
and the best N -term approximation of such frames constitute
ongoing research.

A. Notation and preliminaries

Let Rd be the d-dimensional Euclidean space, and let R̂d

denote Rd when it is considered as the domain of the Fourier
transforms of signals defined on Rd. L2(R̂d) is the space of
square integrable functions φ on R̂d, i.e.,

||φ||L2(R̂d) =

(∫

R̂d

|φ(γ)|2dγ
)1/2

< ∞,

φ∨ is the inverse Fourier transform of φ defined as

φ∨(x) =

∫

R̂d

φ(γ)e2πix·γdγ,

and supp φ∨ denotes the support of φ∨. Let E ⊆ R̂d be
closed. The Paley-Wiener space PWE is

PWE = {φ ∈ L2(R̂d) : supp φ∨ ⊆ E}.

Let H be a separable Hilbert space. A sequence {fn : n ∈
Zd} ⊆ H is a frame for H if there exist constants 0 < A ≤

Proceedings of the 10th International Conference on Sampling Theory and Applications

472



B < ∞ such that
∀y ∈ H, A||y||2 ≤

∑

n

|〈y, fn〉|
2 ≤ B||y||2.

The constants A and B are called the lower and upper frame
bounds, respectively. If A = B, the frame is said to be tight
and if A = B = 1, the frame is called a Parseval frame. Let
{fn} be a frame for H. The synthesis operator is the linear
mapping T : $2 → H given by T ({ci}) =

∑
k ckfk. The

frame operator S : H → H is TT ∗ and is given by

∀y ∈ H, S(y) =
∑

n

〈y, fn〉fn.

For every y ∈ H,

y =
∑

n

〈y, S−1fn〉fn =
∑

n

〈y, fn〉S
−1fn.

For more on frames one can look at [13] or [14].
Let Λ ⊆ R̂d be a sequence and let E ⊂ Rd have finite

Lebesgue measure. By the Parseval Formula, the following
are equivalent ([3], [4]).
(i) {eλ : λ ∈ Λ} is a frame for L2(E).
(ii) There exist 0 < A ! B < ∞ such that

A||φ||22 !
∑

λ∈Λ

|φ(λ)|2 ! B||φ||22,

for all φ in PWE . In this case, we say that Λ is a Fourier
frame for PWE .

A set Λ is uniformly discrete if there exists r > 0 such that
∀λ, γ ∈ Λ, |λ− γ| ≥ r,

where |λ− γ| is the Euclidean distance between λ and γ.
If for two frames {fi}i∈N and {gi}i∈N of two Hilbert

subspacesK and L ofH, respectively, there exists an invertible
bounded linear operator T : K → L such that T (fi) = gi
for every index i, then these two frames are said to be
weakly similar [12]. A Parseval frame {νi}ni=1 in a finite
dimensional Hilbert subspace L ⊆ H is said to be a symmetric
approximation of a finite frame {fi}ni=1 in a Hilbert subspace
K ⊆ H if the frames {fi}ni=1 and {νi}ni=1 are weakly similar
and the inequality

n∑

j=1

‖µj − fj‖
2 ≥

n∑

j=1

‖νj − fj‖
2

is valid for all Parseval frames {µi}ni=1 in Hilbert subspaces
of H that are weakly similar to {fi}ni=1 [12]. If K = L, the
frames are called similar.
When a 3 by 3 matrix W is acting on a sequence of

elements {f1, f2, f3}, this action is denoted by {e1, e2, e3} =
W · {f1, f2, f3}, or in matrix notation,




e1
e2
e3



 =




w11 w12 w13

w21 w22 w23

w31 w23 w33








f1
f2
f3



 ,

to denote

e1 =
3∑

j=1

w1jfj , e2 =
3∑

j=1

w2jfj , e3 =
3∑

j=1

w3jfj .

B. Background
The following theorem [1], [2], [3], [4] is based on a deep

result of Beurling [15].

Theorem I.1 (Beurling Covering Theorem). Let Λ ⊆ R̂d be
uniformly discrete, and define ρ = supµ∈R̂d dist(µ,Λ) where
dist(µ,Λ) is the Euclidean distance between the point µ and
the set Λ. If Rρ < 1/4, then Λ is a Fourier frame for
PWB(0,R).

In [1], [2], [3], [4] the authors have used the Beurling
Covering Theorem to give an explicit construction of Fourier
frames from points that lie on a spiral. In particular, the
following result can be found in [2].

Example I.2. Fix c > 0. In R̂2, consider the spiral

Ac = {cθ cos 2πθ, cθ sin 2πθ : θ ≥ 0}.

For R and δ satisfying Rc < 1/2 and ( c2 + δ)R < 1/4, one
chooses a uniformly discrete set of points Λ such that the curve
distance between any two consecutive points is less than 2δ,
and beginning within 2δ of the origin. Then Λ satisfies the
Beurling Covering Theorem and hence gives rise to a Fourier
frame for PWB(0,R).

The synthesis operator T defined in Section I-A is bounded
and has a natural polar decomposition T = W |T |, where W
is a partial isometry from $2 into H. To obtain a symmetric
approximation of a given frame, the following has been shown
in [12].

Theorem I.3. Let {µi}ni=1 be a Parseval frame in a Hilbert
subspace L ⊆ H and let {fi}ni=1 be a frame in a Hilbert
subspace K ⊆ H such that both these frames are weakly
similar. Letting the standard orthonormal basis for Cn be
denoted by {ei}ni=1, the following inequality

n∑

j=1

‖µj − fj‖
2 ≥

n∑

j=1

‖W (ej)− fj‖
2

holds. Equality appears if and only if µj = W (ej) for
j = 1, . . . , n. (Consequently, the symmetric approximation of
a frame {fi}ni=1 in a finite dimensional Hilbert space K ⊆ H
is a Parseval frame spanning the same Hilbert subspace
L ≡ K of H and being similar to {fi}ni=1.)

Similar results for infinite frames in separable Hilbert spaces
have also been established in [12] but for now the focus is on
the finite dimensional case.

II. PARSEVAL FRAMES FROM A FINITE FOURIER FRAME ON
A SPIRAL

Three examples are discussed below. In the first two exam-
ples, the frame under consideration is on R̂. The third example
is for a Fourier frame on a spiral in R̂2.
In the first two examples, the procedure suggested by

Theorem I.3 is modified so that in the final step, matrix
multiplication is replaced by a matrix acting on a sequence
of elements in a Hilbert space.

Proceedings of the 10th International Conference on Sampling Theory and Applications

473



Example II.1. Let {f1 = e2πiλ1x, f2 = e2πiλ2x, f3 =
e2πiλ3x} be a frame that spans a subspace of L2([−1/2, 1/2]).
Choose λ1 = 3 + 1

3 ,λ2 = 4 + 1
4 ,λ3 = 5 + 1

5 .

This frame is used to construct a Parseval frame that
spans the same subspace. Let H be the span of {f1, f2, f3}
and let {e1, e2, e3} be an orthonormal basis of H. One can
construct an orthonormal basis {e1, e2, e3} by applying the
Gram-Schmidt orthogonalization process to {f1, f2, f3}. The
resulting orthonormal basis can be written as




e1
e2
e3



 =




1 0 0

−c21 1 0
c21θ − c31 −θ 1








f1
f2
f3



 ,

where

c21 = sinc(λ2−λ1), c32 = sinc(λ3−λ2), c31 = sinc(λ3−λ1),

and

sinc(x) ≡
sin(πx)

πx
, θ =

c32 − c21c31
1− c221

.

Then

f1 = e1,

f2 = c21e1 + e2,

f3 = c31e1 + θe2 + e3,

and the synthesis operator T of the frame {f1, f2, f3} can be
written in matrix form as




1 c21 c31
0 1 θ
0 0 1



 .

Next the polar decomposition of the matrix of T is computed,
so that T = W |T |, where W is a partial isometry and |T | =
(T ∗T )1/2. In this case, since T is invertible, W is in fact a
unitary matrix. Finally, let {g1, g2, g3} = W ∗ · {e1, e2, e3}.
Then {g1, g2, g3} forms a Parseval frame for H.

Remark: (1). In this example, since the original frame
is linearly independent and therefore a basis for H, what
is obtained as a Parseval frame is in fact an orthonormal
basis for H. (2). Since each gn can be written as a linear
combination of f1, f2, and f3, the Parseval frame constructed
indeed spans the same subspace as the original frame.

Example II.2. Let λ1 = 3 + 1
3 ,λ2 = 4 + 1

4 ,λ3 = 5 + 1
5

and let f1 = e2πiλ1x, f2 = e2πiλ2x, f3 = e2πiλ3x, f4 =
f1 + f2, f5 = f1 + f3, and f6 = f2 + f3. Consider the frame
{f1, f2, f3, f4, f5, f6} of a subspace of L2([−1/2, 1/2]). De-
note this subspace by H. Starting from the linearly inde-
pendent set {f1, f2, f3} that spans H, one can construct an
orthonormal basis {e1, e2, e3} for H as done in Example II.1.

From Example II.1,

f1 = e1,

f2 = c21e1 + e2,

f3 = c31e1 + θe2 + e3,

f4 = f1 + f2 = (1 + c21)e1 + e2,

f5 = f1 + f3 = (1 + c31)e1 + θe2 + e3,

f6 = f2 + f3 = (c21 + c31)e1 + (1 + θ)e2 + e3,

where c21, c31, and θ are as defined in Example II.1. The
synthesis operator T has the matrix representation




1 c21 c31 1 + c21 1 + c31 c21 + c31
0 1 θ 1 θ 1 + θ
0 0 1 0 1 1



 .

Let the polar decomposition of T be given by T = W |T |. Let
{g1, g2, g3, g4, g5, g6} = W ∗ · {e1, e2, e3}. Note that W ∗ is a
6 by 3 matrix. Then it can be shown that {gk : 1 ≤ k ≤ 6}
forms a Parseval frame for H.

Example II.3. A Fourier frame of three elements is first con-
structed using Example I.2. Let c = 1, R = 1/4, and δ = 1/4.
Three points on the spiral Ac=1 = {θ cos 2πθ, θ sin 2πθ} that
have arc-length between them less than 2δ, starting with 2δ
from the origin, can be obtained by taking three values of θ
to be θ1 = 1/16, θ2 = 1/8, and θ3 = 1/4. This choice gives
the following three points on the spiral

λ1 = (
1

16
cos

π

8
,
1

16
sin

π

8
) = (0.06, 0.02),

λ2 = (
1

8
cos

π

4
,
1

8
sin

π

4
) = (0.09, 0.09),

and
λ3 = (

1

4
cos

π

2
,
1

4
sin

π

2
) = (0, 1/4).

Thus X = {eλ1
, eλ2

, eλ3
} is a Fourier frame for

span{eλ1
, eλ2

, eλ3
}.

For implementation purposes, to get the symmetric approx-
imation, one can think of discretizing the ball B(0, 1/4) by
changing into polar coordinates and looking at the rectangle
{(r, θ) : 0 ≤ r ≤ 1/4, 0 ≤ θ ≤ 2π}. One can then divide
each side of the rectangle into N subintervals partitioning it
into N2 rectangles. The exponential functions from the set
X are then evaluated at N2 grid-points, taking one point
from each small rectangle and thus obtaining a vector vi of
length N2 for each eλi

, i = 1, 2, 3. Looking at the synthesis
operator F of X as the matrix [F ] whose columns are vi;
such a matrix will be of size N2 by 3. After carrying out
the polar decomposition of [F ] using Matlab, one can get the
discretized Parseval frame {ui}3i=1 that will be considered as
the symmetric approximation of the above Fourier frame.
Suppose one is interested in reconstructing a function f in

span{eλ1
, eλ2

, eλ3
}. First f is converted into a vector [f ] of

size N2 by evaluating it at the N2 points on the rectangular
grid above. Then f is reconstructed at the N2 points as

˜[f ] =
3∑

j=1

〈[f ], ui〉ui.
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The results are shown in Figures 1 and 2 for the reconstruction
of f = eλ1

and f = eλ1
− 2eλ2

+ eλ3
, respectively. Only the

real part of the original and the reconstructed functions are
plotted. Also, for clarity of reading the figures, only a certain
number of points are plotted instead of all the N2 points.
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Fig. 1. Reconstruction of the function f = eλ1
using N = 50.
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Fig. 2. Reconstruction of the function f = eλ1
−2eλ2

+eλ3
using N = 50.

III. CONCLUSION
In this paper, the construction of a Parseval frame that is a

symmetric approximation of a Fourier frame on a spiral has
been considered. Presently, the focus is only on finite frames.
This is done by means of the polar decomposition of the matrix
corresponding to the synthesis operator of the Fourier frame.
The reconstruction of functions lying in the span of such
Fourier frames on spirals has been studied. By using a Parseval
frame that spans the same space as the original Fourier frame,
the reconstruction avoids the need to compute the inverse
of the frame operator of the original frame. Besides, the
Parseval frame that is obtained by considering the symmetric
approximation enables one to reconstruct a function by only
using the measurements obtained from the original Fourier
frame.

Finding a Parseval frame for some general separable Hilbert
space that is a symmetric approximation of a given frame
involves finding the polar decomposition of the synthesis oper-
ator. This constitutes ongoing research. For practical purposes,
even after finding a Parseval frame, it is not possible to use an
infinite frame and one should think of finding the best N -term
approximation. This will be a part of future research.
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Abstract—A commonly used approach for analyzing massive

high dimensional datasets is to utilize diffusion-based kernel

methods. The kernel in these methods is based on a Markovian

diffusion process, whose transition probabilities are determined

by local similarities between data points. When the data lies on

a low dimensional manifold, the diffusion distances according

to this kernel encompass the geometry of the manifold. In

this paper, we present a generalized approach for defining

diffusion-based kernels by incorporating measure-based infor-

mation, which represents the density or distribution of the data,

together with its local distances. The generalized construction

does not require an underlying manifold to provide a meaningful

kernel interpretation but assumes a more relaxed assumption

that the measure and its support are related to a locally low

dimensional nature of the analyzed phenomena.

I. INTRODUCTION

The diffusion maps (DM) method [3] is a popular kernel
method that utilizes a stochastic diffusion process to analyze
the data. It defines diffusion affinities via symmetric conjuga-
tion of a transition probability operator. These probabilities
are based on local distances between the data points. The
Euclidean distances in the embedded space represent the
diffusion distances in the original space. When the data is
sampled from a low dimensional manifold, the diffusion paths
follow the manifold and the diffusion distances capture its
geometry.

In this paper, we enhance the DM method by incorporating
information about the distribution of the data, in addition to
local distances on which DM is based. This distribution is
expressed in term of a measure over the observable space. The
measure (and its support) replace the manifold assumption.
We assume that the measure quantifies the likelihood for
the presence of data over the geometry of the space. This
assumption is significantly less restrictive than the need to
have a manifold present. In practice this measure can either be
provided as an input (e.g., by a-priori knowledge or a statistical
model), or deduced from a given training set (e.g., by a
density estimator). The manifold assumption can be expressed
in terms of the measure assumption by setting the measure
to be concentrated around an underlying manifold or (in the
extremely restrictive case), to be supported by the manifold.
Therefore, the measure assumption is not only less restrictive
than the manifold assumption but it also generalizes it.

In the suggested construction, the used measure, which can
represent densities, is separated from the distances and from

the analyzed dataset. Therefore, when dealing with discrete
data, this construction can utilize two different sets of samples:
the analyzed dataset and the measure-related set with attached
empirical measure values. Furthermore, from theoretical point
of view, this construction combines continuous measures with
either discrete or continuous datasets.

II. PROBLEM SETUP

Let ⌦ ✓ n, for some natural n, be a metric space with
the Euclidean distance metric k·k. The integration notationR
·dy in this paper will refer to the Lebesgue integral

R
⌦ ·dy

over the subspace ⌦, instead of the whole space n. Let
µ be a probability measure defined on ⌦ and let q(x) be
the distribution function of µ, i.e., dµ(x) = q(x)dx. This
measure represents the distribution of data in ⌦. We aim
to combine the distance metric of ⌦ and the measure µ to
define a kernel function k(x, y), x, y 2 ⌦, which represents
the affinities between data points in ⌦. Then, these affinities
can be used to construct a diffusion map, as described in
Section II-A, and utilize it to embed the data into a low-
dimensional representation that considers both proximities and
distributions of the data points.

A. Diffusion maps

The diffusion maps (DM) framework utilizes a set of
affinities to define a Markovian (random-walk) diffusion pro-
cess over the analyzed data [3]. The spectral properties of
this process are then used to obtain a representation of the
data, where diffusion distances are expressed as Euclidean
distances. The achieved representation reveals the underlying
patterns of the data such as clusters and differences between
normal and abnormal regions.

Technically, DM is based on an affinity kernel k and
the associated integral operator that is defined as Kf(x) =R
k(x, y)f(y)dy, x 2 ⌦, for any function f 2 L

2(⌦). The
affinity kernel k is normalized by a set of degrees ⌫(x) ,R
k(x, y)dy, x 2 ⌦, to obtain the transition probabilities

p(x, y) , k(x, y)/⌫(x), from x 2 ⌦ to y 2 ⌦, of the Marko-
vian diffusion process. Under mild conditions on the kernel
k, the resulting transition probability operator has a discrete
decaying spectrum of eigenvalues 1 = �0 � |�1| � |�2| � . . .,
which are used together with their corresponding eigenvectors
~1 = �0,�1,�2, . . . to achieve the diffusion map of the data.
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Each data point x 2 ⌦ is embedded by this diffusion map to
the diffusion coordinates (�1�1(x), . . . ,��

(x)�
�

(x)), where
the exact value of � depends on the spectrum of the transition
probabilities operator P , whose kernel is p(x, y). The relation
between the diffusion distance metric kp(x, ·)� p(y, ·)k and
the Euclidean distances in the embedded space, is a result
of the spectral theorem [3], [5]. When the data in ⌦ lies on a
low dimensional manifold, its tangent spaces can be utilized to
express the infinitesimal generator of the associated diffusion
process in terms of the Laplacian operators on the manifold.

III. MEASURE-BASED DIFFUSION AND AFFINITY KERNELS

In this section, we define and analyze an affinity kernel that
is based on the distances in ⌦ and on the measure µ. We use
this kernel together with the DM method, which was briefly
described in Section II-A, to obtain a measure-based diffusion
affinity kernel and its resulting diffusion map. In Section III-A,
we show the relations between the infinitesimal generator of
the resulting diffusion operator and the Laplacian operator on
the space ⌦ and the measure µ.

In order to define the desired kernel, we first define the
function

g

"

(t) ,
(
e

�t

2
/"

t  ⇢

p
"

0 otherwise
, (III.1)

for any " > 0 and some constant ⇢ � 1. Notice that for a
sufficiently large ⇢, the Gaussian kernel, which is usually used
in the DM method, can be defined as k

"

(x, y) , g2"(kx� yk),
and this definition will be used in the rest of the paper.
Definition III.1 uses the function g

"

to define an alternative
kernel that incorporates both local distance information, as
the Gaussian kernel does, and measure information, which the
Gaussian kernel lacks.

Definition III.1 (Measure-based Gaussian Correlation ker-
nel). The Measure-based Gaussian Correlation (MGC) affinity
function k̃

"

: ⌦ ⇥ ⌦ ! R is defined as k̃

"

(x, y) ,R
g

"

(kx� rk) · g
"

(ky � rk)dµ(r). The MGC integral opera-
tor is defined by this function as K̃

"

f(x) =
R
k̃

"

(x, y)f(y)dy
for every function f 2 L

2(⌦) and data point x 2 ⌦.

The MGC affinity from Definition III.1, is in fact the inner
product in L

2(⌦, µ) (correlation) between two Gaussians of
width " that are centered at x and y, respectively. This affinity
takes into consideration the measure µ, between the described
Gaussians around at the examined data points. The numerically
significant positions of r in this correlation must be close
enough to x and to y (based on their Gaussians of radius "), but
they must also be in an area with a high enough concentration
of the measure µ. Notice that the measure information is con-
sidered and incorporated in the affinity definitions. From the
identity kx� rk2 + ky � rk2 = 1

2 kx� yk2 + 2
��x+y

2 � r

��2,
the MGC affinity function becomes

k̃

"

(x, y) = k

"

(x, y) ·
Z

g

"/2

✓����
x+ y

2
� r

����

◆
dµ(r). (III.2)

Equation III.2 shows the relation between the MGC kernel
and the Gaussian kernel k

"

(x, y). While the Gaussian affinity

only considers the distances between the examined data points,
the MGC affinity also considers the region in which this
distance is measured by using a Gaussian around the midpoint
between them. This midpoint represents the direct path that de-
termines the distance between the two data points. For a given
distance between two data points, the MGC affinity increases
when its path lies in an area with a high concentration of the
measure µ, and decreases when it lies in an area with a low
concentration of µ. If the measure µ is uniform over ⌦, then
the MGC kernel becomes the same as the Gaussian kernel up
to a constant.

(a) When the data lies around a
curve, the MGC affinities con-
sider paths that follow the curve.

(b) When the data lies in two
separate clusters, the affinities
between data points within a
cluster are higher than data
points from a different cluster.

Fig. III.1. An illustration of the MGC affinities in two common data analysis
scenarios. For every pair of compared data points, the significant values of the
integration variable r, from Definition III.1 or the equivalent representation
from Eq. III.2, are marked.

The dual representation of the MGC kernel in Defini-
tion III.1 and Eq. III.2 can be used to detect and consider
several common patterns in data analysis directly from the
initial construction of the kernel. Figure III.1(a) uses the
formulation in Definition III.1 to illustrate a case when the
data is concentrated in areas around a curve with significant
curvatures. In this case, the affinity will be more affected by
the distances over the path that follows the “noisy” curve
and not by the directions that follow sparse areas and bypass
the curve. Figure III.1(b) uses the formulation in Eq. III.2 to
illustrate the affinities when the data is concentrated in two
distinct clusters. In this case, we can see that the affinity
between data points from different clusters is significantly
reduced due to the measure even if they are relatively close.

As proved in [1], the presented MGC affinity kernel satisfies
the spectral properties that are required (and assumed) in [3],
[5] for its utilization with the DM framework. These properties
enable us to define a diffusion process that is based on the
MGC affinities. Then, the resulting diffusion map is used to
embed the data in a way that considers the distances and the
measure distribution.
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A. Infinitesimal generator

The DM framework is based on Markovian diffusion pro-
cess, which is defined and represented by a transition proba-
bility operator denoted by P

"

. The infinitesimal generator of
this operator encompasses the nature of the diffusion process.
In [3], [5], it was shown that when the data is sampled
from a low dimensional underlying manifold, the infinitesimal
generator of P

"

has the form of Laplacian+Potential. In this
section, we show a similar result, when using the MGC-
based diffusion without requiring the underlying manifold
assumption to hold.

The MGC affinity function k̃

"

is symmetric and positive,
i.e., k̃

"

(x, y) > 0 for any pair of data points x, y 2 ⌦. To
convert it to be a transition kernel of a Markov chain on ⌦,
we normalize it to be p̃

"

(x, y) , k̃"(x,y)
⌫"(x)

. We define the cor-
responding stochastic operator P̃

"

f(x) ,
R
p̃

"

(x, y)f(y)dy.
The infinitesimal generator of the diffusion transition opera-

tor P̃
"

is defined as L , lim
"!0

(I� P̃

"

)/". Theorem III.1, whose
proof appears in [1], shows that the operator L takes the form
Laplacian+potential, which is similar to the result shown in [5,
Corollary 2]. The expression, which Theorem III.1 provides
for L, characterizes the differential equation for diffusion
processes [2], [4].

Theorem III.1. If the density function q is in C

4(⌦), then the
infinitesimal generator L of the MGC-based diffusion operator
is

Lf = �m2

m0

✓
�f +

⌧
rq

q

,rf

�◆
, f 2 C

4(⌦),

where, m0 =
R
g1(kxk)dx and m2 =

R
g1(kxk)(x(j))2dx.

IV. GEOMETRIC EXAMPLE

In this section, we demonstrate the MGC kernel and the
resulting diffusion map. A noisy data that is spread around a
spiral curve is analyzed, and the results are compared with
the “classic” DM [3]. This example also demonstrates the
separation between the analyzed data and the data distribution,
which is a unique feature of the presented method.

(a) Noisy data around the curve (b) An exponentially-decaying mea-
sure around the curve

Fig. IV.1. A spiral curve with 5000 noisy data points concentrated around
it, and 104 points that represent an exponentially-decaying measure around
the curve. Red color indicates large measure weights and blue color indicates
small measure weights.

(a) K neighborhood (b) K̃v neighborhood

Fig. IV.2. A neighborhoods from the Gaussian kernel and the MGC kernels
on the spiral curve. Close points are colored by white, and far points are
colored by black.

We use a noisy spiral curve (see Fig. IV.1(a)) for the com-
parison between MGC-based DM and the classical DM. The
dataset was produced by sampling 500 equally spaced points
from the curve and then sampling 10 normally distributed data
points around each of these curve points. The resulting data
has 5000 data points that lie in areas around the curve, as
shown in Fig. IV.1(a), where the curve is marked in red and
the noisy data points are marked in blue. We used the same
scale meta-parameter " to the compared DM applications. This
meta-parameter was set to be sufficiently high to overcome the
noise and to detect the high affinity between data points that
originated from the same position (out of the 500 curve points)
on the curve.

The MGC kernel from Definition III.1 requires to define
a measure over the area where the data lies. Notice that the
measure of the actual data points is not required. We can define
a completely different set of points r from Definition III.1
and then define their weights, which represent their measure
values. The measure we used is based on 104 points, dis-
tributed normally around a spiral curve. The weights of the
point decay exponentially in relation to their distance from
the curve. The resulting measure is denoted by µ

v

and it is
presented in Fig. IV.1(b).

We use the notation K̃

v

to denote the matrix that results
from Definition III.1, with the measure µ

v

. Notice that even
though the measure is based on 104 positions of the integration
variable r (from Definition III.1), the kernel and its normalized
versions are of size 5000⇥5000, since the data has only 5000
data points.

Figure IV.2 compares the neighborhoods that are repre-
sented by the kernels K and K̃

v

. While the Gaussian kernel
captures inter-level affinities (i.e., it links different levels of
the spiral), the MGC kernel only capture relations in the same
level of the spiral, thus, it is able to separate between these
levels. In addition, the shape of the neighborhoods of the
MGC kernel form ellipses whose major axes clearly follow
the significant tangential directions of the curve. The Gaussian
kernel, however, captures circular neighborhoods that do not
express any information about the significant directions of the
data.

The embedding, which is achieved by DM, is based on
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(a) Gaussian-based stationary distri-
bution

(b) MGC-based stationary distribu-
tion

Fig. IV.3. The stationary distributions of: (a) the Gaussian-based diffusion
process, and (b) the MGC-based diffusion process (low densities are repre-
sented by dark gray levels, and vise-versa.)

a diffusion process that has a stationary distribution when
the time is taken to infinity. This distribution reveals the
concentrations and the underlying potential of the diffusion
process. It is represented by the first left eigenvector of
the diffusion transition operator. Figure IV.3 compares the
stationary distributions of the Gaussian-based diffusion with
the MGC-based diffusion. This comparison shows that the
Gaussian-based diffusion considers the entire spiral as one pit
of potential. At infinity, the diffusion is distributed over the
entire region of the curve. The MGC-based diffusion, on the
other hand, separates different levels of the spiral. At infinity,
this diffusion is concentrated on the curve levels themselves
and not on the areas between them.

Finally, we compare between the embedded spaces of the
Gaussian-based DM and the MGC-based DM. Figure IV.4
presents these spaces based on the first three diffusion co-
ordinates. The comparison in Fig. IV.4 clearly shows that the
MGC-based embedding results in a better separation between
the spiral levels. Figure IV.4 further establishes this observa-
tion by showing that, in fact, the Gaussian-based diffusion
considers the whole noisy spiral as a two-dimensional disk.
The MGC-based embedding, on the other hand, separates
the levels of the spiral by “stretching” it apart in the three-

(a) Gaussian-based DM (b) MGC-based DM

Fig. IV.4. The first three diffusion coordinates of the Gaussian-based and
MGC-based DM embeddings.

dimensional embedded space.
The superior results (e.g., separation between the spiral

levels) of the MGC-based DM demonstrate its robustness to
noise. The reason for this robustness is because the noise is
part of the model on which the MGC construction is based.
The Gaussian-based DM assumes that the data lies on (or it is
sampled from) an underlying manifold, and any significant
noise outside this manifold may violate this assumption.
The MGC-based DM, on the other hand, already assumes
variable concentrations and distributions of the data, which are
represented by the measure and incorporated into the affinities.
Therefore, this setting is more natural when dealing with data
that is concentrated around an underlying manifold structure
but does not necessarily lie on the manifold.

V. CONCLUSION

We presented a generalized version of DM, which is based
on the MGC kernel instead of the Gaussian kernel. We
replaced the commonly-used manifold assumption in DM
with a measure assumption. Namely, we assume access to
a measure that represents the locally low dimensional nature
of the analyzed data, its distributions and its densities. The
MGC kernel was presented and formulated in two equivalent
forms that incorporate the measure-based information together
with local distances between data points. The infinitesimal
generator of the MGC-based diffusion process is similar to
the diffusion process in [3], and its spectral properties enable
its utilization for dimensionality reduction.

We demonstrated the robustness of the MGC-based DM to
noise, which is due to the noise being considered as part of the
measure assumption while it violates the manifold assumption.
Since the MGC-based construction considers the measure and
the data points separately, it is able to analyze a given measure
distribution by using a separated grid, as we will show in
future work. This application cannot be achieved by the classic
DM [3], which is based solely on local distances and does not
consider a separately-provided measure.
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Abstract—We study spectral properties of dual frames of a

given finite frame. We give a complete characterization for which

spectral patterns of dual frames are possible for a fixed frame.

For many cases, we provide simple explicit constructions for dual

frames with a given spectrum, in particular, if the constraint on

the dual is that it be tight.

I. INTRODUCTION

In signal processing, one of the primary objectives is
to obtain suitable representations of the signals of interest.
Finite frames are redundant systems in a finite-dimensional
Hilbert space, which give redundant representations of finite-
dimensional signals. The representation process can be split
into two steps: the decomposition and the reconstruction. For
each frame decomposition method, there is one canonical
reconstruction using a least-squares approach. However, due
to the redundancy of frames, there are many alternative re-
construction methods. Each of these alternative reconstruction
methods is associated to a so-called dual frame.

It is therefore natural to ask which dual frame for the recon-
struction step is the best to choose in case the decomposition
frame is given by the application at hand, e.g., by the way of
measuring the data. The precise answer to this question is, of
course, dependent on the application, but universal desirable
properties of the dual can, nonetheless, be recognized. Among
such desirable properties are fast and stable reconstruction. It
turns out that the computational properties of the dual frames
such as the stability of the reconstructions are directly linked
to spectral properties of the frame. In particular, the Frobenius
norm and the spectral norm of the so-called dual frame matrix
play an important role in this context. In Subsection I-B below,
we will illustrate the importance of these matrix norms in a
situation, where we want to minimize the effect of noise from
a noisy decomposition. Before we embark on this, we will
need some basic definition from frame theory.

A. Setup and basic observations

Let us recall some basic definitions and facts from frame
theory. For an extensive exposition on frames and their appli-
cations, we refer the reader to the books [1], [2]. We let K
denote either C or R and define frames in Kn as follows.

Definition I.1. A collection of vectors � = (�i)
m
i=1 ⇢ Kn is

called a frame for Kn if there are two constants 0 < A  B

such that

A kxk22 
m
X

i=1

|hx,�ii|2  B kxk22 , for all x 2 Kn.

If the frame bounds A and B are equal, the frame (�i)
m
i=1 is

called a tight frame for Kn.

In this paper, we are interested in the case m > n, where
the frame (�i)

m
i=1 is redundant, i.e., it consists of more vectors

than necessary for the spanning property. For these frames
there exist infinitely many dual frames. The precise definition
of dual frames is the following:

Definition I.2. Given a frame �, another frame  =

( i)
m
i=1 ⇢ Kn is said to be a dual frame of � if the following

reproducing formula holds:

x =

m
X

i=1

hx,�ii i for all x 2 Kn
.

In matrix notation this definition reads

 �

⇤
= In, (1)

where the maps induced by �

⇤ and  correspond to the
decomposition and reconstruction procedure, respectively, and
where In is the n ⇥ n identity matrix. Hence, the set of all
duals of � is the set of all left-inverses  to �⇤. The particular
choice of  as the Moore-Penrose pseudoinverse of �⇤ is the
canonical dual frame of �.

From (1) it is immediate that the set of all duals  to a frame
� is an n(m�n)-dimensional affine subspace of Mat(K, n⇥
m). A natural parametrization of this space is obtained using
the singular value decomposition. Let � = U⌃�V

⇤ be a full
SVD of �, i.e., U 2 Kn⇥n and V 2 Km⇥m are unitary
and ⌃� 2 Rn⇥m is a diagonal matrix whose entries, namelyp
B = �1 � �2 � · · · � �n =

p
A > 0, are non-negative and

arranged in a non-increasing order. We will sometimes write
the ith singular value of � as ��i . Let  be a frame and define
M := U

⇤
 V 2 Kn⇥m, where U and V are the right and

left singular vectors of �. Then  factors as  = UM V
⇤.

By � ⇤
= In, we then see that

In = U

⇤
InU = U

⇤
� 

⇤
U = ⌃�M

⇤
 .
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Therefore,  is a dual frame of � precisely when

⌃�M
⇤
 = In, (2)

where  = UM V
⇤. The solutions to (2) are given by

M =

2

6

6

6

4

1
�1

0 · · · 0 s1,1 s1,2 · · · s1,r

0

1
�2

0 s2,1 s2,2 · · · s2,r

. . .
...

...
...

0 0 . . .

1
�n

sn,1 sn,2 · · · sn,r

3

7

7

7

5

, (3)

where si,k 2 K for i = 1, . . . , n and k = 1, . . . , r = m � n.
Note that the canonical dual frame is obtained by taking si,k =

0 for all i = 1, . . . , n and k = 1, . . . ,m�n. More importantly,
since U and V are unitaries, the possible spectrum of duals
 is completely described by the matrices M in (3).

B. Measures of the goodness of dual frames

In this subsection we consider the important scenario when
the frame coefficients c = �

⇤
x of the signal x 2 Kn are

corrupted by noise e. We will assume that the noise com-
ponents ei corresponding to the different frame coefficients
are centered, uncorrelated, and of the same variance. This is a
standard setup used e.g., in [3] for unit-norm frames, and in [7]
for the case of Gaussian white noise. We will here follow the
above general setup from [5]. We remark that it is possible to
study an alternative scenario of corruptions through erasures,
see [8]–[10].

The reconstruction error is given by

k c̃� xk2 = k (�⇤
x+ e)� xk2 = k ek2,

where the corrupted frame coefficients are c̃ = c + e. Hence,
we see that different duals  yield different reconstruction
accuracy. It can be shown, see e.g., [5], that the expected error
is controlled by the Frobenius norm of the matrix  . To be
precise, one has the expected reconstruction accuracy

Ek c̃� xk2 
r

�B

m

k kF ,

where the variance satisfies �2  �B
m with B being the upper

frame bound of � and � < 1. This shows that the Frobenius
norm of the dual frame matrix  is crucial in the average case
scenario.

For the worst case scenario the spectral norm of  is
the correct measure. This is seen as follows. Recall that the
condition number of an n⇥ n invertible matrix T is given by
cond (T ) = max

� relative output error
relative input error

�

= �

T
1 /�

T
n . For a pair of

dual frames similar considerations give

cond (�, ) := max

✓

k ek2 / kxk2
kek2 / k�⇤

xk2

◆

= max

✓

k ek2
kek2

k�⇤
xk2

kxk2

◆

= k�k2!2 k k2!2 = �

�
1 �

 
1 .

Note that if � is an invertible matrix, we recover the usual
definition: cond (�, ) = �

�
1 /�

�
n . We see that only the largest

singular value of  plays a role in the measure of goodness
of dual frames for the worst case scenario.

In this subsection we have set up two important measures
for the goodness of a dual frame. Since both of these measures
are determined by the singular values of the dual frame, we are
interested in understanding the possible spectra in the set of
all duals of a given frame. This is the theme of the second part
of this paper, Section II, where we characterize the possible
spectral patterns of dual frames.

II. SPECTRAL PROPERTIES OF DUALS

In this section we characterize the possible spectra in the
set of all dual frames of a given frame. However, we begin
with the special case of characterizing frames that admit tight
duals, which is exactly the situation when the spectrum of the
dual frame is a one point spectrum. The characterization was
obtained in [11] and extended in [6].

It turns out that a frame always has a tight dual if the
redundancy is two or larger. If the redundancy is less than
two, it will only be possible under certain assumptions on the
singular values of �.

Theorem II.1 ([6], [11]). Let n,m 2 N. Suppose � is a frame
for Kn with m frame vectors and lower frame bound A. Then
the following assertions hold:

(i) If m � 2n, then for every c � 1
A , there exists a tight

dual frame  with frame bound c.
(ii) If m = 2n � 1, then there exists a tight dual frame  ;

the only possible frame bound is 1
A .

(iii) Suppose m < 2n � 1. Then there exists a tight dual
frame  if and only if the smallest 2n�m 2 {2, . . . , n}
singular values of � are equal. In the positive case, the
only possible frame bound is 1

A .

Before we turn to a proof of Theorem II.1, let us give a
simple dimension counting argument to explain why m =

2n�1 is the borderline case. Any dual frame  will be row bi-
orthogonal to �. Hence, for each j0 = 1, . . . , n, the j0th row
vector  j0 of  needs to be orthogonal to the jth row vector
�

j of � for j 6= j0. For the dual frame  to be tight, the matrix
 furthermore needs to be row orthogonal, hence  j0 needs
to be orthogonal to  

j for each j 6= j0. In total, the vector
 

j0 2 Km needs to be orthogonal to 2(n � 1) other vectors.
If m � 2n � 1, it is possible to find 2(n � 1) + 1 = 2n � 1

orthogonal vectors in Km, which shows that we can find n

orthogonal vectors ( 

j
)

n
j=1 being bi-orthogonal to (�

j
)

n
j=1.

As a final step to make  a tight dual, we need to scale the
vectors  j , j = 1, . . . , n, to have equal norm.

The above argument is almost a proof of Theorem II.1.
However, we include the following proper proof adapted from
[6] since it provides an explicit construction procedure for the
tight duals.

Proof of Theorem II.1: Let � = U⌃�V
⇤ be a full

SVD of �, and let  be an arbitrary dual frame. Following
Section I-A, we factor the dual frame as  = UM V

⇤, where
M is given as in (3) with si,k 2 K for i = 1, . . . , n and
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k = 1, . . . , r = m� n. For  to be tight, we need to choose
si,k such that the rows of M are orthogonal and have equal
norm. This follows from the fact that  is row orthogonal if
and only if M is row orthogonal.

As the diagonal block of M is well-understood, the duality
and tightness constraints translate to conditions for the inner
products of the si = (si,1, . . . , si,r) 2 Kr, i = 1, . . . , n.
Indeed,  is a tight dual frame with frame bound c if and
only if, for all 1  i  n, one has

c =

1

�

2
i

+ ksik22 , (4)

and, for all i 6= j = 1, . . . , n, one has hsi, sji = 0.
Now assume that �n = �n�1 = · · · = �p+1 < �p for some

p < n. As �p+1 < �i for all 1  i  p, (4) implies that all si
for i = 1, . . . , p must be nonzero vectors even if sp+1, . . . , sn

are all zero. Furthermore, by the value of ksp+1k = · · · =
ksnk, (4) also determines the norms of s1, . . . , sp. If ksp+1k =

· · · = ksnk 6= 0, the sequence (si)
n
i=1 is orthogonal, else the

sequence (si)
p
i=1.

If r � n, that is, if m � 2n, then any choice of sn allows
for an orthogonal system with compatible norms, so tight dual
frames with any frame bound above 1

�n
exist and can be

efficiently constructed. If r < n, then no n vectors can form
an orthogonal system, one needs to have sn = 0 and hence
also sj = 0 for all j > p. So no frame bound other than 1

�n
is

possible. The remaining vectors {sj}pj=1 are all non-zero, so
they must form an orthogonal system. For r � n�p+1, this is
possible, and again a solution satisfying the norm constraints
can be efficiently constructed. For r  n� p, no such system
exists, hence there cannot be a tight dual.

We will now derive general conditions on which spectral
patterns (now possibly consisting of more than one point)
can be achieved by a dual frame of a given frame. The
reason that, in the general framework, such an analysis is
harder than in the context of tight duals is that in the tight
case, the frame operator is a multiple of the identity, hence
diagonal in any basis. This no longer holds true if we drop
the tightness assumption, so when the orthogonality argument
of Theorem II.1 fails, one cannot conclude that there is no
dual with a given spectral pattern. However, the orthogonality
approach allows us to choose a subset of the singular values
of the dual frame freely. In particular, if the redundancy of the
frame � is larger than 2, it follows that for all spectral patterns
satisfying a set of lower bounds, which we will later show to
be necessary (see Theorem II.4), a dual with that spectrum
can be found using a constructive procedure analogous to the
proof of Theorem II.1.

Theorem II.2 ([6]). Let n,m 2 N, and let � be a frame for
Kn with m frame vectors and singular values (�i)ni=1. Suppose
that r  m�n and that I ⇢ {1, . . . , n} with |I| = r. Then, for
any sequence (qi)i2I satisfying qi � 1/�i for all i 2 I , there
exists a dual frame  of � such that {qi}i2I is contained in
the spectrum of  . Furthermore, it can be found constructively
using a sequence of orthogonalization procedures.

Proof: The proof is just a slight modification of the proof
of Theorem II.1. Again, we choose (si)i2I to be orthogonal
and the remaining si’s to be the zero vector. The non-zero si

vectors are scaled to satisfy

q

2
i =

1

�

2
i

+ ksik22 ,

where i 2 I . Hence, by this procedure we obtain a dual frame
with spectrum {qi}i2I [ {��1

i }i/2I .
As a corollary we obtain that using the same simple con-

structive procedure, one can find dual frames with any frame
bound that is possible.

Corollary II.3 ([6]). Let � be a redundant frame for Kn with
singular values (�i)

n
i=1. Fix an upper frame bound satisfying

B

 � 1
�2
n

and a lower frame bound 1
�2
m�n+1

� A

 � 1
�2
1

,

where we use the convention 1
�m�n+1

= 1 if m � 2n.
Then a dual frame  of � with these frame bounds can be
found constructively using a sequence of orthogonalization
procedures.

We are now ready to state the complete characterization of
the possible spectra of dual frames.

Theorem II.4 ([6]). Let n,m 2 N, and set r = m�n. Let �
be a frame for Kn with singular values (�i)ni=1. Suppose  is
any dual frame with singular values (� i )

n
i=1 (also arranged in

a non-increasing order). Then the following inequalities hold:

1

�n�i+1
 �

 
i for i = 1, . . . , r, (5)

1

�n�i+1
 �

 
i  1

�n�i+r+1
for i = r + 1, . . . , n. (6)

Furthermore, for every sequence (�

 
i )

n
i=1 which satisfies (5)

and (6), there is a dual  of � with singular values (�

 
i )

n
i=1.

The necessity of the conditions in Theorem II.4 follows
by r applications of [4, Theorem 7.3.9] on the matrix M 

defined in (3) or from the well-known interlacing inequalities
for Hermitian matrices by Weyl. For the existence part, we
refer to the proof in [6].

The inequalities (5) and (6), written in terms of the singular
values (�e 

i )
n
i=1 of the canonical dual frame e

 := S

�1
�, have

the following simple form:

�

e 
i  �

 
i for i = 1, . . . , r,

�

e 
i  �

 
i  �

e 
i�r for i = r + 1, . . . , n.

In terms of eigenvalues of frame operators, Theorem II.4
states that the spectra in the set of all duals exhaust the set
⇤ ⇢ Rn defined by

⇤ =

n

(�i) 2 Rn
: �

e 
i  �i  �

e 
i�r for all i = 1, . . . , n

o

,

where �e 
i = 1/�

�
n�i+1 is the ith eigenvalue of the canonical

dual frame operator; we again use the convention that �e 
i = 1

for i  0. By considering the trace of M M
⇤
 , we see

that the canonical dual frame is the unique dual frame that
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minimizes the inequalities in ⇤. Therefore, the canonical dual
is a minimizer among all duals for any matrix norm related to
the spectrum of an operator. In general, it is only a unique
minimizer if the matrix norm involves all singular values.
Moreover, any other spectrum in ⇤ will not be associated with
a unique dual frame, in particular, if si = (si,1, . . . , si,r) 6= 0

in M for some i = 1, . . . , n, then replacing si by zsi for
any |z| = 1 will yield a dual frame with unchanged spectrum.

For a better understanding of the more general framework
where Theorem II.2 does not yield a complete characterization
of the possible spectral patterns, we will continue by a
discussion of the example of a frame of three vectors in R2.

Example 1. Suppose � is a frame in R2 with 3 frame vectors
and frame bounds 0 < A

�  B

�, and let � = U⌃�V
⇤ be the

SVD of �. Then all dual frames are given as  = UM V
⇤,

where
M =



1/�1 0 s1

0 1/�2 s2

�

for s1, s2 2 R. Since the frame operator of the dual frame
is given by S =   

⇤
= UM M

⇤
 U

⇤, we can find the
eigenvalues of S by considering eigenvalues of

S := M M
⇤
 =



1/�

2
1 + s

2
1 s1s2

s1s2 1/�

2
2 + s

2
2

�

.

These are given by

�1,2 =

1

2

trS ± 1

2

R, where R =

p

(trS)

2 � 4 detS.

One easily sees that trS monotonically grows as a function
of s

2
1 + s

2
2, whereas for fixed trS, the term R grows as a

function of s

2
1 � s

2
2. This exactly yields the two degrees of

freedom predicted by the existence part of Theorem II.4. A
straightforward calculation shows that R+ (s

2
1 + s

2
2) � 1

�2
2
�

1
�2
1
� 0, hence we see that

�1 � 1
�2
2

and 1
�2
2
� �2 � 1

�2
1
,

which is also the conclusion of the necessity part of Theo-
rem II.4. We remark that the two eigenvalues depend only
on quadratic terms of the form s

2
1 and s

2
2. Therefore, if s1

and s2 are non-zero, then the choices (±s1,±s2) yield four
different dual frames having the same eigenvalues. In this case
the level sets of �1 as a function of (s1, s2) are origin-centered
ellipses with major and minor axes in the s1 and s2 direction,
respectively. Moreover, the semi-major axis is always greater
than s0 := (�

�2
2 � �

�2
1 )

1/2. The level sets of �2 are origin-
centered, East-West opening hyperbolas with semi-major axes
greater than s0. In Figure 1 the possible eigenvalues of the
dual frame operator of the frame � defined by

� =

1

50



90 �12 �16

120 9 6

�

(7)

are shown as a function of the two parameters s1 and s2;
Figure 1b shows the level sets and the four intersection points
(±s1,±s2) for each allowed spectrum in the interior of ⇤.
Note that the singular values are �1 = 3 and �2 = 1/2, hence
B

�
= 9 and A

�
= 1/4.

(a) Graphs of �1 and �2 (b) Level curves of �1 and �2

Figure 1: The lower and upper frame bounds of dual frames  
(to � defined in (7)) as a function of s1 and s2. The two graphs
in (a) meet at s1 = ±

p
35/3 and s2 = 0 which correspond to

tight dual frames.

When the difference between the singular values of  goes
to zero, the ellipses degenerate to a line segment (or even to a
point if �1 = �2). The limiting case corresponds to tight dual
frames so Theorem II.1(ii) applies, and we are forced to set
s2 = 0 to achieve row orthogonality of M . We then need to
pick s1 such that the two row norms of M are equal, thus

|s1| =

s

1

�

2
2

� 1

�

2
1

=

r

1

A

�
� 1

B

�
= s0,

which shows that the above lower bound for the semi-major
axis is sharp.
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Abstract—Sparse recovery guarantees in compressive sensing
and related optimization problems often assume incoherence
between the ’sensing’ and ’sparsity’ domains. In practice, in-
coherence is rarely satisfied due to physical constraints and
limitations. Here we discuss the notion of local coherence,
and show that by matching the sampling strategy to the local
coherence at hand, sparse recovery guarantees extend to a rich
new class of sensing problems beyond incoherent systems. We
discuss particular applications to compressive MRI imaging and
polynomial interpolation.

I. INTRODUCTION

One of the main results in the theory of compressed
sensing is that signals which allow for an approximately
sparse representation in a suitable basis or dictionary can be
recovered from relatively few linear measurements via convex
optimization, provided these measurements are sufficiently
incoherent with the basis in which the signal is sparse.

In practice, incoherence is rarely satisfied due to physical
constraints limiting the freedom of the sensing basis. Here
we recall the notion of local coherence, as introduced in [6]
and somewhat implicitly in [5], and summarize coherence-
guided sampling strategies and reconstruction guarantees that
extend beyond incoherent sampling. In short, local coherence
sampling implies that, if � is an orthonormal basis from which
we can subsample to construct a sensing matrix, and if our
signal class is assumed sparse in an alternative orthonormal
basis  , then one should sample rows from � proportionately
to their maximal correlation to any row from  .

We illustrate the power of coherence-based sampling
through two examples: compressed sensing imaging and and
polynomial interpolation. In compressed sensing imaging,
coherence-based sampling provides a theoretical justification
for empirical studies [2], [3] pointing to variable-density
sampling strategies for improved MRI compressive imaging.
In polynomial interpolation, coherence-based sampling implies
that sampling points drawn from the Chebyshev distribution
are better suited for the recovery of polynomials and smooth
functions than uniformly distributed sampling points, aligning
with classical results on Lagrange interpolation [4].

II. NOTATION

Before continuing, let us fix some notation. We will refer to
the set of natural numbers {1, 2, . . . , N} using the shorthand
notation [N ]. For a vector x = (x

j

) 2 CN , the usual `
p

vector
norm is kxk

p

, and by an abuse of notation, the `
0

-“norm” is
defined as kxk

0

= #{x
j

: x

j

6= 0}. A vector x 2 CN is called
s-sparse if kxk

0

 s, and the best s-term approximation of

a vector x 2 CN is the s-sparse vector x

s

2 CN satisfying
x

s

= inf

u:kuk0s

kx � uk
p

. Clearly, x
s

= x if x is s-sparse.
Informally, x is called compressible if kx�x

s

k decays quickly
as s increases. Finally, for two nonnegative functions f(n) and
g(n) on the natural numbers, we write f & g (or f . g) if
there exists a constant C > 0 such that f(n) � Cg(n) (or
f(n)  Cg(n), respectively) for all n 2 N.

III. INCOHERENT SAMPLING

Here we recall sparse recovery results for structured random
sampling schemes corresponding to bounded orthonormal
systems, of which the partial discrete Fourier transform is a
special case. We refer the reader to [7] for an expository article
including many references.

Definition 1 (Bounded orthonormal system (BOS)): Let D
be a measurable subset of Rd.

• A set of functions { 
j

: D ! C, j 2 [N ]} is called
an orthonormal system with respect to the probability
measure ⌫ if

R
D

¯

 

j

(u) 

k

(u)d⌫(u) = �

jk

, where �

jk

denotes the Kronecker delta.
• Let µ be a probability measure on D. A random sample

of the orthonormal system { 
j

} is the random vector
( 

1

(U), . . . , 

N

(U)) that results from drawing a sam-
pling point U from the measure µ.

• An orthonormal system is said to be bounded with bound
K if sup

j2[N ]

k 
j

k1  K.
Suppose now that we have an orthonormal system { 

j

}
j2[N ]

and m random sampling points U

1

, U

2

, . . . , U

m

drawn in-
dependently from some probability measure µ. Here and
throughout, we assume that the number of sampling points
m ⌧ N . As shown in [7], if the system { 

j

} is bounded, and
if the probability measure µ from which we sample points is
the orthogonalization measure ⌫ associated to the system, then
the (underdetermined) structured random matrix A : CN !
Cm whose rows are the independent random samples will be
well-conditioned, satisfying the so-called restricted isometry
property [1] with nearly order-optimal restricted isometry con-
stants with high probability. Consequently, matrices associated
to random samples of bounded orthonormal systems have nice
sparse recovery properties.

Proposition 2 (Sparse recovery through BOS): Consider
the matrix A 2 Cm⇥N whose rows are independent random
samples of an orthonormal system { 

j

, j 2 [N ]} with bound
sup

j2[N ]

k 
j

k1  K, drawn from the orthogonalization
measure ⌫ associated to the system. If the number of random
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samples satisfies

m & K

2

s log

3

(s) log(N), (III.1)

for some s & log(N), then the following holds with probabil-
ity exceeding 1�N

�C log

3
(s)

.

For each x 2 CN , given noisy measurements y = Ax +p
m⌘ with k⌘k

2

 ", the approximation

x

#

= arg min

z2CN
kzk

1

subject to kAz � yk
2


p
m✏

satisfies the error guarantee

kx� x

#k
2

. 1p
s

kx� x

s

k
1

+ ".

An important special case of such a matrix construction
is the subsampled discrete Fourier matrix, constructed by
sampling m ⌧ N rows uniformly at random from the
unitary discrete Fourier matrix  2 CN⇥N with entries
 

j,k

=

1p
N

e

i2⇡(j�1)(k�1). Indeed, the system of complex
exponentials  

j

(u) = e

i2⇡(j�1)u, j 2 [N ], is orthonormal
with respect to the uniform measure over the discrete set
D = {0, 1

N

, . . . ,

N�1

N

}, and is bounded with optimally small
constant K = 1. In the discrete setting, we may speak of
a more general procedure for forming matrix constructions
adhering to the conditions of Proposition 2: given any two
unitary matrices � and  , the composite matrix �

⇤
 is

also a unitary matrix, and this composite matrix will have
uniformly bounded entries if the orthonormal bases (�

j

) and
( 

k

), corresponding to the rows of � and  respectively, are
mutually incoherent:

µ(�, ) :=

p
N sup

1j,kN

| h�
j

, 

k

i |  K (III.2)

Indeed, if � and  are mutually incoherent, then the rows of
B =

p
N 

⇤
� constitute a bounded orthonormal system with

respect to the uniform measure on D = {0, 1

N

, . . . ,

N�1

N

}.
Proposition 2 then implies a sampling strategy for recon-
structing signals x 2 CN with assumed sparse representation
in the basis  , that is x =  b and b ⇡ b

s

, from a few
linear measurements: form a sensing matrix A 2 Cm⇥N by
sampling rows i.i.d. uniformly from an incoherent basis �,
collect measurements y = Ax+ ⌘, k⌘k

2

 ✏, and solve the `
1

minimization program,

x

#

= arg min

z2CN
k ⇤

zk
1

subject to kAz � yk
2


p
m✏

This scenario is referred to as incoherent sampling.

IV. LOCAL COHERENCE SAMPLING

Consider more generally the setting where we aim to
compressively sense signals x 2 CN with assumed sparse
representation in the orthonormal basis  2 CN⇥N , but
our sensing matrix A 2 Cm⇥N can only consist of rows
from some fixed orthonormal basis � 2 CN⇥N that is not
necessarily incoherent with  . In this setting, we ask: Given
a fixed sensing basis  and sparsity basis �, how should
we sample rows of  in order to make the resulting system
as incoherent as possible? We will answer this question by

introducing the concept of local coherence between two bases
as described in [5], [6], whereby in the discrete setting the
coherences of individual elements of the sensing basis are
calculated and used to derive the sampling strategy.

The following result says that regions of the sensing basis
that are more coherent with the sparsity basis should be
sampled with higher density. The following is essentially a
generalization of Theorem 2.1 in [5], but for completeness,
we include a short self-contained proof.

Theorem 3 (Sparse recovery via local coherence sampling):
Consider a measurable set D and a system { 

j

, j 2 [N ]}
that is orthonormal with respect to a measure ⌫ on D which
has square-integrable local coherence,

sup

j2[N ]

| 
j

(u)|  (u),

Z

u2D
|(u)|2⌫(u)du = B. (IV.1)

We can define the probability measure µ(u) =

1

B



2

(u)⌫(u)

on D. Draw m sampling points u

1

, u

2

, . . . , u

m

independently
from the measure µ, and consider the the matrix A 2 Cm⇥N

whose rows are the random samples  
j

(u

k

), j 2 [N ]. Consider
also the diagonal preconditioning matrix P 2 Cm⇥m with
entries p

k,k

= 1/µ(u

k

). If the number of sampling points

m & B

2

s log

3

(s) log(N), (IV.2)

for some s & log(N), then the following holds with probabil-
ity exceeding 1�N

�C log

3
(s)

.

For each x 2 CN , given noisy measurements y = Ax +p
m⌘ with kP⌘k

2


p
m", the approximation

x

#

= arg min

z2CN
kzk

1

subject to kPAz � Pyk
2


p
m✏

satisfies the error guarantee

kx� x

#k
2

. 1p
s

kx� x

s

k
1

+ "

Proof: Consider the functions Q

j

(u) =

p
B

(u)

 

j

(u). The
system {Q

j

} is bounded with sup

j2[N ]

kQ
j

k1 
p
B, and

this system is orthonormal on D with respect to the sampling
measure µ:

Z

u2D
¯

Q

j

(u)Q

k

(u)µ(u)du

=

Z

u2D
(

1

(u)

¯

 

j

(u))(

1

(u)

 

k

(u))(

2

(u)⌫(u))du

=

Z

u2D
¯

 

j

(u) 

k

(u)⌫(u)du = �

jk

(IV.3)

Thus we may apply Proposition 2 to the system {Q
j

}, noting
that the matrix of random samples of the system {Q

j

} may
be written as PA.

In the discrete setting where { 
j

}
j2[N ]

and {�
k

} are rows
of unitary matrices  and �, and ⌫ is the uniform measure
over the set D = {0, 1

N

, . . . ,

N�1

N

}, the integral in condition
IV.1 reduces to a sum,

sup

k2[N ]

p
N | h 

j

,�

k

i |  

j

,

1

N

NX

j=1



2

j

= B. (IV.4)
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This motivates the introduction of the local coherence of an
orthonormal basis {�

j

}N
j=1

of CN with respect to the orthonor-
mal basis { 

k

}N
k=1

of CN is the function µ

loc

= (µ

j

) 2 RN

defined coordinate-wise by

µ

j

= sup

1kN

p
N |h'

j

, 

k

i|.

We have the following corollary of Theorem 3.
Corollary 4: Consider a pair of orthonormal basis (�, )

with local coherences bounded by µ

j

 

j

. Let s � 1, and
suppose that

m & s(

1

N

NX

j=1



2

j

) log

4

(N).

Select m (possibly not distinct) rows of �⇤ independent and
identically distributed from the multinomial distribution on
{1, 2, . . . , N} with weights c

2

j

to from the sensing matrix
A : CN ! Cm. Consider also the diagonal preconditioning
matrix P 2 Cm⇥m with entries p

k,k

=

1p
cj

.
Then the following holds with probability exceeding 1 �

N

�C log

3
(s)

.

For each x 2 CN , given measurements y = Ax + ⌘, with
kP⌘k

2


p
m", the approximation

x

#

= arg min

u2CN
k ⇤

uk
1

subject to ky � PAuk
2


p
m"

satisfies the error guarantee

kx� x

#k
2

. 1p
s

k ⇤
x� ( 

⇤
x)

s

k
1

+ ".

Remark 5: Note that the local coherence not only influences
the embedding dimension m, it also influences the sampling
measure. Hence a priori, one cannot guarantee the optimal
embedding dimension if one only has suboptimal bounds for
the local coherence. That is why the sampling measure in
Theorem 3 is defined via the (known) upper bounds  and
kk

2

rather than the (usually unknown) exact values µ

loc

and
kµ

loc

k
2

, showing that local coherence sampling is robust with
respect to the sampling measure: suboptimal bounds still lead
to meaningful bounds on the embedding dimension.
We now present two applications where incoherent sam-
pling fails, but local coherence sampling provides a sampling
scheme with sparse recovery guarantees.

V. APPLICATIONS

A. Variable-density sampling for compressed sensing MRI

In Magnetic Resonance Imaging, after proper discretiza-
tion, the unknown image (x

j1,j2) is a two-dimensional ar-
ray in Rn⇥n, and allowable sensing measurements are two-
dimensional Fourier transform measurements:

�

k1,k2 =

1

n

X

j1,j2

x

j1,j2e
2⇡i(k1j1+k2j2)/n

, �n/2+1  k

1

, k

2

 n/2

Natural sparsity domains for images, such as discrete spatial
differences, are not incoherent to the Fourier basis.

A number of empirical studies, including the very first
papers on compressed sensing MRI , observed that image

reconstructions from compressive frequency measurements
could be significantly improved by variable-density sampling.

Note that lower frequencies are more coherent with wavelets
and step functions than higher frequencies. In [6], the local
coherence between the two-dimensional Fourier basis and
bivariate Haar wavelet basis was calculated:

Proposition 6: The local coherence between frequency
�

k1,k2 and the bivariate Haar wavelet basis  = ( 

I

) can
be bounded by

µ(�

k1,k2 , ) .
p
N

(|k
1

+ 1|2 + |k
2

+ 1|2)1/2

Note that this local coherence is almost square integrable
independent of discretization size n

2, as

1

N

NX

j=1

µ

2

j

. log(n).

Applying Corollary 4 to compressive MRI imaging, we then
have

Corollary 7: Let n 2 N. Let  be the bivariate Haar
wavelet basis and let � = (�

k1,k2) be the two-dimensional
discrete Fourier transform. Let s � 1, and suppose that
m & s(

1

N

log

5

(N). Select m (possibly not distinct) fre-
quencies (�

k1,k2) independent and identically distributed from
the multinomial distribution on {1, 2, . . . , N} with weights
proportional to the inverse squared Euclidean distance to
the origin, 1

(|k1+1|2+|k2+1|2) , and form the sensing matrix
A : CN ! Cm.

Then the following holds with probability exceeding 1 �
N

�C log

3
(s)

.

For each image x 2 Cn⇥n, given measurements y = Ax,
the approximation

x

#

= arg min

u2Cn⇥n
k ⇤

uk
1

subject to kDy �Auk
2

 ✏

satisfies the error guarantee

kx� x

#k
2

. 1p
s

k ⇤
x� ( 

⇤
x)

s

k
1

+ ".

Numerical results such as those detailed in [?] and illus-
trated below in Figure 1 confirm that variable-density sampling
strategies significantly outperform uniform sampling strategies
as well as deterministic sampling strategies, and Corollary 7
provides theoretical justification for such observations. Below
we provide a numerical comparison of various sampling strate-
gies, including the sampling distribution given in Corollary
7. The following images were made from total variation
minimization rather than Haar wavelet minimization, but the
theory for Fourier-Wavelet sampling is extended to the total
variation minimization setting in [6].

B. Sparse Legendre expansions for smooth function interpo-
lation

Here we consider the problem of recovering polynomials g

from m sample values g(x
1

), g(x

2

) . . . , g(x

m

), with sampling
points x

`

2 [�1, 1] for ` = 1, . . . ,m. If the number of
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Fig. 1. Various reconstructions of an MRI image x 2 R256⇥256 with total
variation minimization from m = 6400 noiseless partial DFT measurements
sampled from various distributions. Beside each reconstruction is a plot of fre-
quency space {(k1, k2) : �N/2 + 1  k1, k2  N/2} and the frequencies
used in its reconstruction. (a) Original image. (b) Reconstruction using only
lowest frequencies: ⌦ = {(k1, k2) : k

2
1 + k

2
2  80}. (c) Prob

�
(k1, k2) 2

⌦

�
⇠ 1 (Uniform subsampling) (d) ⌦ comprised of frequencies in equispaced

radial lines. (e) Prob
�
(k1, k2) 2 ⌦

�
/ (k

2
1+k

2
2+1)

�1/2(f) Prob
�
(k1, k2) 2

⌦

�
/

�
max(|k1|, |k2|)+1

��1 (g) Prob
�
(k1, k2) 2 ⌦

�
/ (k

2
1+k

2
2+1)

�1.
(h) Prob

�
(k1, k2) 2 ⌦

�
/ (k

2
1 + k

2
2 + 1)

�3/2. The relative reconstruction
error kf � f

#
TV k2/kfk2 corresponding to each reconstruction is (b) .2932,

(c) .8229, (d) .4074, (e) .3192, (f) .2603, (g) .2537, and (h) .2463.

sampling points is less or equal to the degree of g, then in
general such reconstruction is impossible due to dimension
reasons. However, the situation becomes tractable if we make
a sparsity assumption. In order to introduce a suitable notion
of sparsity, we consider the orthonormal basis of Legendre
polynomials.

Definition 8: The (orthonormal) Legendre polynomials

P

0

, P

1

, . . . , P

n

, . . .

are uniquely determined by the following conditions:
• P

n

(x) is a polynomial of precise degree n in which the
coefficient of xn is positive,

• the system {P
n

}1
n=0

is orthonormal with respect to the
normalized Lesbegue measure on [�1, 1]:

1

2

Z
1

�1

P

n

(x)P

m

(x)dx = �

n,m

, n,m = 0, 1, 2, . . .

Since the interval [�1, 1] is symmetric, the Legendre polyno-
mials satisfy P

n

(x) = (�1)

n

P

n

(�x). For more information
see [Szego].

An arbitrary real-valued polynomial g of degree N � 1 can
be expanded in terms of Legendre polynomials,

g(x) =

N�1X

j=0

c

j

P

j

(x), x 2 [�1, 1]

with coefficient vector c 2 RN . The vector is s-sparse if
kck

0

 s. Given a set of m sampling points (x

1

, x

2

, . . . , x

m

),
the samples y

k

= g(x

k

), k = 1, . . . ,m, may be expressed
concisely in terms of the coefficient vector according to

y = �c,

where �
k,j

= P

j

(x

k

). If the sampling points x

1

, . . . , x

m

are
random variables, then the matrix � 2 Rm⇥N is exactly the
sampling matrix corresponding to random samples from the
Legendre system {P

j

}N
j=1

. This is not a bounded orthonormal
system, however, as the Legendre polynomials grow like

|P
n

(x)|  (n+ 1/2)

1/2

, �1  x  1.

Nevertheless the Legendre system does have bounded local
coherence. A classic result [szego] follows.

Proposition 9: For all n > 0 and for all x 2 [�1, 1],

|P
n

(x)| < (x) = 2⇡

�1/2

(1� x

2

)

�1/4

.

here, the constant is 2 ⇡�1/2 cannot be replaced by a smaller
one.
Indeed, (x) is a square integrable function proportional to
the Chebyshev measure ⇡

�1

(1 � x

2

)

�1/2. We arrive at the
following result for Legendre polynomial interpolation as a
corollary of Theorem 3.

Corollary 10: Let x

1

, . . . , x

m

be chosen independently at
random on [�1, 1] according to the Chebyshev measure
⇡

�1

(1� x

2

)

�1/2

dx. Let  be the matrix with entries  
k,j

=p
⇡/2(1� x

2

k

)

1/4

P

n

(x

k

). Suppose that

m & s log

3

Consider the matrix A 2 Cm⇥N whose rows are independent
random vectors( 

j

(X

k

)) drawn from the measure µ. If

m & B

2

s log

3

(s) log(N), (V.1)

for some s & log(N), then the following holds with probabil-
ity exceeding 1�N

�C log

3
(s)

. Let D 2 Cm⇥m be the diagonal
matrix with entries d

k,k

=

1

µ(Xk)
. For each x 2 CN , given

noisy measurements y = Ax +

p
m⌘ with kD⌘k

2


p
m",

the approximation

x

#

= arg min

u2CN
kuk

1

subject to kDAu�Dyk
2


p
m✏

satisfies the error guarantee

kx� x

#k
2

. 1p
s

kx� x

s

k
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where x

s

is the best s-term approximation to x.
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We illustrate exact recovery of a Legendre sparse poly-
nomial from randomly sampled points from the Chebyshev
measure.

In fact, more general theorems exist: the Chebyshev mea-
sure is a universal sampling strategy for interpolation with any
set of orthogonal polynomials [5].

An extension to the setting of interpolation with spherical
harmonics can be found in [5], [?].

VI. CONCLUSION

Here we summarize local coherence sampling, and demon-
strate its power for generalized sparse recovery results in
compressed sensing in two seemingly disparate settings - MRI
compressive imaging and Legendre polynomial interpolation.
Unlike incoherence-based results, local coherence sampling
gives a sampling strategy for fixed sparsity basis and fixed
sensing basis from which one can subsample; if the local
coherence function is square integrable and this integral de-
pends only mildly on the ambient dimension of the signal,
then stable and robust sparse recovery results for incoherent
sampling generalize to this setting. Several questions remain,
such as the optimality of the local coherence sampling, ex-
tensions to frames rather than orthonormal dictionaries, and
connections to designing sensing matrices via minimizing the
local coherence [?].
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Abstract—1-bit compressed sensing was introduced by

Boufounos and Baraniuk in 2008 as a model of extreme quan-

tization; only the sign of each measurement is retained. Recent

theoretical and algorithmic advances, combined with the ease of

hardware implementation, show that it is an effective method

of signal acquisition. Surprisingly, in the high-noise regime

there is almost no information loss from 1-bit quantization. We

review and revise recent results, and compare to closely related

statistical problems: sparse binary regression and binary matrix

completion.

I. INTRODUCTION

Discrete measurements arise both in signal processing and
statistical inference, but for different reasons. In some cases,
they are inherent to the data—consider a statistical experiment
in which the response is a binary variable indicating the
presence or absence of a certain disease. In other cases the
level of discretization is chosen—consider quantization in
analog-to-digital conversion. We focus on the extreme case
in which all measurements are binary. For further signal-
processing motivation, see [1].

It turns out that the abstract statistical models and signal-
processing models nearly match, but with subtle differences
that have strong influence on the methods of signal recon-
struction and the theoretical challenges. We point out these
differences and how the ideas from 1-bit compressed sensing
allow new methods and results in binary regression.

In Section II, we describe recent results in 1-bit compressed

sensing and give connections to standard compressed sensing.
These methods allow for a new semi-parametric approach to
sparse binary regression, described in Section III. In Section
IV we describe modern theoretical results in binary PCA with
missing entries, or binary matrix completion.

II. 1-BIT COMPRESSED SENSING

Unquantized compressed sensing [7] concerns the recon-
struction of sparse signals from linear measurements. Let kxk0
give the number of nonzero entries of x. We assume that
kxk0  s i.e., x is sparse. One observes data of the form

yi = hai,xi i = 1, . . . ,m

and would like to reconstruct x 2 n from {yi,ai}.

Supported by NSF Postdoctoral Research Fellowship under award No.
1103909.

Fig. 1: On left: Linear measurements y1 = ha1,xi and
y2 = ha2,xi determine that x must lie in the intersection
of the two hyperplanes. On right: Single bit measurements
y1 = sign(ha1,xi) and y2 = sign(ha2,xi) determine that x
must lie in the region denoted by + signs.

In 1-bit compressed sensing [4], only the sign of each
measurement is retained:

yi = sign(hai,xi) i = 1, . . . ,m.

Above sign(t) = 1 if t � 0 and sign(t) = �1 it t < 0. In
matrix form,

y = sign(Ax)

where A 2 m⇥n is a matrix whose i-th row is equal to ai,
and we allow the sign function to act on a vector by acting
on each individual entry.

There is a stark geometric difference between these two
observation models. In unquantized compressed sensing, each
measurement determines a hyperplane in which x must reside.
In 1-bit compressed sensing, each measurement determines
a hyperplane, but now we are only told which side of the
hyperplane x resides on (see Figure 1).

Do the 1-bit measurements contain sufficient information
to reconstruct x? Clearly, exact reconstruction is impossible
because the measurements only give a finite number of bits of
information and the signal lies in an infinite set. Furthermore,
the measurements retrieve no information about the norm of
x. Thus, we may only hope to approximate the direction of
x. Equivalently, we assume that x 2 Sn�1 and endeavor to
approximate x itself.

A natural method to reconstruct x is to find a vector that
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matches the data and has the required structure:

Find x

0 such that kx0k0  s, kx0k2 = 1 (1)
and sign(Ax

0
) = y.

This program has recently been shown to give nearly optimal
accuracy. If A is a Gaussian matrix, Jacques et al. [10] show
that O(��1s log(n/�)) measurements are sufficient to recon-
struct x with `2 error at most �. Aside from the logarithmic
factor, Theorem 1 in [10] shows that this error bound in nearly
minimax. It is further shown that a variation on this program
provides stability to adversarial noise. Yet there still remain
important challenges because the above program contains two
nonconvex constraints: kxk0  s and kxk2 = 1. Thus, there
is no known algorithm that is guaranteed to return the solution
to the above program in polynomial time.

In order to give a polynomial-time solver, Plan and Ver-
shynin [17] propose a convex programming approach:

min

x

0
kx0k1 such that kAx

0k1 = 1 and sign(Ax

0
) = y.

(2)
Above, kAxk1 =

P
i |hai,xi| =

P
i yihai,xi is a linear

constraint; in fact, the program can be recast as a linear
program. Let ˆx be the solution to the above program. Theorem
1.1 in [17] shows that

����
ˆ

x

kˆxk2
� x

����
2

 �

with high probability provided that m � O(��5s log2(n/s)).
We leverage recent results on discrete embeddings [16] to give
a slight refinement of this result.

Theorem 1. Let s  m  n. Let A have i.i.d. standard

normal entries. Suppose that

m � C��4s log2(n/s).

Then, with probability at least 1�C1 exp(�c�m) the following

holds uniformly over all signals x 2 n
satisfying kxk1 p

s, kxk2 = 1. Let y = sign(Ax). Then the solution

ˆ

x to the

linear program (2) satisfies

����
ˆ

x

kˆxk2
� x

����
2

 �.

Above, and in what follows, C and c are absolute numeric
constants.

Proof: Proceed as in the proof of Theorem 1.1 in [17],
but replace Theorem 2.1 in [17] with Theorem 3.1 in [16].
Remark 1 (Soft sparsity). The assumption that kxk1 

p
s

is a relaxation of the exact sparsity constraint kxk0  s.
Indeed, suppose that kxk0  s. Then by the Cauchy-Schwarz
inequality,

kxk1 
q

kxk0 · kxk2 =

q
kxk0 

p
s.

However, the constraint kxk1 
p
s allows for x to be

compressible instead of exactly sparse—it only requires a fast
decay rate of the entries of x.

Remark 2 (Optimality and � dependence). Up to the power
of 2 on the logarithm, the number of measurements required
for a fixed level of accuracy matches what is needed for
unquantized compressed sensing, and also matches the error
bound achieved by the non-convex program (1). Let us also
consider the dependence of m on � and compare to the
solution to the non-convex program. If ˆ

x is the solution
to (1) the number of measurements required is essentially
proportional to ��1. If ˆ

x is the solution to the convex program
(2), Theorem 1 requires m to be proportional to ��4. On
one hand, the former requires exact sparsity while the latter
softens this requirement. Further, as shown in [15], in the
noisy problem and with soft sparsity the ��4 dependence is
sometimes optimal. Nevertheless, in the noiseless problem it is
an open problem whether the � dependence can be improved
for an efficient solver.

For adaptive approaches to 1-bit compressed sensing with
impressive reconstruction guarantees, see [8], [9].

III. NOISY 1-BIT COMPRESSED SENSING

In noisy 1-bit compressed sensing, the data takes the form

y = sign(Ax+ z) (3)

where z is a noise term with i.i.d. entries.
In order to reconstruct x, one would like to soften the

constraint, sign(Ax) = y used in the noiseless problem.
A natural way to do this would be to bound the Hamming
distance between sign(Ax) and y. Unfortunately, this would
give a non-convex constraint. Thus, Plan and Vershynin [15]
suggest a different convex program to estimate x:

max

x

0

X

i

yihai,x
0i such that kx0k2  1, kx0k1 

p
s.

(4)
The solution enjoys a high level of accuracy.

Theorem 2 ( [15], Corollary 3.1). Fix x 2 Sn�1
satisfying

kxk1 
p
s. Let A have independent standard normal entries.

Let y = sign(Ax + z) and suppose that z is a Gaussian

noise vector with independent N(0,�2
) entries. Let � > 0

and suppose that

m � C��4
(�2

+ 1)s log(2n/s).

Then, with probability at least 1�8 exp(�c�4m), the solution

ˆ

x to the convex program (4) satisfies

kˆx� xk2  �.

In contrast to Theorem 1, this is a non-uniform result—
it holds for one fixed x with a random draw of A. See
Theorem 1.3 in [15] for a uniform result which also considers
adversarial noise and for the treatment of much more general
signal structures outside of sparsity. We also note that when
� > 1 this error bound nearly matches the minimax error
bound achievable by any estimator from unquantized mea-

surements. See [18, Theorem 1] and [15, Section 3]. This has
the following implication: When the signal-to-noise ratio is

low, 1-bit measurements contain almost as much information
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as unquantized measurements. The preceding theoretical con-
clusion is backed up with numerical evidence in [12].

A. Sparse binary regression

Sparse binary regression, and in particular sparse logistic
regression, are often used to explain statistical data in which
the response variable is binary. It is common to assume that the
data is generated according to the generalized linear model:

yi 2 {+1,�1} is a Bernoulli random variable satisfying

yi = ✓(hai,xi) (5)

for some function ✓ : ! [0, 1]. Note that this model implies
that

P (yi = 1) =

✓(hai,xi) + 1

2

=: f(hai,xi).

Thus, the noisy 1-bit compressed sensing model 3 can always
be recast using the generalized linear model by taking f(t) :=
P (zi � �t). The two are equivalent as long as 1 � f is a
distribution function.

There are a number of theoretical results in sparse binary
regression, focusing on sparse logistic regression [3], [5], [11],
[13], [14], [19], [20]. A main message is that O(��2s log(n))
measurements are sufficient to reconstruct x up to error �
by using `1-penalized maximum likelihood estimation [14].
Interestingly, these results allow for the reconstruction of
both the direction, and norm of x. However, there are two
limitations to this maximum-likelihood-based approach: 1)
knowledge of the function ✓ defining the generalized linear
model is imperative, and 2) as the norm of x increases, the
negative log-likelihood loses the strong convexity needed in
the theoretical treatment.

The ideas from 1-bit compressed sensing allow us to over-
come these two limitations. Indeed, the solution to (4) remains
accurate for nearly any generalized linear model, but knowl-
edge of the function ✓ is unnecessary in the reconstruction of
x. To make this precise, define

� := g ✓(g)

where g ⇠ N(0, 1). � gives a notion of how correlated
the response y is with the linear functionals hai,xi. Higher
correlation improves reconstruction. For example, if f is the
logistic function, then � ⇡ 0.41.

Theorem 3 ( [15], Corollary 3.1). Fix x 2 Sn�1
satisfying

kxk1 
p
s. Let A have independent standard normal entries

and suppose that y follows the generalized linear model (5).
Let � > 0 and suppose that

m � C��4��2s log(2n/s).

Then, with probability at least 1�8 exp(�c�4m), the solution

ˆ

x to the convex program (4) satisfies

kˆx� xk2  �.

Remark 3. The assumption that kxk2 = 1 in the theorem is
really no assumption at all, since the norm of x may be ab-
sorbed into the definition of ✓ simply by rescaling the function.

Further, suppose the following two mild assumptions on the
model: 1) ✓ is monotonically increasing and 2) ✓(0) = 0. Then
for a positive scalar t and standard normal random variable g,
✓(tg)g is an increasing function of t. The implication is that

rescaling ✓, to absorb the norm of x causes � to increase as
long as kxk2 � 1. Thus, the reconstruction of the direction
of x only improves as the magnitude of x increases. This
contrasts with the maximum-likelihood approach discussed
above.

B. sub-gaussian measurements

Up until now, we have considered Gaussian measurement
vectors. One may ask whether 1-bit compressed sensing is
possible with other random measurement schemes.

Let us consider Bernoulli measurement vectors in which
each entry of ai is an independent Bernoulli random vari-
able, so that ai 2 {+1,�1}n. It is well known [7] that
measurements of this form lead to near-optimal results in
unquantized compressed sensing. Does the same hold true for
1-bit compressed sensing?

Consider two candidate signals x = (1, 0, 0, . . . , 0) and
¯

x = (1, 0.9, 0, 0, . . . , 0). Then one has sign(hai,xi) =

sign(hai, ¯xi) deterministically. Thus, when the measurement
vectors are Bernoulli, x and ¯

x are indistinguishable, and
reconstruction of either is ill-posed.

However, it turns out that the above negative example is
atypical. Signal reconstruction with Bernoulli measurements is
possible—as long as the signal is not too sparse. This will be
quantified by a bound on the maximum entry of x in Theorem
4 below.

Recall that a random variable ⌘ is called sub-gaussian if it
has a sub-gaussian tail:

�
⌘ > t

�
 Ce�ct2 . Recall also that

Bernoulli random variables are sub-gaussian.

Theorem 4 ( [2], Theorem 1.3). Fix x 2 Sn�1
satisfying

kxk1 
p
s. Let a be a symmetric, sub-gaussian random vari-

able with unit variance. Let A be generated with coordinates

that are independent copies of a. Assume that y follows the

generalized linear model (5) and the first three derivatives of

✓ are bounded. Suppose

m � C��4��2s log(n/s)

and let

ˆ

x be the solution to the convex program (4). Then with

probability at least 1� 4 exp(�c�4m)

kˆx� xk2  � + C

✓
kxk1
�3

◆1/4

.

For a more precise treatment which also allows for ✓ to
be the discontinuous sign function, see [2]. We note that this
theorem allows no correlation between the entries of A. For
a treatment of the case when each row of A is Gaussian with
correlations between entries see Section 3.4 in [15].

C. General signal structures

While sparse signal structures are intrinsic in the sparse
binary regression model and in some compressed sensing
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problems, it is often of interest to consider more general signal
structures. As a common example, x may not be sparse itself,
but it may be sparse in a known dictionary, so that x = Dv

for a sparse vector v. Alternatively, x itself could be a matrix
with low rank.

In general, the signal structure of x is defined by knowledge
of a set K to which x belongs. Since we assume that kxk2 =

1, we may also assume that K ⇢ B2 where B2 is the unit
ball. In this case, Vershynin and Plan [15] suggest to take the
estimate of x to be the solution to the following program.

max

x

0

mX

i=1

yihai,x
0i such that x

0 2 K. (6)

For example, we may take K = B2 \
p
sBn

1 where Bn
1 is the

`1 ball. This recovers the convex program (4).
In this general case, reconstruction of x to accuracy �

requires O(��4w(K)

2
) binary measurements, where w(K) is

the Gaussian mean width of K. See [15] for details.

IV. BINARY MATRIX COMPLETION

In a complementary line of research, Davenport et al. [6]
analyze the following problem. Suppose that you see a subset
of entries of a binary matrix, i.e., a matrix filled with ±1

entries. From the observed entries, what information can
be determined about unobserved entries? Problems of this
nature arise in various applications. Consider for example the
voting history of US senators on a number of bills, but with
missing votes when a senator is out of town; or consider
binary recommendation systems such as Pandora, in which one
wishes to recommend unrated songs based on observed user
ratings. For more applications see [6]. Davenport et al. assume
that the data follows from the generalized linear model, but
with three large differences from the considerations of the
previous sections: 1) the measurements only give information
about single entries of the matrix, 2) a low-rank structure is
assumed in place of a sparse structure, and 3) ✓ (from Equation
(5)) is assumed to be known. Under these assumptions, the
authors show that nuclear-norm constrained maximum likeli-
hood estimation gives minimax optimal reconstruction of the
probability distribution of the unseen entries.

V. CONCLUSION

Binary data is intrinsic to many naturally arising inverse
problems, and also arises in extreme quantization. But the
signal or model that is to be reconstructed often comes from an
infinite, albeit low-dimensional, set. This blend of continuous
and discrete leads to interesting challenges in developing
and analyzing accurate methods of signal reconstruction. We
reviewed a number of recent results, which show that 1-bit
measurements can give comparable information to unquan-
tized measurements. Further, the methods of 1-bit compressed
sensing allow for a semi-parametric treatment of sparse binary
regression. One question that arises naturally from the above
work is whether we can give a semi-parametric treatment of
binary matrix completion which does not assume knowledge
of ✓.
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Abstract—In this paper we summarise part of the results

from our recent work [1]. We give theoretical insights into the

performance of K-SVD, a dictionary learning algorithm that

has gained significant popularity in practical applications, by

answering the question when a dictionary � can be recovered as

local minimum of the minimisation criterion underlying K-SVD

from a set of training signals yn = �xn. Assuming the training

signals are generated from a tight frame with coefficients drawn

from a random symmetric distribution, then in expectation the

generating dictionary can be recovered as a local minimum of the

K-SVD criterion if the coefficient distribution exhibits sufficient

decay. This decay can be characterised by the coherence of

the dictionary and the `1-norm of the coefficients. Further it

is demonstrated that given a finite number of training samples

N with probability O(exp(�N1�4q
)) there is a local minimum of

the K-SVD criterion within a radius O(N�q
) of the generating

dictionary.

Index Terms—dictionary learning, sparse coding, finite sam-

ples, K-SVD, sampling complexity, dictionary identification, min-

imisation criterion, sparse representation

I. INTRODUCTION

Research in the last decade has proven that sparsity provides
an efficient way of dealing with high-dimensional data, since
sparse signals are easily compressed, are robust to corruption
and can therefore easily be restored from incomplete infor-
mation. Triggered by this success an increasingly important
research direction is how to learn dictionaries providing sparse
representations for the data at hand, known as dictionary
learning or sparse coding. The problem under investigation
is usually formulated as follows. Given N signals y

n

2 Rd,
stored as columns in a matrix Y = (y

1

, . . . y
N

) find a
decomposition,

Y ⇡ �X,

into a d⇥K dictionary matrix � with unit norm columns and
a K ⇥N coefficient matrix with sparse columns.
So far research has provided several dictionary learning algo-
rithms, which are efficient in practice and therefore popular
in applications, but there exists only a handful of dictionary
learning schemes, for which theoretical results available, [3],
[4], [5], [6], [7]. Unfortunately, however, these then tend to be
rather cumbersome in practice. In this talk we start bridging

This work was supported by the Austrian Science Fund (FWF) under Grant
no. Y432 an J3335.

the gap between practically efficient and provably efficient
dictionary learning schemes, by shedding some light on the
theoretical performance of K-SVD, one of the most widely
applied dictionary algorithms.
K-SVD was introduced by Aharon, Elad and Bruckstein in [8]
as an algorithm to solve the following minimisation problem.
Given some signals Y = (y

1

, . . . , y
N

), y
n

2 Rd, find

min

�2D,X2XS

kY � �Xk2
F

, (1)

for D := {� = (�
1

, . . . ,�
K

),�
i

2 Rd, k�
i

k
2

= 1} and
X

S

:= {X = (x
1

, . . . , x
N

), x
n

2 RK , kx
n

k
0

 S}, where
kxk

0

counts the number of non-zero entries of x, and k · k
F

denotes the Frobenius norm. In short we are looking for
the dictionary � that provides on average the best S-term
approximation to the signals in Y .
Since for a signal y

n

the best S-term approximation using
� is given by the largest projection onto a set of S atoms
�

I

= (�
i1 . . .�

iS ), ie. P
I

(�) = �

I

�

†
I

where �†
I

denotes the
Moore-Penrose pseudo inverse of �

I

, instead of (1) we can
equivalently consider the following maximisation problem,

max

�2D

X

i

max

|I|S

kP
I

(�)y
n

k2
2

. (2)

Let us assume that the training signals are all created from
an admissible generating dictionary ¯

� 2 D, and coefficients
drawn at random from a distribution ⌫ of sparse or rapidly
decaying coefficient, ie.

y
n

=

¯

�x̄
n

. (3)

The goal of dictionary identification is to give conditions
under which an algorithm can locally identify the generating
dictionary from the training signals. To achieve this we will
first study when ¯

� is exactly at a local maximum in the
limiting case, ie. when we replace the sum in (2) with the
expectation,

max

�2D
E

y

✓
max

|I|S

kP
I

(�)yk2
2

◆
. (4)

In the next section we will provide identification results for the
case when in (4) we have S = 1, ie. X

S

= X
1

, assuming first a
simple (discrete, noise-free) signal model and then progressing
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to a noisy, continuous signal model. In Section III we will
extend these asymptotic results to the case of a finite number
of samples and finally we will discuss the implications of our
results for practical applications and compare them to related
dictionary identification results.

II. ASYMPTOTIC IDENTIFICATION RESULTS

A. The problem for S = 1

In case S = 1 the objective function in (4) can be radically
simplified and the maximisation problem we want to analyse
reduces to,

max

�2D
E

y

�
k�?yk21

�
. (5)

Clearly if the signals y are all 1-sparse in a dictionary ¯

� then
¯

� is a global maximiser of (5). However what happens if we
do not have perfect sparsity? Let us start with a very simple
negative example.

Example 2.1: Let U be an orthonormal basis and x be
randomly 2-sparse with ’flat’ coeffcients, ie. pick two indices
i, j uniformly at random, choose �

i/j

= ±1 uniformly at
random and set x

k

= �
k

for k = i, j and zero else. Then U is
not a local maximum of (5), since we can construct an ascent
direction. Choose U

"

= (u
1

, . . . , u
d�1

, (u
d

+ "u
1

)/
p

1 + "2),
then we have

E
y

�
kU?

"

yk21
�

= E
x

⇣
k(x

1

, . . . , x
d�1

, xd+"x1p
1+"

2 )k21
⌘

= 1 +

1

d(d�1)

"

1+"

2 > 1 = E
y

�
kU?yk21

�
.

From the above example we see that in order to have a
local maximum at the original dictionary we need a sig-
nal/coefficient model where the coefficients show some type
of decay.

B. A simple model of decaying coefficients

We first consider a very simple coefficient model, con-
structed from a non-negative, non-increasing sequence c 2 RK

with kck
2

= 1, which we permute uniformly at random and
provide with random ± signs. To be precise for a permu-
tation p : {1, ...,K} ! {1, ...,K} and a sign sequence �,
�

i

= ±1, we define the sequence c
p,�

component-wise as
c
p,�

(i) := �
i

c
p(i)

, and set y = �x where x = c
p,�

with
probability (2

KK!)

�1.
The normalisation kck

2

= 1 has the advantage that for
dictionaries, which are an orthonormal basis, the resulting
signals also have unit norm and for general dictionaries the
signals have unit square norm in expectation, ie. E(kyk2

2

) = 1.
This reflects the situation in practical application, where we
would normalise the signals in order to equally weight their
importance.
Armed with this model we can now prove a first dictionary
identification result for (5).

Theorem 2.1: Let � be a unit norm tight frame with frame
constant A = K/d and coherence µ. Let x 2 Rd be a random
permutation of a sequence c, where c

1

� c
2

� c
3

. . . � c
K

�
0 and kck

2

= 1, provided with random ± signs, i.e. x = c
p,�

with probability P(p,�) = (2

KK!)

�1. If c satisfies c
1

> c
2

+

2µkck
1

, then there is a local maximum of (5) at �. Moreover
we have the following quantitative estimate for the basin of
attraction around �. For all perturbations  = ( 

1

. . . 
K

) of
� = (�

1

. . .�
K

) with 0 < max

i

k 
i

� �
i

k
2

 " we have
E

x

k ?

�xk21 < E
x

k�?

�xk21 as soon as " < 1/5 and

" 

⇣
1� 2

c2+µkck1
c2+c1

⌘
2

2A log

⇣
2AK/(c2

1

� 1�c

2
1

K�1

)

⌘ . (6)

Proof: We briefly sketch the proof. The condition
c
1

> c
2

+ 2µkck
1

ensures that the maximal inner product
|h�

i

,�c
p,�

i| is always attained by i
p

= p�1

(1), leading to

E
x

k�?

�xk21 = c2

1

+

(1� c2

1

)

K � 1

(A� 1).

The main idea now is that for small perturbations and most
sign patterns � the maximal inner product is still attained by
i
p

. For an "-perturbations  of the original dictionary � where
 

i

= (1�"2
i

/2)�
i

+("2
i

�"4
i

/4)

1
2 z

i

, for some z
i

with h�
i

, z
i

i =

0, kz
i

k
2

= 1 and "
1

 ", we have

max

i=1...K

|h 
i

,�c
p,�

i| = |h 
ip ,�c

p,�

i|,

except with probability

⌘ := 2

X

i|"i 6=0

exp

0

B@�

⇣
1� "

2

2

� 2

c2+µkck1
c2+c1

⌘
2

2A"2
i

1

CA ,

which leads to the following bound

E
x

k ?

�xk21  2A⌘ +

c2

1

K

KX

i=1

(1� "2
i

/2)

2

+

1� c2

1

K � 1

 
A� 1

K

KX

i=1

(1� "2
i

/2)

2

!
.

Since e�c/"

2
and therefore ⌘ decays much faster than "2 as "

goes to zero we have E
x

k ?

�xk21 < E
x

k�?

�xk21, as soon
as " is small enough.

Remark 2.2: (i) Note that in some sense Theorem 2.1
is sharp. Assume that � is an orthonormal basis (ONB) then
µ = 0 and the condition to be a local maximum reduces to
c
1

> c
2

. However from Example 2.1 we see that if c
1

= c
2

we can again construct an ascent direction and so � is not a
local maximum.
(ii) Similarly the condition that � is a tight frame is almost
necessary in the non-trivial case where |c

1

| < 1, as otherwise
the candidate local maximiser at the generating dictionary
may be distorted towards the maximal eigenvector of the
frame.

C. A continuous model of decaying coefficients

Next we would like to extend the result from the last
subsection to a wider range of coefficient distributions, espe-
cially continuous ones. To characterise suitable distributions
we make the following definitions.
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Definition 2.1: A probability measure ⌫ on the unit sphere
Sd�1 ⇢ Rd is called symmetric if for all measurable sets
X ✓ Sd�1, for all sign sequences � 2 {�1, 1}d and all
permutations p we have

⌫(�X ) = ⌫(X ), �X := {(�
1

x
1

, . . . ,�
d

x
d

) : x 2 X}
⌫(p(X )) = ⌫(X ), p(X ) := {(x

p(1)

, . . . , x
p(d)

) : x 2 X}

Definition 2.2: A probability distribution ⌫ on the unit
sphere SK�1 ⇢ RK is called (�, µ)-decaying if there exists
a � < 1/2 such that for c

1

(x) � c
2

(x) � . . . � c
d

(x) � 0

a non increasing rearrangement of the absolute values of the
components of x we have,

⌫

✓
c
2

(x) + µkc(x)k
1

c
2

(x) + c
1

(x)

 �

◆
= 1 (7)

For the case µ = 0 it will also be useful to define the following
notion. A probability distribution ⌫ on the unit sphere Sd�1 ⇢
Rd is called f -decaying if there exists a function f such that

exp

✓
�f(")2

8"2

◆
= o("2)

and ⌫

✓
c
2

(x)

c
1

(x)

� 1� f(")

◆
= o("2).

Note that (�, 0)-decaying is a special case of f -decaying, ie.
f(") can be chosen constant �. To illustrate both concepts we
give simple examples for (�, µ)- and f -decaying distributions
on S1.

Example 2.3: • Let ⌫ be the symmetric distribution on
S1 defined by c

2

(x) being uniformly distributed on
[0, 1p

2

� ✓] for ✓ > 0 (and accordingly c
1

(x) =p
1� c2

2

(x)), then ⌫ is (�, µ)-decaying for all µ < ✓p
2

.
• Let ⌫ be the symmetric distribution on S1 defined

by c
2

(x) being distributed on [0, 1p
2

] with density
20

p
2(

1p
2

�x)

4, then ⌫ is f -decaying for e.g. f(") =

p
".

• Let ⌫ be the symmetric distribution on S1 defined by
c
2

(x) being distributed on [0, 1p
2

] with density 4(

1p
2

�x),
then ⌫ is not f -decaying.

With these examples of suitable probability distributions in
mind we can now give a continuous version of Theorem 2.1.

Theorem 2.2: (a) Let � be a unit norm tight frame with
frame constant A = K/d and coherence µ. If x is drawn
from a symmetric (�, µ)-decaying probability distribution ⌫
on the unit sphere SK�1, then there is a local maximum of
(5) at �.
(b) If � is an orthonormal basis, there is a local maximum of
(5) at � whenever x is drawn from a symmetric f -decaying
probability distribution ⌫ on the unit sphere Sd�1.

D. Bounded white noise

With the tools used to prove the two noiseless identification
results it is also possible to analyse the case of (very small)
bounded white noise.

Theorem 2.3: Let � be a unit norm tight frame with frame
constant A = K/d and coherence µ. Assume that the signals

y are generated from the following model

y = �x + r, (8)

where r is a bounded random white noise vector, ie. there exist
two constants ⇢, ⇢

max

such that krk
2

 ⇢
max

almost surely,
E(r) = 0 and E(rr?

) = ⇢2I . If x is drawn from a symmetric
decaying probability distribution ⌫ on the unit sphere SK�1

with E
x

kxk21 = c̄
1

2 and the maximal size of the noise is
small compared to the size and decay of the coefficients c

1

, c
2

,
meaning there exists � < 1/2, such that

⌫

✓
c
2

(x) + µkc(x)k
1

+ ⇢
max

c
1

(x)� c
2

(x)

 �

◆
= 1 (9)

then there is a local maximum of (5) at �.

III. FINITE SAMPLE SIZE

We are now ready to analyse the local maxima of the non-
asymptotic maximisation problem for S = 1. For simplicity
we choose a normalised version of (2).

max

�2D

1

N

NX

n=1

k�?y
n

k21. (10)

Theorem 3.1: Let � be a unit norm tight frame with frame
constant A = K/d and coherence µ. Assume that the signals
y

n

are generated as y
n

= �x
n

+ r
n

, where r
n

is a bounded
random white noise vector, ie. there exist two constants
⇢, ⇢

max

such that kr
n

k
2

 ⇢
max

almost surely, E(r
n

) = 0 and
E(r

n

r?

n

) = ⇢2I . Further let x
n

be drawn from a symmetric
decaying probability distribution ⌫ on the unit sphere SK�1

with E
x

kxk21 = c̄
1

2 and the maximal size of the noise be
small compared to the size and decay of the coefficients c

1

, c
2

,
meaning there exists � < 1/2, such that

⌫

✓
c
2

(x) + µkc(x)k
1

+ ⇢
max

c
1

(x)� c
2

(x)

 �

◆
= 1. (11)

Abbreviate � := c̄
1

2� 1�c̄1
2

K�1

and C
L

= (

p
A + ⇢

max

)

2. If for
some 0 < q < 1/4 the number of samples N satisfies

N�q

+ N�2q/K  (1� 2�)

2

4A log(4AK/�)
(12)

then except with probability

exp

✓
�N1�4q�2

4K2C2

L

+ Kd log(NKC
L

/�)

◆
,

there is a local maximum of (10) resp. local minimum of (1)
within distance at most 2N�q to �, ie. for the local maximum
˜

 we have max

k

k ˜ 
k

� �
k

k
2

 2N�q.
Proof: We again give a brief sketch of the proof. From

the last section we know that for any "-perturbation we have

E
y

k�?yk21 � E
y

k ?yk21 ⇡ "2�/K.

Hoeffding’s inequality lets us estimate the probability that for
a fixed perturbation the finite sample sum deviates from its
expectation as

P
 
�� 1

N

NX

n=1

k ?y
n

k21 � E
y

k ?yk21
�� > t

!
 e�Nt

2
/C

2
L .
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Using a union bound this leads to an estimate for the prob-
ability that the above holds for a �-net N for the set of all
"-perturbations with "  "

max

. Since this set is the product of
K (d� 1)-dimensional balls with radius "

max

we have

]N  (3"
max

/�)K(d�1).

Choosing � and t to be O(N�q

) the final result then follows
from a triangular inequality argument and the fact that

|k ?y
n

k21 � k¯

 

?y
n

k21|  3C
L

max

k

k 
k

� ¯ 
k

k
2

.

IV. DISCUSSION

We have shown that the K-SVD minimisation principle with
sparsity parameter 1 can correctly identify a tight frame from
signals generated from a wide class of decaying coefficients
distributions. Since any simple greedy algorithm will always
find the best 1-term approximation for any signal in any
dictionary our results give conditions under which the K-SVD
algorithm can identify the underlying dictionary given a good
initialisation.
Before turning to a comparison of our results to other dic-
tionary learning schemes we illustrate the limitations of the
K-SVD principle for learning non-tight frames. We generated
1000 coefficients by drawing c

2

(x) uniformly at random from
the interval [0, 0.6], setting c

1

(x) =

p
1� c2

2

(x), randomly
permuting the resulting vector and providing it with random
± signs. We then generated two sets of signals, using an
orthogonal and an oblique basis with the same coefficients,
and for both sets of signals found the minimiser of the K-SVD
criterion (1) with S = 1. Figure 1 shows the two signal sets,
the generating bases and the recovered bases. As predicted by
our theoretical results when the generating basis is orthogonal
it is also the minimiser of the K-SVD criterion, while for the
oblique generating basis the minimiser is distorted towards the
maximal eigenvector of the basis.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

µ=0

�1=�1

�2=�2

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

µ=0.2588

�1

�2

�1

�2

Fig. 1. Signals created from an orthogonal and an oblique basis � =
(�1,�2) with decaying coefficients, together with the corresponding min-
imiser  = ( 1, 2) of the K-SVD-criterion for S = 1.

Finally let us point out further research directions based
on a comparison of our results for the K-SVD-minimisation
principle to the identification results for the `

1

-minimisation

principle,

min

�2D,X:Y =�X

X

ij

|X
ij

|, (13)

derived in [5], [6]. At first glance it seems that the K-SVD-
criterion requires a larger sample size than the `

1

-criterion, ie.
N1�4q/ log N = O(K3d) as opposed to O(d2

log d) reported
in [5] for a basis and O(K3

) reported in [6] for an overcom-
plete dictionary. Also it does not allow for exact identification
with high probability but only guarantees stability. However
this effect may be due to the more general signal model which
assumes decay rather than exact sparsity. Indeed it is very
interesting to compare our results to a recent result for a noisy
version of the `

1

-minimisation principle, [7], which provides
stability results under unbounded white noise and, omitting
log factors, also derives a sampling complexity of O(K3d).

Another difference, apparently intrinsic to the minimisa-
tion criteria is that the K-SVD criterion can only identify
tight dictionary frames exactly, while the `

1

-criterion allows
identification of arbitrary dictionaries. Thus to support the
use of K-SVD for the learning of non-tight dictionaries also
theoretically, we plan to study the stability of the K-SVD
criterion under non-tightness by analysing the maximal dis-
tance between an original, non tight dictionary with condition
number

p
B/A > 1 and the closest local maximum, cp. also

Figure 1.
The last research direction we want to point out is how
much decay of the coefficients is actually necessary. For the
asymptotic results we used condition c

1

> c
2

+ 2µkck
1

to
ensure that the maximal inner product is always attained at
i
p

. However typically we have |h�
i

,�c
p,�

i| ⇡ c
p(i)

± µ.
Therefore a condition such as c

1

> c
2

+O(µ), which allows for
outliers, ie. signals for which the maximal inner product is not
attained at i

p

, might be sufficient to prove exact identifiability
or - failing that - to again show stability. Together with the
inspiring techniques from [7], we expect the tools developed
in the course of such an analysis to allow us also to deal with
unbounded white noise.
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Abstract—Functions of bounded mean oscillation (BMO) play
an important role in complex function theory and harmonic
analysis. In this paper a sampling theorem for bandlimited
BMO-functions is derived for sampling points that are the
zero sequence of some sine-type function. The class of sine-
type functions is large and, in particular, contains the sine
function, which corresponds to the special case of equidistant
sampling. It is shown that the sampling series is locally uniformly
convergent if oversampling is used. Without oversampling, the
local approximation error is bounded.

I. NOTATION

Let ˆf denote the Fourier transform of a function f . Lp
(R),

1  p < 1, is the space of all pth-power Lebesgue integrable
functions on R, with the usual norm k · kp, and L1

(R) is the
space of all functions for which the essential supremum norm
k · k1 is finite. For 0 < � < 1 let B� be the set of all entire
functions f with the property that for all ✏ > 0 there exists
a constant C(✏) with |f(z)|  C(✏) exp((� + ✏)|z|) for all
z 2 C. The Bernstein space Bp

� , 1  p  1, consists of all
functions in B� , whose restriction to the real line is in Lp

(R).
A function in Bp

� is called bandlimited to �.

II. INTRODUCTION AND MOTIVATION

A well-known result in sampling theory is Brown’s theorem,
which states that the Shannon sampling series

1X

k=�1
f(k)

sin(⇡(t� k))

⇡(t� k)

is locally uniformly convergent for all functions in the Paley–
Wiener space PW1

⇡ . PW1
⇡ is the space of all functions

f with a representation f(z) = 1/(2⇡)
R �
�� g(!) e

iz!
d!,

z 2 C, for some g 2 L1
[�⇡,⇡]. This sampling theorem has

been extended in various directions, for example, larger signal
spaces and non-equidistant sampling patterns [1].

In this paper we consider the sampling series
1X

k=�1
f(tk)�k(t), (1)

⇤This work was partly supported by the German Research Foundation
(DFG) under grant BO 1734/13-2.

†U. Mönich was supported by the German Research Foundation (DFG)
under grant MO 2572/1-1.

where the sampling points {tk}k2Z are the zero sequence of
some sine-type function and the functions {�k}k2Z are certain
reconstruction functions, and analyze its convergence behavior
for bandlimited BMO(R)-functions.

Definition 1. A function f : R ! C is said to belong to
BMO(R), provided that it is locally in L1

(R) and 1
|I|

R
I |f(t)�

mI(f)| dt  C1 for all bounded intervals I , where mI(f) :=
1
|I|

R
I f(t) dt and the constant C1 is independent of I . |I|

denotes the Lebesgue measure of the set I . We further define

kfkBMO(R) := sup

I

1

|I|

Z

I
|f(t)�mI(f)| dt,

where the supremum is over all bounded intervals I . By
BMO⇡ we denote the space of all functions in B⇡ that are
in BMO(R) when restricted to the real axis.

Note that k · kBMO(R) is actually a seminorm, because we
have kCkBMO(R) = 0 for all constants C 2 C.

A consequence of the famous Fefferman–Stein theorem
[2] is the fact that an arbitrary BMO(R)-function can be
decomposed into a L1

(R)-function and the Hilbert transform
of a L1

(R)-function [3, p. 248].

Theorem A (Fefferman–Stein). There exists a constant C2 >
0 such that for all f 2 BMO(R) there exist two functions
f1, f2 2 L1

(R) and a constant ↵ such that f = f1+Hf2+↵
and kf1k1  C2kfkBMO(R), kf2k1  C2kfkBMO(R).

Theorem A is an important theoretical result [3], but it also
has a high significance for applications where the Hilbert trans-
form is used, for example the calculation of the analytic signal
[4] and the analysis of signal properties [5], [6], [7]. Since the
Hilbert transform of bounded functions is of particular interest,
Theorem A is interesting because it essentially describes the
range of the Hilbert transform for L1

(R).

III. SAMPLING FOR BMO⇡

Definition 2. An entire function f of exponential type ⇡ is
said to be of sine type if the zeros of f are separated and
simple, and there exist positive constants A, B, and H such
that A e

⇡|y|  |f(x + iy)|  B e

⇡|y| whenever x and y are
real and |y| � H .

Without loss of generality, we assume that the sequence of
sampling points {tk}k2Z is ordered strictly increasingly and
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that t0 = 0. Then, it follows that the product

�(z) = z lim

N!1

Y

|k|N
k 6=0

✓
1� z

tk

◆
(2)

converges uniformly on |z|  R for all R < 1, and � is an
entire function of exponential type ⇡ [8]. It can bee seen from
(2) that �, which is often called generating function, has the
zeros {tk}k2Z. Moreover, it follows that

�k(t) =
�(t)

�0
(tk)(t� tk)

(3)

is the unique function in B2
⇡ that solves the interpolation

problem �k(tl) = �kl, where �kl = 1 if k = l, and �kl = 0

otherwise.
Sampling point sequences that are made of the zeros of

functions of sine type are also complete interpolating se-
quences for B2

⇡ [9, p. 143]. This means that we restrict our
analysis to a subclass of complete interpolating sequences. We
conjecture that for arbitrary complete interpolating sequences
a result like the one in this paper cannot be obtained even for
smaller signal spaces. In particular, we conjecture that there
exist complete interpolating sequences and functions in PW1

⇡

such that the sampling series is even locally divergent [10].
If this conjecture is true it shows the specialty of sine type
function generated sampling patterns.

In [11] it was shown that for signals in B1
�⇡ , 0 < � < 1,

the sampling series (1) is uniformly convergent on all compact
subsets of R. The proof in [11] makes use of certain essential
properties of sine type functions.

Theorem C. Let � be a function of sine type, whose zeros
{tk}k2Z are all real and ordered increasingly. Furthermore,
let �k be defined as in (3) and 0 < � < 1. Then, for all T > 0

and all f 2 B1
�⇡ we have

lim

N!1
max

t2[�T,T ]

�����f(t)�
NX

k=�N

f(tk)�k(t)

����� = 0.

In the next theorem we provide a sampling theorem for
BMO⇡-functions, and thus extend Theorem C to a larger
space.

Theorem 1. Let � be a function of sine type, whose zeros
{tk}k2Z are all real and ordered increasingly. Furthermore,
let �k be defined as in (3) and T > 0.

1) We have

sup

N2N
max

t2[�T,T ]

�����f(t)�
NX

k=�N

f(tk)�k(t)

����� < 1

for all f 2 BMO⇡ .
2) Let 0 < � < 1. For all f 2 BMO�⇡ we have

lim

N!1
max

t2[�T,T ]

�����f(t)�
NX

k=�N

f(tk)�k(t)

����� = 0.

Theorem 1 shows that without oversampling the local peak
value of the approximation error is bounded. With over-
sampling the sampling series is uniformly convergent on all
compact subsets of R.

IV. PROOF OF THEOREM 1

In this section we prove Theorem 1. For the proof we need
several auxiliary results.

A. Basic Properties of BMO⇡-Functions

For functions f in BMO⇡ , i.e., BMO(R)-functions that are
additionally bandlimited, the Fefferman–Stein decomposition
(Theorem A) is of course also possible because BMO⇡ ⇢
BMO(R). The functions f1 and f2 in this decomposition
are in L1

(R). However, since the function f is additionally
bandlimited, it is reasonable to ask whether the decomposition
can be performed in a such a way that f1 and f2 are also
bandlimited, i.e., in B1

⇡ . The next theorem, which has been
proved in [12], answers this question in the affirmative.

Theorem 2. There exists a constant C3 > 0 such that for
all f 2 BMO⇡ there exist two functions f1, f2 2 B1

⇡ and
a constant ↵ such that f = f1 + Hf2 + ↵ and kf1k1 
C3kfkBMO(R), kf2k1  C3kfkBMO(R).

Theorem 2 has been stated in a form to have maximum simi-
larity to the Fefferman–Stein theorem. However, the bandwidth
of the function f2 does not have to be ⇡; it can be arbitrarily
reduced. Hence, we have the next theorem [12]. It should be
noted that a decrease of the bandwidth of the function f2
comes in general with an increase of the L1-norm of f1 and
f2.

Theorem 3. For all 0 < ˆ�  1 there exists a constant C4 such
that for all f 2 BMO⇡ there exist two functions f3 2 B1

⇡ and
f4 2 BMO�̂⇡ and a constant ↵ such that f = f3+f4+↵ and
kf3k1  C4(

ˆ�)kfkBMO(R), kf4kBMO(R)  C4(
ˆ�)kfkBMO(R).

Finally, we need a theorem about the growth behavior of
bandlimited BMO(R)-functions [12].

Theorem 4. Let f 2 BMO� , 0 < � < 1. Then, for
all � > �, there exists a constant C5 such that |f(z)| 
C5 e

�|Im(z)|
log(2 + |Re(z)|) for all z 2 C.

B. Basic Properties of Sine-Type Functions

Two important properties of sine-type functions, which will
be used in the proof, are stated in Lemmas 1 and 2.

Lemma 1. Let f be a function of sine type, whose zeros
{�k}k2Z are ordered increasingly according to their real
parts. Then we have

inf

k2Z
|�k+1 � �k| � � > 0 (4)

and
sup

k2Z
|�k+1 � �k|  � < 1 (5)

for some constants � and �.
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Fig. 1. Integration path PN (Y ) in the complex plane.

Equation (4) follows directly from Definition 2 and the
proof of (5) can be found in [8, p. 164].

Lemma 2. Let f be a function of sine type. For each ✏ > 0

there exists a number C6 > 0 such that

|f(x+ iy)| � C6 e
⇡|y|

outside the circles of radius ✏ centered at the zeros of f .

A proof of Lemma 2 can be found in [9, p. 144]. For further
information about sine-type functions see for example [8], [9].

C. Proof of Theorem 1

We first prove the second assertion of the theorem. To this
end, we extend the proof technique from [13] and [11], which
was developed to obtain results, similar to those in this paper,
for B1

⇡ .
Let � be an arbitrary but fixed sine-type function, whose ze-

ros {tk}k2Z are all real and ordered increasingly. Furthermore,
let �k be defined as in (3), and let 0 < � < 1, f 2 BMO�⇡ ,
and T > 0 be arbitrary but fixed. A key equation for the proof
is the identity

f(t)�
NX

k=�N

f(tk)�k(t) =
1

2⇡i

I

PN (Y )

�(t)

(⇣ � t)

f(⇣)

�(⇣)
d⇣, (6)

which is valid for all N 2 N, Y > 0, and t 2 R with ˜t�N <
t < ˜tN , where

˜tN =

(
(tN+1 + tN )/2 for N � 1

(tN�1 + tN )/2 for N  �1.
(7)

The integration path PN (Y ) is depicted in Figure 1. Equation
(6) can be easily verified using the residue theorem.

Let
� = inf

k2Z
|�k+1 � �k|

and
� = sup

k2Z
|�k+1 � �k|.

According to Lemma 1, we have � > 0 and � < 1. Further,
let N0 be the smallest natural number for which N0� > T .

Since ˜tN � N� for all N 2 N, it follows that ˜tN0 > T .
Furthermore, let YN = N�. From (6) we see that

�����f(t)�
NX

k=�N

f(tk)�k(t)

�����

 1

2⇡

Z YN

�YN

����
f(˜tN + iy)

�(˜tN + iy)

����
|�(t)|

|˜tN + iy � t|
dy

+

1

2⇡

Z YN

�YN

����
f(˜t�N + iy)

�(˜t�N + iy)

����
|�(t)|

|˜t�N + iy � t|
dy

+

1

2⇡

Z t̃N

t̃�N

����
f(x+ iYN )

�(x+ iYN )

����
|�(t)|

|x+ iYN � t| dx

+

1

2⇡

Z t̃N

t̃�N

����
f(x� iYN )

�(x� iYN )

����
|�(t)|

|x� iYN � t| dx (8)

for all N � N0 and t 2 [�T, T ]. Next, we treat the integrals
on the right hand side of (8) separately. Because of (4) and
the definition of ˜tN , it follows that the distance between ˜tN
and the nearest zero of � is at least �/2. Hence, according to
Lemma 2, there exists a constant C7 > 0 such that |�(˜tN +

iy)| � C7 e
⇡|y| for all y 2 R. Further, let � satisfy �⇡ < � <

⇡. Then we have

|f(˜tN + iy)|  C5 e
�|y|

log(2 +

˜tN )

for all y 2 R, according to Theorem 4. Therefore, for the first
integral we obtain

1

2⇡

Z YN

�YN

����
f(˜tN + iy)

�(˜tN + iy)

����
|�(t)|

|˜tN + iy � t|
dy

 C5 log(2 + ˜tN )k�k1
2⇡C7

Z YN

�YN

e

�(⇡��)|y|

|˜tN + iy � t|
dy,

 C5 log(2 + ˜tN )k�k1
⇡C7(N� � T )

(1� e

�(⇡��)YN
)

(⇡ � �)

 C5 log(2 + (N + 1)�)k�k1
⇡C7(N� � T )(⇡ � �)

for all N � N0 and t 2 [�T, T ]. It follows that

lim

N!1
max

t2[�T,T ]

1

2⇡

Z YN

�YN

����
f(˜tN + iy)

�(˜tN + iy)

����
|�(t)|

|˜tN + iy � t|
dy = 0.

(9)
For the second integral in (8) we obtain by the same consid-
erations that

1

2⇡

Z YN

�YN

����
f(˜t�N + iy)

�(˜t�N + iy)

����
|�(t)|

|˜t�N + iy � t|
dy

 C5 log(2 + (N + 1)�)k�k1
⇡C7(N� � T )(⇡ � �)

for all N � N0 and t 2 [�T, T ], and consequently

lim

N!1
max

t2[�T,T ]

1

2⇡

Z YN

�YN

����
f(˜t�N + iy)

�(˜t�N + iy)

����
|�(t)|

|˜t�N+iy�t|
dy = 0.

(10)
Next we treat the third integral in (8). Since all zeros of � are
real and YN = N� � �, it follows from Lemma 2 that there
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exists a constant C8 > 0 such that

|�(x+ iYN )| � C8 e
⇡YN

for all x 2 R. Further, we have

|f(x+ iYN )|  C5 e
�YN

log(2 + |x|)
for all x 2 R, according to Theorem 4. Thus, we obtain

1

2⇡

Z t̃N

t̃�N

����
f(x+ iYN )

�(x+ iYN )

����
|�(t)|

|x+ iYN � t| dx

 C5 e
�YN k�k1

2⇡C8 e
⇡YN

Z t̃N

t̃�N

log(2 + |x|)
|x+ iYN � t| dx

 C5 e
�(⇡��)YN k�k1(2N + 1)� log(2 + (N + 1)�)

2⇡C8YN

=

C5 e
�(⇡��)N�k�k1(2N + 1)� log(2 + (N + 1)�)

2⇡C8N�

 2C5 e
�(⇡��)N�k�k1 log(2 + (N + 1)�)

⇡C8

for all N � N0 and t 2 [�T, T ], and consequently

lim

N!1
max

t2[�T,T ]

1

2⇡

Z t̃N

t̃�N

����
f(x+ iYN )

�(x+ iYN )

����
|�(t)|

|x+ iYN � t| dx = 0.

(11)
By the same considerations we obtain for the fourth integral
in (8) that

1

2⇡

Z t̃N

t̃�N

����
f(x� iYN )

�(x� iYN )

����
|�(t)|

|x� iYN � t| dx

 2C5 e
�(⇡��)N�k�k1 log(2 + (N + 1)�)

⇡C8

for all N � N0 and t 2 [�T, T ] , and

lim

N!1
max

t2[�T,T ]

1

2⇡

Z t̃N

t̃�N

����
f(x� iYN )

�(x� iYN )

����
|�(t)|

|x� iYN � t| dx = 0.

(12)
Combining (8), (9), (10), (11), and (12) we see that

lim

N!1
max

t2[�T,T ]

�����f(t)�
NX

k=�N

f(tk)�k(t)

����� = 0,

which proves the second assertion of the theorem.
Next, we prove the first assertion of the theorem. Let T > 0

and f 2 BMO⇡ be arbitrary but fixed, and choose some ˆ�
with 0 < ˆ� < 1. According to Theorem 3 there exist two
functions f3 2 B1

⇡ and f4 2 BMO�̂⇡ and a constant ↵ such
that f = f3+f4+↵ and kf3k1  C4(

ˆ�)kfkBMO(R). It follows
that�����f(t)�

NX

k=�N

f(tk)�k(t)

����� 

�����f3(t)�
NX

k=�N

f3(tk)�k(t)

�����

+

�����f4(t)�
NX

k=�N

f4(tk)�k(t)

�����

+

�����↵�
NX

k=�N

↵�k(t)

����� . (13)

From Theorem 1 in [11] we know that there exists a constant
C9 such that

sup

N2N
max

t2[�T,T ]

�����f3(t)�
NX

k=�N

f3(tk)�k(t)

�����  C9kf3k1

and

sup

N2N
max

t2[�T,T ]

�����↵�
NX

k=�N

↵�k(t)

�����  C9↵.

For the second term on the right hand side of (13) we have

lim

N!1
max

t2[�T,T ]

�����f4(t)�
NX

k=�N

f4(tk)�k(t)

����� = 0

according to the second assertion of the theorem. Thus, it
follows that

sup

N2N
max

t2[�T,T ]

�����f(t)�
NX

k=�N

f(tk)�k(t)

�����

 C9(kf3k1 + ↵) + C10

< 1,

which completes the proof of the first assertion.
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Abstract—We study the reconstruction of bandlimited fields
from samples taken at unknown but statistically distributed sam-
pling locations. The setup is motivated by distributed sampling
where precise knowledge of sensor locations can be difficult.

Periodic one-dimensional bandlimited fields are considered
for sampling. Perfect samples of the field at independent and
identically distributed locations are obtained. The statistical
realization of sampling locations is not known. First, it is shown
that a bandlimited field cannot be uniquely determined with
samples taken at statistically distributed but unknown locations,
even if the number of samples is infinite. Next, it is assumed
that the order of sample locations is known. In this case,
using insights from order-statistics, an estimate for the field
with useful asymptotic properties is designed. Distortion (mean-
squared error) and central-limit are established for this estimate.

I. INTRODUCTION

In the smart-dust paradigm [1], consider a distributed field
sampling problem where sensors are deployed without precise
control on the sensor-locations. One method for distributed
field sampling is to learn the location of these individual
sensors, and then reduce field acquisition to the well-studied
non-uniform sampling problem [2]. However, localization of
individual sensors in a wireless sensor network can be dif-
ficult [3]. In light of these issues, the reconstruction of a
physical field from samples taken at unknown but statistically
distributed locations is studied in this work.

Assuming that the field has a finite support, sensors will
have to be deployed in the finite region where the field is non-
zero. The smoothness of the physical field can be modeled
by bandlimitedness. In this work, it will be assumed that
the field is spatially periodic and bandlimited. Only one-
dimensional fields will be considered. The lack of control in
sensor deployment is modeled by a uniform-distribution on
the sensor or sampling-locations. It is assumed that sensors
are deployed (or scattered) independent of each other. Thus,
perfect samples of the field at independent and identically
distributed (i.i.d.) but also unknown locations are obtained by
the sampling method outlined above. From these samples the
field has to be estimated. This work focuses on a consistent
estimate, that is, an estimate which converges to the true
underlying field when the number of samples is infinite.

This work has been supported by grant no. P09IRCC039, IRCC, IIT
Bombay.

The key results shown in this work are as follows:
1) It will be shown that a bandlimited field cannot be

uniquely determined with perfect samples obtained at
statistically distributed locations, even if the number of
samples is infinite.

2) If the order of sample locations is known, then using
insights from classical order-statistics, a consistent esti-
mate for the spatial field is presented. Distortion (aver-
age mean-squared error) and a central-limit type weak
convergence result are established for this estimate.

Prior art: Recovery of discrete-time bandlimited signals from
samples taken at unknown locations was first studied by
Marziliano and Vetterli [4]. Recovery of a bandlimited signal
from a finite number of ordered nonuniform samples at un-
known sampling locations has been studied by Browning [5].
Estimation of periodic bandlimited signals in the presence of
random sampling location under two models has been studied
by Nordio et al. [6]. Their first model studies reconstruction
of bandlimited signal affected by noise at random but known
locations. Their second model studies estimation of bandlim-
ited signal from noisy samples on a location set obtained by
random perturbation of equi-spaced deterministic grid.

In contrast, this work presents the estimation of a bandlim-
ited field from i.i.d. distributed but unknown samples in an
asymptotic setting (where the number of samples increases to
infinity). Asymptotic consistency (convergence in probability),
mean-squared error bounds, and central-limit type weak law
are the focus of this work. The first key-result of this work is
absent in related work due to difference in the sensing model.
Organization: In Section II the field model, distortion, sensor
deployment model, and useful statistical theory are outlined.
In Section III asymptotic consistency, mean-squared error,
and weak convergence aspects of field estimate are discussed.
Finally, conclusions will be presented in Section IV.

II. PROBLEM SETUP AND USEFUL CLASSICAL RESULTS

This section will review the field model, the distortion, and
some useful mathematical results. Field model appears first.

A. Field model and associated properties
The field of interest g(t) is periodic, real-valued, and

bandlimited. Without loss of generality, the period is assumed
to be T = 1. It is also assumed that the field |g(t)| ≤ 1 is
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bounded. Bandlimitedness implies that some b > 0 coefficients
are non-zero in the Fourier series. Thus,

g(t) =
b∑

k=−b

ak exp(j2πkt). (1)

Real-valued g(t) implies conjugate symmetry in the Fourier
domain, that is, ak = a∗−k; however, this symmetry will not be
utilized in this work. The (b+1) Fourier coefficients constitute
the degrees of freedom for this signal. With ||g||∞ ≤ 1, using
Bernstein’s inequality [7], we get

|g′(t)| ≤ 2πb, (2)

where 2πb rad/s is the bandwidth of the signal. For simplicity
of notation, define sb := 1/(2b + 1) as a spacing parameter
and φk := exp(j2πk/(2b + 1)) = exp(j2πksb). By using
(2b+ 1) samples of the field g(t), its Fourier coefficients can
be computed as follows:





g(0)
g(sb)

...
g(2bsb)




=





1 . . . 1
φ−b . . . φb

...
...

(φ−b)2b . . . (φb)2b









a−b

a−b+1
...
ab





or more simply

#g = Φb#a, (3)

where the vector matrix notation is obvious. The columns of
Φb are orthogonal with a norm-square (2b + 1) under the
standard inner-product. The relation in (3) is inverted to obtain

#a = (Φb)
−1#g =

1

(2b+ 1)
Φ†

b#g, (4)

where Φ†
b is the conjugate transpose of Φb. The expression in

(4) will be used to obtain an estimate for #a as discussed later.

B. Sensor deployment model and reconstruction distortion
Denote any sequence as xm

l := (xl, xl+1, . . . , xm) for
m ≥ l. It will be assumed that sensors are deployed at random
locations Un

1 in the interval of interest [0, 1]. The locations
Un
1 are i.i.d. random variables with uniform distribution and

probability density function f(u) = 1 for 0 ≤ u ≤ 1. The
locations Un

1 are not known in our model. An asymptotic
number of samples and limiting distribution of Un

1 will be
used for field estimation. The average mean-squared error will
be used as a distortion metric. If Ĝ(t) is any estimate of g(t),
then the distortion is defined as

D := E(||Ĝ− g||22) := E
[∫ 1

0
|Ĝ(t)− g(t)|2dt

]
. (5)

C. Useful mathematical results
For estimation of field from the statistical properties of

Un
1 , the following convergence results will be useful. These

results for order-statistics and quantiles are a counterpart to the
strong-law of large numbers (see [8, Ch. 10]). The ordered ver-
sion of Un

1 will be denoted by Un:n
1:n := {U1:n, U2:n, . . . , Un:n}

where Un:n is the largest and U1:n is the smallest [8].

For uniform distribution, the p-th population quantile qp is
equal to p. Then with r = [np]+1, it is known that [8, pg. 285]

Ur:n − p = −(Fn(p)− p) +Rn, (6)

where Fn(u) := 1
n

∑n
i=1 (Ui ≤ u) is the empirical distri-

bution of Un
1 . The remainder term Rn decreases to 0 almost

surely,

Rn = O
(
n−3/4(log n)1/2(log log n)1/4

)
as n → ∞. (7)

By the strong law of large numbers [9], we know that
Fn(p)

a.s.−→ p; thus, Ur:n
a.s.−→ p from (7). Analogous to the

central limit theorem, the following fact is noted.
Fact 2.1: [8, Theorem 10.3] Let 0 < p1 < p2 < . . . <

p2b+1 < 1 and assume that (ri/n − pi) = o(1/
√
n), i =

1, 2, . . . , 2b+ 1. Then the following result holds:
√
n[Ur1:n − p1, . . . , Ur2b+1:n − p2b+1]

T d−→ N
(
#0,KU

)
,

where [KU ]j,j′ = pj(1− pj′) for j ≤ j′.
All the moments of U are finite since it is bounded (by

definition). The second moment of Ur:n − p, with r ≈ [np] is
bounded by.

nE(Ur:n − p)2 = p(1− p)E(Z2) +O(
√
1/n),

≤ 1

4
+O(

√
1/n). (8)

where Z ∼ N (0, 1) is a normalized Gaussian random variable.
The following fact relates consistency and L2 convergence.
Fact 2.2: [9] If Xn

a.s.−→ X and Yn
a.s.−→ Y , then aXn +

bYn
a.s.−→ aX+bY for any constants a, b ∈ R. If Xn is bounded

and Xn
a.s.−→ X , then Xn

L2

−→ X .
We now proceed to the main results of this paper.

III. SAMPLING AND ESTIMATION WITH RANDOM SAMPLES

In this section, the key results of this work are presented. It
will be shown that the field g(t) cannot be inferred uniquely
from samples collected at U∞

1 , where sample-locations are
unknown. Further, with order information on sample-locations,
consistent estimation of the field is presented.

A. It is impossible to infer g(t) uniquely from U∞
1

It will be shown that if g(U1), . . . , g(Un) is available
without the knowledge of Un

1 , then g(t) cannot be inferred
uniquely as n → ∞. Consider the statistic

Fg,n(x) =
1

n

n∑

i=1

(g(Ui) ≤ x), (9)

where () are the indicator random variables. Then
Fg,n(x), x ∈ [−1, 1] completely characterizes the field values
g(U1), . . . , g(Un) and vice-versa. By Glivenko-Cantelli theo-
rem, the right hand limit in (9) converges almost surely to
P(g(U) ≤ x) for all x ∈ [−1, 1] as n ↑ ∞ [10]. This limit is
explained using Fig. 1. For any x ∈ [−1, 1] the set of points
where g(t) ≤ x can be marked on the t-axis. The length or
measure of this set is equal to P(g(U) ≤ x).
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t

x

g(t)

10

Fig. 1. For any x ∈ [−1, 1] the set of points where g(t) ≤ x can
be marked on the t-axis. The length or measure of this set is equal to
P(g(U) ≤ x).

For 0 < θ < 1, let gθ(t) = g(t − θ), i.e., gθ(t) is the
shifted version of g(t). Since g(t) is periodic, its shifts will
be cyclic in nature in the period [0, 1]. Thus, the level-sets of
g(t− θ) will be cyclic (in θ) and its measure {u : gθ(u) ≤ x}
will be independent of θ for every x ∈ [−1, 1]. Therefore,
P(gθ(U) ≤ x) will be independent of θ for every x ∈ [−1, 1].
Thus, by only using Fg,n(x), which converges to P(g(U) ≤
x), x ∈ [−1, 1], the field g(t) cannot be inferred uniquely. This
completes the discussion of this subsection.

B. Consistent estimation of g(t) from Un:n
1:n

From now on, it will be assumed that order information
of samples is available. That is, samples g(U1:n), . . . , g(Un:n)
are available and g(t) has to be estimated. Using (4) and the
convergence results in Sec. II-C, the following estimate for the
Fourier series coefficients of g(t) is proposed:

#A := [Â−b, Â−b+1, . . . , Âb]
T :=

1

(2b+ 1)
Φ†

b
#G. (10)

where #G = [g(U1:n), g(U[nsb]+1:n), . . . , g(U[n2bsb]+1:n)]
T .

With (6) and the smoothness properties (continuity) of g(t),
this estimate is obtained by substitution method in (4). Using
#A, an estimate for g(t) is obtained as follows

Ĝ(t) =
b∑

k=−b

Âk exp(j2πkt) = Φ(t)T #A (11)

where Φ(t)T =
[
exp(−j2πbt) . . . exp(j2πbt)

]
. Intu-

itively, g(t) has a finite degrees of freedom. This enables
a procedure to estimate the Fourier series coefficients (the
degrees of freedom) from a finite number of sample estimates
of g(t). Using these estimates of the Fourier series coefficients,
the entire field of interest g(t) can be estimated. For distortion
calculation, the Parseval’s theorem [11] will be useful,

||Ĝ− g||22 =
b∑

k=−b

|Âk − ak|2. (12)

A bound on E(|Âk − ak|2) will result in a bound on the
expected mean-squared error E(||Ĝ− g||22).

We state our first result now.
Theorem 3.1 (Consistency of #A): Let Un:n

1:n be ordered
i.i.d. Uniform[0, 1] random variables. Define #A and Ĝ(t) as in

(10) and (11). Then the estimates #A and Ĝ(t) are consistent
in almost-sure and L2 sense to their respective limits, i.e.,

#A
a.s.−→ #a, Ĝ(t)

a.s.−→ g(t) and #A
L2

−→ #a, Ĝ(t)
L2

−→ g(t). (13)

Proof: Only a sketch is provided due to space con-
straints. First note that U[nisb]+1:n

a.s.−→ isb for each
i = 0, 1, . . . , 2b. Since g(t) is continuous by assumption,
g(U[nisb]+1:n)

a.s.−→ g(isb) for each i = 0, 1, . . . , 2b. Let
#G := [g(U1:n), g(U[nsb]+1:n), . . . , g(U[n2bsb]+1:n)]

T and #g :=
[g(0), g(sb), . . . , g(2bsb)]T . By repeated use of Fact 2.2, any
finite linear combination #cT #G converges almost-surely to #cT#g.
Thus, from (10), each element of #A converges almost surely
to #a. Hence, #A

a.s.−→ #a.
Next, Ĝ(t) is a finite linear combination of #A. Since #A

a.s.−→
#a, therefore, Ĝ(t)

a.s.−→ g(t) in a similar fashion as above.
For L2-convergence, note that #G is bounded in each co-

ordinate since |g(t)| ≤ 1 for all t. Each element of the
matrix Φb has a magnitude one. Thus, by (10) and the triangle
inequality, |Âi| ≤ ||g||∞ ≤ 1 for every i = −b,−b+1, . . . , b.
Thus, each Âi is a bounded random variable. For bounded
random sequences, from Fact 2.2, #A

a.s.−→ #a implies that
#A

L2

−→ #a. Similarly, |Ĝ(t)| ≤
∑b

k=−b |Âk| ≤ (2b + 1) from

(11). Thus, by Fact 2.2, Ĝ(t)
a.s.−→ g(t) implies Ĝ(t)

L2

−→ g(t),
since Ĝ(t) is bounded.

The second result establishes the scaling of distortion for
the proposed estimate in (11).

Theorem 3.2: Let Un:n
1:n be ordered i.i.d. Uniform[0, 1] ran-

dom variables. Define #A and Ĝ(t) as in (10) and (11). Then,

nE
[
||Ĝ− g||22

]
≤ π2b2(2b+ 1)

[
1 +O(

√
1/n)

]
, (14)

that is, the expected distortion decreases as O(1/n).
Proof: The proof is presented in two parts. First, using

the smoothness properties of g(t), the norm ||Ĝ− g||22 will be
bounded using the error in quantiles U[np]+1:n − p. Next, the
convergence rate of U[np]+1:n − p as in (8) will be utilized to
upper-bound the distortion. First note that

||Ĝ− g||22 =
b∑

k=−b

|Âk − ak|2 (15)

=
1

(2b+ 1)2
||Φ†

b(
#G− #g)||22 (16)

=
1

(2b+ 1)2

b∑

k=−b

∣∣∣∣∣

2b∑

l=0

[φl
k]

∗(Ĝ(lsb)− g(lsb))

∣∣∣∣∣

2

(a)
≤ (2b+ 1)

(2b+ 1)2

b∑

k=−b

2b∑

l=0

|φl
k||Ĝ(lsb)− g(lsb))|2

(b)
=

1

(2b+ 1)

b∑

k=−b

2b∑

l=0

|Ĝ(lsb)− g(lsb))|2 (17)

(c)
≤

2b∑

l=0

|Ĝ(lsb)− g(lsb))|2. (18)
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=
2b∑

l=0

|g(U[nlsb]+1:n)− g(lsb))|2. (19)

≤ ||g′||2∞
2b∑

l=0

|U[nlsb]+1:n − lsb|2. (20)

where (a) follows by (a1 + a2 + . . . + an)2 ≤ n(a21 + a22 +
. . . + a2n), (b) follows by |φk| = 1 for all k, and (c) follows
since the summation does not depend on k. Using (8), and
taking expectations on both sides

nE
(
||Ĝ− g||22

)
≤ ||g′||2∞

2b∑

l=0

nE
(
|U[nlsb]+1:n − lsb|2

)

≤ ||g′||2∞
2b∑

l=0

[
1

4
+O(

√
1/n)

]
(21)

≤ (2πb)2(2b+ 1)
1

4
+O(

√
1/n) (22)

= π2b2(2b+ 1)[1 +O(
√

1/n)]. (23)

This completes the proof.
The third result establishes the weak-convergence of Ĝ(t).
Theorem 3.3 (Central limit for Ĝ(t)): Let Un:n

1:n be or-
dered i.i.d. Uniform[0, 1] random variables and #u =
(0, sb, 2sb, . . . 2bsb)T . Define #A and Ĝ(t) as in (10) and (11).
Then the estimate #A and Ĝ(t) satisfy the following central
limits:

√
n( #A− #a)

d−→ N
(
#0,KA

)
. (24)

where KG = ∇gT (#u)KU∇g(#u) and K "A is independent of n
and given in terms of KG and Φb. Further,

√
n(Ĝ(t)− g(t))

d−→ N
(
#0,KG(t)

)
. (25)

where KG(t) is independent of n and given in terms of KG

and Φb.
Proof: From Fact 2.1, we know that #U :=

[U1:n, U[nsb]+1:n, . . . , U[n2bsb]+1:n]
T is asymptotically

normal. That is,
√
n(#U − #u)

d−→ N (#0,K), where

[K]i,i′ = (i− 1)sb[1− (i′ − 1)sb] for i ≤ i′. (26)

Note that [K]i,i′ = [K]i′,i by the symmetry of a covariance
matrix. Recall #G from (10). Since g(t) is a differentiable field,
by the delta-method [10],

√
n( #G− #g)

d−→ N (#0,K"G), (27)

where K"G = ∇g(#u)TK∇g(#u). Observe that the matrix K"G
depends on the field g(t). However, by smoothness of g(t), the
vector ∇g(#u) is bounded and K is independent of n. Thus,
K"G is independent of n. From (10), since #A is obtained from
#G by a complex-valued linear transformation, we get

√
n( #A− #a)

d−→ CN (#0,K "A). (28)

Observe that the limit is a complex normal Gaussian vector. In
general, the covariance properties of a zero-mean complex ran-
dom vector #S are determined by E(#S#S†) and E(#S#ST ). Thus,

K "A is determined by the two matrices 1
(2b+1)2Φ

†
bK"GΦb and

1
(2b+1)2Φ

†
bK"GΦ

T
b . The covariance matrix K"G is independent

of n; therefore, K "A is also independent of n and well defined.
Finally, Ĝ(t) is obtained from #A by a t-dependent inner

product. From (11), we get Ĝ(t) = Φ(t)T #A. Therefore, Ĝ(t)
is a complex normal Gaussian vector. Its variance can be
determined by E(Ĝ(t)2) and E(|Ĝ(t)|2) which are equal to

1
(2b+1)2Φ(t)

TΦ†
bK"GΦ

T
b Φ(t) and 1

(2b+1)2Φ(t)
TΦ†

bK"GΦbΦ(t)†,
respectively. Thus the proof is complete.

This completes our technical result section. The estimation
technique outlined in this section holds well for noise-free
setting. If there is additive noise affecting the samples, then
more involved estimation techniques will be required. Obtain-
ing consistent estimates for g(lsb), l = 0, . . . , (2b+1) is more
challenging in the presence of noise.

IV. CONCLUSIONS

The reconstruction of bandlimited fields from samples taken
at unknown but statistically distributed sampling locations was
studied. Periodic one-dimensional bandlimited fields were con-
sidered for sampling. Perfect samples of the field at i.i.d. uni-
form locations were used for the reconstruction. It was shown
that a bandlimited field cannot be uniquely determined only
with samples taken at statistically distributed locations, even
if the number of samples is infinite. Using order information
on the sample locations, a consistent estimate was proposed
for the underlying field. It was shown that this estimate con-
verges in the mean-squared error sense and almost-sure sense.
Further, the mean-squared error asymptotically decreases as
O(1/n), where n is the number of obtained field samples.
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Abstract—We provide an overview of recent progress regarding

the role of sampling in the study of signals that are in the image of

a bandpass or multiband frequency limiting operation and have

most of their energies concentrated in a given time interval. We

finish considering a means to approximate essentially time-limited

bandpass signals. In this case we present a new phase-locking

metric that arises in the study of EEG signals.

I. INTRODUCTION

We discuss relationships between time and band limiting
and sampling, leading also to numerical computation of es-
sentially time-limited multiband and bandpass signals. As an
application we propose a method to analyze phase synchrony
of bandpass projections of signals, illustrating a particular case
of electroencephalographic (EEG) signals. In this introduction
we briefly review basic elements of the theory of time and band
limiting. In Section II we discuss connections between sam-
pling and time and band limiting. In Section III we present a
method to construct time- and multiband-limited signals from
eigenfunctions for time and band limiting to separate bands
and a numerical technique that takes advantage of sampling.
In Section IV we provide a method to approximate essentially
time-limited bandpass signals. We use this approach in Section
V to provide a new method to study phase differences of
bandpass projections of signals. The method is illustrated in
the context of study of EEG signals. Relatively constant phase
lag among two EEG channels can indicate recruitment of the
corresponding cortical regions in distributed cognition.

A. Time and band limiting
Set (QT )(f)(t) =

[�T,T ]

(t) f(t) where S denotes the
function equal to one on S ⇢ R and zero outside S. Let
Q = Q

1

. Also let (P

⌃

)(f)(t) = (

⌃

b
f)

_
(t) where b

f(⇠) =R1
�1 f(t) e

�2⇡it⇠
dt. We write P

⌦

= P

[�⌦/2,⌦/2] and P = P

1

.
The Paley–Wiener space PW

⌃

is of the image of L2

(R) under
the orthogonal projection P

⌃

. We write PW

⌦

instead when
⌃ = [�⌦/2,⌦/2] and simply PW when ⌦ = 1. For compact
⌃, the operator P

⌃

QT is compact and its trace is equal to
2T |⌃| where |⌃| denotes the Lebesgue measure of ⌃ ⇢ R. It
is also self adjoint on PW

⌃

while P

⌃

QSP⌃

is self adjoint on
L

2

(R). Since functions in PW

⌃

are real analytic, P
⌃

QS has
no unit eigenfunctions and the discrete spectrum of P

⌃

QT is
contained in [0, 1).

B. Prolate functions and their properties

The operator Pc/⇡Q commutes with a certain self-adjoint
second-order differential operators whose eigenfunctions, and
hence those of Pc/⇡Q, are the prolate spheroidal wave func-
tions, which form a complete orthogonal basis for PWc/⇡ .
They are also eigenfunctions of the integral operator

(Fcf)(t) =

Z
1

�1

e

icst
f(s) ds =

c
Qf(�ct/2⇡) . (1)

The eigenvalues Pc/⇡Q are non degenerate. Denote by
�

0

(c) > �

1

(c) > . . . the nth eigenvalue of Pc/⇡Q and
'

c
n the corresponding prolate eigenfunction. That 'c

n is an
eigenfunction of (1) and other basic properties imply that

Dc/⇡c'c
n =

i

n

p
�n

Q'

c
n (2)

where Da is the unitary dilation (Daf)(t) =

p
af(at),

a > 0. When L

2

(R)-normalized, the prolates {'c
n} form an

orthonormal basis for PWc/⇡ as well as a complete, orthog-
onal set in L

2

[�1, 1] with �n(c) =

R
1

�1

|'c
n|2. As such, any

f 2 PWc/⇡ can be expanded in the form f =

P1
n=0

↵n '
c
n

with kfk2L2
(R) =

P
↵

2

n and
R
1

�1

|f |2 =

P
�n↵

2

n. The prolates
are real valued and '

c
n is even (odd) if n is even (odd).

Further properties of prolates and justification of the facts just
mentioned, which were established in the Bell Labs papers,
especially [1], [2], can be found in [3].

C. The 2⌦T theorem

Suppose that ⌃ is a union of M pairwise disjoint frequency
intervals of unit length so that the total time–bandwidth prod-
uct corresponding to P

⌃

QT is 2MT . Denote by N (2MT,↵)

the number of eigenvalues of P

⌃

QT larger than ↵. The
following is a special case of a version of the “2⌦T ” theorem
proved by Landau and Widom in [4].

Theorem 1 (Landau–Widom, 1980): As T ! 1 the num-
ber of eigenvalues of P

⌃

QT exceeding ↵ 2 (0, 1) satisfies

N (2MT,↵) = 2MT+

M

⇡

2

log 2T log

⇣
↵

1� ↵

⌘
+o(log 2MT ) .
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II. SAMPLING AND TIME AND BAND LIMITING

Walter and Shen [5] and Khare and George [6] observed

(PQT f)(t) =

1X

n=0

�n

1X

k=�1
f(k)'n(k)'n(t)

where 'n are eigenfunctions of PQT . Oscillatory behavior of
the prolates near the endpoints of [�T, T ] prohibits an estimateP

|k|>T '
2

n(k)  C(T )(1� �n). However, in [7] the estimate
X

|k|>⇡2T (1+log

�
(T ))

'

2

n(k)  C(1� �n), (3)

was proved for any � > 1. It was conjectured in [7] that the
log factor in the sum index is not necessary. The following
consequence of (3) regarding approximation of QT f from
samples of f near [�T, T ] was also established in [7].

Theorem 2: Let f 2 span {'n}Nn=0

, with 'n the nth eigen-
function of PQT . Define 'T

n =

P
|k|<M(T )

'n(k)sinc (t� k)

with M(T ) as in (3). Then

kQT (f �
NX

n=0

hf,'T
n i'T

n )k  Ckfk
NX

n=0

�n(1� �n) .

A method to obtain accurate numerical estimates of integer
samples of prolates is outlined in Hogan et al., [7].

III. TIME- AND MULTIBAND-LIMITED SIGNALS

This section reviews techniques underlying numerical com-
putation of certain time- and multiband-limited signals. We
start with a method to build eigenfunctions for the case ⌃ is a
finite union of intervals from appropriately modulated prolates.

A. Eigenfunctions for unions
If ⌃ is a finite union of pairwise disjoint intervals

I

1

, . . . , IM then we can denote P

⌃

=

PM
k=1

PIk . Unlike
PQT , the operator P

⌃

QT does not commute with a finite
order differential operator with polynomial coefficients when
⌃ is a union of two or more intervals. This important fact,
established by Morrison in [8], bars us from using power series
methods to compute eigenfunctions.

The following results were established in [9] in a more
general setting. If J is a frequency interval of unit length
then the orthogonal projection onto PWJ , the Paley–Wiener
subspace of L2

(R) of functions frequency supported in J , has
the form MmJPM�mJ where, as before, P = P

[�1/2,1/2]

and (Muf)(t) = e

2⇡itu
f(t) with mJk the midpoint of Jk.

Suppose that one has M pairwise disjoint frequency intervals
J

1

, . . . , JM each of unit length and set ⌃ = [kJk. Set
mk = mJk . Since the J-prolates 'J

n = MmJ 'n, with 'n the
corresponding eigenfunction of PQT , form a complete family
for PWJ , any function in PW

⌃

has an orthogonal decomposi-
tion f =

PM
k=1

P1
n=0

hf, Mmk'niMmk'n. Consider now the
problem of finding an eigenvalue–eigenfunction pair (�,  )

for P

⌃

QT . Expanding  in terms of the modulated prolates
Mmk'n and applying P

⌃

QT to these, one sees that one must
identify the coefficients �

k,`
nm = hQTMmk'n, Mm`'mi. Note

that �`,k
mn = �

k,`
mn, that is, if �k,` is the matrix with entries �k,`

nm

then �

`,k
= �

k,`. The eigenvalue–eigenfunction pairs (�,  )

for P
⌃

QT are produced as follows.
Proposition 3: Suppose that J

1

, . . . , JM are pairwise dis-
joint unit intervals with union ⌃ = [M

k=1

Jk. Let ⇤ denote
the diagonal matrix with nth diagonal entry �n(PQT ) and let
�

k,` be the matrix with entries �k,`nm = hQTMmk�m`'n, 'mi,
k < `. Then any eigenvector–eigenvalue pair  and � for
P

⌃

QT can be expressed as  =

PM
k=1

P1
n=0

↵

k
nMmk'n

where the vectors ↵k = {↵k
n} together form a discrete

eigenvector for the block matrix eigenvalue problem

�

0

BB@

↵1

↵2

...
↵M

1

CCA =

0

BBB@

⇤ �̄12 · · · �̄1M

(�12)T ⇤ �̄23 · · ·
...

...
. . .

...
(�1M )T · · · · · · ⇤

1

CCCA

0

BB@

↵1

↵2

...
↵M

1

CCA .

In order to turn the method into a means to compute
eigenvalues and eigenfunctions of P

⌃

QT numerically, one
needs to estimate the coefficients

�

k,`
nm =

Z T

�T
e

2⇡i(mk�m`)t
'n(t)'m(t) dt

and to justify truncating the matrices ⇤ and �

k,`. The matrix
truncations are justified by Theorem 1.

The corresponding �-matrix entries can be expressed as

hQTMmI'n, MmJ'mi =
X

k

X

`

'n(k)'m(`)A(T ; I, J)k`;

A(T ; I, J)k` =

Z T

�T
e

2⇡i(mI�mJ )t
sinc (t� k)sinc (t� `) dt .

The inner products are computed using the following, see [9].
Lemma 4: As a bilinear form acting on the pair of se-

quences {'n(k)}, {'m(`)}, the matrix A(T ; I, J)k` coincides
with i

n+m
p
�m�n sinc (2T (mJ �mI) + k � `).

An eigenfunction  of P

⌃

QT will be called a time- and
multiband-limiting eigenfunction (TMBLE). If  is a TMBLE
with eigenvalue � > 1/2 then  should be, at least nearly,
in the span of those eigenfunctions '

I
n, where ⌃ = [I ,

corresponding to the eigenvalues of PIQT larger than 1/2,
hence, of eigenfunctions 'I

n corresponding to n  2T . In this
case, 'I

n can be approximated accurately on [�T, T ] by sinc
interpolating its samples 'I

n(k) where |k|  M(T ) above.

B. Numerical estimation of TMBLEs
Accurate numerical estimation of the TMBLEs is obtained

via estimation of the entries of suitable truncations of the �

matrices and eigenvectors of the corresponding truncation of
the eigenproblem in Proposition 3. Details are given in [9].
Figure 1 illustrates the case with three frequency intervals.The
corresponding eigenfunctions are plotted in Fig. 2.

IV. TIME- AND BANDPASS-LIMITED SIGNALS

Given 0 < c

0
< c denote by PW

⇡
c0,c the orthogonal

complement of PWc0/⇡ inside PWc/⇡, that is, the closed
subspace of L2

(R) of functions whose Fourier transforms b
f(⇠)

are supported in c

0
/⇡  |⇠|  c/⇡, and by P

⇡
c0c the orthogonal

projection onto PW

⇡
c0c. The eigenfunctions of the operator
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Fig. 1. Matrix in Proposition 3 for T = 2, I = [�1/2, 1/2], J = [2, 3],
and K = [5, 6]. Intensity plot of the real part of the matrix in Proposition
3. Each �µ⌫ term is truncated to size 10⇥ 10. On the right is a plot of the
moduli of the eigenvalues of the same matrix.
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Fig. 2. TMBLEs for T = 2, I = [�1/2, 1/2], J = [2, 3] and K = [5, 6].
Plotted are the TMBLMS corresponding to n = 0, 1, 2, 3, 4, 5 respectively
for three frequency bands. Real parts solid, imaginary parts dashed.

P

⇡
c0cQ corresponding to time truncation of a function in

L

2

(R) to a finite interval—[�1, 1] in this work—followed by
frequency limiting to frequencies |!| 2 [c

0
, c]/⇡ will be called

bandpass prolates here. Numerical approximation of the most
time concentrated bandpass limited signals (called bandpass
prolates here) was studied recently by SenGupta et al., [10]
by expressing the kernel of the bandpass limiting operator in
terms of Legendre polynomials, then identifying the bandpass
prolates through their Legendre coefficients. Alternatively,
Proposition 5 proved in [11], produces the coefficients of the
bandpass prolates, expressed as superpositions of full-band
prolates, from partial inner products of full-band prolates. As
explained below, these partial inner products can be computed
directly from pointwise values of 'c

n and 'c0
n where, as before,

'

c
n is the nth eigenfunction of Pc/⇡Q.
Denote by R = R(c

0
, c) the matrix with entries Rjk =

i

k�jp
�j�k

R c0/c
�c0/c '

c
k(⇠)'

c
j(⇠) d⇠. The matrix R is real symmetric,

a consequence of the parity properties of the 'c
n. Let ⇤ = ⇤(c)

be the diagonal matrix with nth diagonal entry �n(c).
Proposition 5: If  =

P
↵n'

c
n 2 PWc/⇡ then

P

⇡
c0c Q =

X

k

↵k�k

⇣
'

c
k �

X

j

Rjk '
c
j

⌘
.

In particular, if  =

P
↵n'

c
n is an eigenfunction of P

⇡
c0cQ

with eigenvalue � then, with ↵ = {↵n}1n=0

,

�↵n = �n↵n �
X

k

�k ↵k Rnk i.e. �↵ = (I �R)⇤↵ .

The discrete eigenvectors ↵ of the matrix (I �R)⇤ thus give
rise to eigenfunctions of P⇡

c0cQ and the eigenvalue � measures
the concentration of  in [�1, 1] just as in the case of standard
prolates. The proof uses the identities (1) and (2).

The partial inner products can be calculated by virtue of the
prolate differential equation and integration by parts. If n 6= m

then, with �n as in (??) and �1  a  b  1,

�
�n��m

� Z b

a
'n(t)'m(t)dt =

h
(t

2�1)('

0
n'm�'0

m'n)(t)

���
b

a
.

Approximate bandpass prolates are obtained from finite size
truncations of the eigenproblem in Proposition 5, see [11].
Khare [12] also considered the problem of numerical evalua-
tion of bandpass prolates, focusing instead on the role of the
interpolating function (sinc multiplied by a suitably dilated
cosine) and establishing that the bandpass prolate samples
form a discrete eigenvector of the matrix of partial integrals
on [�1, 1] of shifts of the interpolating kernel, cf. also Hogan
et al., [7]. Khare did not investigate dependence on c

0
/c.

V. PHASE SYNCHRONY AND AN APPLICATION TO EEG
We discuss briefly an application of bandpass prolates to

study phase synchrony—nearly constant average instantaneous
phase difference—particularly of EEG signals. It is believed
that communication between different regions of neural cortex
in attention focusing tasks is manifest in phase synchrony
of neural firing patterns, e.g., [13], [14], particularly in the
gamma band, e.g., [15]. Measuring band specific synchrony
between EEG channels requires (i) a means to associate in-
stantaneous phase to a given frequency band and (ii) a method
to measure temporal phase locking between a pair of signals
in a given band by averaging instantaneous phase difference
for enough oscillations that average phase difference makes
sense—say three to five—but not so many that synchronous
epochs are indistinguishable from asynchronous ones.

Proposed methods include filtered analytic signals and con-
volutions with modulated Gaussians [16], [17], and empirical
mode decomposition methods [18], [19] among others. In
each case, the instantaneous phase is defined as the log
of the complex valued signal divided by its modulus. The
instantaneous phase difference of two such signals is the log
of the product of the first unimodular signal and the conjugate
of the second. To quantify phase locking of two signals one
takes a time average of the instantaneous phase difference over
a period that amounts to several oscillations.

In the case of analytic extensions of signals filtered over a
short duration, aliasing is a concern. In the case of convolution
with modulated Gaussians, insufficiently many degrees of free-
dom are being employed. The empirical mode decomposition
provides a data- and algorithmic-driven definition of phase.
However, it can be impossible to physical from algorithmic
factors underlying the measured phase.
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Fig. 3. EEG channel data 1/8 second record of two concurrent EEG channel
measurements, digitally sampled at 1024 samples per second.
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Fig. 4. Approximate � projections. Projections of channel measurements
onto the span of the six top eigenvectors of time-limiting to 1/8 second and
bandpass limiting to 24–40 Hz.

We consider here a new phase-locking metric computed
through the following steps. Step 1: define the duration and
frequency band for which synchrony is to be measured. Step
2: define the projection onto the span of the bandpass prolates
whose eigenvalues are close to one or, at least, not much
smaller than one half. Step 3: compute the analytic signal
for this projection, and divide by its amplitude to get its
unimodular factor. Step 4: For a pair of such signals, multiply
the unimodular part of one by the conjugate of that of the other,
integrate over the given duration, and compute the modulus.
This is the phase locking value (PLV).

We implemented this algorithm as follows to produce Fig. 5.
To analyze the gamma band of EEG signals, we chose the
frequency range from 24 to 40 Hz. In order to compute the
PLV over 3 to 5 oscillations of signals in this range, we took
the duration of interest to be 1/8 second. The time bandwidth
product in this case is 2(40 � 24)/8 = 4. The corresponding
time- and bandpass-limiting operator has six eigenvalues “not
much smaller than 1/2.” We successively chose 1/8 second
blocks of the EEG channels and computed the projections onto
the span of the first six eigenfunctions. We then computed the
analytic signal using the matlab builtin hilbert. A PLV
was computed for each successive 1/8-second segment of the
two EEG channels.

Fig. 5 shows PLVs of projections of 1/8-seconds of the two
EEG channels onto the space generated by the six eigenfunc-
tions of time limiting to 1/8-second duration and bandpass
limiting to 24–40 Hz most concentrated to the given duration.
The PLVs were computed for 1/8-second duration. In the data
presented, a visual stimulus was shown to the subject after a
half second. An initial interval of synchrony then presumably
reflects response of the visual cortex. The subsequent interval
of synchrony after “t = 0” presumably then corresponds to the
subject maintaining a mental representation of the stimulus.
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Abstract—The aim of this paper is to study the approximation

properties of generalized sampling operators in Lp(R)-space in

terms of an averaged modulus of smoothness.

I. INTRODUCTION

For the uniformly continuous and bounded functions f 2
C(R) the generalized sampling series are given by (t 2 R;
w > 0)

(Swf)(t) :=

1X

k=�1
f(

k

w
)s(wt� k), (1)

where the condition for the operator Sw : C(R) ! C(R) to
be well-defined is

1X

k=�1
|s(u� k)| < 1 (u 2 R), (2)

the absolute convergence being uniform on compact intervals
of R.

If the kernel function is

s(t) = sinc(t) :=
sin⇡t

⇡t
,

we get the classical (Whittaker-Kotel’nikov-)Shannon opera-
tor,

(Ssinc
w f)(t) :=

1X

k=�1
f(

k

w
) sinc(wt� k).

A systematic study of sampling operators (1) for arbitrary
kernel functions s with (2) was initiated at RWTH Aachen
by P. L. Butzer and his students since 1977 (see [1], [2], [3]
and references cited there).

Since in practice signals are however often discontinuous,
this paper is concerned with the convergence of Swf to f
in the Lp

(R)-norm for 1 6 p < 1, the classical modu-
lus of continuity being replaced by the averaged modulus
of smoothness ⌧k(f ; 1/w)p. For the classical (Whittaker-
Kotel’nikov-Shannon) operator this approach was introduced
by P. L. Butzer, C. Bardaro, R. Stens and G. Vinti (2006) in
[4] (see also [5]) for 1 < p < 1. For time-limited kernels s
this approach was applied for 1 6 p < 1 in [6] and [7]. In
this paper we use this approach for band-limited kernels for
1 6 p < 1.

In this paper we study an even band-limited kernel s, defined
by an even window function � 2 C[�1,1], �(0) = 1, �(u) = 0

(|u| > 1) by the equality

s(t) := s(�; t) :=

1Z

0

�(u) cos(⇡tu) du. (3)

We first used the band-limited kernel in general form (3)
in [8], see also [9], [10]. We studied the generalized sampling
operators SW : C(R) ! C(R) with the kernels in form (3) in
[11]-[12]. We computed exact values of operator norms

kSwk := sup

kfkC61
kSwfkC = sup

u2R

1X

k=�1
|s(u� k)| (4)

and estimated the order of approximation in terms of the
classical modulus of smoothness. In this paper we give similar
results for Lp

(R) norm in terms of the averaged modulus of
smoothness. The main result of this paper, Theorem 2, was
proved for f 2 C(R) in [11].

II. PRELIMINARY RESULTS

A. Averaged modulus of smoothness

In this section we follow the approach of Butzer et al [4] of
convergence problems of Shannon sampling series in a suitable
subspace of Lp

(R).
Let f 2 M(R) be measurable and bounded on R, and � > 0.

The k-th averaged ⌧ -modulus of smoothness for 1 6 p 6 1
is defined as ([4], Def. 1)

⌧k(f ; �)p := k!k(f ; ·; �)kp, (5)

where !k(f ; t; �) is a local modulus of smoothness of order
k 2 N at t 2 R,

!k(f ; t; �) :=

:= sup{|�k
hf(x)|;x, x+ kh 2 [t� k�

2

, t+
k�

2

]},

where the classical finite forward difference is given by

�

k
hf(x) =

kX

`=0

(�1)

k�`

✓
k

`

◆
f(x+ `)h). (6)
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The classical modulus of smoothness can be estimated via the
⌧ -modulus (see [4], Proposition 4)

!k(f ; �)p 6 ⌧k(f ; �)p (1 6 p < 1).

B. The space ⇤

p

Since the sampling series Swf of (1) of an arbitrary Lp-
function f may be divergent, we have to restrict the matter
to a suitable subspace. Further, since we want to use the ⌧ -
modulus as a measure for the approximation error, we have
to ensure that it is finite for all functions under consideration.
In [4] it was proved that we can define a suitable subspace as
follows

Definition 1 ([4], Def. 10, [6], Def. 2.1):

(a) A sequence ⌃ := (xj)j2Z ⇢ R is called an admissible
partition of R or an admissible sequence, if it satisfies

0 < inf

j2Z
�j 6 sup

j2Z
�j < 1, �j := xj � xj�1.

(b) Let ⌃ := (xj)j2Z ⇢ R be an admissible partition of R.
The discrete `p(⌃)-seminorm of a sequence of function values
f⌃ on ⌃ of a function f : R ! C is defined for 1 6 p < 1
by

kfk`p(⌃) :=

8
<

:
X

j2Z
|f(xj)|p�j

9
=

;

1/p

.

(c) The space ⇤

p for 1 6 p < 1 is defined by

⇤

p
:= {f 2 M(R); kfk`p(⌃) < 1

for each admissible sequence ⌃}.

It can be shown (see [4], Proposition 18) that if f 2 ⇤

p \
Rloc(R) for 1 6 p < 1 we have

lim

�!0
⌧k(f ; �)p = 0, (7)

where

Rloc(R) := {f : R ! C,
is locally Riemann integrable on R}.

The assumption f 2 Rloc(R) is related to the fact that the
⌧ -modulus on [a, b] tends to zero (with � ! 0+) if and only
if when f is Riemann integrable on [a, b] (see [13], Th. 1.2
and [4], Proposition 6.).

We have for 1 6 p < 1 that Bp
w  W r

p  ⇤

p  Lp, where
Bp

w is the Bernstein class (e.g. [14], Def. 6.5) and

W r
p := {f 2 Lp

; f 2 ACr
loc, f

(r) 2 Lp}

is the classical Sobolev space.
In the following we consider the uniform partitions ⌃w :=

(j/w)j2Z ⇢ R for w > 0 only. For these partitions we have
([6], Proposition 2.2)

kfk`p(w) 6 kfkp +
1

w
kf 0kp, f 2 W r

p . (8)

Proposition 1 ([6], Th. 2.8): Let (Lw)w>0 be a family of
linear operators mapping ⇤

p into Lp, 1 6 p < 1, satisfying
the properties

(i) kLwfkp 6 Kkfk`p(w), f 2 ⇤

p, (9)

(ii) kLwg � gkp 6 Kr
1

ws
kg(r)kp, g 2 W r

p , (10)

for some fixed r, s 2 N, (s 6 r) and a constant Kr depending
only on r. Then for each f 2 ⇤

p there holds the estimate

kLwf � fkp 6 c ⌧r(f ;
1

W s/r
)p, W > 0, (11)

the constant c depending only on r, K and Kr.
To use Proposition 1 for Shannon sampling operators we

need the following proposition.
Proposition 2 (cf. [4], Proposition 25): For 1 6 p 6 1,

for some r 2 N and s = 0, 1, . . . , r there exists a constant
cr > 0 such that for each f 2 W r

p and w > 0 one can find a
function gw 2 Bp

⇡w satisfying

kf (s) � g(s)w kp 6 cr
1

wr�s
kf (r)kp.

C. Sampling operators

The kernel for the sampling operators Sw in (1) is defined
in the following way.

Definition 2 ([3], Def. 6.3): If s : R ! C is a bounded
function such that

1X

k=�1
|s(u� k)| < 1 (u 2 R), (12)

the absolute convergence being uniform on compact subsets
of R, and

1X

k=�1
s(u� k) = 1 (u 2 R), (13)

then s is said to be a kernel for sampling operators (1).
For f 2 ⇤

p we have:
Proposition 3 ([6], Proposition 3.2): Let s 2 M(R) \

L1
(R) be a kernel. Then {Sw}w>0 defines a family of bounded

linear operators from ⇤

p into Lp, 1 6 p < 1 (and also from
C(R) into CR with the norm (4)), satisfying (1/p+1/q = 1)

kSwfkp 6 kSwk1/qksk1/p1 kfk`p(w) (w > 0). (14)

If the kernel s is time-limited, i.e. there exists T0, T1 2 R,
T0 < T1 such that s(t) = 0 for t 62 [T0, T1], then in case
f 2 ⇤

p \Rloc(R) for 1 6 p < 1, we have (see [6], Th. 4.4)

lim

w!1
kSwf � fkp = 0. (15)

I this paper we prove analogous result for band-limited kernels.
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D. Band-limited kernels

In the following we assume that our kernel (3) belongs to
B1

⇡ . For the band-limited functions s 2 Bp
⇡ ⇢ Lp

(R) the
operator norm kSwk is related to the norm kskp by Nikolskii’s
inequality.

Proposition 4 (Nikolskii inequality; [14], Th. 6.8): Let
1 6 p 6 1. Then, for every s 2 Bp

� ,

kskp 6 sup

u2R

( 1X

k=�1
|s(u� k)|p

)1/p

6 (1 + �)kskp.

From the Nikolskii’s inequality we see that our assumption
s 2 L1

(R) is sufficient for (12) and thus s in (3) is indeed a
kernel in the sense of Definition 2.

These types of kernels arise in conjunction with window
functions widely used in applications (e.g. [15], [16], [17],
[18]), in Signal Analysis in particular. Unfortunately bandlim-
ited kernels do not have compact support. Many kernels can
be defined by (3), e.g.

1) �(u) = 1 defines the sinc function;
2) �j(u) := cos⇡(j + 1/2)u, j = 0, 1, 2, . . . defines the

Rogosinski-type kernel (see [9]) in the form

rj(t) :=
1

2

⇣
sinc(t+ j +

1

2

) + sinc(t� j � 1

2

)

⌘
(16)

3) �H(u) := cos

2 ⇡u
2 =

1
2 (1 + cos⇡u) defines the Hann

kernel (see [12])

sH(t) :=
1

2

sinc t

1� t2
; (17)

III. SUBORDINATION BY TYPICAL (ZYGMUND) SAMPLING
OPERATORS

In [11] we introduced typical (Zygmund) sampling series
Zr
wf for f 2 C(R) with kernels zr 2 B1

⇡ defined via (3)
using the window function

�Z,r(u) := 1� u2r, r > 0.

We proved an estimate ([11], Th. 1)

kZr
wk 6 2

⇡
log r + C (18)

Consider now an even bandlimited kernel sr 2 B1
⇡ defined

via (3) using the window function �r, which has a represen-
tation

�r(u) := 1�
1X

j=r

cj u
2j , r > 1. (19)

The condition (19) is satisfied for many kernels s 2 B1
⇡ .

If
P1

j=r |cj | log j < 1 then substituting (19) in (3) and the
last one into (1) gives a double series, where interchanging of
the order of summation is justified. Therefore, for generalized
sampling series in (1) defined by the kernel sr one has the
subordination equalities

Sr
wf =

1X

j=r

cjZ
j
wf (20)

Sr
wf � f =

1X

j=r

cj(Z
j
wf � f). (21)

Theorem 1: Let f 2 ⇤

p for 1 6 p < 1, r 2 N. Then

kZr
wf � fkp 6 Mr⌧2r(f ;

1

w
)p. (22)

The constants Mr are independent of f and w. Moreover, if
f 2 ⇤

p \Rloc(R) for 1 6 p < 1, we have

lim

w!1
kZr

wf � fkp = 0. (23)

PROOF: We apply Proposition 1. For (9) in Proposition 1 we
have for f 2 ⇤

p by Proposition 3, (18) and Nikolski inequality

kZr
wfkp 6 kZr

wk1/qkzrk
1/p
1 kfk`p(w) 6 kZr

wkkfk`p(w).

Now we show that (10) in Proposition 1 holds. Let g 2 Bp
⇡w.

For f 2 W 2r
p we have

kZr
wf�fkp 6 kZr

w(f�g)kp+kZr
wg�gkp+kf�gkp (24)

By Proposition 3 and (8) we have

kZr
w(f � g)kp 6 kZr

wk1/qkzrk
1/p
1 kf � gk`p(w)

6 kZr
wk1/qkzrk

1/p
1 (kf � gkp +

1

w
kf 0 � g0kp). (25)

If g 2 Bp
⇡w, then Ssinc

w g = g i.e.

g(t) =
X

k2Z
g
⇣ k

w

⌘ 1Z

0

cos(⇡(wt� k)u) du.

Hence on the right hand side the series is uniformly convergent
and after term-by-term differentiation we get also a uniformly
convergent series (cf. [2], Th. 3.3). Therefore for r 2 N

(�1)

r

(⇡w)2r
g(2r)(t) =

X

k2Z
g
⇣ t

w

⌘ 1Z

0

u2r
cos(⇡(wt� k)u) du

(26)
Now by the definition of Zr

w it follows

kZr
wg � gkp =

1

(⇡w)2r
kg(2r)kp

6 1

(⇡w)2r
(kf (2r) � g(2r)kp + kf (2r)kp). (27)

Substituting (25) and (27) in (24) and choosing finally the
function g as gw 2 Bp

⇡w from Proposition 2 it follows

kZr
wf � fkp 6 Kr

1

w2r
kf (2r)kp

and (10) is fullfilled. Proposition 1 yields (22). The last
assertion (23) follows from (22) and (7).

Theorem 2: Let sampling operator Sr
w (w > 0) be defined

by the kernel (3) with � = �r and for some r 2 N let

�r(u) := 1�
1X

j=r

cju
2j ,

1X

j=r

|cj | log j 6 1. (28)

Then for f 2 ⇤

p
(1 6 p < 1)

kSr
wf � fkp 6 Mr⌧2r(f ;

1

w
)p. (29)
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The constants Mr are independent of f and w. Moreover, if
f 2 ⇤

p \Rloc(R) for 1 6 p < 1, we have

lim

w!1
kSr

wf � fkp = 0. (30)

PROOF: We apply Proposition 1. For (9) in Proposition 1
we have for f 2 ⇤

p by (20), (18), Proposition 3 and Nikolski
inequality

kSr
wfkp 6 kfk`p(w)

1X

j=r

|cj | log j

Now we show that (10) in Proposition 1 holds. Let g 2 Bp
⇡w.

For f 2 W 2r
p we have

kSr
wf �fkp 6 kSr

w(f �g)kp+kSr
wg�gkp+kf �gkp (31)

The subordination equality (21) gives the estimate

kSr
wg � gkp 6

1X

j=r

|cj |kZj
wg � gkp

Now we show that for g 2 Bp
⇡w and s 6 r there holds the

estimate kZr
wg � gkp 6 kZs

wg � gkp. Using (26) and the
definition of Zr

w we have

Zj
wg(t)� g(t) = �(⇡w)�2

⇣
(Zj�1

w g)00(t)� g00(t)
⌘

(32)

Applying ([14], Th. 6.11 and Lemma 6.6) we have Zj
wg 2

B1
⇡w ⇢ Bp

⇡w, hence (Zj
wg � g) 2 Bp

⇡w and we can use the
Bernstein inequality for 1 6 p 6 1

k(Zj�1
w g)00 � g00kp 6 (⇡w)2kZj�1

w g � gkp,

hence
kZj

wg � gkp 6 kZj�1
w g � gkp,

and we have

kSr
wg � gkp 6 kZr

wg � gkp
1X

j=r

|cj |.

Finally we use (27) and substitute the resulting estimate in
(31). The rest of the proof is the same as for Theorem 1.

IV. EXAMPLES

Now we apply Theorem 2 for some sampling operators.
Theorem 3: Let the Rogosinski-type sampling operator

Rw,j (j = 0, 1, 2, . . .) be defined by the kernel (16). Then
for f 2 ⇤

p
(1 6 p < 1)

kRw,jf � fkp 6 Mj⌧2(f ;
1

w
)p.

The constants Mj are independent of f and w.
PROOF: We have for the Rogosinski-type window function

�j(u) = cos⇡
�
j+

1

2

�
u = 1�

1X

k=1

(�1)

k+1⇡
2k
(j + 1/2)2k

(2k)!
u2k

and obviously
1X

k=1

⇡2k
(j + 1/2)2k

(2k)!
log k < 1.

Theorem 4: Let the Hann sampling operator Hw be defined
by the kernel (17). Then for f 2 ⇤

p
(1 6 p < 1)

kHwf � fkp 6 M⌧2(f ;
1

w
)p.

The constant M is independent of f and w.
PROOF: We have for the Hann window function

�H(u) =
1

2

(1 + cos⇡u) = 1�
1X

k=1

(�1)

k+1 ⇡2k

2(2k)!
u2k.
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Ulaş Ayaz

Hausdorff Center for Mathematics
Institute for Numerical Simulation

University of Bonn
Endenicher Allee 60, 53115 Bonn, Germany

Email: ulas.ayaz@hcm.uni-bonn.de

Holger Rauhut
Hausdorff Center for Mathematics
Institute for Numerical Simulation

University of Bonn
Endenicher Allee 60, 53115 Bonn, Germany

Email: rauhut@hcm.uni-bonn.de

Abstract—We extend ideas from compressed sensing to a

structured sparsity model related to fusion frames. We present

theoretical results concerning the recovery of sparse signals in

a fusion frame from undersampled measurements. We provide

both nonuniform and uniform recovery guarantees. The novelty

of our work is to exploit an incoherence property of the fusion

frame which allows us to reduce the number of measurements

needed for sparse recovery.

I. INTRODUCTION

Compressed sensing (CS) predicts that one can efficiently
recover a sparse vector from few measurements by solving
a convex optimization problem [1]–[3]. Often signals possess
more structure than mere sparsity, and exploiting such struc-
ture often allows to further reduce the amount of required
measurements, see, e.g., [4]. In this paper, we investigate a
structured sparsity model related to fusion frames. These were
introduced as generalizations of classical frames, in order to
better capture the richness of multidimensional signals with
an inherent structure [5]. Here, subspaces take the role of the
frame vectors.

We investigate sufficient conditions in order to recover a
sparse signal in a fusion frame via mixed `1/`2 minimization.
We both give nonuniform and uniform recovery guarantees.
The uniform recovery result is based on the fusion RIP
introduced in [6]. Hereby, we improve the recovery conditions
given in [6] by exploiting the additional information inherent
in the fusion frame structure.

II. FUSION FRAMES

A fusion frame for Rd is a collection of N subspaces W
j

⇢
Rd and associated weights v

j

that satisfies

Akxk22 
NX

j=1

v

2
j

kP
j

xk22  Bkxk22

for all x 2 Rd and for some universal fusion frame bounds
0 < A  B < 1, where P

j

2 Rd⇥d denotes the orthogonal
projection onto the subspace W

j

. For simplicity we assume
that the dimensions of the W

j

are equal, dim(W

j

) = k.
For a fusion frame (W

j

)

N

j=1, let us define the Hilbert space
H as

H = {(x
j

)

N

j=1 : x

j

2 W

j

, 8j 2 [N ]} ⇢ Rd⇥N

,

where we denote [N ] = {1, . . . , N}. The mixed `2,1-norm of
a vector x ⌘ (x

j

)

N

j=1 2 H is defined as

k(x
j

)

N

j=1k2,1 ⌘
NX

j=1

kx
j

k2.

Furthermore, the ’`0-norm’ (which is actually not even a quasi-
norm) is defined as

kxk0 = ]{j 2 [N ] : x

j

6= 0}.
We call a vector x 2 H s-sparse, if kxk0  s. Our sparsity
model requires that the ’blocks’ x

j

are either zero or nonzero
as a whole.

A. Sparse Recovery Problem

We take m linear combinations of an s-sparse vector x0
=

(x

0
j

)

N

j=1 2 H, i.e.,

y = (y

i

)

m

i=1 =

0

@
NX

j=1

a

ij

x

0
j

1

A
m

i=1

, y

i

2 Rd

.

Let us denote the block matrices A

I

= (a

ij

I

d

)

i2[m],j2[N ] and
A

P

= (a

ij

P

j

)

i2[m],j2[N ] that consist of the blocks a

ij

I

d

and
a

ij

P

j

respectively. Here I

d

is the identity matrix of size d⇥d.
Then we can formulate this measurement scheme as

y = A

I

x

0
= A

P

x

0
.

We can replace A

I

by A

P

since the relation P

j

x

j

= x

j

holds
for all x 2 H and j 2 [N ]. We wish to recover x

0 from y.
This task can be stated as

(L0)

ˆ

x = argmin
x2Hkxk0 s.t. A

P

x = y.

This optimization problem is NP-hard. Therefore, we instead
propose the following program

(L1)

ˆ

x = argmin
x2Hkxk2,1 s.t. A

P

x = y.

B. Relation with Previous Work

A special case of the sparse recovery problem above appears
when all subspaces coincide with the ambient space W

j

=

Rd for all j. Then the problem reduces to the well studied
joint sparsity setup [7] in which all the vectors have the same
sparsity structure.
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Furthermore, our problem is itself a special case of the
block sparsity setup [8], with significant additional structure
that allows us to enhance existing results. In fact, the fusion
frame model assumes the additional prior knowledge that the
x

j

’s are contained in the fusion frame subspaces W

j

.
Finally in the case d = 1, the projections equal 1, and hence

the problem reduces to the classical recovery problem Ax = y

with x 2 RN and y 2 Rm.

C. Incoherence Parameter

We define the parameter � as a measure of the coherence
of the fusion frame subspaces as

� = max

i 6=j

kP
i

P

j

k2!2, i, j 2 [N ].

Note that kP
i

P

j

k2!2 equals the largest absolute value of the
cosines of the principle angles between W

i

and W

j

. Observe
that if the subspaces are all orthogonal to each other, i.e., � =

0, then only one measurement suffices to recover x0 as y1 =P
j

a1jx
0
j

is an orthogonal decomposition. This observation
suggests that fewer measurements are necessary when � gets
smaller. In this work our goal is to provide a solid theoretical
understanding of this observation.

D. A Nonuniform Result

We first consider the recovery of a fixed sparse signal from
random measurements. To this end, we introduce the Gaussian
matrix whose entries consist of independent standard normal
distributed random variables and the Bernoulli matrix where
the entries are independent random variables taking the values
±1 with equal probability.

Theorem II.1. Let (W

j

)

N

j=1 be given with parameter � 2
[0, 1] and x 2 H be s-sparse. Let A 2 Rm⇥N be a Bernoulli
or Gaussian matrix. Assume that

m � C(1 + �s) ln

↵

(max{N, sd}) ln("�1
), (1)

where C > 0 is a universal constant. Then with probability at
least 1 � ", (L1) recovers x from y = A

P

x. Here ↵ = 1 in
the Bernoulli case and ↵ = 2 in the Gaussian case.

We provide an outline of the proof in [9]. We remark that
Theorems II.1 is also shown to be stable with respect to
noise on the measurements and under passing to approximately
sparse signals.

III. SPARSE RECOVERY USING ”FUSION” RIP

In this section we study uniform recovery of sparse fusion
frame signals from their random measurements. One common
way to study such recovery conditions is via the restricted
isometry property (RIP). A version adapted to fusion frames
has been introduced in [6].

Definition III.1 (Fusion RIP). Let A 2 Rm⇥N and (W

j

)

N

j=1

be a fusion frame for Rd. The fusion restricted isometry
constant �

s

is the smallest constant such that

(1� �

s

)kxk22  kA
P

xk22  (1 + �

s

)kxk22 (2)

for all x 2 H of sparsity kxk0  s.

The following result was also shown in [6].

Proposition III.2 (Fusion RIP implies recovery). Let
(A, (W

j

)

N

j=1) with fusion RIP constant �2s < 1/3. Then (L1)

recovers all s-sparse x from y = A

P

x.

This result shows that given a fusion frame (W

j

)

N

j=1 and
matrix A, for uniform recovery it is enough to check whether
the block matrix A

P

satisfies the fusion RIP. Recovery is
also stable under noise and passing to compressible signals.
Another result from [6] tells us that if the underlying ran-
dom measurement matrix A satisfies the classical RIP, A

P

satisfies fusion RIP with same constants. This suggests that
m & s ln(N/s) is sufficient for many random measurement
ensembles (up to some log factors). However, the following
main result of our work shows that the inherent structure
of fusion frames provides additional information that can be
exploited to derive stronger recovery conditions.

Theorem III.3. Let (W
j

)

N

j=1 be given with dim(W

j

) = k and
parameter � 2 [0, 1]. Let A 2 Rm⇥N be a Bernoulli matrix
and � 2 (0, 1). Assume that

m � C�

�2
k

p
�s

2
+ s ln

4
(max{N, d}). (3)

Then with probability at least 1 � 2e

�c�

2
m, the fusion RIP

constant �
s

of ˜

A

P

=

1p
m

A

P

satisfies �

s

 �. Above C, c > 0

are universal constants.

Theorem III.3 can be extended for the random matrices with
independent subgaussian entries. Presently the uniform result
(3) behaves slightly worse than the nonuniform one (1) for
small � and suffers from additional log-terms. On the other
hand, we gain uniformity and stronger stability.

IV. PROOF OUTLINE

Due to lack of space, we only present the outline of the
proof of Theorem III.3. The detailed proof will appear in a
forthcoming journal publication. Let us first give a character-
ization of the fusion RIP constant. The definition (2) implies
that

�

s

= sup

x2Ds,N

���k˜A
P

xk22 � kxk22
��� ,

where D

s,N

:= {x 2 H : x

i

2 W

i

, kxk2  1, kxk0  s}.
Next we derive an estimate for the expectation of �

s

. To this
end, we denote E

ij

(Y ) 2 Rmd⇥Nd, i 2 [m], j 2 [N ], as the
block matrix (consisting of m⇥N blocks) with a single block
entry Y 2 Rd⇥d at position (i, j) and the entry 0 2 Rd⇥d

elsewhere. Let ✏
ij

be the entries of A and observe that

˜

A

P

x =

1p
m

X

i2[m],j2[N ]

✏

ij

(Q

ij

x),

where Q

ij

:= E

ij

(P

j

). We define the matrix V

x

whose
columns are 1p

m

Q

ij

x for all i, j, i.e.,

V

x

=

1p
m

(Q11x|Q12x| . . . |QmN

x).
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Then we can write ˜

A

P

x = V

x

✏, where ✏ is a Bernoulli vector
of length mN . Denoting the set A = {V

x

: x 2 D

s,N

}, we
have

�

s

= sup

x2Ds,N

��kV
x

✏k22 � kxk22
��
= sup

A2A

��kA✏k22 � EkA✏k22
��
.

Following Krahmer et al. [10] where they use chaining meth-
ods in order to get bounds for this type of random variables,
we obtain

E sup

A2A

��kA✏k22 � EkA✏k22
�� . d

F

(A)d2!2(A)

+

�
d

F

(A)�2(A, k · k2!2) + �2(A, k · k2!2)
2
�
. (4)

Here, d

F

(A) and d2!2(A) denote the radius of A in the
Frobenius and the operator norms, respectively. For the defi-
nition of Talagrand’s �2-functional we refer to [11]. It is easy
to check that

d2!2(A) = sup

x2Ds,N

kV
x

k2!2  1/

p
m and d

F

(A) = 1.

The �2-functional can be estimated by the well-known Dudley
integral [11]

�2(A, k · k2!2) .
Z

d2!2(A)

0

p
lnN (A, k · k2!2, u)du, (5)

where the covering number N (T, d, u) is defined as the
smallest number of open balls of radius u in (T, d) needed to
cover T . Therefore estimating the expectation in (4) amounts
to estimating covering numbers which will perform in two
different ways similar to [12].

a) Small values of u: For S ⇢ [N ] we introduce the set
B

2
S

:= {x : supp(x) ⇢ S, kxk2  1}. Furthermore define
the norm k|xk| := kV

x

k2!2. Observe that k|xk|  1p
m

kxk2.
Then using subadditivity of covering numbers and a standard
volumetric argument (see, e.g., [13, Chapter 8.4]) we obtain

N (A, k · k2!2, u) = N (D

s,N

, k| · k|, u)

X

S⇢[N ]
|S|=s

N �
B

2
S

, k| · k|, u� 
X

S⇢[N ]
|S|=s

N
✓
B

2
S

,

k · k2p
m

,u

◆

=

X

S⇢[N ]
|S|=s

N �
B

2
S

, k · k2, u
p
m

� 
✓
eN

s

◆
s

✓
1 +

2

u

p
m

◆
sk

.

For u > 0, it thus holds

lnN (A, k · k, u)  s ln(eN/s) + sk ln

✓
1 +

2

u

p
m

◆
. (6)

b) Large values of u: We define the set

B2,1 :=

⇢
x 2 H : kxk2,1  1, kxk2  1p

s

�
.

Then it is evident that D
s,N

⇢ p
sB2,1. Therefore,

N (A, k · k2!2, u) = N (D

s,N

, k| · k|, u)
 N (

p
sB2,1, k| · k|, u) = N

✓
B2,1, k| · k|, up

s

◆
. (7)

For the task of estimating N (B2,1, k| · k|, u), we invoke the
so-called empirical method of Maurey. We fix u > 0 and
x 2 B2,1. The idea is to approximate x by a finite set of very
sparse vectors of `2-norm 1. In order to construct this set, we
discretize the unit sphere of each frame subspace W

j

. Denote
S

j

= {y 2 H : ky
j

k2 = 1; y

i

= 0, i 6= j}. A volumetric
argument yields that

N (S

j

, k · k2, "̃) 
✓
1 +

2

"̃

◆
k

.

For each j, let T
j

⇢ S

j

be the covering set of S

j

with this
cardinality. We will use 1-sparse elements from the set T =S

j2[N ] Tj

in order to find a vector z that is close to x. To this
end, we define a random vector ˜

Z as follows

P
✓
˜

Z =

�!
E

j

✓
x

j

kx
j

k2

◆◆
= kx

j

k2 for j 2 [N ],

and ˜

Z = 0 with probability 1 � kxk2,1. Here the notation�!
E

j

(x) corresponds to the block column vector of size N with
the vector x in j-th position and 0 elsewhere. Observe that
E˜

Z = x. Let M be a number to be determined later. Let
˜

Z1, . . . ,
˜

Z

M

be independent copies of ˜

Z, and put

˜

z =

1

M

MX

`=1

˜

Z

`

.

We now denote Z

`

2 T as the closest vector to ˜

Z

`

in the set
T for all `. Then we have k˜Z

`

� Z

`

k2  "̃. The M -sparse
vector z =

1
M

P
M

`=1 Z`

will be our candidate to approximate
x. By the triangle inequality

k|z� xk|  k|z� ˜

zk|+ k|˜z� xk|. (8)

With the choice "̃ =

u

p
m

2 , it is not hard to deduce
k|z � ˜

zk|  u/2 . It remains to show that k|˜z � xk| 
u/2 with nonzero probability for large enough M . Since
k|˜z � xk| =

��� 1
M

P
M

`=1(VZ̃`
� V

x

)

���
2!2

is a sum of cen-
tered random matrices, we may invoke the noncommutative
Bernstein inequality due to Tropp [14, Theorem 1.6] in order
the bound the tail probability of this norm. This leads to the
condition

M � ln(md+mN)

 
16

p
�+ 1/s

mu

2
+

3p
mu

!
, (9)

which implies the existence of a realization of the vector ˜z for
which k|˜z�xk|  u/2. Together with (8) this yields k|z�xk| 
u. Since each Z

`

2 T takes at most

|T | =
[

j2[N ]

|T
j

|  N

✓
1 +

4

u

p
m

◆
k

many values, z can take at most NM

⇣
1 +

4
u

p
m

⌘
kM

values.
Setting M to the least integer that satisfies (9), we deduce that
the covering numbers can be estimated by

q
lnN (B2,1, k| · k|, u) 

vuut
ln

"
N

M

✓
1 +

4

u

p
m

◆
kM

#
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s

16

p
�+ 1/s

mu

2
+

3p
mu

s

k ln(D) ln


N

✓
1 +

4

u

p
m

◆�
,

(10)

where D := md+mN . Finally we estimate the Dudley inte-
gral (5) by integrating (6) from 0 to a suitable  2 (0, 1/

p
m)

and (10) from  to 1/

p
m with replacing u by u/

p
s due

to (7). Plugging all estimates derived for d2!2(A), d

F

(A)

and �2(A, k · k2!2) into (4), we obtain E�
s

 �, provided
Condition (3) of Theorem III.3 holds with an appropriate
constant.

The probability estimate for �

s

is derived by applying
a concentration inequality provided also in [10] having all
complexity parameters at hand. This completes the proof.

V. NUMERICAL EXPERIMENTS

In this section, we compare two sparsity models: Fusion
frame and block sparsity. We present numerical experiments
that illustrate that the additional knowledge about the fusion
frame subspaces, that is x 2 H, significantly improves the
recovery compared to the block sparsity case where we do
not assume such a knowledge. (See Section II-B.) In all
of our experiments, we use SPGL1 [15], [16] to solve the
minimization problems.

a) In Fig.1a, we fix a fusion frame with N = 200 subspaces
in Rd, d = 5 with k = 1. Then we vary the sparsity level
s from 5 to 35, and generate an s-sparse vector x in the
fusion frame. We form y = A

P

x with a randomly generated
Gaussian matrix A 2 Rm⇥N for different values of m and
solve the minimization problem (L1) with and without the
constraint that x 2 H. Repeating this test 50 times for each
s for both cases, we record the values of m which yield a
recovery success rate of at least %96.

b) Fig.1b depicts a relation between the number of measure-
ments needed m and the incoherence parameter �e↵ where

�e↵ =

1

s

max

i2[N ]

X

j2S

kP
i

P

j

k2!2.

In the Bernoulli case, the parameter � in (1) can be replaced by
�e↵ which is smaller. To that end, we fix the sparsity level to
s = 25 and generate various fusion frames with N = 180 and
different values of �e↵ . Then we generate an s-sparse vector
in each fusion frame and find the number of measurements m

which yields an empirical recovery rate of 96%.
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Abstract—We investigate a compressive sensing system in
which the sensors introduce a distortion to the measurements in
the form of unknown gains. We focus on blind calibration, using
measures performed on a few unknown (but sparse) signals. We
extend our earlier study on real positive gains to two generalized
cases (signed real-valued gains; complex-valued gains), and show
that the recovery of unknown gains together with the sparse
signals is possible in a wide variety of scenarios. The simultaneous
recovery of the gains and the sparse signals is formulated as a
convex optimization problem which can be solved easily using
off-the-shelf algorithms. Numerical simulations demonstrate that
the proposed approach is effective provided that sufficiently many
(unknown, but sparse) calibrating signals are provided, especially
when the sign or phase of the unknown gains are not completely
random.

I. INTRODUCTION

Compressed sensing theory shows that K-sparse signals can
be sampled at much lower rate than required by the Nyquist-
Shannon theorem [1]. More precisely, if x ∈ CN is a K-
sparse source vector then it can be captured by collecting only
M " N linear measurements

yi = m
′

ix, i = 1, . . . ,M (1)

In the above equation, m1, . . . ,mM ∈ CN are known mea-
surement vectors, and .′ denotes the conjugate transpose op-
erator. Under certain conditions on the measurement vectors,
the signal can be accurately reconstructed by solving, e.g.,

x
∗

!1
=arg min

z

‖z‖1

subject to yi = m
′

iz, i = 1, . . . ,M

where ‖·‖1 denotes the !1-norm, which favors the selection
of sparse signals among the ones satisfying the measurement
constraints. It has been shown that the number of measure-
ments needed for accurate recovery of x scales only linearly
with K [1]. Note that the above minimization problem can
easily be modified to handle the presence of additive noise on
the measurements.

Unfortunately, in some practical situations, it is some-
times not possible to perfectly know the measurement vectors
m1, . . . ,mM . In many applications dealing with distributed

This work was partly funded by the Agence Nationale de la Recherche
(ANR), project ECHANGE (ANR-08-EMER-006) and by the European
Research Council, PLEASE project (ERC-StG-2011-277906). LD is on a joint
affiliation between Univ. Paris Diderot and Institut Universitaire de France.

sensors or radars, the location or intrinsic parameters of
the sensors are not exactly known, which in turn results in
unknown phase shifts and/or gains at each sensor [2], [3].
Similarly, applications with microphone arrays are shown to
require calibration of each microphone to account for the
unknown gain and phase shifts introduced [4]. Unlike additive
perturbations in the measurement matrix, this multiplicative
perturbation may introduce significant distortion if ignored [5],
[6].

In this paper, we investigate the problem of estimating
the unknown gains introduced by the sensors when multiple
unknown but sparse input signals are measured. We extend the
convex optimization approach dealing with positive real gains
proposed in [7] to the case of signed real-valued and complex-
valued gains which is more realistic from the application
perspective. In addition to identifying the additional challenges
introduced by the more difficult problem, we further demon-
strate the performance of the proposed algorithms in cases
where the unknown phase shifts (or sign changes) introduced
by the sensors are not completely random.

II. PROBLEM DEFINITION

Suppose that the measurement system in (1) is perturbed by
complex gains at each sensor i and there are multiple sparse
input signals, xl ∈ CN , l = 1 . . . L, applied to the system
such that

yi,l = die
jθi

m
′

ixl i = 1 . . . M, θi ∈ [0, 2π), di ∈ R
+

(2)

For a real valued system, the phase term ejθi is replaced by
∓1 (or θi ∈ {0,π}). We focus only on the noiseless case for
the sake of simplicity.

It should be noted that, unlike the case with positive real
gains, ignoring the unknown gains during recovery is not a
viable option when dealing with signed real or complex gains
even when the magnitude of the gains are constant. This is
due to the significant distortion introduced by the change
in sign (and phase). Therefore it is essential to employ a
reconstruction approach that deals with the unknown gains.

In a traditional recovery strategy, one can enforce the
sparsity of the input signals while enforcing the measurement
constraints in (2). However, when dealing with unknown gains,
the measurement constraints are non-linear with respect to
the unknowns di and xl. This non-linearity can be dealt
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with by using an alternate minimization strategy where one
iteratively estimates x while keeping di fixed and vice-versa
[2]. However, the convergence of this alternating optimization
to the global minimum is not guaranteed since there is a chance
that the algorithm gets stuck in a local minimum.

A. Proposed Approach

The recovery of xl, l = 1 . . . L and di, i = 1 . . . M with
convex optimization when ejθi are known has been studied in
[7]. In this paper, we extend the same approach to systems
with signed real-valued and complex-valued gains. Therefore
the term diejθi will henceforth simply be represented as di ∈
R for real-valued systems and di ∈ C for complex-valued
systems.

As an alternative to the alternating non-linear optimization
described above, the measurement equation (2) can be reorga-
nized in a bi-linear fashion such that

yi,lτi = m
′

ixl i = 1 . . . M , l = 1 . . . L (3)

τi !
1

di

assuming that di %= 0 ∀i. Consequently, one can attempt
to recover the sparse signals and the gains with the convex
optimization

x
∗

1, . . . ,x
∗

L

τ∗

1 , . . . , τ∗

M

= arg min
z1,...,zL

t1,...,tM

L∑

n=1

‖zn‖1 (4)

subject to yi,lti = m
′

izl
l = 1, . . . , L
i = 1, . . . ,M

M∑

n=1

tn = c

for an arbitrary constant c > 0. The actual gains can be set
as d∗i = 1

τ∗

i

after the optimization. Note that even though the

minimized objective function is equivalent to the alternating
non-linear optimization, the problems with local minimums are
now eliminated thanks to the convexity of the formulation.

We can make several observations regarding the optimiza-
tion in (4):

1) The constraint
∑

n tn = c ensures that the trivial
solution (τi = 0, xl = 0, ∀i, l) is excluded from the
solution set.

2) The constraint
∑

n tn = c also excludes the solutions
where the sum of the gains are zero. When dealing with
signed real or complex valued gains, this may result
in excluding the actual solution in rare cases where
the sought out gains actually sum up to zero. How-
ever, the probability of encountering this phenomena
in real applications is often infinitesimally small. For
the applications in which this possibility is higher, an
alternative approach to deal with this case is discussed
in Section III.

3) The measurement constraints are satisfied up to a global
scale factor (and phase shift for complex signals), there-
fore the constant c can be set arbitrarily. Unfortunately,

the global scale (and phase) factor cannot be determined
with the given optimization approach, although this is
often not an issue in practical systems.

4) The successful recovery of the gains and the signals re-
quire availability of more than one input signal (L > 1).
Although this may seem like a restriction, acquiring data
from multiple sources is often straightforward in many
application fields.

III. EXPERIMENTAL RESULTS

In order to test the performance of the proposed algorithm,
phase transition curves as in the compressed sensing recovery
are plotted for a signal size N = 100 with the measurement
vectors, mi, and all the non zero entries in the input signals,
xl, randomly generated from an i.i.d. normal distribution. The
positions of the non-zero coefficients of the input signals, xl,
are chosen uniformly at random in {1, . . . , N}. The magnitude
of the gains were generated using |di| ∼ exp(N (0,σ2)),
where σ is the parameter governing the amplitude of decal-
ibration. For real valued experiments, the sign of the gains
are randomly assigned such that the probability, pr, of setting
a negative gain is adjusted to be pr ∈ {0, 0.16, 0.33, 0.5}.
Similarly for complex valued gains, the phase of the gains are
chosen uniformly at random from the range [0, 2πpc) where
pc ∈ {0, 0.33, 0.66, 1}. Note that the parameters pr and pc

determine the scale of ambiguity in the signs and phases where
maximum possible ambiguity is observed when pr = 0.5 and
pc = 1 respectively.

The signals (and the gains) are recovered for different
amount of decalibration amplitude (σ = 0.1, 0.3, 1) with
sufficiently high number of input signals (L = 5, 10, 20
respectively). The proposed optimization in (4) is performed
using an ADMM [9] based algorithm. The perfect reconstruc-
tion criteria is selected as 1

L

∑
l µ(xl,x∗

l ) > 0.9999, where
the absolute correlation factor µ(·, ·) is defined as

µ(x1,x2) !
|x′

1x2|

‖x1‖2‖x2‖2

(5)

so that the global phase and scale difference between the
source and recovered signals is ignored.

The probability of recovery (computed through 10 indepen-
dent simulations for each set of parameters) of the proposed
method with respect to δ ! M/N and ρ ! K/M are
shown in Figures 1 and 2 for real valued and complex valued
systems respectively. The first thing to notice from the results
is that the performance for pr = 0 (or pc = 0) is consistent
with the results presented in [7] as expected. The effect of
increasing sign (or phase) ambiguity can be observed in the
results as pr (or pc) increases. Although the performance is
acceptable for pr as high as 0.33 (pc up to 0.66), there is a
significant degradation when dealing very high sign (or phase)
ambiguity such that signal recovery is impossible regardless of
the sparsity, unless the measurement system is overcomplete
(M > N ). This phenomena can best be observed in the last
row of complex-valued results, Figures 2(m)-2(p), where the
number of input signals is very large (L = 50) with respect to
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(l) L = 20, σ = 1, pr = 0.5

Fig. 1: The probability of perfect recovery in the real valued system for N = 100 with respect to δ ! M/N and ρ ! K/M .
The solid yellow line indicates the Donoho-Tanner phase transition curve for fully calibrated compressed sensing recovery
[8]. The dashed yellow line indicates the boundary to the region where K > N . Each row of figures display the change in
recovery performance with increasing sign ambiguity from left to right for a fixed set of L and σ.

the variance in the gain magnitudes (σ = 0.1). The degradation
in the results can be attributed to the significant increase in
the contamination of the information in the measurements
as the sign or phase ambiguity increases. Therefore recovery
becomes possible only when there are sufficient number of
measurements to overcome the high distortion. For the maxi-
mally ambiguous case (pr = 0.5, pc = 1), this is only possible
for M > N . Even though this is a drawback of the presented
approach, it should be noted that in many practical systems
the sign (or phase) ambiguity is often not as severe as fully
random, but within a limited range. Therefore the presented
algorithm can still be applied in various scenarios.

As an alternative to the proposed method in this paper,
a phase calibration algorithm (in which gain magnitudes are
assumed to be known) that can recover the sparse signals along
with the unknown phases distributed within the entire [0, 2π)
range has been presented in [10], [11]. This approach for phase
calibration can be combined with the proposed method in this
paper in order to recover signed real-valued or complex-valued
gains with maximum sign and phase ambiguity. It is also
possible to use this combined approach for signal recovery
in applications where the sum of the gains are likely to be
zero.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the problem of estimating
the unknown gains at each measurement sensor along with
sparse input signals in a compressed sensing measurement
system. We have extended the use of convex recovery strategy
suggested for positive real gains to the more general cases
of signed real-valued and complex-valued gains, and demon-
strated the change of recovery performance with increasing
sign and phase ambiguity.

The performance of the proposed algorithm is shown to
be approaching to that of the unperturbed compressed sensing
recovery when there are sufficient number sparse input signals
unless the distribution of the sign changes or the phase shifts
are maximally varying among the sensors. This drawback
of the proposed algorithm can still be ignored for many
application fields in which the ambiguity in the sign changes
or the phase shifts at the sensors are within a limited range.
For other applications, it is possible to combine the proposed
method with other approaches employed for phase calibration
to improve the recovery performance which is considered as
a future work. The theoretical justification of the limitation of
the proposed method for maximum sign and phase ambiguity
is also a work in progress.
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(c) L = 5, σ = 0.1, pc = 0.66
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(f) L = 10, σ = 0.3, pc = 0.33
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(g) L = 10, σ = 0.3, pc = 0.66
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(l) L = 20, σ = 1, pc = 1
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(m) L = 50, σ = 0.1, pc = 0
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(p) L = 50, σ = 0.1, pc = 1

Fig. 2: The probability of perfect recovery in the complex valued system for N = 100 with respect to δ ! M/N and ρ ! K/M .
The solid yellow line indicates the Donoho-Tanner phase transition curve for fully calibrated compressed sensing recovery [8].
The dashed yellow line indicates the boundary to the region where K > N . Each row of figures display the change in recovery
performance with increasing phase ambiguity from left to right for a fixed set of L and σ. The last row, (m)-(p) shows the
performance limit for very high L.
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Abstract—Various acquisition devices impose sampling blocks

of measurements. A typical example is parallel magnetic reso-

nance imaging (MRI) where several radio-frequency coils simul-

taneously acquire a set of Fourier modulated coefficients. We

study a new random sampling approach that consists in selecting

a set of blocks that are predefined by the application of interest.

We provide theoretical results on the number of blocks that are

required for exact sparse signal reconstruction. We finish by

illustrating these results on various examples, and discuss their

connection to the literature on CS.

Key-words : compressed sensing, blocks of measurements,
sampling continuous trajectory, exact recovery, `1 minimiza-
tion.

I. INTRODUCTION

In many applications, the sampling strategy imposes to ac-
quire data in the form of blocks of measurements (see Fig. 1(b)
for block-structured sampling), instead of isolated measure-
ments (see Fig. 1(a)). For instance, in medical echography,
images are sampled along lines in the space domain, while,
in magnetic resonance imaging (MRI), acquiring data along
radial lines or spiral trajectories is a popular sampling strategy.
In compressed sensing (CS), various theoretical conditions
have been proposed to guarantee the exact reconstruction of a
sparse vector from a small number of isolated measurements
that are randomly drawn, see [1], [2], [3], and [4] for a detailed
review of the most recent results on this topic.

In a noise-free setting, the focus of the present paper is
on studying the problem of exact recovery of a sparse signal
in the case where the sampling strategy consists in randomly
choosing blocks of measurements. Each block corresponds to
a set of rows of an orthogonal sensing matrix. Our approach
is more flexible than the angle chosen in [5], while we assert
theoretical guarantees on the exact reconstruction of sparse
signals from blocks of measurements. Moreover, we assume
that physical acquisition devices impose block-structured mea-
surements, whereas in [6], or in [7] the authors consider a
block-sparse signal.

1jeremie.bigot@isae.fr
2claire.boyer@math.univ-toulouse.fr
3pierre.armand.weiss@gmail.com

(a) (b)

Fig. 1. An example of two sampling schemes in the 2D Fourier domain

with an undersampling factor R = 4 (a): Isolated points and radial
distribution. (b): Corresponding acquisition in the case of block measurements
that consist of lines in the 2D Fourier domain.

In this paper, we deal with the case where the blocks
are predefined. We give some conditions on the choice of
the drawing probability of the blocks and on the number of
measurements that are sufficient to obtain an exact recovery
by `1 minimization. We finish by illustrating these results
on various examples, and we discuss their connection to the
literature on CS.

II. PROBLEM SETTING

A. Notation
We consider an orthogonal matrix A 2 Cn⇥n which denotes

the full sensing matrix. Matrix A is given a block structure, as

follows: A =

2

64
B1

...
BM

3

75, where the blocks (Bj)1jM are non-

overlapping and such that Bj 2 Cnj⇥n with
PM

j=1 nj = n.
We set kAk1 = max

1i,jn
|Aij |.

Let (⇡j)1jM be positive weights with
PM

j=1 ⇡j = 1,
and let ⇧ be a discrete probability distribution on the set of
integers {1, . . . ,M}, associated to these weights. Throughout
(Jk)1km denotes a sequence of i.i.d. discrete random vari-
ables taking their value in {1, . . . ,M} with distribution ⇧.

Let S ⇢ {1, . . . , n} be a set of cardinality s. For a matrix
M 2 Cm⇥n, we define

M

S
= (Mij)1im,j2S .
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B. The sampling strategy

In this paper, we consider the following sampling strategy.
We randomly select m blocks among (Bj)1jM , according
to the discrete probability distribution ⇧, which leads to
consider the sequence of i.i.d. random blocks (Xk)1km
defined by

Xk =

1

p
⇡Jk

BJk , k = 1 . . .m (1)

We consider the following random sampling matrix

g
Am =

1p
m

2

64
X1

...
Xm

3

75 . (2)

It satisfies E
h
g
Am

⇤g
Am

i
= Idn by construction.

C. Minimization problem

Let y =

g
Amx denote a set of q =

Pm
k=1 nJk linear

measurements of a signal x. To reconstruct x, the following
standard `1-minimization problem is solved:

min

z 2 Cn
kzk1 subject to g

Amz = y. (3)

III. A NON-UNIFORM RECOVERY RESULT

Let us first introduce a new quantity of interest that will be
shown to be of primary importance to obtain exact recovery.
Definition III.1

For S ⇢ {1, .., n} we denote by ⇢Sk for 1  k  M any set

of positive reals that satisfies

⇢Sk �
���
�
B

S
k

�⇤
B

S
k

���
2

where kCk2 is the spectral norm of a matrix C.

The following theorem is the main result of the paper. It
gives a set of sufficient conditions for exact recovery of x

with large probability.
Theorem III.2

Let S ⇢ {1 . . . n}, be a set of cardinality ] {S} = s and

let ✏ = (✏`)`2S 2 Cs
be a sequence of independent random

variables that are uniformly distributed on {�1; 1} (or on the

torus {z 2 C , |z| = 1}).

Let x be a sparse vector with support S and sgn(x

S
) = ✏.

Let

g
Am be the sampling matrix built as above (see (2)).

Assume that

8
>>><

>>>:

m � Cs ln2
✓
2

3/4n

"

◆
max

1kM

kB⇤
kBkk1
⇡k

m � C ln

✓
2

3/4s

"

◆
max

1kM

⇢Sk
⇡k

(4)

(5)

with C = 2562
, C 0

= 322
and 2

=

⇣p
17+1
4

⌘2
.

Then with probability at least 1 � " the vector x is the

unique solution to the `1-minimization problem (3).

The proof of Theorem III.2 is too long to be written here.
It will appear in a forthcoming preprint. The approach is
inspired by the results in [4]. To derive Theorem III.2, we
had to extend probabilistic tools such as symmetrization and
Rudelson’s lemma [4] from the vectorial case to the matricial
one.

Remark : We can notice that the bounding above of���
�
B

S
k

�⇤
B

S
k

���
2

by ⇢Sk should not be too coarse, at the risk
of making the required number of measurements too large.

IV. DISCUSSION AND EXAMPLES

Conditions (4) and (5) may lead to a different optimal
drawing probabilty ⇧⇤, in the sense that they can be used
to minimize a lower bound on the number m of block
measurements. Indeed

• if the right-hand side (rhs) of Inequality (4) is greater than
the rhs of Inequality (5), an optimal drawing probability
⇧

⇤ is defined as follows: 8k 2 {1, . . . ,M}

⇡⇤
k =

kB⇤
kBkk1PM

`=1 kB⇤
`B`k1

.

• On the contrary, if the rhs of Inequality (5) prevails, then
an optimal drawing probability ⇧⇤ turns to be: 8k 2
{1, . . . ,M}

⇡⇤
k =

⇢SkPM
`=1 ⇢

S
`

.

Let us illustrate Theorem III.2 on practical examples.

A. One row blocks - the case of isolated measurements

First, let us show that our result matches the standard setting
where blocks are made of only one row. This is the case
considered e.g. by [2], [4]. Thus M = n,

A =

0

B@
B1

...
BM

1

CA =

0

B@
a

⇤
1
...
a

⇤
n

1

CA

where a1, . . . ,an are vectors of Cn, and 8k 2 {1, · · · ,M},
Bk = a

⇤
k. We can set

⇢Sk = skakk21
with ]S = s. Then, the required number of measurements
will be minimized for the following drawing probability: 8k 2
{1, . . . ,M}

⇡⇤
k =

kakk21Pn
`=1 ka`k21

.

According to Theorem III.2 the number of isolated mea-
surements sufficient to obtain perfect reconstruction with high
probability is

m � Cs ln2
✓
2

3/4
3n

"

◆ nX

`=1

ka`k21. (6)

This condition is consistent with [4] for the non-uniform
recovery, up to a constant. This additional factor is not too
serious, since Theorem III.2 should be mainly considered as a
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guide to construct sampling patterns and not as a requirement
for perfect recovery. Surprisingly, a better drawing probability
distribution reducing the required number of measurements is
not the uniform one, as commonly used in [8], [4], but the
one depending on the `1-norm of the considered row.

B. Block diagonal case

Let us assume that A is orthogonal, and A can be written
as

A =

0

B@
B1

...
BM

1

CA =

0

BBB@

D1 0 0 . . . 0

0 D2 0 . . . 0

0 0

. . .
0 0

0 0 0 . . . DM

1

CCCA
.

Then kB⇤
kBkk1 = 1 and ⇢Sk can be taken equal to 1

for all k 2 {1, . . . ,M}, since Dk is orthogonal. Thus,
the block diagonal case corresponds to a uniform bound for
⇢Sk . Therefore, both Inequalities (4) and (5) entail a uniform
drawing probability as an optimal choice. Here, we see that no
matter how large the block is, an optimal drawing probability
⇧

⇤ is the uniform one: 8k 2 {1, . . . ,M},

⇡⇤
k =

1

M
.

Moreover, with such a choice for ⇧⇤, and by Theorem III.2
the number of block measurements sufficient to obtain perfect
reconstruction with high probability is

m � Cs ln2
✓
2

3/4
3n

"

◆
M. (7)

C. 2D Fourier matrix

We now turn to a more realistic setting where signals are
sparse in the Dirac basis and blocks of frequencies are probed
in the 2D Fourier domain. We consider blocks that consist
of discrete lines in the 2D Fourier space as in Fig 1(b).
This scenario is close to what can be encountered in MRI,
echography or some tomographic devices.

We assume that
p
n 2 N and that A is the 2D Fourier matrix

applicable on
p
n⇥

p
n images. For all p1 2 {1, . . . ,

p
n},

Bp1 =


1p
n
exp

✓
2i⇡

✓
p1`1 + p2`2p

n

◆◆�

(p1, p2)(`1, `2)
(8)

with 1  p2 
p
n, 1  `1, `2 

p
n. Let S ⇢ {1, . . . ,

p
n}⇥

{1, . . . ,
p
n} denote the support of x, with ]S = s. We

can write S = {(S1,1, S1,2) , (S2,1, S2,2) , . . . , (Ss,1, Ss,2)},
and we call S1 = {S1,1, S2,1, . . . , Ss,1} and S2 =

{S1,2, S2,2, . . . , Ss,2}. We can rewrite B

S
p1

as

✓
1

n1/4
e�2i⇡p2

`2p
n

◆

1p2
p

n
`22S2| {z }

M

Sp
n⇥ s matrix

0

BBB@

. . .
0 0

0

1
n1/4 e

�2i⇡p1
`1p
n

0

0 0

. . .

1

CCCA

`12S1| {z }
Dp1

s⇥ s diagonal matrix

so
���
�
B

S
p1

�⇤
B

S
p1

���
2
=

��
D

⇤
p1
M

S⇤
M

S
Dp1

��
2


��
D

⇤
p1

��
2

��
M

S⇤
M

S
��
2
kDp1k2

 1

n1/2

��
M

S⇤
M

S
��
2
.

In fact, we can see M

S as 1D Fourier matrix M , from
which we select columns, eventually repeated, the indexes
of which are in S2. Now we have to evaluate the quantity��
M

S⇤
M

S
��
2
. To do so, let us denote by (sj)j=1..

p
n the

number of repetitions of the j-th element of {1, . . . ,
p
n}

in S2. We have that
Pp

n
j=1 sj = s, and 0  sj 

p
n,

8j 2 {1, . . . ,
p
n} .

Simple calculation leads to the following upper bound:

��
M

S⇤
M

S
��
2


maxj=1,...,
p
n sjp

n
 min(s,

p
n)p

n
,

which leads to the choice

⇢Sk =

min(s,
p
n)

n
, k = 1, . . . ,M.

By definition of the 2D Fourier matrix of size n ⇥ n,
kB⇤

kBkk1 = 1/
p
n, for all k 2 {1, . . . ,

p
n}. Then, the

choice of the optimal drawing probability is given by 8k 2
{1, . . . ,

p
n}

⇡⇤
k =

1p
n
.

We deduce that the number of block measurements sufficient
to ensure exact recovery with high probability is

m � Cs ln2
✓
2

3/4n

"

◆
.

D. Wavelet Transform

Here, we consider that A is a dyadic wavelet transform
matrix, with n = 2

↵, ↵ 2 N. To each resolution level k 2
{0, . . . ,↵} (k = 0, corresponding to the scaling function), we
associate the block Bk

Bk = ( k,j (`))j = 1...nk
1  `  n

, (9)

where  k,j is the discrete wavelet at scale k and location
parameter j, ` is the time variable and nk is the number of
wavelets (or scaling function) at scale k defined as follows

nk =

⇢
1 if k = 0

2

k�1 if k � 1.

Although this example is not realistic in practice, it provides
an interesting illustration of Theorem III.2. Let S be a set of
indexes of cardinality s. Then B

S
k can be defined by restricting

` to belong to S, i.e.

B

S
k = ( k,j (`))j = 1...nk

` 2 S
.
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As a consequence,
�
B

S
k

�⇤
B

S
k is an s⇥ s matrix, and

h�
B

S
k

�⇤
B

S
k

i

(`,`0)2S2
=

0

@
nkX

j=1

 k,j (`) k,j (`
0
)

1

A

(`,`0)2S2

.

(10)

By the results in [9], for wavelets with compact support,
such as Haar’s wavelets, we obtain that

���
�
B

S
k

�⇤
B

S
k

���
2


���
�
B

S
k

�⇤
B

S
k

���
1

s  nk
n s. Hence, one can take ⇢Sk =

nk
n s,

and the required number of measurements satisfies the bounds
8
>>><

>>>:

m � Cs ln2
✓
2

3/4n

"

◆
1

n
max

1kK

nk

⇡k

m � C 0s ln

✓
2

3/4s

"

◆
1

n
max

1kK

nk

⇡k

(11)

(12)

that m is still proportional to s. If (12) is the strongest
condition on m, then an optimal choice for the drawing
probability ⇧⇤ is

⇡⇤
k =

nkP↵
q=0 nq

k 2 {1, . . . ,K} .

In this setting, the drawing probability is growing with the
resolution level k and it is proportional to the block size.

V. CONCLUSION

In this paper, we have introduced some theoretical tools for
the study of the exact recovery of sparse signals from blocks of
measurements selected randomly from an orthogonal sensing
matrix. We introduced the new quantities ⇢Sk and kB⇤

kBkk1.
They play a central role to derive optimal sampling strategies
and to assess the number of block measurements that is neces-
sary to exactly reconstruct sparse signals by `1-minimization.
We plan to calibrate their for orthogonal matrices that appear
in applications such as the product of a discrete Fourier
transform with a wavelet transform. The extension of this work
to overlapping blocks, as presented in Figure 2, offers much
more versatility in the sampling patterns.

Fig. 2. An example of overlapping blocks of measurements in the 2D Fourier
domain.
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Abstract—Compressed sensing theory indicates that selecting
a few measurements independently at random is a near optimal
strategy to sense sparse or compressible signals. This is infeasible
in practice for many acquisition devices that acquire sam-
ples along continuous trajectories. Examples include magnetic
resonance imaging (MRI), radio-interferometry, mobile-robot
sampling, ... In this paper, we propose to generate continuous
sampling trajectories by drawing a small set of measurements
independently and joining them using a travelling salesman
problem solver. Our contribution lies in the theoretical derivation
of the appropriate probability density of the initial drawings.
Preliminary simulation results show that this strategy is as
efficient as independent drawings while being implementable on
real acquisition systems.

I. INTRODUCTION

Compressed sensing theory provides guarantees on the
reconstruction quality of sparse and compressible signals
x 2 Rn from a limited number of linear measurements
(ha

k

, xi)
k2K

. In most applications, the measurement or ac-
quisition basis A = (a

k

)

k2{1,··· ,n} is fixed (e.g. Fourier or
Wavelet basis). In order to reduce the acquisition time, one
then needs to find a set K of minimal cardinality that provides
satisfactory reconstuction results. It is proved in [1], [2] that
a good way to proceed consists of drawing the indices of
K independently at random according to a distribution ⇡̃
that depends on the sensing basis A. This result motivated a
lot of authors to propose variable density random sampling
strategies (see e.g. [3]–[7]). Fig. 1(a) illustrates a typical
sampling pattern used in the MRI context. Simulations confirm
that such schemes are efficient in practice. Unfortunately,
they can hardly be implemented on real hardware where the
physics of the acquisition processes imposes at least continuity
of the sampling trajectory and sometimes a higher level of
smoothness. Hence, actual CS-MRI solutions relie on adhoc
solutions such as random radial or randomly perturbed spiral
trajectories to impose gradient continuity. Nevertheless these
strategies strongly deviate from the theoretical setting and
experiments confirm their practical suboptimality.

In this work, we propose an alternative to the independent
sampling scheme. It consists of picking a few samples inde-
pendently at random according to a distribution ⇡ and joining
them using a travelling salesman problem (TSP) solver in
order to design continuous trajectories. The main theoretical
result of this paper states that ⇡ should be proportional to

⇡̃d/(d�1) where d denotes the space dimension (e.g. d = 2

for 2D images, d = 3 for 3D images) in order to emulate an
independent drawing from distribution ⇡̃. Similar ideas were
previously proposed in the literature [8], but it seems that no
author made this central observation.

The rest of this paper is organized as follows. The nota-
tion and definitions are introduced in Section II. Section III
contains the main result of the paper along with its proof. Sec-
tion IV shows how the proposed theory can be implemented
in practice. Finally, Section V presents simulation results in
the MRI context.

II. NOTATION AND DEFINITIONS

We shall work on the hypercube ⌦ = [0, 1]d with d � 2.
Let m 2 N. The set ⌦ will be partitionned in md congruent
hypercubes (!

i

)

i2I

of edge length 1/m. In what follows,
{x

i

}
i2N⇤ denotes a sequence of points in the hypercube ⌦,

independently drawn from a density ⇡ : ⌦ 7! R+. The
set of the first N points is denoted X

N

= {x
i

}
i6N

. For
a set of points F , we consider the solution to the TSP,
that is the shortest Hamiltonian path between those points.
We denote T (F ) its length. For any set R ✓ ⌦ we define
T (F,R) = T (F \R).

We also introduce C(X
N

,⌦) for the optimal curve itself,
and �

N

: [0, 1] ! ⌦ the function that parameterizes C(X
N

,⌦)
by moving along it at constant speed T (X

N

,⌦).
The Lebesgue measure on an interval [0, 1] is denoted �[0,1].

We define the distribution of the TSP solution as follows.

Definition II.1 The distribution of the TSP solution is denoted

˜

⇧

N

and defined, for any Borelian B in ⌦ by:

˜

⇧

N

(B) = �[0,1]

�
��1
N

(B)

�
.

Remark The distribution

˜

⇧

N

is defined for fixed X
N

. It makes

no reference to the stochastic component of X
N

.

In order to prove the main result, we need to introduce
other tools. For a subset !

i

✓ ⌦, we denote the length of
C(X

N

,⌦) \ !
i

as T|!i
(X

N

,⌦) = T (X
N

,⌦)˜⇧
N

(!
i

). Using
this definition, it follows that:

˜

⇧

N

(B) =

T|B(XN

,⌦)

T (X
N

,⌦)
, 8B. (1)
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Let T
B

(F,R) be the length of the boundary TSP on the
set F \ R. The boundary TSP is defined as the shortest
Hamiltonian tour on F \ R for the metric obtained from the
Euclidean metric by the quotient of the boundary of R, that
is d(a, b) = 0 if a, b 2 @R. Informally, it matches the original
TSP while being allowed to travel along the boundary for free.
We refer to [9] for a complete description of this concept.

III. MAIN THEOREM

Our main theoretical result reads as follows.

Theorem III.1 Define the density ⇡̃ =

⇡

(d�1)/d
R
⌦ ⇡

(d�1)/d(x)dx
. Then

almost surely with respect to the law ⇡⌦N
of the sequence

{x
i

}
i2N⇤

of random points in the hypercube, the distribution

˜

⇧

N

converges in distribution to ⇡̃:

˜

⇧

N

(d)! ⇡̃ ⇡⌦N
-a.s. (2)

Intuition: Let us first provide a rough intuition of the result

since the exact proof is technical. The distribution

˜

⇧

N

in a

small cube is the relative length of the TSP in this cube.

The number of points N
c

in the cube is proportional to

⇡. Approximately, the TSP connects the points with other

points in the cube, typically their neighbours, since they are

close. Now, the typical distance between two neighbours in

the cube is proportional to N
�1/d
c

or ⇡�1/d
. So that the

total length of the TSP in the small cube is proportional to

⇡⇡�1/d
= ⇡1�1/d / ⇡̃.

The remainder of this section is dedicated to proving this
result. The following proposition is central to obtain the proof:

Proposition III.2 Almost surely, for all !
i

in {!
i

}1im

d :

lim

N!1
˜

⇧

N

(!
i

) = ⇡̃(!
i

) (3)

=

R
!i

⇡(d�1)/d
(x)dx

R
⌦ ⇡(d�1)/d

(x)dx
⇡⌦N

-a.s. (4)

The strategy consists in proving that T|!i
(X

N

,⌦) tends
asymptotically to T (X

N

,!
i

). The estimation of each term
can then be obtained by applying the asymptotic result of
Beardwood, Halton and Hammersley [10]:

Theorem III.3 If R is a Lebesgue-measurable set in Rd

such

that the boundary @R has zero measure, and {y
i

}
i2N⇤

, with

Y
N

= {y
i

}
i6N

is a sequence of i.i.d. points from a density p
supported on R, then, almost surely,

lim

N!1

T (Y
N

, R)

N (d�1)/d
= �(d)

Z

R

p(d�1)/d
(x)dx, (5)

where �(d) depends on the dimension d only.

We shall use a set of classical results on TSP and boundary
TSP, that may be found in the survey books [9] and [11].

Useful lemmas. Let F denote a set of n points in ⌦.

1) The boundary TSP is superadditive, that is, if R1 and

R2 have disjoint interiors.

T
B

(F,R1 [R2) > T
B

(F,R1) + T
B

(F,R2). (6)

2) The boundary TSP is a lower bound on the TSP, both

globally and on subsets. If R2 ⇢ R1:

T (F,R) > T
B

(F,R) (7)
T|R2

(F,R1) > T
B

(F,R2) (8)

3) The boundary TSP approximates well the TSP [11,

Lemma 3.7]):

|T (F,⌦)� T
B

(F,⌦)| = O(n(d�2)/(d�1)
). (9)

4) The TSP in ⌦ is well-approximated by the sum of TSPs

in a grid of md

congruent hypercubes [9, Eq. (33)].

|T (F,⌦)�
m

dX

i=1

T (F,!
i

)| = O(n(d�2)/(d�1)
). (10)

We now have all the ingredients to prove the main results.
Proof of Proposition III.2:

X

i2I

T
B

(X
N

,!
i

)

(6)
6 T

B

(X
N

,⌦)

(7)
6 T (X

N

,⌦) =
X

i2I

T |
!i(XN

,⌦)

(10)
6

X

i2I

T (X
N

,!
i

) +O(N (d�1)/(d�2)
)

Let N
i

be the number of points of X
N

in !
i

.
Since N

i

6 N , we may use the bound (9) to get:

lim

N!1

T (X
N

,!
i

)

N (d�1)/d
= lim

N!1

T
B

(X
N

,!
i

)

N (d�1)/d
. (11)

Using the fact that there are only finitely many !
i

, the
following equalities hold almost surely:

lim

N!1

P
i2I

T
B

(X
N

,!
i

)

N (d�1)/d
= lim

N!1

P
i2I

T (X
N

,!
i

)

N (d�1)/d

(10)
= lim

N!1

P
i2I

T|!i
(X

N

,⌦)

N (d�1)/d
.

Since the boundary TSP is a lower bound (cf. Eqs. (8)-(7))
to both local and global TSPs, the above equality ensures that:

lim

N!1

T
B

(X
N

,!
i

)

N (d�1)/d
= lim

N!1

T (X
N

,!
i

)

N (d�1)/d
(12)

= lim

N!1

T|!i
(X

N

,⌦)

N (d�1)/d
⇡⌦N-a.s, 8i.

Finally, by the law of large numbers, almost surely N
i

/N !
⇡(!

i

) =

R
!i

⇡(x)dx. The law of any point x
j

conditioned on
being in !

i

has density ⇡/⇡(!
i

). By applying Theorem III.3
to the hypercubes !

i

and ⌦ we thus get:

lim

N!+1

T (X
N

,!
i

)

N (d�1)/d
= �(d)

Z

!i

⇡(x)(d�1)/ddx ⇡⌦N-a.s, 8i.

and

lim

N!+1

T (X
N

,⌦)

N (d�1)/d
= �(d)

Z

⌦
⇡(x)(d�1)/ddx ⇡⌦N-a.s, 8i.
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Combining this result with Eqs. (12) and (1) yields Proposi-
tion III.2.

Proof of Theorem III.1: Let " > 0 and m be an integer
such that

p
dm�d < ". Then any two points in !

i

are at
distance less than ".

Using Theorem III.2 and the fact that there
is a finite number of !

i

, almost surely, we get:
lim

N!+1
P

i2I

���˜⇧
N

(!
i

)� ⇡̃(!
i

)

��� = 0. Hence, for any
N large enough, there is a coupling K of ˜

⇧

N

and ⇡̃
such that both corresponding random variables are in
the same !

i

with probability 1 � ". Let A ✓ ⌦ be a
Borelian. The coupling satisfies ˜

⇧

N

(A) = K(A ⌦ ⌦)

and ⇡̃(A) = K(⌦ ⌦ A). Define the "-neighborhood by
A"

= {X 2 ⌦ | 9Y 2 A, kX � Y k < "}. Then, we
have: ˜

⇧

N

(A) = K(A ⌦ ⌦) = K({A ⌦ ⌦} \ {|X � Y | <
"}) +K({A⌦ ⌦} \ {|X � Y | > "}). It follows that:

˜

⇧

N

(A) 6 K(A⌦A✏

) +K(|X � Y | > ")

6 K(⌦⌦A"

) + " = ⇡̃(A"

) + ".

This exactly matches the definition of convergence in the
Prokhorov metric, which implies convergence in distribution.

IV. ALGORITHM

The results presented in the previous section can be used to
design a continuous sampling pattern with a target density ⇡̃.
The following algorithm summarizes this idea.

Algorithm 1: An algorithm to generate a continuous
sampling pattern according to a target density.

Input: ⇡̃ : ⌦ 7! R+: a target sampling density.
N : an initial number of drawings.
Output: A continuous sampling curve C.
begin

Define ⇡ =

⇡̃

d/(d�1)
R
⌦ ⇡̃

d/(d�1)(x)dx
.

Draw N points independently at random according to
density ⇡.
Link these points with a travelling salesman solver to
generate the curve C.

Applying this algorithm raises various questions: how to
choose the target density ⇡̃? How to set the initial number
of points N? Can the travelling salesman problem be solved
for millions of points? We give various hints to the previous
questions below.

a) Choosing a density ⇡̃: We believe that this question
is still treated superficially in the literature and deserves atten-
tion. Various strategies can be considered. A common empiri-
cal method consists in learning a density on image databases
[4]. In the cases of Fourier measurements, this leads to the
use of polynomially decreasing densities from low to high
frequencies. The same strategy was proposed in [3] with no
theoretical justification. The compressed sensing results allow
to derive mathematically founded densities [2], [5]. However,

as outlined in [7], an important ingredient is missing for these
theories to provide good reconstruction results. The standard
CS theory relies on the hypothesis that the signal is sparse,
with no assumption on the sparsity structure. This makes the
current theoretically founded sampling strategies highly sub-
optimal. Recent works partially address this problem (see e.g.
the review paper [12]). However, to the best of our knowledge,
the recent focus is on modifying the reconstruction algorithm,
rather than deriving optimal sampling patterns.

b) Choosing an initial number of points N : In applica-
tions, one usually wishes to sample ˜N points out of the n pos-
sible ones. One should thus choose N so that the discretized
TSP trajectory contains ˜N points. This problem is well studied
in the TSP literature [10], [13]. Theorem III.3 ensures that the
length of the TSP trajectory obtained by drawing N points
should be close to L(N) = N (d�1)/d�(d)

R
R

p(d�1)/d
(x)dx

where �(d) can be evaluated numerically. Concentration re-
sults by Talagrand [13] show that this approximation is very
accurate for moderate to large values of N . In order to obtain
a discrete set of measurements from the continuous trajectory
generated by Algorithm 1, we may discretize it with a stepsize
�t. The total number of points sampled is thus N

s

' bL(N)
�t

c
if an arclength parameterization is used. A possible way of
obtaining approximately ˜N samples is thus to set:

N = b�tL�1
(

˜N)c. (13)

c) Solving the TSP: Designing algorithms to solve the
TSP is a widely studied problem. The book [9] provides a
comprehensive review of exact and approximate algorithms.
The TSP is known to be NP-hard and we cannot expect
to solve it exactly for a large number of points N . From
a theoretical point of view, Arora [14] shows that the TSP
solution can be approximated to a factor (1 + ✏) with a
complexity O(N log(N)

1/✏
). From a practical point of view,

there exist many heuristic algorithms that perform well in
practice. The heuristics range from those that get within a
few percent of optimum for 100,000-city instances in seconds
to those that get within fractions of a percent of optimum for
instances of this size in a few hours. In our experiments, we
used a genetic algorithm [15].

V. SIMULATION RESULTS IN MRI
The proposed sampling algorithm was assessed in a 2D

MRI acquisition setup where images are sampled in the 2D
Fourier domain and compressible in the wavelet domain.
Hence, A = F⇤

 where F⇤ and  denote the discrete
Fourier and inverse discrete wavelet transform, respectively.
Following [7], it can be shown that a near optimal sampling
strategy consists of probing m independent samples of the
2D Fourier plane (k

x

, k
y

) drawn independently from a target
density ⇡̃. The image is then reconstructed by solving the
following l

1 problem using a Douglas-Rachford algorithm:

x⇤
= argmin

Amx=y

kxk1

where A
m

2 Cm⇥n is the sensing matrix, x⇤ 2 Cn is the
reconstructed image and y 2 Cn is the collected data. A
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Fig. 1: Left: different sampling patterns (with an acceleration
factor r = 5). Right: reconstruction results. From top to
bottom: independent drawing from distribution ⇡̃ (a), the same
followed by a TSP solver (c) and finally independent drawing
from distribution ⇡̃2 followed by a TSP solver.

typical realization is illustrated in Fig. 1(a) which in practice
cannot be implemented since MRI requires probing samples
along continuous curves. To circumvent such difficulties, a
TSP solver was applied to such realization in order to join
all samples through a countinuous trajectory, as illustrated in
Fig. 1(c). Finally, Fig. 1(e) shows a curve generated by a TSP
solver after drawing the same amount of Fourier samples from
the density ⇡̃2 as underlied by Theorem III.1. In all sampling
schemes the number of probed Fourier coefficients was equal
to one fifth of the total number (acceleration factor r = 5).

Figs. 1(b,d,f) show the corresponding reconstruction results.
It is readily seen that an independent random drawing from
⇡̃2 followed by a TSP-based solver yields promising results.
Moreover, a dramatic improvement of 10dB was obtained
compared to the initial drawing from ⇡̃.

VI. CONCLUSION

Designing sampling patterns lying on continuous curves is
central for practical applications such as MRI. In this paper, we

proposed and justified an original two-step approach based on
a TSP solver to produce such continuous trajectories. It allows
to emulate any variable density sampling strategy and could
thus be used in a large variety of applications. In the above
mentioned MRI example, this method improves the signal-to-
noise ratio by 10dB compared to more naive approaches and
provides results similar to those obtained using unconstrained
sampling schemes. From a theoretical point of view, we
plan to assess the convergence rate of the empirical law of
the travelling salesman trajectory to the target distribution
⇡(d�1)/d. From a practical point of view, we plan to develop
algorithms that integrate stronger constraints into account such
as the maximal curvature of the sampling trajectory, which
plays a key role in many applications.
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Incremental Sparse Bayesian Learning for
Parameter Estimation of Superimposed Signals

Dmitriy Shutin, Wei Wang, Thomas Jost

Abstract—This work discuses a novel algorithm for joint sparse
estimation of superimposed signals and their parameters. The
proposed method is based on two concepts: a variational Bayesian
version of the incremental sparse Bayesian learning (SBL)– fast
variational SBL – and a variational Bayesian approach for pa-
rameter estimation of superimposed signal models. Both schemes
estimate the unknown parameters by minimizing the variational
lower bound on model evidence; also, these optimizations are
performed incrementally with respect to the parameters of a
single component. It is demonstrated that these estimations
can be naturally unified under the framework of variational
Bayesian inference. It allows, on the one hand, for an adaptive
dictionary design for FV-SBL schemes, and, on the other hand,
for a fast superresolution approach for parameter estimation of
superimposed signals. The experimental evidence collected with
synthetic data as well as with estimation results for measured
multipath channels demonstrate the effectiveness of the proposed
algorithm.

I. INTRODUCTION

In this paper our goal is to estimate the parameters of the
following model

y =
L∑

l=1

s(θl)wl + ξ = S(Θ)w + ξ, (1)

where y is an N -dimensional signal vector, s(θl), l =
1, . . . , L, is a set S(Θ) = [s(θ1), . . . , s(θL)] of known
basis functions that are nonlinearly parameterized by Θ =
[θ1, . . . ,θL]; w = [w1, . . . , wL]T is a vector of basis weights,
and ξ is a random perturbation vector, which is often assumed
to follow a circular symmetric normal distribution with zero
mean and covariance Σ = λ−1I . Such model is almost
ubiquitous in signal processing literature, and appears under
different disguises in almost all fields of signal processing,
e.g., in array processing, channel estimation, radar, to name
just a few.

The estimation of signal parameters Θ and w has often
been solved using Expectation-Maximization (EM) type of
algorithms [1]–[3], mainly due to the nonlinearity of (1)
with respect to the parameter set Θ. Yet these methods are
applicable only when the order L of the model is known
and fixed – a requirement that is rarely satisfied in practice.
However, introducing sparsity constraints into the parameter
estimation step might eliminate this drawback of the EM-based
estimation.

Sparse signal processing methods have become a very active
area of research in recent years due to their rich theoretical
nature and their usefulness in a wide range of applications
(see e.g., [4]–[6]). With a few minor variations, the general

goal of sparse reconstruction is to optimally estimate the
parameters w of the model (1) with fixed design matrix
S(Θ) ≡ [s1, . . . , sL]. The sparse solution is obtained by
imposing specific sparsity constraints on the signal parameter
w [4], [6].
Sparse Bayesian learning (SBL) [5], [7], [8] is a family

of empirical Bayes techniques that finds a sparse estimate
of w by modeling the weights using a hierarchical prior
p(w|α)p(α) =

∏L
l=1 p(wl|αl)p(αl), where p(wl|αl) is a

Gaussian probability density function (pdf) with zero mean
and precision parameter αl, also called the sparsity parameter;
larger values of αl drive the corresponding weight toward zero,
thus encouraging a sparse solution. One particular method for
SBL recently proposed in the literature is a fast variational
SBL (FV-SBL) [8]. The FV-SBL algorithm optimizes the
corresponding objective function – the variational lower bound
on the model evidence log p(y) – incrementally, i.e., with
respect to one basis function at a time. This allows for a
very efficient and adaptive implementation of FV-SBL [9]
— a feature that is very useful for estimating superimposed
signals. Yet due to the nonlinear dependence of (1) on the
parameter set Θ, the classical sparse estimation techniques are
inapplicable. Obviously, an appropriate sampling or gridding
of the parameters Θ [10], [11] circumvents the nonlinearity
problem. This approach, however, does not provide high
resolution estimates of the parameters; alternatively, heuristics
have to be used to make the gridding adaptive.
Our goal in this paper is to show how SBL technique can

be applied to (1) to enable joint sparse signal extraction and
superresolution parameter estimation. The proposed technique
builds upon two key concepts: variational Bayesian estimation
of signal parameters Θ, and an incremental FV-SBL algorithm
[8]. Through the use of variational Bayesian techniques both
schemes can be jointly realized within the same optimization
framework. The first attempts to do so have been proposed
in [12], where the authors make a typical assumption on the
independence of individual components in (1). Our empirical
evidence suggest that this assumption is overly optimistic.
The new algorithm is based on the FV-SBL scheme. This
allows taking correlations between the linear parameters of the
superimposed signals into account. Additionally, the FV-SBL
algorithm allows for an adaptive implementation [9], which
further accelerates the inference.
Throughout the paper we make use of the following no-

tation. Vectors and matrices are represented as, respectively,
boldface lowercase letters, e.g., x, and boldface uppercase
letters, e.g., X . The expression [B]lk denotes a matrix ob-
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tained by deleting the lth row and kth column from the
matrix B; similarly, [b]l denotes a vector obtained by deleting
the lth element from the vector b. With a slight abuse of
notation we will sometimes refer to a matrix as a set of
column vectors; for instance we write a ∈ X to imply
that a is a column in X , and X \ a to denote a matrix
obtained by deleting the column vector a ∈ X . We use
el = [01, . . . , 0l−1, 1l, 0l+1, . . . , 0L]T to denote a canonical
vector of appropriate dimension. Finally, for a random vector
x, CN(x|a,B) denotes a circular symmetric normal distribu-
tion pdf with mean a and covariance matrix B; similarly, for a
random variable x, Ga(x|a, b) = ba

Γ(a)x
a−1 exp(−bx) denotes

a gamma pdf with parameters a and b.

II. SIGNAL MODEL AND ADAPTIVE FAST SPARSE

BAYESIAN LEARNING

In Fig. 1 we show the graphical model that captures the
dependencies between the parameters of (1). According to the

α w y

λ k = 1, . . . , L

θk

Fig. 1. Graphical model representing (1) with L components.

graph structure, the joint pdf of the graph variables can be
factored as

p(w,λ,α,Θ,y) = p(y|w,λ,θ)p(w|α)p(α)p(λ)p(Θ), (2)

where p(y|w,λ,θ) = CN(y|S(Θ)w,λ−1I), p(w|α) =∏L
l=1 CN(wl|0,α

−1
l ), p(α) ∝

∏L
l=1 α

−1
l , and p(λ) ∝ λ−1,

following the standard SBL model assumption [8], [9].1 The
choice of the prior p(Θ) is arbitrary in the context of this work
and is generally application specific. The variational inference
on this graph aims at estimating a “proxy” pdf q(w,α,λ,Θ)
that maximizes the lower bound on the log-evidence log p(y)
[13]:

log p(y) ≥ E
q(w,α,λ,Θ)

log
p(w,λ,α,Θ,y)

q(w,α,λ,Θ)
(3)

We will assume that q(w,α,λ,Θ) factors as follows

q(w,α,λ,Θ) = q(w)q(λ)
L∏

l=1

q(αl)q(θl), (4)

with the variational factors in (4) constrained as: q(w) =
CN(w|ŵ, Φ̂), q(αl) = Ga(αl|1, α̂

−1
l ), and q(λ) =

Ga(λ|N/2, N λ̂−1/2). In case of parameters Θ we assume

q(θl) = δ(θl−θ̂l).2 By doing so we restrict ourselves to point

1In the following we will consider complex measurement data; extensions
for real case are trivial. Also, we will use non-informative form of prior p(λ)
and p(αl), ∀l. This is known as SBL with automatic relevance determination
[7].

2More complex forms of q(θl) are outside the scope of this paper.

estimates3 of these parameters. The optimal q(w,α,λ,Θ) is
then found by maximizing (3) with respect to the parameters
{ŵ, Φ̂, λ̂, α̂1, θ̂1, . . . , α̂L, θ̂l} by cycling through all factors in
a “round-robin” fashion [13].

Should the parameters Θ be assumed as known and fixed,
i.e., Ŝ ≡ S(Θ̂), update expressions for the variational param-
eters can be easily found [14]:

Φ̂ =
(
λ̂S(Θ̂)HS(Θ̂) + diag(α̂)

)−1
, ŵ = λ̂Φ̂S(Θ̂)Hy,

(5)

α̂l =
1

|ŵl|2 + Φ̂ll

, λ̂ =
N

‖t− Ŝŵ‖2 +Trace(Φ̂Ŝ
H
Ŝ)

, (6)

where ŵl is the lth element of the vector ŵ, and Φ̂ll is the
lth element on the main diagonal of the matrix Φ̂.

The FV-SBL algorithm is a computationally efficient
method to accelerate the convergence of the inference ex-
pressions (5) and (6). Essentially, it maximizes the bound
(3) incrementally: the variational updates of q(αl) and q(w)
for a fixed l are performed successively ad infinitum while
keeping the other variational factors fixed. The convergence
of q(αl) can then be established analytically, which allows
for a significant speed-up [8]; moreover, FV-SBL allows for
an adaptive implementation, where basis functions can also
be easily added to the model (for more information on the
adaptive FV-SBL algorithm the reader is referred to [9]).

One of the key features of variational methods is that the
factors in (4) can be updated in any order.4 This allows
incorporating the estimation of q(Θ) in the FV-SBL scheme,
as explained in the following.

III. ESTIMATION OF SIGNAL PARAMETERS Θ

Let us begin by considering a variational inference of
q(Θ). To this end we define Θl = Θ \ θl. Following the
standard variation inference steps (see [13]), it can be shown
that the bound on log p(y) with respect to q(θl) can be

expressed as log p(y) ≥ Eq(θl) log
p̃(θl)
q(θl)

, where p̃(θl) ∝

exp
(
Eq(w,λ,Θ

l)
log p(y|w,Θ,λ)p(Θ)

)
. This bound is max-

imized when the Kullback-Leibler divergence between q(θl)
and p̃(θl) is minimal. Since q(θl) is constrained to be a Dirac
distribution, the minimum divergence is achieved when q(θl)
is aligned with the mode of p̃(θl). By evaluating p̃(θl) we

find θ̂l as

θ̂l = argmax
θl

{
log p(θl)− λ̂‖rl − ŵls(θl)‖

2

−λ̂
∑

k "=l

2'
{
Φkls(θ̂k)

Hs(θl)
}
− λ̂Φll‖s(θl)‖

2
}
,

(7)

3As a point estimate we understand maximum likelihood or maximum a
posteriori estimation; the latter case is automatically obtained when a prior
p(θl) "= const.

4Note, however, that the order in which the factors are updated is important
since different update orderings might lead to different local optima of the
variational lower bound.
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where

rl = y −
L∑

k=1,k "=l

ŵks(θ̂k), (8)

and ' {·} denotes the real part operator. Finding θ̂l from
(7), which requires nonlinear optimization, readily gives the
optimal pdf q(θl). Note that the last two terms in (7) account
for the correlations between the weights w of the components,
effectively penalizing the estimator for θl. We are now ready to
bring all the pieces of the proposed sparse estimation scheme
together.

The proposed algorithm updates the factors in (4) in groups,
where an lth group contains factors {q(θl), q(αl), q(w)}:
starting with q(θl), we then update q(αl) and q(w) using the
FV-SBL scheme. If the estimate of α̂l diverges, the corre-
sponding component is removed from the model; otherwise,
its parameters are updated, and the next component is con-
sidered. The realization of the algorithm includes two steps:
the initialization and update which are sequentially carried out
and summarized in Algorithms 1 and 2, respectively. Note that

Algorithm 1 Initialization

L← 0, S(Θ)← [ ], Φ̂← [ ], α̂← [ ], Continue← true
while Continue do
Compute rL+1 from (8) and q(θL+1) from (7)

s← s(θ̂L+1)
ς ← (λ̂sHs− λ̂2sHS(Θ)Φ̂S(Θ)Hs)−1

ω2 ← ς2(λ̂sHy − λ̂2sHS(Θ)Φ̂(Θ)Hy)2

if ω2 > ς then
Add a new component s(θ̂L+1)
Update q(αL+1): α̂L+1 ← (ω2 − ς)−1

Update q(w) using a new basis s:

XL+1 = Φ̂
−1
−

λ̂S(Θ)HssHS(Θ)

α̂L+1 + sHs

Φ̂L+1 =



 X−1
L+1 −λ̂ Φ̂S(Θ)Hs

α̂L+1+ς−1

−λ̂ s
H
S(Θ)Φ̂

α̂L+1+ς−1 (α̂L+1 + ς−1)−1




(9)

S(Θ)← [S(Θ), s(θ̂L+1)],
ŵL+1 ← λ̂Φ̂L+1S(Θ)Hy,
L← L+ 1

else
Reject s(θ̂L+1); Continue = False

end if
end while

the inverse of a Schur complement XL+1 in the Algorithm
1 can be computed efficiently using a rank-one update [15].
The variables ω and ς and the test ω2 > ς are explained in
detail in [8], [9]. Let us point out that the sparsity inducing
property of the whole scheme is “encoded” in the test ω2 > ς
that determines the convergence of q(αl) update: if the mean
of q(αl) diverges, the component is removed from the model.

Algorithm 2 Update

while Continue do
Compute rl from (8) and q(θl) from (7)

s← s(θ̂l)

Sl ← S(Θ̂) \ sl, Φ̂l =
[
Φ̂− Φ̂ele

H

l
Φ̂

eH

l
Φ̂el

]

ll

ς ← (λ̂sHl sl − λ̂2sHl SlΦ̂lS
H

l sl)−1

ω2 ← (λ̂ςls
H
l y − λ̂2ςls

H
l SlΦ̂lS

H

l y)2

if ω2 > ς then
S(Θ)← [Sl, s]
Update q(αl): α̂l ← (ω2 − ς)−1;
Update q(w) using s and α̂l

Compute Φ̂ as in (9), ŵ ← λ̂Φ̂S(Θ)Hy
else
Remove the component sl
S(Θ)← Sl; L← L− 1
Update q(α): α̂l ← [α̂]l
Update q(w) :Φ̂← Φ̂l, ŵ ← λ̂Φ̂S(Θ)Hy

end if
end while

IV. SIMULATION RESULTS

Here we study the performance of the proposed estimation
scheme using synthetic data generated according to model (1)
as well measured data.

For simplicity we consider a Single-Input-Single-Output
channel with zero Doppler shift; thus, each component is
characterized by a delay θl = {τl} and a complex gain wl,

i.e., y =
∑L

l=1 wls(τl) + ξ. The channel is synthesized in
frequency domain with the following parameters: L = 4,
N = 1537, signal bandwidth is fB = 120MHz; the signal
was sampled at the Nyquist rate and the carrier frequency
is assumed to be 5.2GHz. The delays of synthetic multi-
path components are set to 17.5 ns, 40.83 ns, 59.33 ns, and
91.67 ns; corresponding complex amplitudes are selected as
wl = ejϕl , l = 1, . . . , 4, where ϕl is a random variable drawn
from a uniform distribution. As as replica of the transmitted
signal s(t) we use the actual measured calibration data of
the Medav RUSK-DLR channel sounder [16]. The calibration
data is obtained by directly connecting the transmitter to
the receiver and recording the received signal. Its sampled
version is then used to construct a vector s(·), whose shifted
versions are used in synthesizing the channel, as well as in
the estimation step.

In Fig.2 we show the estimated impulse response and
transfer function for 15dB SNR. Observe that the estimated
responses closely follow the measured data with only four
components. Let us stress that depending on the actual noise
realization, the algorithm tends to overestimate the number of
components. In Fig. 3(a) we plot distributions of estimated
sparsity parameters for all detected components collected
over 1000 Monte Carlo runs with different noise realizations.
Note that in the worst case the algorithm identifies up to 8
components, all of which are very close to the true ones. This
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Fig. 2. Estimated synthetic channel in a) time domain and b) frequency
domain for 15dB SNR.
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Fig. 3. a)Estimated sparsity parameters α̂ and b) delays for synthetic
scenarios. c) Error distribution for estimated τl when 4 components are found.

can also be seen in Fig. 3(b), where we plot the distribution
of all estimated delays. The inverse sparsity parameters of
these artifact components are also quite small, which means
they do not contribute to the model. In the case when the
algorithm identifies exactly 4 components we can compute
the error between the true and the estimated delay. In Fig 3(c)
we plot the histogram of estimated delay errors. Note that
the estimation error is smaller than 1% of the used sampling
period (≈ 8.3ns).

A. Estimation results for measured multipath channels.

Here we consider the estimation of the actual measured
multipath channels using the proposed algorithm. The data
was collected during a recent measurement campaign [16]
performed at German Aerospace Center in Oberpfaffenhofen,
Germany. The measurements parameters coincide with those
used in simulations. As the actual channel parameters cannot
be known for a measured channel, we qualitatively compare
the performance of the proposed scheme to that of the SAGE
algorithm [3]. As the latter scheme requires knowing the
number of components L, we first estimate it using the
proposed method, and then use SAGE with same model order.
The estimation results are summarized in Fig. In total L = 31
path has been identified. Despite some similarities, the SAGE
algorithm tends to miss weak components. Also, it tends to
cluster multipaths around areas of high power, which often
indicates estimation artifacts [12].

V. CONCLUSION

In this work an adaptive fast variational Sparse Bayesian
Learning (FV-SBL) algorithm has been used for parameter es-
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Fig. 4. Estimated channel response using a) proposed algorithm and b) using
SAGE algorithm.

timation of superimposed signals. Using variational framework
both superresolution parameter estimation and sparse signal
extraction can be done jointly by minimizing the common
objective function. Thus, the proposed scheme “frees” the clas-
sical EM-based parameter estimation from specifying a model
order. Simulation results obtained with synthetic and measured
data demonstrate the effectiveness of the proposed estimation
scheme. However, more detailed analysis of experimental data
is needed.
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Abstract—We derive a theoretical framework for the re-

coverability of targets in the azimuth-range-Doppler domain

using random sensor arrays and tools developed in the area of

compressive sensing. In one manifestation of our theory we use

Kerdock codes as transmission waveforms and exploit some of

their peculiar properties in our analysis. Not only is our result the

first rigorous mathematical theory for the detection of moving

targets using random sensor arrays, but also the transmitted

waveforms satisfy a variety of properties that are very desirable

and important from a practical viewpoint.

I. INTRODUCTION

In recent years, radar systems employing multiple antennas
at the transmitter and the receiver (also referred to as MIMO
radar, where MIMO stands for multiple-input multiple-output)
have attracted enormous attention in the engineering and signal
processing community. Existing theory focuses mainly on the
detection of a single target. Only very recently, in the footsteps
of compressive sensing, do we see the emergence of a rigorous
mathematical theory for MIMO radar that addresses the more
realistic and more interesting case of multiple targets [13].
However, for the widely popular case of randomly spaced
antennas, the mathematical theory is still in its infancy.

On the other hand, mathematicians and engineers have
devoted substantial efforts to the design of radar transmission
waveforms that satisfy a variety of desirable properties. The
vast majority of this research has focused on single antenna
radar systems, and it is a priori not clear whether and how
these waveforms can be utilized for MIMO radar. In this paper
we bring together these two independent areas of research,
MIMO radar with random antenna arrays and radar waveform
design, by developing a rigorous mathematical framework for
accurate target detection via random arrays, which at the same
time utilizes some of the most attractive radar waveforms, such
as Kerdock codes.

In radar processing we are interested in a given area, which
is usually called the radar scene. We would like to detect the
location and the strength of the objects of interest, as well
as the velocity if there is relative motion between the radar
and the objects. Usually the radar scene is divided into a
grid of range-azimuth-Doppler (distance, direction and speed)
resolution cells. In many practical cases the radar scene is
sparse in the sense that only a small fraction of the grid points
is occupied by the targets of interest.

While the conventional radar processing techniques do not
take advantage of the fact that the radar scene is often sparse,

the recent development of compressive sensing (CS) provides
us the possibility to utilize this structure. In fact recent works
(such as [8], [12], [13] and the reference therein) created
important linkage between radar processing and CS. As in
CS, we also have to solve the following inverse problem in
radar processing:

y = Ax+w, (1)

where y is a vector of measurements collected by the receiver
antennas over an observation interval, A is a measurement
matrix whose columns correspond to the signal received from
a single unit-strength scatterer at a particular range-azimuth-
Doppler grid point, x is a vector whose elements represent the
complex amplitudes of the scatterers, and w is the unknown
noise vector. Note that this is an under-determined equation
(if dim(y) < dim(x)) and in general it has infinitely many
solutions. But given that x is sparse from our assumption, this
problem can have a satisfactory solution.

One of the algorithms that can be used to solve (1) is as
follows:

min

x

1

2

kAx� yk22 + �kxk1, (2)

which is also known as lasso. Here � > 0 is a regularization
parameter that trades off goodness of fit with sparsity. [3]
showed that if we assume x is drawn from a generic S-sparse
target model (i.e. the support of x is selected uniformly at
random and the phases of the non-zero entries of x are random
and uniformly distributed in [0, 2⇡)) then with a particular
choice of �, (2) will recover the support of x correctly with
high probability given that the coherence and the operator
norm of A can be well controlled.

Our paper provides two main contributions: (i) We de-
rive the first rigorous mathematical theory for the detection
of moving targets in the azimuth-range-Doppler domain for
random sensor arrays. (ii) The transmitted waveforms satisfy
a variety of properties that are very desirable and important
from a practical viewpoint. In particular, we show that Kerdock
sequences, which would perform very poorly in single-antenna
radar, are nearly ideally suited for MIMO radar with randomly
spaced antennas. Thus, our framework does not just lead to
useful theoretical insights, but also has a very strong practical
appeal.
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A. Connections with prior work and innovations

Random sensor arrays have been around for decades [11].
Recently, [4] made an explicit connection between random
sensor arrays and the CS. The setup in [4] is quite different
from ours, since the author is only concerned with angular
resolution, while it is often crucial in practice to be able to
estimate range and Doppler as well. Moreover, the theoretical
analysis in [4] follows more an engineering style and places
less emphasis on mathematical rigor.

On the other hand, [13] is closest to this paper. [13] consid-
ers a MIMO radar setting with a very specific (non-random)
choice for the antenna locations, but random waveforms,
while the current paper deals with randomly spaced antennas,
but very specific, deterministic waveforms. In practice, the
random waveforms are much harder to implement on a digital
device and they exhibit a larger peak-to-average-power ratio
compared to carefully designed deterministic waveforms. On
the other hand it makes no difference from the viewpoint of
physics or hardware, if we place the antennas at random or at
deterministic locations.

B. Notation

For a matrix A, we use A

⇤ to denote its adjoint matrix,
which is its conjugate transpose. The operator norm of A is
the largest singular value of A and is denoted by kAkop.

For x 2 Cn, let T⌧ denote the circulant translation operator,
defined by T⌧x(l) = x(l�⌧), for ⌧ = 1, . . . , n, where l�⌧ is
understood modulo n, and let Mf be the modulation operator
defined by Mfx(l) = x(l)e

2⇡ifl/n
.

II. PROBLEM SETUP

We consider a MIMO radar employing NT antennas at
the transmitter and NR antennas at the receiver. We assume
for convenience that transmitter and receiver are co-located.
Furthermore, we assume a coherent propagation scenario, i.e.,
the element spacing is sufficiently small so that the radar return
from a given scatterer is fully correlated across the array. The
arrays and all the scatterers are assumed to be in the same 2-D
plane. The extension to the 3-D case is straightforward.

The array manifolds aT (�), aR(�) with randomly spaced
antennas are given by

aT (�) =
⇥
e

2⇡ip1�
, e

2⇡ip2�
, . . . , e

2⇡ipNT
�
⇤T

, (3)

and
aR(�) =

⇥
e

2⇡iq1�
, e

2⇡iq2�
, . . . , e

2⇡iqNR
�
⇤T

, (4)

where we assume that the relative antenna spacings pj’s
and qj’s are i.i.d. uniformly on [0,

NRNT
2 ]. The j-th transmit

antenna repeatedly transmits the signal sj(t) and the receive
antennas take Ns samples of the signal. Let Z(t;�, ⌧, f) be the
NR⇥Ns noise-free received signal matrix from a unit strength
target at direction �, delay ⌧ , and Doppler f (corresponding
to its radial velocity with respect to the radar). Then

Z(t;�, ⌧, f) = aR(�)a
T
T (�)S

T
⌧,f ,

where S⌧,f is a Ns ⇥ NT matrix whose columns are the
circularly delayed and Doppler shifted signals sj(t�⌧)e

2⇡ift.

We let z(t;�, ⌧, f) = vec{Z}(t;�, ⌧, f) be the noise-free
vectorized received signal. We set up a discrete azimuth-range-
Doppler grid {�l, ⌧j , fk} for 1  l  N� , 1  j  N⌧ and
1  k  Nf , where �� ,�⌧ and �f denote the corresponding
discretization stepsizes. Using vectors z(t;�l, ⌧j , fk) for all
grid points (�l, ⌧j , fk) we construct a complete response
matrix A whose columns are z(t;�l, ⌧j , fk) for 1  l  N�

and 1  j  N⌧ , 1  k  Nf . In other words, A is a
NRNs ⇥N⌧N�Nf matrix with columns

A�,⌧,f = aR(�)⌦ S⌧,faT (�). (5)

Assume that the radar illuminates a scene consisting of
S scatterers located on S points of the (�l, ⌧j , fk) grid.
Let x be a sparse vector whose non-zero elements are the
complex amplitudes of the scatterers in the scene. The zero
elements corresponds to grid points which are not occupied
by scatterers. We can then define the radar signal y received
from this scene by (1) where y is an NRNs ⇥ 1 vector, x

is an N⌧N�Nf ⇥ 1 sparse vector and w is an NRNs ⇥ 1

complex Gaussian noise vector. Our goal is to solve for x,
i.e., to locate the scatterers (and their reflection coefficients)
in the azimuth-delay-Doppler domain.

As for the signal matrix S, for our main results we choose
the Kerdock waveforms, as described in Section III, as discrete
transmission waveforms.

Remark: The assumption that the targets lie on the grid points,
while common in compressive sensing, is certainly restrictive.
A violation of this assumption will result in a model mismatch,
sometimes dubbed gridding error, which can potentially be
quite severe [9], [5]. Recently some interesting strategies have
been proposed to overcome this gridding error [6], [15]. But
these methods are not directly applicable to our setting. This
model mismatch issue is beyond the scope of this paper and
will be addressed in our future research.

III. KERDOCK CODES

We briefly review the construction of Kerdock codes and
some of their fundamental properties. A simple way to con-
struct these Kerdock codes is the following, in which they arise
as eigenvectors of time-frequency shift operators. Let p be an
odd prime number and consider the translation operator T and
the modulation operator M on Cp. For each k = 0, . . . , p� 1

we compute the eigenvector decomposition of TMk (which
always exists, since TMk is a unitary matrix)

U(k)⌃(k)U
⇤
(k) = TMk, (6)

where the unitary matrix U(k) contains the eigenvectors of
TMk and the diagonal matrix ⌃(k) the associated eigenval-
ues1. Furthermore, we define U(p) := Ip. Now, let uk,j be
the j-th column of U(k). The set consisting of the p

2
+ p

vectors {uk,j , k = 0, . . . , p; j = 0, . . . , p � 1} forms a Zp-
Kerdock code. There are numerous equivalent ways to derive
this Kerdock code, but, as pointed out earlier, not all Kerdock
codes over Zp are equivalent (see also the comment following

1The attentive reader will have noticed that U(0) is just the p ⇥ p DFT
matrix.
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Corollary 11.6 in [2]). But we will be a bit sloppy, and simply
refer to the Kerdock code constructed above as the Kerdock
code.

In the following theorem we collect those key properties
of Kerdock codes that are most relevant for radar. These
properties are either explicitly proved in [2], [10] or can be
derived easily from properties stated in those papers.

Theorem 3.1: Kerdock codes over Zp, where p is an odd
prime, satisfy the following properties:

(i) Mutually unbiased bases: For all k = 0, . . . , p and all
j = 0, . . . , p� 1, there holds:

|huk,j , uk0,j0i| =

8
><

>:

1 if k = k

0
, j = j

0,
0 if k = k

0
, j 6= j

0,
1p
p if k 6= k

0.

(ii) Time-frequency “autocorrelation”:
(a) For any fixed (f, l) 6= (0, 0) there exists a unique k0

such that

|hMfTluk0,j , uk0,ji| = 1 for j = 0, . . . , p� 1, (7)
|hMfTluk,j , uk,ji| = 0 for k 6= k0. (8)

(b) For any fixed 0  k  p � 1, there exist distinct
(fr, lr), r = 1, . . . , p such that

|hMfrTlruk,j , uk,ji| = 1 for j = 0, . . . , p� 1, (9)

(iii) Time-frequency crosscorrelation: For all k 6= k

0 and all
f and l there holds:

|hMfTluk,j , uk0,ji|  1p
p

for j = 0, . . . , p� 1.

(10)

We emphasize though that Kerdock codes would not be
very effective for a radar system with a single transmit
antenna (SISO or SIMO radar). This can be easily seen as
follows: Suppose we only have one antenna that transmits
one waveform ~s. Because of (9), ~s is equal to (up to a phase
factor) MfTl~s for some f, l. In practice, this prevents us from
determining the distance and the speed of the object.

As a consequence of the aforementioned ambiguity we will
not use all of the Kerdock codes as transmission signals for
our MIMO radar, instead we will choose one code for each
index k. The reason is that we need the waveforms to have low
time-frequency crosscorrelation, while (10) only holds when
k and k

0 are different.
Definition 3.2 (Kerdock waveforms): Let {uk,j , k =

0, . . . , p, j = 0, . . . , p � 1} be a Kerdock code over Zp.
The Kerdock waveforms k0, . . . ,kr, where r < p, are given
by kk = uk,j for some arbitrary j. In other words, for
each k = 0, . . . , r � 1 we pick an arbitrary vector from the
orthonormal basis {uk,j}p�1

j=0 .
Note Kerdock waveforms do not include any canonical vec-
tors, since only the first r unitary matrices U(0), . . . ,U(r�1)

are considered and r is strictly less than p (recall U(p) = Ip).

IV. THE MAIN THEOREM

As mentioned in the introduction, a standard approach to
solve (1) when x is sparse, is given in (2). But instead of (2),
we will use the debiased lasso. That means first we compute
an approximation ˜

I for the support of x by solving (2). This is
the detection step. Then, in the estimation step, we “debias”
the solution by computing the amplitudes of x via solving
the reduced-size least squares problem min kAĨxĨ � yk2,
where AĨ is the submatrix of A consisting of the columns
corresponding to the index set ˜

I , and similarly for xĨ .
We assume x is drawn from a generic S-sparse target model.

We are now ready to state our main result (more details of this
theorem can be found in [14]).

Theorem 4.1: Consider y = Ax +w, where A is defined
as in (5) and wj 2 CN(0,�

2
). Assume that the positions of

the transmit and receive antennas pj’s and qj’s are chosen
i.i.d. uniformly on [0,

NRNT
2 ] at random. Suppose further that

each transmit antenna sends a different Kerdock waveform,
i.e. the columns of the signal matrix S are different Kerdock
waveforms. Suppose that

max

�
NRNT , 32N

3
T logN⌧NfN�

�  Ns = N⌧ , (11)

and also
log

2
N⌧NfN�  NT  NR. (12)

If x is drawn from the generic S-sparse scatterer model with

S  c0N⌧

logN⌧NfN�
(13)

for some constant c0 > 0, and if

min

k2I
|xk| > 8

p
3�p

NRNT

p
2 logN⌧NfN� , (14)

then the solution ˜

x of the debiased lasso computed with � =

2�

p
2 logN⌧NfN� satisfies with high probability

supp(

˜

x) = supp(x), (15)

and k˜x� xk2
kxk2  5�

p
3NRNs

kyk2 . (16)

Remarks:

1) The condition NT  NR in (12) is by no means
necessary, but rather to make our computation a little
cleaner. We could change it into NT  2NR, then
the theorem would be true with a slightly different
probability of success.

2) It may seem that the conditions in (11) and (12) are a
bit restrictive. But, in practice, our method works with
a broad range of parameters.

The proof of the above theorem is rather involved and too
long to be included in this brief paper. The full proof of
this theorem, as well as other results presented in this paper
can be found in the journal version of this paper [14]. Here,
we can only sketch the key steps. To prove Theorem 4.1,
we use a theorem by Candès and Plan (Theorem 1.3 in [3])
which requires to estimate the operator norm of A and the
coherence of A. The original theorem only treats the real-
valued case, it can be extended to complex-valued case after
some straightforward modifications (see Appendix B in [13]).
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V. EXTENSION OF THE MAIN RESULT

In this section, we present a modified version of Theo-
rem 4.1 that applies to waveforms that satisfy slightly more
restrictive incoherence conditions. As such, Theorem 5.1 be-
low does not hold for Kerdock waveforms, but the advantage
compared to Theorem 4.1 is that the result also applies to radar
systems with only one transmit antenna.

Theorem 5.1: Consider y = Ax +w, where A is defined
as in (5) and wj 2 CN(0,�

2
). Suppose the transmission

waveforms satisfy the following conditions

|h~sj ,MfT⌧~sji|  �p
p

for (f, ⌧) 6= (0, 0), (17)

|h~sk,MfT⌧~sji|  �p
p

for k 6= j, (18)

where � > 0 is a fixed constant. Assume that the positions
of the transmit and receive antennas pj’s and qj’s are chosen
i.i.d. uniformly on [0,

NRNT
2 ]. Choose the same discretization

stepsizes to be �� =

2
NRNT

,�⌧ =

1
2B , �f =

1
T and suppose

that

max

�
�

2
NRNT , 16�

2
NT log

3
N⌧NfN�

�  Ns = N⌧

and also

�

2
NT log

4
N⌧NfN�  NsNR, log

2
N⌧NfN�  NT  NR.

Then if the rest of the conditions of Theorem 4.1 hold, we
have the same conclusion as in Theorem 4.1.

There are several examples of signal sets that satisfy the
above conditions. Perhaps the most intriguing example is
the finite harmonic oscillator system (FHOS) constructed in
[7]. This signal set in Cp (where p is a prime number) of
cardinality O(p

3
) satisfies (17) and (18) with � = 4. An

elementary construction of the FHOS for prime number p � 5

can be found in [16].

VI. SIMULATIONS

In this section we will demonstrate the performance of
our algorithms via numerical simulations. We use the Matlab
Toolbox TFOCS ([1]).

We choose Kerdock codes as transmission waveforms along
with the parameters: NT = 6, NR = 6, Ns = 37, Nf = 37.
The number of the scatters S = 10, 20, 40 while the SNR is
chosen to be 20dB.

The values of the estimated vector ˆ

x corresponding to
the true scatterer locations are compared to a threshold.
Detection is declared whenever a value exceeds the threshold.
The probability of detection Pd is defined as the number of
detections divided by S. Next the values of the estimated
vector ˆ

x corresponding to locations not containing scatterers
are compared to the same threshold. A false alarm is declared
whenever one of these values exceeds the threshold. The
probability of false alarm Pfa is defined as the number
of false alarms divided by n � S, where n is the signal
dimension. The results are averaged over the 50 repetitions
of the experiment. The probabilities are computed for a range
of values of the threshold to produce the so-called Receiver
Operating Characteristics (ROC)- the graph of Pd vs. Pfa.
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Abstract—We discuss the reconstruction of a finite-dimensional

signal from the absolute values of its Fourier coefficients. In many

optical experiments the signal magnitude in time is also available.

We combine time and frequency magnitude measurements to

obtain closed reconstruction formulas. Random measurements

are discussed to reduce the number of measurements.

I. INTRODUCTION

Phase retrieval, within a discrete model, deals with the
problem of reconstructing a signal z 2 Cd from a collection
of magnitudes {|hz, xji|2}nj=1, where {xj}nj=1 ⇢ Cd are mea-
surement vectors. The signal z, of course, can be determined
up to a global phase factor at best.

Standard algorithms are based on Gerchberg/Saxton [14]
and Fienup [13] and usually involve some iterative alternate
projection scheme. As phase retrieval is such a long-standing
problem, it appears impossible to give a complete list of
references, so let us simply refer to [7], [16], [17], [22] and
references therein.

Algebraic conditions on measurement vectors have led to
closed reconstruction formulas of zz⇤ [6], so that a singular
value decomposition enables the extraction of z up to its
global phase. However, such conditions can only be satisfied
when the number of measurements n scales at least like
d2. Currently, reducing this number to scale linearly in d
is an active field of research, see [1] for the use of graph
theory. Random measurement vectors and signal recovery with
high probability has been considered in [8], [9], [10]. There,
the reconstruction formula is replaced with an optimization
procedure based on semidefinite programming, and the number
of random measurement vectors n then scales linearly in d.

Both approaches though suffer from limitations. The deter-
ministic reconstruction formula in [6] does not apply to Fourier
measurements, which arise in many optical measurement pro-
cesses and appear to be the largest application field of phase
retrieval. The underlying probability measure of the random
measurement vectors in [8], [9], [10] has full support on the
unit sphere. Thus, although only linearly many measurements
have to be performed in physical experiments, any point on the
sphere is a potential measurement vector and is not allowed
to be excluded a-priori. It is desirable to decrease the set of

potential measurement vectors to better reflect the physical
constraints in actual experiments.

In this short note we shall discuss approaches to overcome
the aforementioned problems and limitations. Many physical
experiments additionally provide the signal power in time,
i.e., {|zk|}dk=1. By using a generalization of the algebraic
condition in [6], developed in [3], we observe that certain
Fourier measurements combined with the signal power in time
lead to a closed reconstruction formula for zz⇤. Building upon
such results, we also propose specific Fourier type probability
measures that may allow for signal reconstruction within the
random setting. For the latter, we do not provide rigorous
proofs here but collect some indications.

II. UNSTRUCTURED MEASUREMENTS

Let K denote either R or C. The aim of the present note is
to discuss some ideas about the reconstruction of an unknown
vector x 2 Kd from a collection of magnitude measurement
{|hz, xji|2}nj=1, where {xj}nj=1 ⇢ Kd are some measuring
vectors chosen a-priori.

A. Lower bounds on the number of measurements for K = R
Although we shall concentrate on K = C later, let us

consider K = R for a moment. If we assume that the first
entry of x is nonzero, then {ek}dk=1 [ {e1 + ek}dk=2 ⇢ Rd is
a collection of n = 2d� 1 measurement vectors that allow to
recover x. Indeed, the first d measurements yield the absolute
values of the entries of x and the following measurements
enable us to check if the signs change from one coordinate to
the other. The reconstruction algorithm is simple but note that
we assumed the first entry of x to be nonzero. Similarly, a
stable algorithm requiring O(d log d) measurements, starting
from {ek}dk=1, and then determining relative phases between
entries of z has been proposed in [24], [1]. If we can perform
adaptive measurements, then the application of {ek}dk=1 would
tell us the location of the nonzero entries of z, say k1, . . . , k`.
So the additional measurement vectors {ek1 + ekj}`j=2 would
enable us to recover ±z from a total of d+`�1 measurements.
Without any adaptivity and knowledge on z, we shall see next
that 2d � 1 measurements are sufficient to reconstruct z up
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to its sign, but there may not be any efficient reconstruc-
tion algorithms. Let us deal with the collection of matrices
M := {zz⇤ : z 2 Rd} and define the map Fn : M ! Rn as

Fn(zz
⇤
) :=

�
trace(zz⇤xjx

⇤
j )
�n
j=1

=

�|hz, xji|2
�n
j=1

. (1)

There are n = 2d � 1 measuring vectors {xj}nj=1 necessary
(and generically sufficient) to ensure injectivity of Fn, cf. [6].
If we are willing to remove a set of measure zero, then the
lower bound can be relaxed: There is a set ⌦ ⇢ Rd of measure
zero, such that any z 2 Rd \ ⌦ is uniquely determined up to
its sign by measuring with the d+1 vectors {ek}dk=1 [ {e1 +
. . .+ ed}.

B. Deterministic measurements
From here on we suppose K = C and denote Sd�1

= {x 2
Kd

: kxk = 1}. A collection {xj}nj=1 ⇢ Sd�1 with weights
{!j}nj=1 ⇢ R+ is called a projective cubature of strength 2 ifPn

j=1 !j = 1 and
nX

j=1

!j |hz, xji|4 =

2

d(d+ 1)

kzk4, for all z 2 Cd. (2)

Given such a projective cubature of strength 2, the results in
[3] yield that

zz⇤ = d

nX

j=1

!j |hz, xji|2
�
(d+ 1)xjx

⇤
j � I

�
. (3)

Equation (3) was derived in [5] for constant weights. There-
fore, any matrix zz⇤, for z 2 Cd, can be reconstructed from
its measurements {|hz, xji|2}nj=1.

C. Random measurements
It is well-known that any projective cubature of strength 2

must have cardinality n � d2, cf. [2], [21]. To reduce the num-
ber of measurements, semidefinite programming and random
measuring vectors were used in [9], [10], [11] to reconstruct
zz⇤ with high probability. Indeed, let H denote the collection
of hermitian matrices in Cd⇥d. For {xj}nj=1 ⇢ Cd, we extend
the operator in (1) and define

Fn : H ! Rn, H 7! �
trace(Hxjx

⇤
j )
�n
j=1

. (4)

Given b := Fn(zz
⇤
) and excluding the pathological case b =

0, we see that zz⇤ is a solution to

min

H2H
(rank(H)), subject to Fn(H) = b, H ⌫ 0, (5)

where H ⌫ 0 stands for H being positive semidefinite. The
general affine rank minimization problem is NP-hard, see for
instance [19], [20], and commonly replaced by

min

H2H
(trace(H)), subject to Fn(H) = b, H ⌫ 0, (6)

a semidefinite program, for which efficient solvers such
as interior point methods are available.Let us assume that
{xj}nj=1 ⇢ Sd�1 are an independent sample from the uniform
distribution on Sd�1. According to [9], [10], there are two con-
stants c, � > 0, such that, for all n � cd, the minimizer of (6)

is unique and given by zz⇤ with probability at least 1� e��n.
The same statement holds if the entries of {xj}nj=1 ⇢ Cd are
chosen independently from the standard Gaussian distribution.

The proof in [9], [10], see also [3], for the uniform distribu-
tion on the sphere is based on the probabilistic reconstruction
formula

zz⇤ = dE|hz,Xi|2�(d+ 1)XX⇤ � I
�
, (PRF-1)

for all z 2 Cd, where X 2 Cd denotes a random vector
uniformly distributed on Sd�1. In view of (2), we observe
that (PRF-1) is equivalent to

E|hz,Xi|4 =

2

d(d+ 1)

kzk4, for all z 2 Cd, (7)

which implies

dE|hz,Xi|2 = kzk2, for all z 2 Cd, (8)

cf. [4]. The condition (8) is equivalent to

dEXX⇤
= I, (9)

so that (PRF-1) implies (9). The proof of the equivalence
between (5) and (6) is based on (PRF-1) and (9), and, besides
some technical ingredients, then turns the expectation in both
conditions into suitable statements on the sample mean by
using tail bound estimates, cf. [3], [10].

III. TIME-FREQUENCY STRUCTURED MEASUREMENTS

A. Fourier measurements
The measuring vectors in the previous section were either

unstructured or chosen from the uniform distribution on the
sphere. In optical experiments, Fourier type measurements are
performed. Naturally, we consider the random Fourier vector

X =

1p
d
(e2⇡i�1t, . . . , e2⇡i�dt

)

>, (10)

where {�i}di=1 are real numbers and t is a random variable
uniformly distributed on [0, 1). Of course, the measurements

hz, xji = 1p
d

dX

k=1

zke
�2⇡i�ktj

consist of a randomly sampled trigonometric polynomial,
which brings all sorts of nonequispaced fast Fourier transforms
into play. Unfortunately and to no surprise, the vector X is not
uniformly distributed on Sd�1. Nevertheless, we could check
if (7) holds, and if so, then there might be a good chance that
the trace minimization works out numerically although not
stringently proven mathematically yet. Unfortunately, Fourier
magnitude measurements alone are not sufficient to resolve
time translates. For instance, the canonical basis vectors
e1, . . . , ed cannot be distinguished by the absolute values of
their Fourier coefficients. Thus, (PRF-1) is violated:

Proposition III.1. Let {�k}dk=1 be a sequence of real num-
bers. If t : ⌦ ! [0, 1) is a random variable, then the Fourier
random vector (10) does not satisfy (PRF-1).

The same, of course, holds for the deterministic setting:
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Proposition III.2. If {�k}dk=1 and {tj}nj=1 are sequences of
real numbers, then there are no weights {!j}nj=1 such that the
Fourier vectors

{xj}nj=1 = { 1p
d
(e2⇡i�1tj , . . . , e2⇡i�dtj

)

>}nj=1

satisfy (3).

B. Additional time measurements
To resolve time translates we must perform additional mea-

surements beyond the Fourier spectrum. In optical experiments
the magnitudes in time are often available as well. The latter
results in additional measurement vectors {ek}dk=1. We shall
discuss three scenarios:

1) Deterministic time-frequency measurements: First, we
combine special Fourier vectors with time measurements,
inspired by ideas in [15, Proposition 4] and [23, Section 2.1.2].
Let q be a prime and let d = qr + 1 for some r 2 N. For
m = d2 � d+ 1, there exist integers 0  �1 < · · · < �d < m
such that all numbers 1, . . . ,m� 1 occur as residues mod m
of the d(d� 1) differences (�k � �`), for k 6= `, cf. [15]. For
j = 1, . . . ,m we define the Fourier vectors

xj =
1p
d
(e2⇡i�1j/m, . . . , e2⇡i�dj/m

)

> 2 Cd. (11)

To add time measurements, we form the set X = {xj}mj=1 [
{ek}dk=1 with weights W = { d

d3+1}mj=1 [ { 1
d(d+1)}di=1, re-

spectively. Note that X is a projective cubature of strength
2, cf. [15], and, therefore, satisfies (3). Its cardinality is
n = d2 + 1, the weights split into two groups of constants,
and they become almost equal for large ambient dimensions
d. The set X models special Fourier and time measurements,
hence, forms a highly structured collection of measurement
vectors. In contrast to a naive evaluation of the reconstruction
formula (3) in O(d4), this allows for a computation in only
O(d3 log d) arithmetic operations.

Example III.3. For d = 4 = 3

1
+ 1, we can select

(�1,�2,�3,�4) = (0, 3, 5, 12) for the above scheme which
yields a projective cubature of strength 2 whose cardinality is
n = 17.

2) Random time-frequency measurements: Let µ1 denote
the discrete probability measure with support X and mass
distribution according to the weights W . Any random vector
X1 ⇠ µ1 satisfies (PRF-1). Therefore, (9) is also satisfied. As
a first step for the proof about equivalence of the optimization
problems (5) and (6), we can turn (9) into a suitable statement
on the sample mean. Indeed, let {xj}nj=1 be independent
and identical distributed according to µ1 and 0 < s < 1

arbitrary. The Chernoff’s matrix inequalities yield that there
exist constants c, C > 0 such that, for all n � cd log(d),

k d
n

nX

j=1

xjx
⇤
j � Ik  s (12)

holds with probability at least 1 � e�Cn/d, cf. [12]. The
estimate (12) turns the identity about the population mean

(9) into an estimate on the deviation of the sample mean
measured by the operator norm. It is just a first step, and
to derive a complete mathematical proof of the equivalence
between (5) and (6), we additionally need a suitable sample
mean version of (PRF-1) and few more technical ingredients
that would go beyond the present note. Here, we understand
the above observations as an indication that the proof can be
completed.

3) Deterministic time and random frequency measurements:
Switching from the deterministic to the random setting avoids
the requirement of d2 many measurements. We are still con-
sistent with this objective when choosing d measurements in
a deterministic fashion and on the order of d many additional
random measurements. Matching experimental setups, we pro-
pose to keep the time measurements {ek}dk=1 as deterministic
information and randomly select samples from the random
vector

X =

1p
d
(e2⇡i�1t, . . . , e2⇡i�dt

)

>,

where t is uniformly distributed on [0, 1) and {�j}dj=1 is a
Golomb ruler, i.e, a set of integers whose pairwise differences
�k � �`, k 6= ` are all distinct. Then one can verify that, for
all z 2 Cd,

zz⇤ = d2E|hz,Xi|2XX⇤
+

dX

k=1

|hz, eki|2(eke⇤k�I) (PRF-2)

holds. Note that (PRF-2) is the analogue of (PRF-1). The
requirements on {�k}dk=1 can be satisfied for special val-
ues d as above and for any d, for instance, by choosing
�k := d(k � 1)

2
+ k � 1, k = 1, . . . , d, cf. [18] and

references therein. Thus, the maximal frequency (the length
of the Golomb ruler) can be chosen smaller than d3. A simple
counting argument yields that it must be bigger than 1

2d(d�1),
and it is conjectured that, for any d > 0, one can find a Golomb
ruler with length less than d2.

Using the semidefinite program (6) for the last two scenarios
in particular asks for the iterated evaluation of Fn(H). Assum-
ing moreover that only n = O(d log d) measurement vectors
xj 2 Cd suffice for reconstruction with high probability, a
naive evaluation of Fn(H) = (trace(Hxjx

⇤
j ))

n
j=1 requires

O(d3 log d) floating point operations. Applying fast Fourier
transforms, tailored to the indices �k 2 Z, k = 1, . . . , d, we
expect a reduction to preferably O(d2 log2 d) floating point
operations for one application of the map Fn.

IV. DISCUSSION AND CONCLUSION

The deterministic time-frequency measurements yield a
closed reconstruction formula. However, this formula is only
available in certain dimensions and the number of measure-
ments is d2 + 1. This number can be reduced by switch-
ing to the random setting, in which we proposed to select
time-frequency measurements through a discrete probability
measure with mass distributed according to the proposed
deterministic measurement process. There is still the restriction
to certain special dimensions. To overcome such limitations,
we propose a hybrid model in which Fourier measurements
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are performed randomly and time measurements are added
in a deterministic fashion. The latter may also better match
the experimental measurement setting. When the associated
Fourier vectors are based on Golomb rulers, then the key
ingredient (PRF-2) for a proof that the semidefinite program
recovers the correct signal is satisfied. Therefore, we have
strong indication that the rigorous mathematical proof can be
derived.
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Abstract—Ewald summation has established as basic element

of fast algorithms evaluating the Coulomb interaction energy of

charged particle systems in three dimensions subject to periodic

boundary conditions. In this context particle mesh routines, as the

P3M method, and the P2NFFT, which is based on nonequispaced

fast Fourier transforms (NFFT), should be mentioned. These

methods treat the problem efficiently in case that periodic

boundary conditions in all three dimensions are assumed. In this

paper we present a new approach for the efficient calculation

of the Coulomb interaction energy subject to mixed boundary

conditions based on NFFTs.

I. INTRODUCTION

Let a set of N charges q

j

2 R at positions x

j

2 R3,
j = 1, . . . , N , be given. Throughout this paper we assume
that the system is electrical neutral, i.e.,

P
N

j=1 qj = 0. The
electrostatic energy of the particle system is basically a sum
of the form

E(S) := 1

2

NX

i,j=1

X

n2S

0 q

i

q

j

kx
i

� x

j

+Bnk , (1)

where S ✓ Z3 is set according to the given boundary
conditions and B 2 R is the edge length of the periodically
duplicated simulation box. The prime on the second sum
indicates that in the case n = 0 the terms for i = j are
omitted.

If periodic boundary conditions are applied in all three
dimensions, the particle positions x

j

are commonly assumed
to be distributed in a cubic box, i.e., x

j

2 BT3 for some
B > 0, and S := Z3. We thereby define the torus T := R/Z '
[�1

/2, 1/2). In some applications periodic boundary conditions
are assumed in two or one dimension only, where we choose
S := Z2 ⇥ {0} with x

j

2 BT2 ⇥ R and S := Z⇥ {0}2 with
x

j

2 BT⇥ R2, respectively.
It is important to note that in all three cases the infinite

sum (1) is only conditionally convergent, i.e., the value of the
energy is not well defined unless a precise order of summation
is specified.

The well known Ewald summation formulas, which have at
first been derived for the fully periodic case, cf. [1], are the
principle behind many fast algorithms evaluating the energy
(1). The Ewald method is based on the trivial identity

1

r

=

erf(↵r)

r

+

erfc(↵r)

r

, (2)

where ↵ > 0, erf(x) := 2p
⇡

R
x

0 e

�t

2

dt is the well known error
function and erfc(x) := 1�erf(x) is the complementary error
function. If (2) is applied to (1), the poorly converging sum is
split into two exponentially converging parts. The first infinite
sum, including the erfc-terms, is short ranged and absolutely
convergent in spatial domain. Taking a specific summation
order into account and exploiting the charge neutrality, the
second sum, which is still long ranged, can be transformed
into a rapidly converging sum in frequency domain. Usually,
the energy (1) is defined over a spherical order of summation,
see [4] for a detailed derivation for the fully periodic case. The
Ewald summation formulas for 2d- and 1d-periodic boundary
conditions are derived in [2] and [3], respectively.

In the fully periodic case, the Ewald method has the
complexity O(N

3
/2
) if the splitting parameter ↵ is chosen ap-

propriately. However, the computational effort can be reduced
to O(N logN) arithmetic operations by evaluating the long
range part efficiently using Fast Fourier transforms (FFT). For
this purpose, the problem has to be modified in a way that the
FFT as a grid transformation can be used. This discretization is
performed by replacing the charges q

j

by a grid based charge
density. This is the basic idea behind Particle Mesh approaches
such as the P3M method, see [5] to get an overview over
some of these techniques. The same principle is used in the
P2NFFT method [6], which is based on nonequispaced fast
Fourier transforms (NFFT). Here the discretization process is
part of the NFFT algorithms.

For open boundary conditions, i.e., S := {0}3 in (1),
fast summation methods [8], [9] based on NFFTs where
suggested, too. In this note we aim to close the gap and
propose FFT based algorithms also for 2d- and 1d-periodic
boundary conditions.

We remark that the fast multipole method can also handle
all boundary conditions very efficiently, see [10].

The outline of this paper is as follows. We start with a
short introduction to the NFFT. Thereafter we consecutively
consider the problem of evaluating (1) subject to 2d- and 1d-
periodic boundary conditions. In each case we consider at
first the according Ewald summation formula and then present
a new approach for the efficient calculation of the Coulomb
interaction energy (1) based on NFFTs.

To keep the notation short we define the difference vectors
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x

ij

:= x

i

� x

j

. For some M 2 2Nd we refer to I
M

as the
index set given by

I
M

:=

�⇥�M1
2 ,

M1
2

�⇥ · · ·⇥ ⇥�Md
2 ,

Md
2

� \ Zd

.

Throughout this paper we do not distinguish between row and
column vectors and denote by x · y := x1y1 + . . .+ x

d

y

d

the
scalar product and by x � y := (x1y1, . . . , xd

y

d

) 2 Rd the
component wise product of two vectors x,y 2 Rd. For some
x 2 Rd with non-vanishing components we further define the
vector x�1 2 Rd by x

�1
:= (x

�1
1 , . . . , x

�1
d

).

II. NONEQUISPACED FAST FOURIER TRANSFORMS

Let M 2 2Nd, the index set I
M

and the coefficients ˆ

f

k

2 C
for k 2 I

M

be given. The fast evaluation of a trigonometric
polynomial

f(x) :=

X

k2I
M

ˆ

f

k

e

�2⇡ik·x

at N 2 N given nodes x

j

2 Td, i.e., the fast computation of
f

j

:= f(x

j

), j = 1, . . . , N , is known as d-dimensional NFFT.
The algorithm uses an approximation of f in the form

f(x) ⇡
X

l2I
m

g

l

'̃(x� l�m

�1
), (3)

where '̃ is a multivariate 1-periodic function, which is well
localized in spatial and frequency domain, and m 2 2Nd

with m > M (component wise). It can be shown that it is
reasonable to set, cf. [7],

g

l

:=

1

|I
m

|
X

k2I
M

ˆ

f

k

c

k

('̃)

e

2⇡ik·(l�m

�1)
,

where c

k

('̃) denotes the Fourier coefficient with index k of
'̃. Obviously, the coefficients g

l

2 C can be calculated using
the FFT. The function values f(x

j

) are then computed via (3),
where the sums can be truncated due to the good localization
of '̃ in spatial domain.

Correspondingly, the adjoint NFFT is an algorithm for the
efficient calculation of

ˆ

h

k

:=

NX

j=1

f

j

e

2⇡ik·xj
, k 2 I

M

,

for N given nodes x

j

2 Td and coefficients f

j

2 C, j =

1, . . . . , N . The resulting algorithm has a very similar structure
and the same arithmetic complexity of O(|I

M

| log |I
M

|+N),
see [7] for instance. In this reference different choices for the
window function '̃ are discussed, too.

III. 2D-PERIODIC SYSTEMS

For N charges q

j

at positions x

j

= (x

j,1, xj,2, xj,3) 2
BT2 ⇥ R, j = 1, . . . , N , we define the electrostatic energy
subject to periodic boundary conditions in the first two di-
mensions by E

p2
:= E(Z2 ⇥ {0}).

At first we review the corresponding Ewald formula, as
derived in [2], and then present an NFFT approach for the
fast calculation of the energy E

p2. In this section we refer to
˜

x := (x1, x2) 2 BT2 as the vector of the first two components
of some x 2 BT2 ⇥ R.

A. Ewald Formula
If a spherical order of summation is applied, the electrostatic

energy E

p2 can be written in the form, cf. [2],

E

p2
= E

p2,S
+ E

p2,L
+ E

p2,0
+ E

p2,self
, (4)

where for some ↵ > 0

E

p2,S
:=

1

2

X

n2Z2⇥{0}

NX

i,j=1

0
q

i

q

j

erfc(↵kx
ij

+Bnk)
kx

ij

+Bnk

E

p2,L
:=

1

4B

X

k2Z2\{0}

NX

i,j=1

q

i

q

j

e

2⇡ik·x̃ij/B
⇥

p2
(kkk, x

ij,3)

E

p2,0
:= �

p
⇡

B

2

NX

i,j=1

q

i

q

j

⇥

p2
0 (x

ij,3)

E

p2,self
:= � ↵p

⇡

NX

j=1

q

2
j

.

We thereby define the functions ⇥p2
0 and ⇥p2 by

⇥

p2
0 (r) :=

e

�↵

2
r

2

↵

+

p
⇡r erf(↵r)

and
⇥

p2
(k, r) :=

 (k, r) + (k,�r)

k

,

where we set

 (k, r) := e

2⇡kr/B
erfc

�
⇡k

↵B

+ ↵r

�
.

We immediately see that ⇥p2
0 2 C

1
(R) as well as ⇥p2

(k, ·) 2
C

1
(R) for each k 6= 0.

Lemma 1. For arbitrary r 2 R we have ⇥p2
(k, r) ! 0 with

⇥

p2
(k, r) ⇠ k

�2
e

�k

2

for k ! 1.

Proof: The function ⇥p2 has the integral representation

⇥

p2
(k, r) =

4

p
⇡

B

Z
↵

0

1

t

2
exp

✓
�⇡

2
k

2

B

2
t

2
� r

2
t

2

◆
dt,

cf. [11, number 7.4.33]. We now easily see

⇥

p2
(k, r)  ⇥p2

(k, 0) =

2

k

erfc

✓
⇡k

↵B

◆
⇡ 2↵B

k

2
⇡

3/2
e

� ⇡2k2

↵2B2
,

which is valid for large k, cf. [11, number 7.1.23].

B. An NFFT approach
The infinite sum in E

p2,S is short ranged and can be
computed by direct evaluation. Due to Lemma 1 the infinite
sum in E

p2,L can be truncated, i.e., we can replace Z2 by I
M

for some appropriate M 2 2N2.
In the following we choose h > 0 and " > 0 such that

|x
ij,3|  h(

1
/2�") for all i, j = 1, . . . , N . In order to compute

the far field E

p2,L
+ E

p2,0 efficiently we employ the idea of
NFFT based fast summation methods [8] and consider the
regularization

KR(k, r) :=

8
><

>:

1
4B⇥

p2
(k, r) : k 6= 0, |h�1

r|  1
/2 � "

�
p
⇡

B

2 ⇥
p2
0 (r) : k = 0, |h�1

r|  1
/2 � "

KB(k, r) : |h�1
r| 2 (

1
/2 � ",

1
/2]

,
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where for each k 2 {kkk : k 2 I
M

} the function KB(k, ·) is
defined such that KR(k, ·) is in the space C

p

(hT) for some
p 2 N large enough, i.e., KB(k, ·) fulfills the conditions

K

(n)
B (k,

h

/2 � h") = K

(n)
R (k,

h

/2 � h")

K

(n)
B (k,�h

/2 + h") = K

(n)
R (k,�h

/2 + h")

= (�1)

n

K

(n)
R (k,

h

/2 � h")

for all n = 0, . . . , p and is chosen such that

K

(n)
R (k,

h

/2) = K

(n)
R (k,�h

/2) 8n = 0, . . . , p

is satisfied, too. The order p can be chosen arbitrarily large
as the functions ⇥p2

0 and ⇥p2
(k, ·) are differentiable for all

degrees of differentiation. The resulting functions KR(k, ·)
then are h-periodic and smooth. Thus we can find good
approximations of the form

KR(k, r) ⇡
X

l2IM3

b

k,l

e

2⇡ilr/h

with M3 2 2N large enough and the Fourier coefficients

b

k,l

:=

1

M3

X

j2IM3

KR

⇣
k,

jh

M3

⌘
e

�2⇡ijl/M3
.

With M

⇤
:= (M ,M3) 2 2N3 we obtain

E

p2,L
+ E

p2,0 ⇡
X

k2I
M

X

l2IM3

bkkk,l

NX

i,j=1

q

i

q

j

e

2⇡iv
k,l·xij

=

X

(k,l)2I
M

⇤

bkkk,l|S(k, l)|2, (5)

where we define

v

k,l

:=

✓
k/B

l/h

◆
as well as S(k, l) :=

NX

j=1

q

j

e

2⇡iv
k,l·xj

.

Obviously, the sums S(k, l), (k, l) 2 I
M

⇤ , can efficiently be
computed by a trivariate adjoint NFFT.

Remark 1. The energy E

p2 can also be written in the form
E

p2
=

1
2

P
N

j=1 qj�
p2
(x

j

), where for each x

j

the potential
�

p2
(x

j

) is defined by

�

p2
(x

j

) :=

X

n2Z2⇥{0}

NX

i=1

0 q

i

kx
ij

+Bnk .

The term q

j

�

p2
(x

j

) then represents the energy of the single
particle j. It is easy to see that we can write

�

p2
(x

j

) = �

p2,S
(x

j

)+�

p2,L
(x

j

)+�

p2,0
(x

j

)+�

p2,self
(x

j

),

according to (4). By (5) we find that the long range part
�

p2,L
(x

j

) + �

p2,0
(x

j

) can be approximated by

2

X

(k,l)2I
M

⇤

bkkk,lS(k, l)e
�2⇡iv

k,l·xj
.

Having calculated the sums S(k, l) the long range parts of
the potentials �

p2
(x

j

), j = 1, . . . , N , can be computed by a
trivariate NFFT. Note that computing this additional NFFT is
not necessary if only the total energy E

p2 is of interest.

IV. 1D-PERIODIC SYSTEMS

For N charges q
j

at positions x
j

2 BT⇥R2, j = 1, . . . , N ,
we denote by E

p1
:= E(Z⇥{0}2) the electrostatic energy (1)

subject to periodic boundary conditions in the first dimension.
In this section we refer to ˜

x := (x2, x3) 2 R2 as the vector
of the last two components of some x 2 BT⇥R2. Furthermore
we define by

�(s, x) :=

Z 1

x

t

s�1
e

�t

dt

the upper incomplete gamma function and by � the Euler
constant.

A. Ewald formula

The Ewald summation formula for the electrostatic energy
E

p1 reads as, cf. [3],

E

p1
= E

p1,S
+ E

p1,L
+ E

p1,0
+ E

p1,self
,

where

E

p1,S
:=

1

2

X

n2Z⇥{0}2

NX

i,j=1

0
q

i

q

j

erfc(↵kx
ij

+Bnk)
kx

ij

+Bnk

E

p1,L
:=

1

B

X

k2Z\{0}

NX

i,j=1

q

i

q

j

e

2⇡ikxij,1/B
⇥

p1
(k, k˜x

ij

k)

E

p1,0
:= � 1

2B

NX

i,j=1
x̃ij 6=0

q

i

q

j

⇥

p1
0 (k˜x

ij

k)

E

p1,self
:= � ↵p

⇡

NX

j=1

q

2
j

for some ↵ > 0. Thereby the functions ⇥p1 and ⇥p1
0 are

defined by

⇥

p1
(k, r) :=

Z
↵

0

1

t

exp

✓
�⇡

2
k

2

B

2
t

2
� r

2
t

2

◆
dt

and
⇥

p1
0 (r) := � + �(0,↵

2
r

2
) + ln(↵

2
r

2
).

It can easily be seen that ⇥p1
(k, ·) 2 C

1
(R) for any k.

Lemma 2. For arbitrary r 2 R we have ⇥p1
(k, r) ! 0 with

⇥

p1
(k, r) ⇠ k

�2
e

�k

2

for k ! 1.

Proof: We immediately see

⇥

p1
(k, r)  ⇥p1

(k, 0) =

1

2

�

✓
0,

⇡

2
k

2

↵

2
B

2

◆
.

The claim follows by applying the asymptotic expansion

�(0, x) ⇡ e

�x

x

,

cf. [11, number 6.5.32], which holds for large x.

Lemma 3. For the univariate function

#(x) :=

(
0 : x = 0

� + �(0, x

2
) + ln(x

2
) : else
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we have # 2 C

1
(R).

Proof: From the identity, cf. [11, number 5.1.11],

� + �(0, t) + ln(t) =

1X

k=1

(�1)

k+1
t

k

k!k

, (6)

which is fulfilled for all positive t, it can be seen that
lim

t!0 �(0, t) + ln t + � = 0. Thus, the function # is
continuous. Since (6) holds for t > 0 we obtain

� + �(0, x

2
) + ln(x

2
) =

1X

k=1

(�1)

k+1
x

2k

k!k

for all x 6= 0 and conclude

lim

x!+0

d

n

dx

n

�
�(0, x

2
) + ln(x

2
)

�

= lim

x!�0

d

n

dx

n

�
�(0, x

2
) + ln(x

2
)

� 6= ±1

for all n 2 N.

B. An NFFT approach

Due to Lemma 2 the infinite sum in E

p1,L can be truncated,
i.e., we can replace Z by I

M0 for some appropriate M0 2 2N.
In the following we choose h > 0 and " > 0 such that

k˜x
ij

k  h(

1
/2 � ") for all i, j = 1, . . . , N . In order to

compute the far field E

p1,L
+ E

p1,0 efficiently we define the
regularization KR by

KR(k, r) :=

8
><

>:

1
B

⇥

p1
(k, r) : k 6= 0, |h�1

r|  1
/2 � "

� 1
2B⇥

p1
0 (r) : k = 0, |h�1

r|  1
/2 � "

KB(k, r) : |h�1
r| 2 (

1
/2 � ",

1
/2]

,

where for each k 2 N0 \ I
M0 the function KB(k, ·) is chosen

such that the bivariate function KR(k, k · k) : hT2 ! R is in
the space C

p

(hT2
) for p 2 N sufficiently large, i.e., KB(k, ·)

fulfills the conditions

K

(n)
B (k,

h

/2 � h") = K

(n)
R (k,

h

/2 � h")

K

(n)
B (k,�h

/2 + h") = (�1)

n

K

(n)
R (k,

h

/2 � h")

for all n = 0, . . . , p and is chosen such that

KR(k,
h

/2) = KR(k,�h

/2)

K

(n)
R (k,

h

/2) = K

(n)
R (k,�h

/2) = 0, n = 1, . . . , p.

We further set KR(k, kyk) := KR(k,
h

/2) for all y 2 hT2

with kyk >

h

/2.
The smooth and periodic functions KR(k, k · k) can then

be approximated by a bivariate trigonometric polynomial. To
this end, we set r := kyk, y 2 hT2, and obtain for each
k 2 N \ I

M0 with an appropriate M 2 2N2

KR(k, kyk) ⇡
X

l2I
M

b

k,l

e

2⇡il·y/h

with the Fourier coefficients

b

k,l

:=

1

|I
M

|
X

j2I
M

KR

�
k, kj �M

�1kh� e�2⇡ij·(l�M

�1)
.

With M

⇤
:= (M0,M) 2 2N3 we obtain, analogously to (5),

E

p1,L
+ E

p1,0 ⇡
X

(k,l)2I
M

⇤

b|k|,l

NX

i,j=1

q

i

q

j

e

2⇡ivk,l·xij

=

X

(k,l)2I
M

⇤

b|k|,l|S(k, l)|2,

where we set

S(k, l) :=

NX

j=1

q

j

e

2⇡ivk,l·xj with v

k,l

:=

✓
k/B

l/h

◆
.

The sums S(k, l), (k, l) 2 I
M

⇤ , can efficiently be evaluated
by a trivariate adjoint NFFT. For the 1d-periodic case a similar
statement to that in Remark 1 can be given.

V. CONCLUSION

In this paper we proposed a new approach for the efficient
calculation of the Coulomb interaction energy under 2d- and
1d- periodic boundary conditions. The presented methods are
based on the corresponding Ewald summation formulas and
nonequispaced fast Fourier transforms, where the ansatz is
very much related to those of NFFT based fast summation
methods. Numerical results of these algorithms will be re-
ported in a further paper, where we aim to set the main focus
on the derivation of error estimates as well as concluding
statements about the optimal choice of the cutoff parameters
and the regularization variables h, " and p.
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I. Introduction

Computing the discrete Fourier transform of a vector of
size N requires O(N logN) arithmetical operations. The
problem of a sparse Fourier transform (sFFT) now reads
as follows: For a vector x = (x

l

)N≠1
l=0 œ CN , assume that

its Fourier representation

x

l

= 1
N

N≠1X

j=0
x̂

j

e2fiilj/N
, l = 0, . . . , N ≠ 1,

has only K π N non-vanishing Fourier coe�cients x̂
jk œ

C, j
k

œ {0, . . . , N ≠ 1}, k = 1, . . . ,K. Now given part
of the vector of samples x œ CN , determine the non-
vanishing Fourier coe�cients x̂

jk œ C and their support
j

k

œ {0, . . . , N ≠ 1}, k = 1, . . . ,K.
This problem has recently attracted much attention in

the field of compressed sensing [2], [4], where one generally
aims to reconstruct a vector with few non-vanishing coef-
ficients from a relatively small number of linear measure-
ments. Besides measurement matrices with independent
random entries, structured matrices generated by a smaller
number of random variables have been studied over the
last years. Here, the most prominent example is given
by a random selection of K rows of the N -th Fourier
matrix, see e.g. [15], [11]. For this particular setting, the
class of sublinear-time Fourier algorithms [5], [10] with a
runtime that is polynomial in logN and K received much
attention. The key idea, as outlined recently in [8], [6], [7]
is the use of quasi random sampling and a band pass filter.
Recently, these methods have been generalised for o�-grid
frequencies as well [1].

On the other hand, Prony-like methods are known for
a long time in parameter estimation, in particular for

exponential sums, see e.g. [13], [14] and references therein.
In this note, we combine Prony-like methods with the
above quasi random sampling and band pass filtering
techniques.

II. Prony method

Let K Ø 1 be an integer, f
k

œ (≠Œ, 0] + i [≠fi, fi), k =
1, . . . ,K, be distinct complex numbers and c

k

œ C \ {0},
k = 1, . . . ,K. We assume that |c

k

| > Á for a convenient
bound 0 < Á π 1 and consider the exponential sum of
order K,

h(x) :=
KX

k=1
c

k

efkx, x Ø 0, (II.1)

where the nodes z
k

:= efk , k = 1, . . . ,K are distinct values
in the unit disk D := {z œ C : 0 < |z| Æ 1} without zero.
The well known Prony method recovers all parameters of
the exponential sum (II.1), if sampled data

h(m) =
KX

k=1
c

k

efkm =
KX

k=1
c

k

z

m

k

œ C, m = 0, . . . ,M ≠ 1,

(II.2)
with M Ø 2K are given. This problem is known as
frequency analysis problem, which is important within
many disciplines in sciences and engineering, see [13]. For
a survey of the most successful methods for the data fitting
problem with linear combinations of complex exponentials,
we refer to [12]. We follow the lines in [14] and consider the
case of an unknown order K for the exponential sum (II.1)
and given noiseless sampled data h(m), m = 0, . . . ,M ≠1.
Let K0 œ N be a convenient upper bound of K, i.e.
K Æ K0 Æ M/2. With the M sampled data h(m) œ C,
m = 0, . . . ,M ≠ 1, we form the rectangular Hankel matrix

H
M≠K0,K0+1 :=

�
h(m+ k)

�
M≠K0≠1,K0
m,k=0 (II.3)

and compute the singular value decomposition (SVD)

H
M≠K0,K0+1 = U

M≠K0DM≠K0,K0+1WK0+1 , (II.4)

where U
M≠K0 and W

K0+1 are unitary matrices and
where D

M≠K0,K0+1 is a rectangular diagonal matrix.
The diagonal entries of D

M≠K0,K0+1 are the singular
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values of H
M≠K0,K0+1 arranged in nonincreasing order

‡1 Ø ‡2 Ø . . . Ø ‡K > ‡K+1 = . . . = ‡
K0+1 = 0.

Thus we can determine the rank K of the Hankel matrix
(II.3) which coincides with the order of the exponential
sum (II.1). Introducing the matrices

D
M≠K0,K := D

M≠K0,K0+1(1 :M ≠K0, 1 : K)

=
✓

diag (‡
k

)K
k=1

O
M≠K0≠K,K

◆
,

W
K,K0+1 := W

K0+1(1 : K, 1 : K0 + 1) ,

we can simplify the SVD of the Hankel matrix (II.3) as
H
M≠K0,K0+1 = U

M≠K0DM≠K0,KWK,K0+1 . Setting

W
K,K0(s) =W

K,K0+1(1 : K, 1 + s : K0 + s) , s = 0, 1,
(II.5)

we determine the nodes z
k

œ D, k = 1, . . . ,K, as
eigenvalues of the matrix

F SVD
K

:=
�
W
K,K0(0)T�†

W
K,K0(1)T

, (II.6)

where † denotes the Moore-Penrose-Inverse. Thus the
ESPRIT [16] algorithm reads as follows:

Algorithm II.1 (ESPRIT method)
Input: K0, M œ N (M ∫ 2, 3 Æ K0 Æ M/2, K0 is

upper bound of the order K of (II.1)), h(m) œ C, m =
0, . . . ,M ≠ 1, 0 < Áπ 1.

1. Compute the SVD of the rectangular Hankel matrix
(II.4). Determine the rank K of H

M≠K0,K0+1 such that
‡

K+1 < Á‡1 and form the matrices (II.5).
2. Compute all eigenvalues z

k

œ D, k = 1, . . . ,K, of the
square matrix F SVD

K

. Set f
k

:= log z
k

, k = 1, . . . ,K.
3. Compute the coe�cients c

k

œ C, k = 1, . . . ,K,
as least squares solution of the overdetermined linear
Vandermonde–type system

(zm
k

)M≠1,K
m=0,k=1 c =

�
h(m)

�
M≠1
m=0 (II.7)

with z := (z
k

)K
k=1 and c := (c

k

)K
k=1

Output: K œ N, f
k

œ (≠Œ, 0] + i [≠fi,fi), c
k

œ C, k =
1, . . . ,K.

Remark II.2 For noiseless sampled data, the authors in
[14] describe the close connections between the classical
Prony method, the matrix pencil method based on a QR
decomposition, and the ESPRIT method.

III. Random sampling and integer frequencies

We consider the sparse Fourier approximation problem.
For a vector x œ CN , we assume that its Fourier represen-
tation

x

l

= 1
N

N≠1X

j=0
x̂

j

e2fiilj/N
, l = 0, . . . , N ≠ 1,

has only K π N non-vanishing Fourier coe�cients
x̂

jk , jk œ {0, . . . , N ≠ 1}, k = 1, . . . ,K. That is,

x

l

= 1
N

KX

k=1
x̂

jk e2fiiljk/N =
KX

k=1
c

k

ef̃kl, l = 0, . . . , N ≠ 1,

with c
k

= 1
N

x̂

jk œ C\{0} and f̃
k

= 2fiij
k

/N œ C satisfying
Re f̃

k

= 0 and Im f̃
k

œ [0, 2fi), k = 1, . . . ,K. Applying e.g.
the ESPRIT method to the first M entries x0, . . . , xM≠1
of x would yield coe�cients c

k

œ C\{0} and frequencies
f

k

œ C with Re f
k

= 0 and Im f
k

œ [≠fi,fi), k = 1, . . . ,K.
By

f̃

k

=
(
f

k

, Im f
k

Ø 0,
f

k

+ 2fii, Im f
k

< 0,

and

j

k

= round(N2fi Im f̃
k

),

x̂

jk = Nc
k

,

k = 1, . . . ,K, we could accomplish the computation of the
K-sparse Fourier transform x̂ œ CN that way.

However, we do not intend to take necessarily the first
M entries x0, . . . , xM≠1 as input for the Prony-like method
but (to a certain extent) random M entries of the vector
x. We use a random parameter ‡ œ {1, . . . , N ≠ 1}
being invertible modulo N and a random shift parameter
· œ {0, . . . , N ≠ 1} similarly as used in [8]. The following
theorem confirms the possibility to connect randomized
signal samples and a Prony-like algorithm for computation
as suggested in [17].

Theorem III.1 Let the vector x = (x
l

)N≠1
l=0 œ CN with a

K-sparse Fourier representation

x

l

= 1
N

KX

k=1
x̂

jk e2fiiljk/N
, l = 0, . . . , N ≠ 1, (III.1)

and two integers ‡, · œ {0, . . . , N ≠ 1}, ‡ being invertible
modulo N , be given. Then we have

x

‡l+· =
KX

k=1
c

k

ef̃kl, l = 0, . . . , N ≠ 1,

with coe�cients

c

k

= 1
N

x̂

jkÊ
jk·

N

œ C\{0}
and frequencies

f̃

k

= i2fi
N

((j
k

‡) modN) œ C

such that Re f̃
k

= 0 and Im f̃
k

œ [0, 2fi), k = 1, . . . ,K.
Here, Ê

N

= e2fii/N denotes the principal N -th primitive
root of unity.

A simple consequence is the following: Let two integers
‡, · œ {0, . . . , N ≠ 1}, ‡ invertible modulo N , and a
su�ciently big number of samples M Ø 2K be given.
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One can determine the K non-zero Fourier coe�cients
x̂

jk œ C and integer frequencies j
k

œ {0, . . . , N ≠ 1} of
the vector x œ CN with entries (III.1) using the samples
x

‡l+· , l = 0, . . . ,M ≠ 1, by

j

k

= (round(N2fi Im f
k

)‡≠1) modN, k = 1, . . . ,K,

and
x̂

jk = Nc
k

Ê

≠jk·
N

, k = 1, . . . ,K,

where ‡≠1 denotes the inverse of ‡ modulo N and
c

k

, f

k

, k = 1, . . . ,K, the output of a Prony-like recon-
struction method. Hence, the Prony-like methods are well-
suited for the computation of sparse Fourier transforms.
After applying the Algorithm II.1 to the permuted signal
samples, we obtain the integer frequencies by rounding.
Further, we need to invert the random separation and
take the modulo of the result in order to guarantee that
j

k

œ {0, . . . , N ≠ 1}. The random shift in the sampling
index causes a modulation of the Fourier coe�cients which
can be easily corrected. Assigning such a quasi-random
sign is intended to prevent cancellations of nearby coe�-
cients which would look alike in time domain samples. A
more detailed analysis follows for the expected separation
of nearby frequencies [9] which leads to a stabilization of
the Prony method, see [14].

Theorem III.2 Let N œ N be prime, the vector x̂ œ CN
contain K nonzeros and choose ‡ œ {1, . . . , N ≠ 1} uni-
formly distributed at random. Then the separation distance
of the vector (x̂

‡j

)
j=0,...,N≠1 œ CN fulfils

P
✓

min
k ”=l
|‡j
k

≠ ‡j
l

| Ø N ≠ 1
2K(K ≠ 1)

◆
Ø 1

2 . (III.2)

Proof: The frequencies {j
k

} have
�
K

2
�

pairwise di�er-
ences. For each fixed di�erence s œ {1, . . . , N ≠ 1}, there
exist at most 2

�
K

2
�

di�erent values ‡ œ {1, . . . , N≠1} such
that min

k ”=l |‡jk ≠ ‡jl| = s. We estimate

P
✓

min
k ”=l
|‡j
k

≠ ‡j
l

| = s
◆
Æ K(K ≠ 1)
N ≠ 1 ,

from which the assertion easily follows.
This result becomes e�ective for K œ o(ÔN) and gives
high probability of success for the Prony method by
independent repetition.

IV. A splitting approach

The most time-consuming steps of Prony-like recovery
methods are the factorization of the Hankel matrix (II.4)
and the least squares solution of the system (II.7). Hence,
the computational costs for the Prony-like methods are
O(K2

M) in general and O(K3 log(N
K

)) if we choose M =
O(K log(N

K

)) samples. This recovery method is sublinear
in the problem size N but scales cubic in the number K
of non-zeros, such that only very sparse Fourier trans-
forms can be computed in an e�cient way. We proceed
by a modification of the Prony-like methods adapted to

the sparse Fourier transform problem to further reduce
computational costs.

Let a number B œ N, B Æ K, of frequency bands be
chosen. Instead of recovering all of the K non-vanishing
Fourier coe�cients at once, we split the frequency set
{0, 1, . . . , N ≠ 1} into the disjoint subsets { b≠1

B

N,

b≠1
B

N +
1, . . . , b

B

N ≠1}, b = 1, . . . , B, and assume that N
B

is prime
or that {1, . . . , N

B

} contains many invertible elements ‡.
We now determine only coe�cients with frequencies in
such a subset in each recovery step.

In order to do so, we use a filter that is concentrated
both in time and frequency. Let Á > ÁÕ > 0 be two
parameters and set N1 = ÁÁÕN/2Ë and N2 = ÂÁN/2Ê.
We define the auxiliary function a : [N1, N2] æ R using
a1 : Ræ R and a2 : [≠1, 1]æ R via

a1(x) = e≠1/x2
, x œ R\{0}, a1(0) = 0,

a2(x) = a1(1≠ x)
a1(1≠ x) + a1(1 + x) ,

a(x) = a2(2/(N2 ≠N1)(x≠N1)≠ 1). (IV.1)

Then, the function a is smooth in [N1, N2], a(N1) = 1,
a(N2) = 0, and all derivatives of a vanish at N1 and N2.
We now set ĝ = (ĝ

j

)N≠1
j=0 œ RN ,

ĝ

j

=

8
>>><

>>>:

1, j < N1 and j > N ≠N1,

0, N2 < j < N ≠N2,

a(j), j œ [N1, N2],
a(N ≠ j), j œ [N ≠N2, N ≠N1].

and define the final filter for a spatial cut-o� W œ N,
W < N , typically chosen as W = O(B logN), by h =
(h
l

)N≠1
l=0 œ CN ,

h

l

=
(
g

l

, l œ [≠W2 , W2 ],
0, elsewise.

Instead of the signal x, we use the convolved vector

x ú h = (
N≠1X

k=0
x

k

h

l≠k)N≠1
l=0 œ CN

in the computation of the sparse Fourier transform. We
have

\(x ú h) = x̂ · ˆh = (x̂
j

ĥx

j

)N≠1
j=0 .

Therefore, it is likely that the number of non-zero Fourier
coe�cients of x ú h is smaller than before since most of
the coe�cients ĥ

j

, j /œ { b≠1
B

N, . . . ,

b

B

N ≠ 1}, are (almost)
zero. In case the randomized Prony-like method outputs
a frequency which is not in the currently considered
subset { b≠1

B

N, . . . ,

b

B

N≠1}, we discard the corresponding
coe�cient, such that the expected number of non-zero
coe�cients which we seek to identify in each of the B steps
is K
B

. We employ the randomization in each step and use
M1 = O(K

B

log(NB
K

)) samples

(P
‡,·

(x ú h))
l

:= (x ú h)
‡l+· ,
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Figure IV.1. Example step of the split Prony-like method.

In step b = 2 of B = 8 computation steps, the signal x of length
N = 28 = 256 (a) with K = 10 non-zeros in its Fourier transform x̂
(b) is convolved with the filter h (c). The resulting vector xúh (e) is
randomly permuted. In all the subfigures only the real parts of the
complex vectors are plotted.

l = 0, . . . ,M1 ≠ 1, in each recovery step. Figure IV.1,
see also [17], serves as an illustration for this splitting
approach. The e�ects of convolving the signal x with the
filter h and applying the randomization afterwards are
pictured both in the time domain and in the frequency
domain for a particular example.

Finally, we shortly analyse the expected computational
complexity of this splitted Prony method. As argued
above, the expected number of frequencies is O(K

B

) and
we thus choose M1 = O(K

B

log(NB
K

)) samples per recov-
ery step. The computationally most expensive parts of
one step then is spatial filtering which takes O(M1W )
arithmetic operations and the Prony-like method requiring
O(M1

K

2

B

2 ) arithmetic operations. Moreover, we assume a
spatial filter length W = O(B logN), which is supported
for a particular error measure in [8], [6], [7], and choose
the optimal value B = O(K 2

3 ) of recovery steps. In total,
this leads to a complexity of O(K 5

3 log2
N). While this

is beyond the recently achieved bounds for sparse FFTs

we nevertheless expect a wider applicability due to the
fact that Prony-like methods seem to be more stable with
respect to o�-grid frequencies, cf. [3].
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Abstract—The nonequispaced fast Fourier transform (NFFT)

allows the fast approximate evaluation of trigonometric polyno-

mials with frequencies supported on full box-shaped grids at

arbitrary sampling nodes. Due to the curse of dimensionality,

the total number of frequencies and thus, the total arithmetic

complexity can already be very large for small refinements at

medium dimensions. In this paper, we present an approach for the

fast approximate evaluation of trigonometric polynomials with

frequencies supported on symmetric hyperbolic cross index sets

at arbitrary sampling nodes. This approach is based on Taylor

expansion and rank-1 lattice methods. We prove error estimates

for the approximation and present numerical results.

I. INTRODUCTION

We consider the evaluation of trigonometric polynomials
f : Td

:= [0, 1)d ! C,

f(x) =
X

l2IN

ˆf
l

e

�2⇡ilx, ˆf
l

2 C, IN ⇢ Zd \ [�N,N ]

d, (1)

at arbitrary sampling nodes y` 2 Td, ` = 0, . . . , L� 1. For
given Fourier coefficients ˆf

l

, the direct evaluation of the
trigonometric sums f(y`), ` = 0, . . . , L� 1, takes O(L |IN |)
arithmetic operations. Various fast methods for the approxi-
mate evaluation of the trigonometric sums f(y`) were devel-
oped.

In the case, when the frequency index set IN is a full
grid, IN = Gd

N := Zd \ [�N,N)

d, the nonequispaced fast
Fourier transform (NFFT, see [1] and references therein) al-
lows the fast approximate evaluation of the trigonometric poly-
nomial f at arbitrary sampling nodes y`, ` = 0, . . . , L� 1,
in O(| log ✏|dL+ |Gd

N | log |Gd
N |) arithmetic operations, where

✏ is the approximation error. Furthermore, there exist Taylor
based versions (cf. [2], [3]) with an arithmetic complexity of
O(| log ✏|d(L+ |Gd

N | log |Gd
N |)), which use fast Fourier trans-

forms (FFT) for evaluating the trigonometric polynomial f as
well as its derivatives at equispaced nodes and approximate the
trigonometric sum f(y`) by a Taylor expansion at the closest
equispaced node. However, since the cardinality of the full
grid Gd

N is |Gd
N | = (2N)

d, the total number of arithmetic
operations can already be very large for small refinements N
at medium dimensionality (e.g. d = 3, 4, 5).

For dyadic hyperbolic crosses ˜Hd
n := [

j2Nd
0 ,kjk1=n

˜G
j

,
˜G
j

:= Zd \ ⇥d
t=1(�2

jt�1, 2jt�1
], kjk1 = |j1|+ . . .+ |jd|,

the nonequispaced hyperbolic cross fast Fourier transform
(NHCFFT) [4] allows the fast approximate evaluation of

trigonometric polynomials with frequencies supported on
the index set IN =

˜Hd
n at arbitrary sampling nodes y`,

` = 0, . . . , L� 1. The NHCFFT is based on the hyperbolic
cross FFT (cf. [5], [6]) and has an arithmetic complexity of
O(| log ✏|d L log | ˜Hd

n|+ | log ✏| | ˜Hd
n|+ | ˜Hd

n| log | ˜Hd
n|), where

| ˜Hd
n|  C nd�1

2

n with a constant C > 0 depending only on
d. In [7], the stability of the hyperbolic cross discrete Fourier
transform was studied.

For symmetric hyperbolic cross index sets
IN = Hd

N := {j 2 Zd
: r(j)  N} in frequency domain

with refinement N 2 N, r(j) :=
Qd

t=1 max(1, |jt|), we
present an approach for the fast approximate evaluation
at arbitrary sampling nodes y`. This method uses
one-dimensional FFTs for evaluating the trigonometric
polynomial f and its derivatives at nodes of a rank-1 lattice.
Then, for each sampling node y`, a Taylor expansion of
degree m� 1, m 2 N, at a closest rank-1 lattice node is
performed. This results in a total arithmetic complexity
of O(md

(L+M logM + |Hd
N |)), where M 2 N is the

size of the rank-1 lattice. We show error estimates for the
approximation error of the presented method. Note, that
we have the inclusion ˜Hd

n ⇢ Hd
2n�1 ⇢ ˜Hd

n�1+2d, see [8,
Lemma 2.1].

In Section II, we give a short overview over Taylor expan-
sion of trigonometric polynomials and define rank-1 lattices.
We show that trigonometric polynomials can be evaluated
at rank-1 lattice nodes using a one-dimensional FFT. The
proposed method is presented in Section III as well as error
estimates for symmetric hyperbolic cross index sets Hd

N .
Results of numerical tests are presented in Section IV. Finally,
we summarize the results in Section V.

II. PREREQUISITE

A. Taylor expansion

We approximate a function f : Td ! C by

f(x) ⇡ sm(x) :=

X
0|s|<m

Dsf(a)

s!

(x� a)

s,

where m 2 N, Dsf :=

@s1

@x1
s1

. . . @sd

@xd
sd

, x := (x1, . . . , xd)
>,

s := (s1, . . . , sd) 2 Nd
0, |s| := |s1|+ . . .+ |sd|, D0f := f ,

s! := s1! · . . . · sd!, xs

:= x1
s1 · . . . · xd

sd .
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For a trigonometric polynomial f from (1), we have
Dsf(x) =

P
l2IN

(�2⇡il)s ˆf
l

e

�2⇡ilx and thus,

sm(x) =

X

0|s|<m

(x� a)

s

s!

X

l2IN

(�2⇡il)s ˆf
l

e

�2⇡ila. (2)

B. Rank-1 lattice

Definition II.1 (rank-1 lattice). Let M 2 N,

z 2 Zd
. We define the rank-1 lattice ⇤(z,M) ⇢ Td

of size M with generating vector z 2 Zd
by

⇤(z,M) := {xk := ((kz) mod M)/M}M�1
k=0 .

Definition II.2 (mesh norm). Let the metric

µ(x,y) := min

k2Zd kx� y + kk1 be given for x,y 2 Td
.

We define the mesh norm � of an arbitrary point set

X := {xk}M�1
k=0 ⇢ Td

by � := 2 max

x2Td
min

xk2X
µ(xk,x).

For an arbitrary point set X ⇢ Td of size |X | = M , we have
� � 1/ d

p
M , see e.g. [9, Lemma 3.1]. The following Lemma

shows the existence of a rank-1 lattice ⇤(z,M) of size M ,
such that the mesh norm �  Cd/

d
p
M , where Cd > 1 is a

constant depending only on d, i.e., we have � ⇠ 1/ d
p
M .

Lemma II.3. Let b 2 N, b � 3. Then, there exists a

rank-1 lattice ⇤(z,M) of size M = b(b+ 1) for d = 2 and

bd · 2 d(d�1)
2 �1 < M  bd · 2d(d�2)

for d � 3 with generating

vector z 2 Zd
, such that the mesh norm �  Cd/

d
p
M , where

Cd > 1 is a constant depending only on d.

Proof: In the case d = 2, we choose the rank-1 lattice size
M := b · (b+ 1) and the generating vector z := (b, b+ 1)

>.
Since b and b+ 1 are relatively prime to each other, there
exists a bijective mapping between the rank-1 lattice nodes
xk := (kz mod M)/M , k = 0, . . . ,M � 1, and the grid
(j1/(b+ 1), j2/b)

>, j1 = 0, . . . , b and j2 = 0, . . . , b� 1, cf.
[10]. Obviously, the mesh norm � = 1/b  2p

3
/
p
M .

In the case d = 3, we set v1 := 2b+ 1 and v2 := 2b.
Due to Bertrand’s postulate there exists a prime num-
ber p3 2 N, b  p3 < 2b. We choose v3 2 {p3, . . . , v2 � 1},
such that v3 is relatively prime to v1 and v2. We set
the rank-1 lattice size M := v1 · v2 · v3 and the generat-
ing vector z := (M/v1, M/v2, M/v3)

>. Then, the mesh
norm �  1/v3  1/b  2/ 3

p
M and the rank-1 lattice size

M = (2b+ 1) · 2b · v3 � (2b+ 1) · 2b · b > b3 · 22.
In the case d � 4, we set v1 := b · 2d�2

+ 1 and
v2 := b · 2d�2. We apply Bertrand’s postulate d� 2 times
and choose v3, . . . , vd, such that v1, . . . , vd are relatively
prime to each other and v3 > . . . > vd � b. We choose the
rank-1 lattice size M :=

Qd
t=1 vt and the generating vector

z := (M/v1, . . . ,M/vd)
>. This yields that the mesh norm

�  1/vd  1/b  2

d�2/ d
p
M and the rank-1 lattice size

M � (2

d�2b+ 1) · 2d�2b ·Qd
t=3(2

d�tb) > bd · 2 d(d�1)
2 �1.

The following Lemma shows that rank-1 lattices exist where
the constant Cd is arbitrarily close to 1 for constant d and
increasing rank-1 lattice size M .

Lemma II.4. For each constant Cd > 1, there exists a param-

eter M⇤ 2 N, such that for all M 0 � M⇤
we can construct a

rank-1 lattice ⇤(z,M) of size M 2 �
M 0, (Cd)

dM 0⇤
with mesh

norm � < Cd/
d
p
M .

Proof: Let Rc,d be the dth c-Ramanujan prime
[11], i.e., the smallest integer such that there are at
least d primes in the interval (cx, x] for all x � Rc,d,
where c 2 (0, 1). For arbitrary constant Cd > 1, we set
c := (Cd)

�1, M⇤
:=

�
(Cd)

�1R(Cd)�1,d

�d and x := Cd
d
p
M 0,

M 0 � 1. Then, there are at least d primes v1, . . . , vd in
the interval (

d
p
M 0, Cd

d
p
M 0

] for all M 0 � M⇤. We choose
the rank-1 lattice size M :=

Qd
t=1 vt and the generating

vector z := (M/v1, . . . ,M/vd)
>. Consequently, we have

M 0 < M  (Cd)
dM 0 and � < 1/ d

p
M 0  Cd/

d
p
M .

C. Evaluation at rank-1 lattice nodes (rank-1 lattice FFT)

We consider the evaluation of a trigonometric polyno-
mial g : Td ! C supported on the frequency index set
IN ⇢ Zd \ [�N,N ]

d, g(x) :=
P

l2IN
ĝ
l

e

�2⇡ilx, ĝ
l

2 C, at
rank-1 lattice nodes xk 2 ⇤(z,M). As presented in [8], we
have

g(xk) = g(kz/M) =

M�1X

j=0

0

BB@
X

l2IN
lz⌘j(modM)

ĝ
l

1

CCA e

�2⇡i kj
M

and the outer sum is a one-dimensional discrete Fourier
transform of length M . Using a one-dimensional FFT, the
trigonometric polynomial g can be evaluated at all rank-1
lattice nodes in O(M logM + |IN |) arithmetic operations.

Setting the Fourier coefficients ĝ
l

:= (�2⇡il)s ˆf
l

, where
ˆf
l

are the Fourier coefficients of a trigonometric polyno-
mial f from (1), yields g(xk) = Dsf(xk). Thus, for fixed
s 2 Nd

0, the mixed derivatives Dsf(x) of the trigonometric
polynomial f can be evaluated at all rank-1 lattice nodes
xk, k = 0, . . . ,M � 1, in O(M logM + |IN |) arithmetic
operations.

III. NFFT BASED ON TAYLOR EXPANSION AND RANK-1
LATTICE FFT

A. Method

Let a frequency index set IN ⇢ Zd \ [�N,N ]

d and a
rank-1 lattice ⇤(z,M) of size M be given. We replace the
expansion point a in (2) by a closest rank-1 lattice node
xk0

= argmin

xk2⇤(z,M) µ(x,xk), and obtain the Taylor ex-
pansion

sm(x) =

X

0|s|<m

(x� xk0
)

s

s!

X

l2IN

(�2⇡il)s ˆf
l

e

�2⇡ilxk0 . (3)

Assuming that a closest rank-1 lattice node xk0 is known
for each sampling node y`, the Taylor expansion sm in (3)
can be calculated in O �

md
(L+M logM + |IN |)� arithmetic

operations for all sampling nodes y`, ` = 0, . . . , L� 1.
For symmetric hyperbolic cross index sets IN = Hd

N ,
N 2 N, N � 2, we have |Hd

N |  CHN log

d�1 N for N � 2

with a constant CH > 0, see e.g. [12]. Choosing the rank-1
lattice size M ⇠ |Hd

N |, we obtain an arithmetic complexity of
O
⇣
md

(L+N log

d N)

⌘
.
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B. Error estimates for symmetric hyperbolic cross index sets

Theorem III.1. Let a trigonometric polynomial f : Td ! C
supported on the symmetric hyperbolic cross index set

IN = Hd
N , f(x) =

P
l2Hd

N

ˆf
l

e

�2⇡ilx
,

ˆf
l

2 C, N 2 N,

be given. Furthermore, let ⇤(z,M) be a rank-1 lattice

with mesh norm �. Then, for the approximation of the

trigonometric polynomial f by a truncated Taylor series

sm(x) :=

Pm�1
|s|=0

Dsf(xk0 )
s! (x� xk0

)

s

of degree m� 1 from

(3), where m 2 N and xk0
= argmin

xk2⇤(z,M) µ(x,xk), the

remainder Rm(x) := f(x)� sm(x) is bounded by

|Rm(x)|  dm⇡m

m!

�mNm�↵
X

l2Hd
N

| ˆf
l

| r(l)↵,

where ↵ 2 [0,m] is the smoothness parameter.

Proof: Let ⇠(t) := xk0
+ t(x� xk0

), t 2 [0, 1]. The
remainder Rm(x) can be written (cf. [13, Ch. 1]) in the form

Rm(x) = m
1R

0

(1� t)m�1
P

|s|=m

Dsf(⇠(t))
(x� xk0

)

s

s!

dt.

Then,

|Rm(x)|
 m

Z 1

0

(1� t)m�1
X

|s|=m

|Dsf(⇠(t))| |(x� xk0
)

s|
s!

dt

 max

t2[0,1]

X

|s|=m

������

X

l2Hd
N

(�2⇡il)s ˆf
l

e

�2⇡il(⇠(t))

������
|(x� xk0

)

s|
s!


X

|s|=m

|(x� xk0
)

s|
s!

X

l2Hd
N

|(�2⇡il)s|| ˆf
l

|.

Since µ(x,xk0
)  �/2 and by applying the multinomial the-

orem, we get

|Rm(x)| 
X

|s|=m

�
�
2

�|s|

s!

X

l2Hd
N

|(�2⇡il)s| | ˆf
l

|

 ⇡m�m
X

l2Hd
N

| ˆf
l

|
X

|s|=m

|l1|s1 · . . . · |ld|sd
s!

 ⇡m�m
X

l2Hd
N

| ˆf
l

| klk
m
1

m!

.

Introducing weights r(l)↵, 0  ↵  m, we obtain

|Rm(x)|  ⇡m�m
X

l2Hd
N

| ˆf
l

| r(l)↵ klkm1
r(l)↵ m!

 ⇡m�m

m!

X

l2Hd
N

| ˆf
l

| r(l)↵ dm r(l)m

r(l)↵

 dm⇡m�m

m!

0

@
X

l2Hd
N

| ˆf
l

| r(l)↵
1

A
max

l2Hd
N

r(l)m�↵

=

dm⇡m

m!

�mNm�↵
X

l2Hd
N

| ˆf
l

| r(l)↵.

Corollary III.2. Let a hyperbolic cross index set IN = Hd
N ,

N 2 N, N � 2, and a rank-1 lattice ⇤(z,M) of size

M := CLN log

d�1 N ⇠ |Hd
N | for some constant CL � 1 be

given, where the generating vector z is chosen as in the proof

of Lemma II.3. Then,

|Rm(x)|  dm⇡m

m!

(Cd)
mM�m/d Nm�↵

X

l2Hd
N

| ˆf
l

| r(l)↵

=

dm⇡m

m!

(Cd)
m Nm�↵

(CLN log

d�1 N)

m
d

X

l2Hd
N

| ˆf
l

| r(l)↵

is valid for all smoothness parameters ↵ 2 [0,m], where

Cd > 1 is the constant from Lemma II.3.

Proof: From Lemma II.3, we obtain that the mesh norm
�  Cd M

�1/d. Applying Theorem III.1 yields the result.

Remark III.3. If we choose the smoothness parameter

↵ 2 [

d�1
d m,m], Corollary III.2 guarantees a decreasing rel-

ative error |Rm(x)|/
⇣P

l2Hd
N

| ˆf
l

| r(l)↵
⌘

for increasing re-

finement N . Setting the smoothness parameter ↵ := m yields

|Rm(x)|  dm⇡m

m! (Cd)
m
(CLN log

d�1N)

�m
d

P

l2Hd
N

| ˆf
l

| r(l)m.

Remark III.4. The presented method can also be used for

the approximate evaluation of trigonometric polynomials f
supported on other frequency index sets. For instance, consider

the case of l1 balls, IN = {j 2 Zd
: kjk1  N}. In the proof

of Theorem III.1, we introduce weights klk↵1 instead of r(l)↵.

Then, we obtain |Rm(x)|  ⇡m

m! �
m Nm�↵

P
l2IN

| ˆf
l

| klk↵1 .

IV. NUMERICAL RESULTS

The Taylor expansion sm in (3) was implemented in
MATLAB for trigonometric polynomials f from (1) as de-
scribed in Section III-A.

For symmetric hyperbolic cross index sets IN = Hd
N , nu-

merical tests were performed. The generating vector z of
each rank-1 lattice ⇤(z,M) was chosen as in the proof
of Lemma II.3. The maximum relative approximation error
E↵ := max

y`2Y |Rm(y`)|/
⇣P

l2Hd
N

| ˆf
l

| r(l)↵
⌘

was deter-
mined using L = 100 000 uniformly random sampling nodes
y` 2 Td, Y := {y`}L�1

l=0 .

A. Decreasing error E↵ for increasing rank-1 lattice size M

In this test case, we uniformly randomly chose the Fourier
coefficients ˆf

l

2 (0, 1]/r(l)↵, l 2 IN = Hd
N . All tests were

repeated five times using different Fourier coefficients ˆf
l

and
sampling nodes y`. Then, the average error of these five test
runs was used.

We set the rank-1 lattice size M := � · 2 |Hd
N | with a factor

� � 1
2 . Due to Corollary III.2, the error E↵ should decrease at

least like ⇠ ��m/d for increasing factor �. In tests performed
for the cases d = 2, . . . , 5 and m = 2, . . . , 6, this behaviour
could be observed. Figure 1 shows the error E0 for increasing
values of factor � for refinements N = 10, 20, 40 and m = 3, 6
in the four- and five-dimensional case as well as the lines
⇠ ��m/d.
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Fig. 1. Approximation error E0 for increasing values of factor � with
rank-1 lattice size M = � 2|Hd

N | for Taylor expansions sm of degree m� 1,
m = 3, 6, in the cases d = 4, 5.
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Fig. 2. Approximation error Em for increasing hyperbolic cross refinements
N with rank-1 lattice size M ⇡ 2|Hd

N | for Taylor expansions sm of
degree m� 1, m = 2, . . . , 6, and theoretical bounds ⇠ (N log

d�1 N)

�m/d

(solid lines without symbols) in the cases d = 4, 5.

B. Decreasing error Em for increasing refinement N of the

symmetric hyperbolic cross index set IN = Hd
N

In order to obtain a large error Em, the Fourier
coefficients ˆf

l

, l 2 Hd
N , were set to zero except

ˆf(±1,0,...,0)> = 1, ˆf(0,±1,0,...,0)> = 1, . . . , ˆf(0,...,0,±1)> = 1

and ˆf(±N,0,...,0)> = 1/Nm, ˆf(0,±N,0,...,0)> = 1/Nm, . . . ,
ˆf(0,...,0,±N)> = 1/Nm. We set the rank-1 lattice size
M ⇡ 2|Hd

N |. Test cases included Taylor expansion degrees
m� 1, m = 2, . . . , 6, and refinements up to N = 10

4 for

d = 2, up to N = 10

3 for d = 3 and up to N = 800 for
d = 4, 5. Remark III.3 states, that the error Em should
decrease at least like ⇠ (N log

d�1 N)

�m
d . In the results of

the performed tests, a decrease of ⇠ (N log

d�1 N)

�m
d could

be observed. Figure 2 shows the results for the cases d = 4, 5.

V. CONCLUSION

Based on rank-1 lattice methods and Taylor expan-
sion, we presented a method for the fast approxi-
mate evaluation of trigonometric polynomials f with fre-
quencies supported on symmetric hyperbolic cross in-
dex sets IN = Hd

N with refinement N at arbitrary sam-
pling nodes y` 2 Td, ` = 0, . . . , L� 1. We showed con-
ditions which guarantee a decreasing approximation error
|Rm(x)|/

⇣P
l2Hd

N
| ˆf

l

| r(l)↵
⌘

for increasing refinement N .
In particular for smoothness parameter ↵ = m, a rank-1 lattice
⇤(z,M) of size M ⇠ |Hd

N | exists, such that the approxima-
tion error decreases at least like ⇠ (N log

d�1 N)

�m/d for
increasing refinement N . For such a rank-1 lattice of size
M ⇠ |Hd

N |, the total arithmetic complexity of the presented
method is O(mdL+md N log

d N). The results of the numer-
ical tests confirmed the theoretical upper bounds.
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Abstract—We consider the problem of “algebraic reconstruc-
tion” of linear combinations of shifts of several signals f1, . . . , fk
from the Fourier samples. For each r = 1, . . . , k we choose
sampling set Sr to be a subset of the common set of zeroes
of the Fourier transforms F(f!), ! != r, on which F(fr) != 0.
We show that in this way the reconstruction system is reduced
to k separate systems, each including only one of the signals fr .
Each of the resulting systems is of a “generalized Prony” form.
We discuss the problem of unique solvability of such systems,
and provide some examples.

I. INTRODUCTION

In this paper we consider reconstruction of signals of the
following a priori known form:

F (x) =
k

∑

j=1

qj
∑

q=1

ajqfj(x− xjq), (1.1)

with ajq ∈ R, xjq = (x1
jq , . . . , x

n
jq) ∈ Rn. We assume that

the signals f1, . . . , fk : Rn → R are known (in particular,
their Fourier transforms F(fj) are known), while ajq , xjq

are the unknown signal parameters, which we want to find
from Fourier samples of F . We explicitly assume here that
k ≥ 2. So the usual methods which allow one to solve this
problem “in closed form” in the case of shifts of a single
function (see [6], [2], [16]) are not directly applicable. Still,
we shall show that in many cases an explicit reconstruction
from a relatively small collection of Fourier samples of F
is possible. Practical importance of signals as above is well
recognized in the literature: for some discussions and similar
settings see, e.g. [6], [8], [13].

We follow a general line of the “Algebraic Sampling”
approach (see [6], [15], [3] and references therein), i.e. we
reconstruct the values of the unknown parameters, solving a
system of non-linear equations, imposed by the measurements
(system (2.1) below). The equations in this system appear as
we equate the “symbolic” expressions of the Fourier samples,
obtained from (1.1), to their actual measured values.

Our specific strategy is as follows: we choose a sampling
set Sr ⊂ Rn, r = 1, . . . , k, in a special way, in order to

This research was supported by the Adams Fellowship Program of the
Israeli Academy of Sciences and Humanities, ISF Grant No. 639/09, and
by the Minerva foundation. We would like to thank the referees for useful
corrections and remarks.

“decouple” (2.1), and to reduce it to k separate systems, each
including only one of the signals fr. To achieve this goal we
take Sr to be a subset of the common set of zeroes of the
Fourier transforms F(f!), ! &= r.

The decoupled systems turn out to be of a “generalized
Prony” type:

N
∑

j=1

ajy
s!
j = m!, ! = 1, 2, . . . , s! ∈ S ⊂ R

n. (1.2)

The standard Prony system, where the sample set S is the
set of integer points in a cube of a prescribed size, allows
for a solution “in closed form” (see, for example, [2], [14],
[16], [17] and references therein). We are not aware of any
method for an explicit solution of generalized Prony systems.
However, “generic” solution methods can be applied. Their
robustness can be estimated via Turán-Nazarov inequality for
exponential polynomials and its discrete version ([7], [12]).
Some initial results in this direction have been presented in
[16], [2]. Below we further extend these results, restricting
ourselves to the uniqueness problem only.

II. RECONSTRUCTION SYSTEM AND ITS DECOUPLING

For F of the form (1.1) and for any s = (s1, . . . , sn) ∈ Rn

we have for the sample of the Fourier transform F(F ) at s

F(F )(s) =

∫

Rn

e−2πisxF (x)dx

=
k

∑

j=1

qj
∑

q=1

ajqe
−2πisxjqF(fj)(s).

So taking samples at the points s! = (s1! , . . . , s
n
! ) of the

sample set S = {s1, . . . , sm}, and denoting the vector

e−2πixjq = (e−2πix1
jq , . . . , e−2πixn

jq ) by yjq = (y1jq, . . . , y
n
jq)

we get our reconstruction system in the form

k
∑

j=1

qj
∑

q=1

ajqF(fj)(s!)y
s!
jq = F(F )(s!), ! = 1, . . . ,m, (2.1)

in the standard multi-index notations. In system (2.1) the right
hand sides F(F )(s!) are the known measurements, while the
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Fourier samples F(fj)(s!) are known by our assumptions. The
unknowns in (2.1) are the amplitudes ajq and the shifts xjq ,
encoded in the vectors yjq .

In the case k = 1 we could divide the equations in (2.1) by
F(f1)(s!) and obtain directly a Prony-like system. However,
for k ≥ 2 this transformation usually is not applicable.
Instead we “decouple” system (2.1) with respect to the signals
f1, . . . , fk using the freedom in the choice of the sample set
S. Let

Z! =
{

x ∈ R
n, F(f!)(x) = 0

}

denote the set of zeroes of the Fourier transform F(f!). For
each r = 1, . . . , k we take the sampling set Sr to be a subset
of the set

Wr = (
⋂

! "=r

Z!) \ Zr

of common zeroes of the Fourier transforms F(f!), ! &= r, but
not of F(fr). For such Sr all the equations in (2.1) vanish,
besides those with j = r. Hence we obtain:

Proposition 2.1: Let for each r = 1, . . . , k the sampling set
Sr satisfy

Sr = {sr1, . . . , srmr} ⊂ Wr.

Then for each r the corresponding system (2.1) on the sample
set Sr takes the form

qr
∑

q=1

arqy
sr!
rq = cr!(F ), ! = 1, . . . ,mr, (2.2)

where cr!(F ) = F(F )(sr!)/F(fr)(sr!). !

So (2.1) is decoupled into k generalized Prony systems
(2.2), each relating to the shifts of the only signal fr. The
problem is that some (or all) of the sets Wr may be too
small, and the resulting systems (2.2) will not allow us to
reconstruct the unknowns arq and yrq. Another problem is
instability of zero finding, which may lead to only approximate
zeroes of Fourier transforms. We have at present only initial
results outlying applicability of the Fourier decoupling method
([16]). In a “good” case where the zero sets Z! of the
Fourier transforms F(f!), ! = 1, . . . , k, are nonempty n− 1-
dimensional hypersurfaces meeting one another transversally,
still for k > n + 1 the intersection of Z!, ! &= r, is empty.
So the resulting systems (2.2) contain no equations. Hence we
can apply the above decoupling only for k ≤ n+ 1.

Some specific examples, as well as investigation of the
conditions on f1, . . . , fk which provide solvability of sys-
tems (2.2) were presented in [16]. In one-dimensional case
(n = 1, k = 2) these conditions can be given explicitly.
In this case W1 = W1(f1, f2) consists of zeroes of F(f2)
which are not zeroes of F(f1), and W2 = W2(f1, f2) consists
of zeroes of F(f1) which are not zeroes of F(f2). The
following result has been proved (for real Prony systems) in
[16]. Here we extend it to the case of system (2.2) which has
purely imaginary exponents. The constant 2N below is sharp,
in contrast with the constant C(n, d) in (multidimensional)
Theorem 4.1 below.

Let in (1.1) n = 1, k = 2, and let q1 = q2 = N . Assume
that for the signals f1, f2 in (1.1) each of the sets W1 and W2

contains at least 2N elements. Let Dj , j = 1, 2, be the length
of the shortest interval ∆j such that Sj = ∆j ∩Wj contains
exactly 2N elements, and let ρj =

1
Dj

.

Theorem 2.1: For shifts xjq in the interval [0, ρj), j =
1, 2, systems (2.2) with the sampling sets S1, S2 are uniquely
solvable.

Proof: Let us fix j = 1. The proof for j = 2 is the
same. Substituting y1q = e−2πix1q associates to a solution
(a1q, y1q), q = 1, . . . , N, of (2.2) an exponential polynomial

H(s) =
∑N

q=1 a1qe
−2πix1qs with purely imaginary exponents.

If (2.2) has two different solutions, the corresponding ex-
ponential polynomials H1(s) and H2(s) are equal for each
s ∈ S1. Hence S1 is a set of zeroes of H2(s) − H1(s),
which is an exponential polynomial of the order at most 2N .
On the other hand, by Langer’s lemma (Lemma 1.3 in [12])
such polynomial can have in each interval of length D at
most 2N − 1 + ρD

2π zeroes, where ρ is the maximum of the
absolute values of the exponents. In our case D = D1 and
ρ < 2πρ1 = 2π

Dj
. Hence ρD

2π is strictly less than 1, and so

the number of zeroes of H2 − H1 is at most 2N − 1, in
contradiction with the assumptions. !

III. EXAMPLES

Some examples of Fourier decoupling have been presented
in [16]. In these examples the sets Wr are “large enough” to
reduce the problem (with the number of allowed shifts fixed
but arbitrarily large) to a set of decoupled standard Prony
systems.

In dimension one we can take, for example, f1 to be the
characteristic function of the interval [−1, 1], while f2(x) =
δ(x− 1) + δ(x+ 1). So we consider signals of the form

F (x) =
N
∑

q=1

[a1qf1(x − x1q) + a2qf2(x− x2q)]. (3.1)

Easy computations show that

F(f1)(s) =

√

2

π

sin s

s

and

F(f2)(s) =

√

2

π
cos s.

So the zeros of the Fourier transform of f1 are the points
πn, n ∈ Z\{0} and those of f2 are the points (12 +n)π, n ∈
Z. These sets do not intersect, so W1 = {πn}, and W2 =
{(12 +n)π}. Since W1 and W2 are just shifted integers Z, the
generalized Prony systems in (2.2) are actually the standard
ones. For f2 the system (2.2) takes the form

F(F )(πn)
√

2
π
(−1)n

=
N
∑

q=1

a2q(y2q)
πn, n ∈ Z.
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If we denote Mn = F(F )(πn)√
2
π (−1)n

, Aq = a2q(y2q)π and ηq =

(y2q)π we get the usual Prony system

Mn =
N
∑

q=0

Aqη
n
q , n ∈ Z.

For f1 we get

F(F )((12 + n)π)
√

2
π

(−1)n+1

( 1
2+n)π

=
N
∑

q=1

a1q(y1q)
( 1
2+n)π , n ∈ Z.

In this case we denote µn =
F(F )(( 1

2+n)π)√
2
π

(−1)n+1

( 1
2 +n)π

, αq = a1q(y1q)
π
2

and ξq = (y1q)π and we get again the usual Prony system

µn =
N
∑

q=1

αqξ
n
q , n ∈ Z.

Solving these two systems by any standard method will give us
the translations and amplitudes of the functions f1, f2. Notice
that a possible non-uniqueness of the solutions is imposed here
by the substitutions ηq = (y2q)π and ξq = (y1q)π.

In dimension two we can take, in particular, f1, f2, f3 to
be the characteristic functions of the three squares: Q1 =
[−3, 3]2, Q2 = [−5, 5]2, and Q3 which is the rotation of
the square [−

√
2,
√
2]2 by π

4 . So we put

χj(x) =

{

1 x ∈ Qj

0 x &∈ Qj
(3.2)

and consider signals of the form

F (x) =
3

∑

j=1

qj
∑

q=1

ajqχj(x− xjq), with ajq ∈ R, xjq ∈ R
3.

(3.3)
The following result is proved in [16]:

Proposition 3.1: The zero sets Z1, Z2 and Z3 of the Fourier
transforms of the three functions χ1,χ2 and χ3 intersect each
other in such a way that the decoupling procedure based on
the sets W1 = (Z2 ∩ Z3) \ Z1,W2 = (Z3 ∩ Z1) \ Z2 and
W3 = (Z1 ∩ Z2) \ Z3 provides three standard Prony systems
for the shifts of each of the functions.

Sketch of the proof: Simple calculation gives

F(χ1)(ω, ρ) = 4 sin 3ω
ω

· sin 3ρ
ρ

F(χ2)(ω, ρ) = 4 sin 5ω
ω

· sin 5ρ
ρ

F(χ3)(ω, ρ) = 8
sin ω+ρ

2
ω+ρ
2

· sin ω−ρ
2

ω−ρ
2

.

(3.4)

So Z1 is the union of horizontal or vertical lines crossing the
Fourier plane’s axes at (0, nπ

3 ) or (nπ3 , 0) respectively, for all
non zero integer n. Similarly for Z2, with the only difference
that the lines cross the axes at (0, nπ5 ) or (nπ5 , 0).
Z3 is the union of lines with slopes 1 or −1 crossing the ω axis
at 2πn for some non zero integer n. Hence for any two integers
n and m we have (1+5n

5 , 1+5n
5 ) ∈ S1, (1+3m

3 , 1+3m
3 ) ∈ S2

and since 1+3m
3 ± 1+5n

5 is not an integer, (1+3m
3 , 1+5n

5 ) ∈ S3.

These three points form a triangle which repeats itself as a
periodic pattern. Appropriate transformations now bring the
decoupled systems (2.2) to the form of the standard two-
dimensional Prony system. See [16], [2] for a new approach
to solving such systems and for the results of numerical
simulations. !

IV. UNIQUENESS OF RECONSTRUCTION

Application of Proposition 2.1 prescribes the choice of
sample points from the common zeroes of the Fourier trans-
forms F(fj). So the geometry of the sample sets Sr may be
complicated, and the known results on unique solvability of
the standard Prony system ([2], [4], [14], [17]) are not directly
applicable. Non-Uniform Sampling in Prony-type systems is
also essential in other problems of algebraic signal recon-
struction. In particular, recently it appeared as a key point
in a proof of the Eckhoff conjecture, related to the accuracy
of reconstruction of piecewise-smooth functions from their
Fourier samples ([1]).

There are results on a behavior of exponential polynomials
on arbitrary sets, which can provide important information on
unique solvability and robustness of the generalized Prony
system. In particular, this concerns the Turan-Nazarov in-
equality ([12]), and its extension to discrete sets obtained
in [7]. In this last paper for each set S a quantity ωD(S)
has been introduced, measuring, essentially, the robustness of
solvability of a generalized Prony system with the sample
points s! ∈ S. Here D comprises the “discrete” parameters
of the Prony system to be solved. ωD(S) can be explicitly
estimated in terms of the metric entropy of S (see below), and
we expect that in many important cases the quantity ωD(Wr)
for the zeroes sets Wr of the Fourier transforms F(fj) can
be effectively bounded from below. Some initial results and
discussions in this direction, mainly in dimension one, are
presented in [16], [3]. In the present paper we do not consider
robustness of the Prony system, but provide a new multi-
dimensional result on the uniqueness of solutions, in the lines
of [16], [7] and Theorem 2.1 above.

Let us recall that for Z a bounded subset of Rn, and for
ε > 0 the covering number M(ε, Z) is the minimal number
of ε-balls in Rn, covering Z . The ε-entropy H(ε, Z) is the
binary logarithm of M(ε, Z).

Let H(s) =
∑d

j=1 aje
λj ·s, with aj ∈ R, λj =

(λj1, . . . ,λjn) ∈ Rn, be a real exponential polynomial in
s ∈ Rn. Denote Z(H) the set of zeroes of H in Rn, and
let Qn

R be the cube in Rn with the edge R. The following
result is a special case of Lemma 3.3 proved in [7]:

Proposition 4.1: For each R > 0, and ε with R > ε > 0
we have M(ε, Z(H) ∩Qn

R) ≤ C(d, n)(Rε )
n−1. !

The explicit expression for C(d, n) is given in [7], via
Khovanski’s bound ([9]) for “fewnomial” systems. Consider
now a generalized Prony system (1.2) with a finite set S of
samples allowed:
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N
∑

j=1

ajy
s!
j = m!, s! ∈ S = {s1, . . . , sm} ⊂ R

n. (4.1)

We shall consider only real solutions of (4.1) with yj having
all its coordinates positive.

Theorem 4.1: Let S = {s1, . . . , sm} ⊂ Qn
R be given, such

that for a certain ε > 0 we have M(ε, S) > C(2N,n)(R
ε
)n−1.

Then system (4.1) has at most one solution.
Proof: Associate to a solution (aj , yj), j = 1, . . . , N, of

(4.1) an exponential polynomial H(s) =
∑N

j=1 aje
λj ·s, where

yj = eλj , λj ∈ Rn. If (4.1) has two different solutions, the
corresponding exponential polynomials H1(s) and H2(s) are
equal for each s = s! ∈ S. Hence S is a set of zeroes
of H2(s) − H1(s), which is an exponential polynomial of
order at most 2N . By Proposition 4.1 we have M(ε, S) ≤
C(2N,n)(R

ε
)n−1 for each ε > 0, in contradiction with the

assumptions of the theorem. !

Informally, Theorem 4.1 claims that finite sets S which
cover (in a “resolution ε”, for some ε > 0), a significant part
of the cube Qn

R, are uniqueness sets of the Prony system. The
condition of Theorem 4.1 on the sampling set S is quite robust
with respect to the geometry of S, so we can explicitly verify
it in many cases. In particular, for non-regular lattices we get
the following result:

Definition 4.1: For fixed positive α < 1
2 and h > 0, a set

Z ′ ⊂ Rn is called an (α, h)-net if it possesses the following
property: there exists a regular grid Z with the step h in Rn

such that for each z′ ∈ Z ′ there is z ∈ Z with ||z′−z|| ≤ αh,
and for each z ∈ Z there is z′ ∈ Z ′ with ||z′ − z|| ≤ αh.

Corollary 4.1: Let Z ′ ⊂ Rn be an (α, h)-net. Then for
R > C(2N)h(1−2α)1−n the set S = Z∩Qn

R is a uniqueness
set of the Prony system (4.1).
Proof: By definition, for each z ∈ Z we can find z′ ∈ Z ′

inside the αh-ball around z. Clearly, any two such points
are h′ = (1 − 2α)h-separated. So for each ε < h′ we have
M(ε, S) ≥ |Z∩Qn

R| = (R
h
)n. We conclude that the inequality

(R
h
)n > C(2N)( R

h′ )n−1, or R > C(2N)h(1−2α)1−n implies
the condition of Theorem 4.1. !

The condition of Theorem 4.1 can be verified in many other
situations, under natural assumptions on the sample set S.
In particular, using integral-geometric methods developed in
[5], it can be checked for the zero sets of Fourier transforms
of various types of signals. We plan to present these results
separately.

Remark The restriction to only positive solutions of Prony
system is very essential for the result of Theorem 4.1. Indeed,
consider the Prony system

a1x
k
1 + a2x

k
2 = mk, k = 0, 1, . . . . (4.2)

If we put a1 = 1, x1 = 1, a2 = −1, x2 = −1, then mk =
1k − (−1)k = 0 for each even k. So the regular grid of even
integers is not a uniqueness set for system (4.2). This fact is
closely related to the classical Skolem-Mahler-Lech Theorem

(see [10], [11], [18] and references therein) which says that
the integer zeros of an exponential polynomial are the union
of complete arithmetic progressions and a finite number of
exceptional zeros. So such sets may be non-uniqueness sample
sets for complex Prony systems.

The proof of the Skolem-Mahler-Lech Theorem is relied on
non-effective arithmetic considerations. Recently the problem
of obtaining effective such theorem was discussed in [18].
This problem may turn to be important for understanding of
complex solutions of Prony systems. One can wonder whether
the methods of Khovanskii ([9]) and Nazarov ([12]), as well
as their combination in [7], can be applied here.
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ABSTRACT 

Four techniques for digital background calibration of SAR 
ADC are presented and compared. Sub-binary redundancy 
is the key to the realization of these techniques. Some 
experimental and simulation results are covered to support 
the effectiveness of these techniques. 
 
Keywords—SAR ADC, digital background calibration, 
DAC mismatch, bit weight, sub-binary redundancy 
 

1. INTRODUCTION 

The return of switched-capacitor successive-approxima-
tion-register (SAR) analog-to-digital converter (ADC) has 
revealed the potential of the SAR conversion architecture 
in scaled technology for low-power operation [1]-[6]. 
Without the need for precision amplification, the analog 
operation of a SAR ADC is mostly switching type, similar 
to digital logic circuits. In addition, the single zero-
crossing comparator employed in the bit-decision cycles is 
largely immune to offset errors, further reducing the ana-
log design effort. One important trend in recent SAR 
works is the proliferation of the so-called sub-binary SAR 
architecture, which has fueled a continuous improvement 
on the conversion speed as well as the robustness of SAR. 

In scaled technology, the signal-to-noise ratio (SNR) 
and linearity performance of SAR ADC are largely lim-
ited by the decreasing supply voltage and the static com-
ponent mismatch errors of the digital-to-analog converter 
(DAC) used to produce the successive decision thresholds 
during the bit cycles. Consequently, while many recent 
SAR works have reported outstanding power efficiency, 
few demonstrate >10 effective number of bits (ENOB) 
[1]-[6]. 

In this paper, a few digital background calibration 
techniques aiming at lifting the static DAC mismatch er-
rors in SAR conversion are presented. It will be shown 
that with these linearization techniques resolutions beyond 
12 bits are achievable with a single SAR structure em-
ploying small capacitors. 

 
2. SUB-BINARY SAR AND REDUNDANCY 

A conventional SAR ADC employs a conversion algo-
rithm termed binary search, in which the analog search 
range is halved in each successive bit-decision cycle. Ex-
actly N steps are needed to resolve an N-bit word. The 
successive search ranges are usually set by a binary-
weighted DAC which produces one analog level in each 
cycle to be compared with the sampled input. For exam-
ple, during the MSB cycle the DAC produces a level cor-
responding to the code 10···0 or 01···1, one of the two 
codes closest to the midpoint of the ADC full scale VFS. 
When the component matching of the DAC is ideal, the 
difference between these two codes is only one LSB, thus 
either choice yields no detectable difference to the ADC 
outcome. However, when mismatch is present the two 
choices will lead to drastically different results, which are 
better explained by the conversion curves illustrated in 
Fig. 1 for two scenarios. In the first case, the DAC MSB 
component is greater in value than the summation of all 
lower-rank components, resulting in two disjoint segments 
of the conversion curve (Fig. 1a). Since the analog input 
levels between the codes 01···1 and 10···0 all resolve to 

 

(a) (b) 

Fig. 1.  SAR conversion curve due to MSB component mismatch: (a) 
super-binary and (b) sub-binary. The grey line indicates the ideal curve. 
Vin is the analog input and D is the raw decision vector (D = {di, i = 
0…Ní1}). 
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one digital LSB, the loss of information is irrecoverable 
from the digital domain alone. We term this scenario su-
per-binary. The opposite case is shown in Fig. 1b, in 
which the analog levels corresponding to the codes 01···1 
and 10···0 are swapped, resulting in an overlapped analog 
input range sandwiched by the two codes. We term this 
scenario sub-binary. Typically, depending on the pre-
choice of the decision threshold, i.e., 01···1 or 10···0, dur-
ing bit cycles, either the upper (solid) or lower (dashed) 
curve but not both will be exercised. The vertical discon-
tinuity of the conversion curve thus leads to the absence of 
a chunk of digital levels termed missing codes. 

A unique feature of the sub-binary conversion scheme 
is that if both the upper and lower segments within the 
overlapped range can be artificially enabled, any analog 
level inside this range can be mapped to two digital codes 
differing by the vertical distance between the two seg-
ments. We term this phenomenon decision redundancy or 
architectural redundancy. With a sub-binary architecture, 
it can be shown that the conversion nonlinearity due to 
missing codes can be fully corrected in digital domain 
under certain assumptions if the optimal bit weights are 
known [3], 
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i
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i tot

CV V d QN
C

�

 

 � �¦  (1)  

where Vin is the sampled input, VR is the reference voltage, 
QN is the quantization noise, and the ratio of the ith ca-
pacitor (Ci) to the total capacitance of the DAC (Ctot) de-
fines the ith bit weight wi. Eq. (1) essentially guarantees 
that any two analog input levels at least one analog LSB 
apart will resolve to two distinct digital codes, or, equiva-
lently, a digital-domain error correction is possible. 

We note here that the sub-binary redundancy can be 
alternatively engineered using unit-element DAC by ma-
nipulating the SAR logic [1]. The binary-to-thermometer 
decoder required in a unit-element DAC is, however, un-
desirable due to its timing overhead and the extra logic 
needed to compute the redundant decision thresholds. A 
sub-binary DAC approach with hardcoded redundancy is 
preferred for high conversion speed [3], [8], [9]. Further-
more, the structure of a binary DAC can be retained while 
still providing redundancy by inserting additional decision 
steps into the binary search process periodically with 
some overhead to the SAR logic [2], [4]. Lastly, regard-
less of the exact redundancy form, bit-weight calibration 
according to Eq. (1) is dictated when random component 
mismatch is present, especially for a resolution of 10-bit 
and beyond. Section 3 will cover cases on how redundan-
cy can be exploited to identify the bit weights. 

 
3. DIGITAL BIT-WEIGHT CALIBRATION 

3.1 Offset Double Conversion (ODC) [3] 
This technique is derived from the superposition rule of 
linear systems. As shown in Fig. 2, a single SAR ADC 
digitizes each analog sample twice with two analog off-

sets, +ǻ and –ǻ, resulting in two raw codes, D+ and D–, 
respectively. Using identical bit weights, W = {wi, i = 0, 
···, Ní1}, we first calculate the weighted sum of all bits 
for D+ and D–, denoted as d+ and d–, respectively. This 
actually realizes Eq. (1). The difference İ between d+ and 
d– is then obtained after removing 2į (the digital version 
of ǻ)—this difference should be ideally zero with optimal 
weights, guaranteed by the linearity of the ADC. A non-
zero İ simply indicates incomplete learning of all bit 
weights and will direct the calibration to continue to ad-
just W until İ is driven to zero; at which point, the average 
of d+ and d–yields a proper digitization of Vin. 

The downside of ODC is that the conversion speed is 
halved in the background mode, while a benefit is that 
both the quantization noise and the comparator noise are 
attenuated by 3 dB in power due to averaging. The im-
plementation of the offset injection is also very simple, 
i.e., one small capacitor and some digital logic. The con-
vergence time of this technique compared to the correla-
tion-based calibration [9], [10] is significantly shorter due 
to the deterministic and zero-forcing nature of the algo-
rithm. 

A prototype 12-bit SAR ADC was fabricated in a 1.2-
V, 0.13-ȝm, 8M-1P CMOS process [3]. The active area of 
the ADC is 0.06 mm2 and the total power consumption is 
3.0 mW including calibration logic. The minimum capaci-
tor size is set to 0.5 fF in this design. Driven by a 98% 
VFS, 1.1-MHz sine wave at its input, the measured output 
power spectral density (PSD) of the  prototype before and 
after calibration are shown in Fig. 3. With the calibration, 

Fig. 2.  ODC bit-weight calibration of SAR ADC 

(a) (b) 

Fig. 3.  Measured output spectrum of a prototype 12-bit, 45-MS/s SAR 
ADC with ODC calibration: (a) before and (b) after calibration 
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the SNDR, SFDR, THD were improved from 60.2, 66.4, 
61.9 dB to 70.7, 94.6, 89.1 dB, respectively. The linearity 
improvement was nearly 30 dB. The convergence time 
was discovered to be inversely proportional to the magni-
tude of ǻ—it takes about 22,000 samples to reach steady 
state when ǻ is set to 25 LSBs. 

3.2 Independent Component Analysis (ICA) [11] 
Another SAR bit-weight calibration technique not subject 
to speed reduction is shown in Fig. 4, in which a pseu-
dorandom bit sequence (PRBS) T of magnitude ǻ is in-
jected to the ADC input and gets digitized along with the 
analog input Vin. The digital output, obtained through a 
weighted sum of the individual bits of the raw digital out-
put D, represents a digitization of Vin + T·ǻ. If the ADC is 
ideal, the PRBS can be removed digitally, resulting in a 
digital output dout (representing Vin) that is independent of 
T. When the optimal bit weights W = {wi, i = 0, ···, N-1} 
are unknown, the conversion process is nonlinear and the 
PRBS removal will be incomplete. Thus, the residual 
PRBS information in dout can be exploited to infer the 
optimal bit weights. 

A technical difficulty here is how to identify all N bit 
weights with the information of a single PRBS. Conven-
tionally, estimating multiple model parameters dictates 
multiple PRBS injections, potentially degrading the ADC 
dynamic range and complicating the analog circuitry for 
injection. This is where ICA comes into picture [12]. As 
illustrated in Fig. 4, the technique operates on the bitwise 
correlation between T and the digital bits obtained through 
a digital re-quantizer, which mimics the SAR operation to 
decompose dout back to its sub-binary format as D. This 

new digital output, termed d̂ , is correlated to T at bit level 

to direct the learning of all the bit weights. Since îd  and T 

are both one-bit signals, the digital logic implementing the 
correlation is simply an XOR gate. 

A prototype 12-bit SAR ADC was fabricated in a 90-
nm CMOS process [11]. The die area of the ADC is 0.05 
mm2. At 50 MS/s, the ADC consumes 3.3 mW from a 1.2-
V supply. The PRBS injection is realized by one low-rank 
DAC capacitor at full sample rate. Fig. 5 presents the 
measured dynamic performance of the prototype. The 
calibration improves the SNDR and SFDR by more than 
10 and 25 dB across the Nyquist band, respectively. The 
convergence time is around 10 million samples, or 0.2 
seconds at 50 MS/s, with gear shifting applied to the LMS 
iterations. 

3.3 Redundant Double Conversion (RDC) 
The double conversion calibration illustrated in Fig. 2 can 
also be realized without explicit offset injection. Instead, 
the internal redundancy of a sub-binary SAR is exploited 
to facilitate the double conversion. As shown in Fig. 6, 
each sample is digitized twice, one using a sequence of 
decision thresholds corresponding to the DAC code 01···1 
and the other 10···0. The effect of this, taking the MSB for 
example, is to create a bit-weight error detection window 

as large as the redundancy region shown in Fig. 1b. the 
two digitization outcomes d+ and d– are compared con-
stantly for any difference—while a zero difference İ im-
plies that either the bit weights are ideal or Vin is out of the 
redundancy region, a nonzero İ only means that the bit 
weights are not optimal and further adaptation is needed. 
All bit weights can be learned this way by altering the 
internal decision thresholds accordingly. Fig. 6 shows the 
two configurations in A and B, respectively. 

RDC shares the same drawback of ODC, i.e., the 
ADC throughput is halved when operating in the back-
ground mode. However, there is no offset injection in 
RDC, thus there is no need to remove it digitally. 

A prototype SAR ADC was fabricated in a 65-nm, 
1.2-V CMOS process. The active area of the ADC is 0.05 
mm2. Fig. 5 shows the ADC output spectra before and 
after calibration for a full-scale 3-MHz sine-wave input. 
With the calibration, the SNDR and SFDR were improved 
from 30.0 and 31.4 dB to 71.4 and 94.1 dB, respectively. 
The LMS loop learns the optimal bit weights in less than 
50,000 iterations, which is less than 3 ȝs with this ADC. 

3.4 Internal Redundancy Dithering (IRD) 
The 2× speed penalty associated with the RDC technique 
can be lifted if the shuffling of the internal configurations 
of A and B is controlled by a PRBS, leading to the fourth 
technique covered in this paper, the IRD. A system dia-
gram of IRD is shown in Fig. 8, in which a back-end digi-
tal processor is employed to identify the MSB weight by 
correlating the corrected ADC output with the PRBS. 
Similar to the ICA case, to identify multiple bit weights, 

Fig. 4.  ICA bit-weight calibration of SAR ADC 

Fig. 5.  Measured dynamic performance of a 90-nm, 12-bit, 50-MS/s 
SAR ADC prototype with ICA calibration 
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multiple correlations are required. In IRD, this implies 
that the PRBS responsible for decision threshold dithering 
will need to be different and uncorrelated for all the bits 
whose weights are to be identified. The convergence 
speed of the technique is expected to be slow due to the 
statistical fluctuation of the correlation process and the 
interaction between the learning loops of the multiple bit 
weights involved. 

Fig. 9 illustrates the simulated SNDR and SFDR 
learning curves for the MSB learning case of a 15-bit SAR 
ADC. A significant linearity improvement of 30-40 dB is 
observed with calibration while the convergence time is 
120 billion samples without gear shifting. The multi-bit 
case is currently under investigation. 

 
4. CONCLUSION 

Superior power efficiency and scalability continue to fuel 
the development of SAR converters in scaled technology. 
This paper reviews/presents a few techniques for digital 
background calibration of DAC bit-weight errors in SAR 
ADCs. With the dominant performance roadblock elimi-
nated by calibration, SAR will become suitable and poten-
tially dominate for broadband (100-200 MHz) and high-
resolution (12-14 bits) applications such as wireless base-
station and video streaming in advanced CMOS nodes. 
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Fig. 6.  RDC bit-weight calibration of SAR ADC. The labels A and B on 
the SAR symbol indicate that the bit-decision threshold corresponds to
the DAC codes 01···1 and 10···0, respectively. 

  

(a) (b) 

Fig. 7.  Measured output spectrum of a prototype 65-nm, 12-bit, 36-
MS/s SAR ADC with RDC calibration: (a) before and (b) after calibra-
tion 

 

Fig. 8.  IRD bit-weight calibration of SAR ADC. The labels A and B are 
defined the same as those of Fig. 6. 

Fig. 9.  Simulated learning curves of a SAR ADC employing the IRD 
bit-weight calibration technique 
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ABSTRACT 

One emerging trend of high-speed low-power ADC design 
is to leverage the successive approximation (SAR) 
topology. It has successfully advanced the power efficiency 
by orders of magnitude over the past decade. Given the 
nature of SAR algorithm, the conversion speed is 
intrinsically slow compared to other high-speed ADC 
architectures, and yet minimal static power is required due 
to the mostly digital implementation. This paper examines 
various speed enhancement techniques that enable SAR 
ADCs towards RF sampling, i.e. >GS/s sampling rate with 
>GHz input bandwidth, while maintaining low power and 
area consumption.  It is expected to play a crucial role in 
the future energy-constrained wideband system. 

I. INTRODUCTION 
High-speed medium-resolution ADCs are widely 

adopted by electronic systems, such as instrumentations, 
disk read channel, high-speed serial links, optical 
communications, and wideband radios, etc. The ADCs in 
this category were initially dominated by Flash architecture 
with bipolar devices [1-5] in the 80s and early 90s due to the 
higher device speed.  The first dramatic shift of paradigm 
began when the pervasive penetration of CMOS technology 
started in the late 90s.  Despite that the device speed was not 
as high as bipolar devices, its low cost, wide adoption by 
digital and progressively improved speed have finally made 
high-speed CMOS ADC into reality [6-10].  From the 
architecture perspective, the Flash topology is preferred for 
high-speed operation since all the comparisons are 
accomplished within one clock cycle; however, the 
complexity increases exponentially with ADC resolution.  It 
thus triggered other architectural possibilities in this realm, 
such as pipelined ADC architecture with time-interleaving 
[7, 11-15].  In the recent years, there is another major 
architectural shift towards high-speed SAR operation.  Since 
the SAR architecture does not require linear analog 
amplification, it benefits more from the technology scaling.  
Much research has been engaged to push this power 
efficient architecture into high speed sampling regime, while 
it was conventionally limited to lower speed range, i.e. KS/s 
to MS/s, as illustrated in Fig. 1.   

To prove the outstanding power efficiency of SAR 
architecture in relation to other ADC topologies, the 
performance of recent state-of-the-art high-speed ADCs is 

 Figure 1 Emerging paradigm shift by leveraging SAR architecture 

 Figure 2 Power efficiency vs. input bandwidth of the recent published 
Nyquist ADCs 

plotted in Fig. 2. The circled dots are the published ADC 
literatures based on SAR within the past decade, which 
indicate that the power efficiency has improved by orders of 
magnitude, particularly for the medium resolution high-
speed operation up to tens GS/s sampling rate. 

This paper overviews various critical techniques to 
enable this level of high-speed and low-power operation. An 
asynchronous SAR architecture will be described in section 
II, which effectively reduces the internal comparison time 
and complexity.  Section III outlines a multi-bit per 
conversion cycle technique that reduces the required number 
of SAR comparison cycles. Pipelined (section IV) and time 
interleaved (section V) SAR further increases the sampling 
rate through pipelining multiple conversion stages or 
parallelizing an array of SAR ADCs. The paper will be 
concluded in section VI. 
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Figure 3 Concept of asynchronous SAR conversion 

II. ASYNCHRONOUS SAR 
The concept of asynchronous SAR architecture was first 
introduced in [16].  It aims to eliminate the conversion 
speed constraint of a conventional synchronous SAR ADC, 
which relies on an internal clock to divide the time into 
signal tracking and individual bit comparison phase from 
MSB to LSB.  Since every clock cycle must tolerate the 
worst-case comparison time as well as the clock jitter, the 
overall conversion speed is constrained by design. The key 
idea of asynchronous SAR is to trigger the internal 
comparison from MSB to LSB like dominoes. Whenever 
the current comparison is complete, a ready signal is 
generated and triggers the following comparison 
immediately. The reduction in the overall comparison time 
is thus achieved due to the time savings in those faster 
conversion cycles, as shown in Fig. 3.  Moreover, no high 
speed internal clock is needed, which leads to a low 
complexity implementation. Note that, a global clock 
running at the sampling rate is still required to perform 
uniform sampling.  

 
Figure 4 Potential implementations of asynchronous SAR 

In terms of implementation, there are several variations to 
carry out the same asynchronous SAR algorithm including 
single, N and 2^N comparator configurations, as shown in 
Fig. 4. The single comparator configuration [16-18] 
consumes the least power and area among the three.  
However, if higher conversion speed is desired, the N or 
2^N comparator configuration can be utilized to eliminate or 
reduce the time required for comparator reset and DAC 
settling [19, 20].  Note that, besides the additional hardware 
complexity, the offset voltage between the various 
comparators will degrade the ADC performance and hence 

extra calibrations are typically applied in the multi-
comparator configurations.   

 
Figure 5  Multi-bit per cycle SAR architecture 

III. MULTI-BIT PER CYCLE  
Conventional SAR algorithm utilizes one comparison per 
cycle and hence requires at least N comparison cycles for 
an N-bit resolution. If more comparisons can be 
accomplished within one comparison cycle, the conversion 
time will be reduced proportionally, i.e. halved for 
2bit/cycle case. Essentially, it is the combination of Flash 
and SAR ADC topology that are compromised in between 
the hardware complexity and sampling speed.  The idea can 
be traced at least back to 60s’   [21-23], where multiple 
reference DACs are built so that two bits are generated per 
cycle.  In recent years, multiple capacitive DACs are 
utilized to sample the analog input and perform 2bit/cycle 
SAR algorithm by generating various reference levels [24]. 
To mitigate the drawback of additional capacitive loading, 
interpolation technique can be adopted with the mixture of 
resistive and capacitive DACs [25, 26].  The sampling 
speed of a single 2b/cycle SAR ADC has been 
demonstrated close-to 1GS/s with 6-8 bit resolution.  Note 
that, the consequence of adopting such a Flash-like 
architecture is the vulnerability to the comparator offset, 
which leads to ADC nonlinearity.  On the contrary, the 
comparator offset of a conventional 1b/cycle SAR only 
leads to the global offset without distortion. Therefore, the 
multi-bit per cycle SAR architecture is not as power 
efficient and most likely requires offset cancellation 
techniques. Another variation of a multi-bit per cycle SAR 
ADC is to utilize both voltage and time quantization that 
effectively provides multi-bit comparisons [27, 28]. It 
makes use of the input dependent delay of the comparator 
resolving time and allows SAR conversion to reduce 
switching activity and required conversion time. 

IV. PIPELINING 
Another common technique to improve the sampling speed 
is through pipelined conversion stages.  Conventional 
pipelined ADC utilizes low resolution Flash ADC in each 
pipelined stage.  The concept of pipelined SAR architecture 
is to replace the complex Flash ADC with power efficient 
SAR topology.  As a result, one can allocate more 
quantization levels for each pipelined stage without much 
power penalty. Moreover, in the case of charge 
redistribution SAR ADC, the residue voltage is readily 
available on the capacitor network in the end of SAR 
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conversion, which can be re-used as part of the switch-
capacitor residue amplifier [29, 30].  The architecture can 
also be extended to other low-power residue amplification 
techniques, such as an amplifier that dynamically charges 
up the second stage sampling capacitance depending on the 
residue voltage from the previous stage [19]. The drawback 
is the less accurate amplification and vulnerability to PVT 
variations which requires extra calibrations.  

 Figure 6  One embodiment of pipelined SAR  

V. TIME INTERLEAVING 
In the early 2000s, SAR ADC began its footprint in the 
high speed sampling regime (>hundreds MS/s) instead of 
operating in high resolution and lower sampling rate.  In 
[31], it demonstrated that a 6bit, 600MS/s ADC is 
achievable via 8-way time interleaved SAR in 90nm 
CMOS with low power consumption. Ever since, the 
number of time interleaved SAR has been increasing 
consistently and a recent 8-bit, 56GS/s ADC was reported 
in [32] that consists of unprecedented 320-way 175MS/s 
SAR ADCs in 65nm CMOS. The ultra-high-speed ADC 
design has become somewhat similar to digital VLSI 
design, where massive parallelism is adopted for speed 
improvement.  However, there are significant overheads 
associated massive time interleaved ADCs, including the 
capacitive loading of the sample-and-hold network, clock 
distributions, and mismatches in between the single ADCs.  
In this sub-section, several design techniques to alleviate 
these constraints will be reviewed. 
First of all, the value of sampling capacitor should be 
minimized while maintaining sufficient matching accuracy.   
As more ADCs are time interleaved, the more sampling 
capacitors will load the previous driver stage and limit the 
achievable bandwidth.  For example, if the tracking time is 
half of the entire sampling period, the driver of an M-way 
time interleaved ADC will be loaded with M/2 sampling 
capacitor at any given time. One way to alleviate the 
sampling capacitor loading issue is to divide the sampling 
switches into two stages. The first-stage front end sampling 
switches operate at a higher speed but with less capacitor 
loading [33]. However, the buffers in between the stages 
can become the linearity bottleneck. Another common 
approach is to reduce the tracking time so that only one 
sampling  

 
Figure 7  Time interleaved SAR ADC 

 
Figure 8  Series capacitor ladder network for S/H 

capacitor is activated at a time [34, 35], as shown in Fig. 7. 
Besides cascading the sampling network, the sampling 
capacitance of each ADC should be minimized. For a 
medium resolution ADC, the sampling capacitance is not 
constrained by the KT/C noise, for instance, an 8-bit ADC 
requires merely on the order of 10fF total sampling 
capacitance with 1V input swing.  Shown in Fig. 8, a series 
capacitor ladder network can be applied in both non-binary 
[16] and binary case [36].  Since the capacitors are 
connected in series, the total sampling capacitance seen by 
the input driver is substantially reduced and independent of 
ADC resolution, which is not the case in the conventional 
parallel connected capacitor array.  Another benefit of 
using series connected capacitor network is the potential 
usage of a larger unit capacitor in order to satisfy the 
matching requirement.  Finally, the mismatches between 
the interleaved ADCs typically require calibrations to 
compensate for offset, gain, and timing skews [13, 37-39]. 

VI. CONCLUSION 
SAR ADC architecture presents a promising path for 

high speed and low power operation. Moreover, the nature 
of its mostly digital implementation will continue to favor 
the technology scaling in terms of the achievable speed and 
power consumption. Several outlined techniques, including 
asynchronous SAR, massive time interleaving, and 
pipelining, are expected to play a key role in driving even 
higher sampling rate and lower power consumption in the 
future. More architecture and circuit level innovations to 
further enhance SAR conversion speed and reduce the 
overhead of massive time interleaving are crucial to achieve 
this goal. 
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Abstract - This paper presents multi-step capacitor switching 
methods for SAR ADCs based on precharge with floating 
capacitors and charge sharing. The proposed switching methods 
further reduce the transient power of the split monotonic 
switching method (an improved version of the monotonic 
switching method). Compared to the split monotonic switching, 
adding charge sharing achieves around 50% reduction in 
switching power. Using precharge with floating capacitors and 
charge sharing simultaneously, the switching power reduces 
around 75%. The proposed switching methods do not require 
additional intermediate reference voltages. 

I. INTRODUCTION 
Deeply scaled CMOS technologies give analog-to-digital 

converter (ADC) designers low supply voltage and insufficient 
intrinsic gain. Among all kinds of ADCs, the successive-
approximation-register (SAR) ADC seems to gain the most 
advantages in CMOS downscaling. A SAR ADC usually 
consists of sampling switches, a comparator, capacitor arrays 
and SAR logic. The SAR ADCs obtain digital representation 
of input signal by switching instead of amplifying in 
amplifier-based ADCs like the pipelined ADC. Improved 
metal implementation enhances metal-oxide-metal (MOM) 
capacitor matching. Digital SAR logic reaches higher speed 
and energy efficiency as CMOS technology continues to scale 
down. Recent publications show SAR ADCs achieve excellent 
power efficiency [1][2][3].  

The accuracy of the SAR ADC mainly relies on capacitive 
digital-to-analog converter (DAC) design. In SAR ADCs, the 
binary-weighted DAC capture input signal on one side of 
capacitor arrays while C-2C and split DACs use both sides to 
process input signal. Thus, a binary-weighted DAC has better 
intrinsic linearity than the other two due to its better immunity 
against parasitic effects. Nonetheless, a SAR ADC using a 
binary-weighted DAC suffers from large input capacitance, 
resulting in large capacitor switching power which grows 
exponentially with ADC resolution. 

This switching power of the DAC in SAR ADCs has been 
well analyzed in [4][5]. This paper proposes switching 
methods based on the split monotonic switching method [6]. 
The proposed methods further reduce the switching power. 
Section II introduces the monotonic switching method and its 
variant. Section III describes the switching techniques and the 
proposed methods. Section IV shows the analysis and 
behavioral simulation result. Section VI draws the conclusion. 

II. THE MONOTONIC SWITCHING METHOD AND ITS VARIANT 

Conventional SAR ADCs samples input signals onto 
bottom plates of the capacitor arrays. The switching power of 

capacitor arrays with bottom-plate signal sampling has been 
well analyzed in [4]. A SAR ADC using the monotonic 
switching method makes the top plates of the DACs connected 
to the comparator input and bottom plates to reference 
voltages [7]. The monotonic switching method samples input 
signals onto top plates of the capacitor arrays, as shown in Fig. 
1. The advantages of this switching method include half unit 
capacitor count and one less switching compared to the 
conventional case. The main disadvantage of this method is 
the changing input common-mode voltage during bit cycling 
which affects the accuracy of the comparator. Thus, a variant 
of the monotonic switching method referred to as split 
monotonic switching method is invented [6]. Fig. 2 shows one 
of the capacitor arrays of the split monotonic switching 
method. A capacitor is split into two parts. For example, C1px 
and C1py in Fig. 2 are split by C1p in Fig. 1. In the reset state, 
one is switched to the positive reference voltage Vrefp and the 
other to the negative one Vrefn. Once a compotator decision has 
made, the monotonic switching method only switches one 
capacitor in a capacitor array and the other capacitor array 
remains unchanged. For the split monotonic switching method, 
a capacitor array switches a sub-capacitor and the other array 
switches another sub-capacitor. Fig. 3 shows the waveforms at 
the top plates of the monotonic and split monotonic switching 
methods. The figure shows the split monotonic switching 
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Fig. 1.  A SAR ADC using the monotonic switching method. 
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method has a constant common-mode voltage. Although 
doubled switches are required, the split monotonic method 
improves the accuracy of the SAR ADC. Generally, the split 
monotonic switching method only applies to the first several 
bits of a SAR ADC, and the rest bits perform monotonic 
switching. The compromised arrangement save hardware and 
enhance accuracy simultaneously. 

The switching power of the capacitor array is proportional 
to the unit capacitance and the number of unit capacitors 
connected to the reference voltage. Intuitively, a high 
resolution capacitor array consumes more switching power 
than a lower one. For SAR ADCs with 10-bit or larger 
capacitor array, further switching power reduction is necessary 
to enhance power efficiency.  

III. PROPOSED MULTI-STEP SWITCHING METHODS 

This section shows two techniques reducing the energy 
consumed during capacitor transient activities. They are 
precharge with floating capacitors and charge sharing. 

A. Precharging with Floating Capacitors 
The power dissipation of a reference source arises from the 

charges to make a capacitor reaching the desired voltage level. 
In the split monotonic switching method, for each bit, a sub-
capacitor is switched from Vrefp to Vrefn, and the other sub-
capacitor is switched in the reversed direction. Charges from 
high voltage potential directly flowing to a lower voltage 
potential is energy inefficient.  If the charges at the higher 
voltage potential help the charging of the capacitor at the 
lower potential, the charge recycling reduces the energy 
dissipation of the reference source. Generally, the charging of 
a capacitor is ‘one-step.’ However, a ‘multi-step’ charging is 
much more energy efficient. The multi-step charging idea is 
firstly mentioned in [8], and then applied to the drivers for 
LCD panels [9]. A SAR ADC employs this technique 
achieving excellent power efficiency [10]. This technique 
separates a ‘one-step’ charging into multi steps and multi 
phases, as shown in Fig. 5. If the voltage difference before and 
after charging is V0 and the capacitance is C0, the total energy 
consumed is 2

0 0C V [4]. If the voltage difference is equally 
separated into n parts, the total energy is reduced to 2

0 0 /C V n  
where n is a natural number [8]. If the intermediate voltages 
are applied by power ICs, the efficiency loss during power 
conversion reduces the effectiveness of multi-step charging. 

 

Fig. 2.  The capacitor array of the split monotonic switching method. 

 

 

Fig. 3.  The waveforms at top plates of the monotonic switching method (top) 
and the split monotonic switching method (bottom). 

 

Fig. 4.  Multi-step charging w/ external voltage (top) and that w/ a floating 
capacitor (bottom). 

 

Fig. 5.  Waveform of the one-step charging (left) and waveform of the multi-
step charging (right). 
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Another approach is to use auxiliary capacitors to replace 
intermediate voltage sources. Fig. 4 depicts the cases using an 
external voltage (top) and a floating capacitor (bottom). In the 
bottom case, before switching to the highest voltage, the 
capacitor switches to the top plate of the floating capacitor. By 
repeating charging and discharging, the top plate of the 
auxiliary capacitor forms a stable intermediate voltage [9]. 
The auxiliary capacitor should be larger than the loading 
capacitor. A large ratio keeps the intermediate voltage stable.  

In the multi-step charging procedures, the charges of 
intermediate steps are provided by the floating capacitors. 
Thus, the reference voltage only deals with the last charging. 
The more charging stages result in better energy efficiency. 
However, too many charging/discharging phases slow down 
the operation speed. Additional logic and driving circuits are 
also necessary to perform the multi-step charging/discharging.  

B. Charge Sharing 
Charge sharing is relatively intuitive. For example, a 

capacitor will discharge to the low voltage potential and the 
other identical capacitor will charge to the high potential. If 
we connect the top plates of the two capacitors together, the 
top plates will reach a middle voltage potential. Without 
dissipating charges from the reference voltage, the DAC array 
obtains free charges. Charge sharing needs less hardware than 
the precharge with floating capacitors. In split monotonic 
method, when a sub-capacitor switches upward, a sub-
capacitor in the other array switches downward. The condition 
is perfectly suitable for charge sharing. 

C. Proposed Switching Methods 
Fig. 6 depicts the capacitor arrays of the split monotonic 

switching method combining the charge sharing technique. 
Note there is a switch placed between two sub-capacitors of 
the two arrays.  The switches are used to perform charge 
sharing of two sub-capacitors. Fig. 7 shows the capacitor 
arrays of the split monotonic switching method combining 
charge sharing plus precharge with floating capacitors. Fig. 7 
has three inter-stages. Floating capacitor performs the first and 
third charging and discharging; the charge sharing deals with 
the second one. Fig. 8 shows the waveforms of the bottom 
plates of the capacitor array using one charge sharing (left) 
and the waveforms using one charge sharing and two 
precharge (right). Note the inter-stage charging and 
discharging do not affect the final values.  

Since the charge sharing and precharge with floating 
capacitors complicate logic design, the two techniques do not 
have to apply to the whole array. For a binary DAC array, the 
first 2- to 4-bit switching using the two techniques will save 
most of the switching power. For small capacitors, the two 
techniques are inefficient. The combined method is more 
suitable for low-speed high-resolution SAR ADCs. The 
method in Fig. 6 (only one charge sharing) is suitable for high-
speed SAR ADCs. 

V. ANALYSIS AND BEHAVIORAL MODELING 

This section analyzes the switching power of the 
aforementioned switching methods. The switching power for 
each code of the monotonic switching can be expressed as 

� �mono ref x1 x2 ref( ) ( ) ( ) ( )E n V V n V n C n u � u                                  (1) 

 

Fig. 6.  The capacitor arrays of the split monotonic switching method 
combining charge sharing method. 

 

Fig. 7.  The capacitor arrays of the split monotonic switching method 
combining charge sharing and precharge methods. 

Proceedings of the 10th International Conference on Sampling Theory and Applications

554



 
 

where Vx1(n) and Vx2(n) are the top-plate voltages before and 
after conversion for code n, respectively. Cref is the total 
capacitance connected to Vref after conversion. The switching 
power of the split monotonic switching can be expressed as 

� � 2
mono_split ref x1 x2 ref ref up( ) ( ) ( ) ( ) ( )E n V V n V n C n V C n u � u � u        (2) 

where Cup is the upward switching capacitance. The switching 
power of the split monotonic switching plus charge sharing 
and precharge with floating capacitors can be expressed as 

� �

� �
ms+cs+prec ref x1 x2 ref

ref ref t total up total

( ) ( ) ( ) ( )

                      ( ) /

E n V V n V n C n

V V V C C C

 u � u

ª º� u � u �¬ ¼

               (3) 

where Vt=Vref/2 for charge sharing case and Vt=3Vref/4 for 
charge sharing plus precharge case. (1) ��(3) only show the 
switching power during conversion. (2) and (3) must add 
energy consumption in sampling (reset) phase. The value is 
Vref�Cref,smp where Cref,smp means the total capacitance 
connected to Vref during the sampling phase. Note the 
monotonic switching does not consume energy during reset. 

We use behavioral modeling to demonstrate the switching 
power reduction of the proposed switching methods. Fig. 9 
shows the behavioral simulation result of five cases: 1) 
conventional switching; 2) monotonic switching; 3) split 
monotonic switching; 4) split monotonic switching with 
charge sharing; and 5) split monotonic switching with charge 
sharing and precharge. During conversion, the split monotonic 
consumes less reference energy than the monotonic switching. 

However, the monotonic switching method is the smallest if 
the energy consumption during sampling (reset) phase is 
added. Note the proposed methods consumed the smallest 
energy from reference buffer during conversion. Thus the 
reference buffer design becomes easier. The charge sharing 
and charge sharing plus precharge help the split monotonic 
switching to achieve significant switching power reduction.  

VI. CONCLUSION 

This paper proposes multi-step charging and discharging 
methods for the SAR ADCs based on the split monotonic 
switching. Although the split monotonic consumes more total 
energy, it dissipates less energy during conversion. Shift the 
settling issue of the DAC from conversion to reset is 
beneficial for high-speed operation. The reset phase is 
generally much longer than a bit conversion phase. The 
proposed methods do not require additional voltages. For a 10-
bit SAR ADC, the total capacitance using the split monotonic 
switching is smaller than 2.5pF. On-chip auxiliary capacitors 
(>25 pF) are possible. The multi-step switching method not 
only saves switching power but also hardware cost. 
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Fig. 8.  The waveforms of the bottom plates of the capacitor array using one 
charge sharing (left) and the waveforms using one charge sharing and two 
precharge (right). 
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ABSTRACT 

In practical realizations of sequential (or pipelined) A/D 
converters, some form of redundancy is typically 
employed to help absorb imperfections in the underlying 
circuits. The purpose of this paper is to review the various 
ways in which redundancy has been used in successive 
approximating register (SAR) ADCs, and to connect 
findings from the information theory community to ideas 
that drive modern hardware realizations. 
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1. INTRODUCTION 

Analog-to-digital (A/D) converters map continuous-
time, continuous-amplitude signals into a discretized 
representation via sampling and quantization. In a typical 
hardware implementation, the precision of this mapping is 
impaired by nonidealities of the underlying electronic 
circuit, as for instance mismatch between nominally 
identical components. In practice, these nonidealities can 
be mitigated via a number of design techniques that can be 
categorized into the following groups: (1) precision 
analog design, (2) analog or digital calibration techniques, 
and (3) redundancy. 

Precision analog design techniques aim at designing 
(or sizing) the circuit such that its precision matches the 
desired specifications by construction. While this 
approach can be practical, it sometimes causes significant 
overhead, for example in terms of power dissipation. To 
address this issue, calibrated A/D converters correct 
circuit imperfections by measuring the induced errors and 
by adjusting a correction circuit in the analog or digital 
domain. Introducing redundancy in the A/D conversion 
process is another popular solution, but it differs 
fundamentally from calibration in the sense that the errors 
are neither measured, nor corrected, but simply tolerated 
and rejected by the conversion algorithm. Many modern 
A/D converters utilize a combination of calibration and 
redundancy and employing redundancy is often required 
to make certain calibration techniques work. 

To this author’s best knowledge, the use of redundancy 
in A/D converters dates back to 1964 [1]. Since then, 
many variants of the idea have been proposed and used in 
practice. Most recently, however, there has been renewed 
interest in research on this topic for the successive 
approximation register (SAR) architecture, which has 
gained popularity due to its compatibility with nano-scale 
integrated circuit technologies [2]. As we will explain 
below, SAR ADCs can benefit from redundancy in a 

variety of intriguing ways, some of which have been 
discovered or applied only recently. Within this context, 
the purpose of this paper is to summarize the state-of-the-
art in the design of SAR ADCs with redundancy. 
 

2. IDEAL A/D CONVERSION AND BETA-
EXPANSION 

Ideal A/D conversion of a continuous input variable  
0 d x < 1 can be viewed as a binary expansion of the form 

ොݔ ൌܾʹି
ே

ୀଵ
 (1) 

Here, b1, …, bN � {0, 1} are the bits of the binary 
representation and ݔො െ  is the quantization error. The bits ݔ
can be determined using a binary search algorithm that 
uses the initial guess x1 = 1/2 and the recursion 

ݔ ൌ ିଵݔ   ʹି (2)ݏ

where 

ݏ ൌ ൜ͳ ݔ  ݔ
െͳ ݔ    (3)ݔ

and ܾ ൌ ሺݏ  ͳሻȀʹ . This process can be interpreted 
graphically using the decision tree shown in Figure 1 [3]. 
The dotted lines represent all possible paths for xk, and the 
solid lines correspond to an example path for a specific 
input x. An important property of this conversion 
algorithm is that the path that leads to ݔො is unique. This 
also implies that there exists a unique bit pattern for each 
input, and more importantly, any error in the bit decisions 
given by (3) will prevent us from achieving the best 
possible approximation. 

Consider now a modification of (1) such that 

ොݔ ൌ ିߚܾߙ
ே

ୀଵ
 (4) 

where 1 < E < 2 and D = E–1 is a scale factor that sets the 
full-scale range to unity. As explained in [4], this “beta-
expansion” [5] contains redundancy, in the sense that 
multiple bit patterns can lead to an approximation within a 
certain error bound. This is illustrated graphically in 
Figure 2. Here, E = 23/4 and the algorithm uses N = 4 
steps. After the last step, the obtained approximation is 
digitally mapped onto the closest level of an ideal 3-bit 
A/D converter. 

As we can see from the pattern of all possible paths, 
there are multiple trajectories that terminate at the same ݔො. 
This means that certain decision errors can be absorbed 
without affecting the conversion result. For instance, as 
shown using the bold dashed line, a decision error in the 
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third step will still lead to the correct conversion result. 
The cost for this error tolerance is two-fold: (1) the 
number of steps must be larger than the number of bits 
that are being resolved and (2) extra hardware is needed to 
map the raw bit pattern into the usual binary output. 

The magnitude of the tolerable decision error in each 
step can be estimated by computing the difference 
between the current bit weight and the sum of all 
remaining weights. For example, consider the above-
described converter with ߚ ൌ ͵ȀͶ, resolving three bits in 
4 steps. The first bit enters (1) with a weight of ିߚଵ ൌ
ͲǤͷͻͷ. The sum of the remaining weights is ିߚଶ  ଷିߚ 
ସିߚ ൌ ͲǤͺͻ. As long as a close approximation (within 
the quantization error) is reachable by the sum of the last 
three weights, an error in the first bit decision will be 

inconsequential. The same idea applies to later bit 
decisions, with the main difference that the sum of the 
remaining weights, and therefore the correction range, is 
decreasing with each step. Detailed calculations of the 
tolerable decision errors for a variety of bit configurations 
are tabulated in [3]. For example, in a 10-bit, 12-step 
ADC, the tolerable decision errors normalized to the 
quantization step size are: 90, 51, 28, 16, 9, 5, 3, 1, 1 and 
0 for all remaining decisions. 

In recent literature, it is often overlooked that the 
concept of using E < 2 (or “radix < 2”) has been used in 
hardware implementations long before detailed 
mathematical results – such as Daubechies’ 2002 paper 
[4] – were available. In the context of SAR ADCs, using a 
reduced radix was first proposed in 1981 [6], and further 
popularized in [7], [8]. The latter reference is sometimes 
cited as the “first” even though it appeared more than 
twenty years after the original idea. What is even less 
known is that the original idea of using redundancy dates 
back to 1964 [1]. In this work, redundancy was introduced 
not by using E < 2, but instead by creating extra decision 
levels in (3). We will summarize this idea and other 
approaches that have evolved in the context of hardware 
design in the following section. 
 

3. REDUNDANCY IN TODAY’S DESIGNS 

A. Radix=2 Designs with Redundant Decision Levels 
In the original work of [1], one extra decision level 

was used to create overlapping trajectories as in Figure 2. 
The design resolved two bits per step, which normally 
requires three decision levels. The added fourth decision 
level allowed the algorithm to absorb large comparison 
errors, enumerated in more detail in [1]. 

The idea of introducing redundant decision levels is 
still used today, and most widely exploited in pipeline 
ADCs [9], which can be described by a set of equations 
similar to (1) – (4). In this context, designers speak of a 
“1.5-bit” quantizer when one extra level is added to (3), 
since log2(2+1) = 1.58. The concept is also called 
“redundant signed digit (RSD)” conversion [10], akin to 
the redundant binary number system sometimes used in 
digital adders. The 1.5-bit concept has been re-introduced 
recently in SAR conversion, as described in [11]. 

B. Radix=2 Designs with Redundant Steps 
Redundancy primarily helps absorb errors in the bit 

decisions (equation (3)). However, it is important to 
distinguish between two different ways in which such 
errors may be introduced. The first and most obvious is a 
direct error in the evaluation of the inequality. The second 
possibility is an error in xk, which may occur in hardware 
realizations due to the finite speed at which (2) is 
computed (“DAC settling error” – see also Section IV). 
Such errors can be tolerated by designs with redundant 
decision levels, but it was shown in [12] that the 
introduction of one redundant step (and no extra decision 
levels) is also sufficient. The idea exploits the exponential 
nature of the settling errors and the fact that the impact of 
the errors reduces from cycle to cycle. 

 

Figure 1: Graphical illustration of ideal sequential A/D 
conversion with 4-bit resolution. The algorithm resolves 

4 bits using 4 steps (no redundancy). 

0.5

1

0
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Figure 2: Graphical illustration of sequential A/D 
conversion with redundancy. The conversion resolves 3 

bits using 4 steps. 
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The work of [13] uses one redundant step in an even 
more intriguing way to mitigate the impact of random 
decision errors (“thermal noise”). It is noted that at most 
two out of all decisions (equation (2)) must resolve a very 
small difference that may be corrupted by noise. One of 
these critical decisions must be the last one, and the other 
one can be in any prior cycle. As shown in [13], this latter 
error can be elegantly corrected by introducing one extra 
conversion step. In hardware, this feature is then exploited 
by running all but the last two conversions with a very 
low-energy (but noisy) comparator, and expending 
significant energy to overcome noise only in the final 
decisions. 

C. Radix<2 Designs 
As discussed previously, the idea of using a radix of 

less than two (“beta-expansion”) goes back to 1981 and is 
still used today [3]. One common challenge to this form of 
redundancy is that the radix must be known precisely to 
construct the proper conversion result. Of course, the 
radix must also be precisely set in radix = 2 topologies, 
but here this is naturally achieved by employing integer 
multiples of well-matched and nominally identical 
integrated circuit components. 

In practice, the radix is typically measured using some 
form of calibration. In [14], it was shown that the radix 
(E) can be estimated by comparing the output of the 
converter for the inputs x and 1-x. In a practical 
realization, such a calibration step would have to be 
performed with controlled input signals, thus interrupting 
the normal conversion operation. Such an approach is 
commonly called foreground or start-up calibration. 

Reference [15] describes a method by which the radix 
can be continuously measured (“in the background”) 
without interrupting normal conversion. The method is 
based on running two conversions of the same input with 
different additive perturbations. Based on the difference 
between the two results and its ideal value, an LMS loop 
updates the radix in the digital bit mapping until 
convergence is achieved. At first glance it seems 
expensive to run extra conversions for the sole purpose of 
measuring of the radix. However, the two measurements 
allow averaging of the thermal noise and hence the 
calibration is energy neutral (to first order). 

With redundancy and radix calibration in place, the 
only remaining precision requirement in the hardware is 
that the computation of (2) must be sufficiently linear. 
However, as pointed out in [16], even nonlinearity could 
be compensated through calibration. Still, in typical 
realizations of SAR ADCs, where the computation of (2) 
relies on high-quality passive components, such issues 
have not yet proven to be significant. The situation is 
different in pipeline ADCs, where digital linearization 
techniques have been proposed to combat nonlinear 
effects in passives [17] and amplifiers [18]. 

5. A CLOSER LOOK AT DAC SETTLING ERRORS 

Figure 3 shows a conceptional block diagram of a 
typical SAR ADC. The comparison level xk in (2) is 
generated by a D/A converter, which is controlled by 
digital circuitry that implements the approximation 

algorithm. Since the speed of practical D/A converters is 
finite, xk is usually not fully settled at the time the bit 
decision is made and this can lead to bit errors. 
Fortunately, and as already mentioned above, such errors 
are inconsequential with sufficient redundancy in place. 
The DAC error is indistinguishable from errors made in 
the quantizer itself. Especially for high-speed designs, this 
feature is being heavily exploited in today’s designs [12]. 

In this context, it is interesting to invoke a comparison 
to pipeline ADCs, which also employ redundancy in their 
underlying quantizers. Figure 4(a) shows a block diagram 
of a pipeline ADC, which can be conceptually thought of 
as a “loop-unrolled” version of a SAR ADC. In other 
words, instead of performing (2) sequentially, the 
hardware is parallelized and pipelined to increase 
throughput. An interesting and important difference 
between the shown pipelined architecture and a SAR 
ADC is that DAC settling errors cannot be absorbed 
through redundancy. The reason is that the settling error is 
sampled and forward-propagated such that it results in a 
direct error that has no further time to decay. A clever 
workaround for this problem was only proposed recently 
in [19]. As shown in Figure 4(b), this design uses a 
feedforward path, which, after some delay injects a 
precise version of the fully settled DAC signal into the 
following stage. The feedforward path has extra time to 
settle, since its output is only needed after the succeeding 
stage’s quantizer and DAC have processed their inputs. 
With this modification, the pipelined architecture can 
potentially benefit as much from redundancy as a SAR 
ADC, and high conversion rates are possible with 
relatively slow sub-D/A converters and amplifiers. 

6. CONCLUSION 

This paper has reviewed the state-of-the-art and 
historical background on the use of redundancy in SAR 
A/D converters. A general observation for most of the 
work in this area is that the practical exploration of ideas 
typically occurs well before the underlying mathematics 
has been thoroughly described. The development of a 
holistic theoretical framework that captures all variants of 
redundancy would be beneficial to the field. 
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Abstract—This  paper  discusses   the  design  of  0.5V  12bit  succes-

sive   approximation   register   (SAR)   analog-to-digital   converter  

(ADC)  with  focus  on  the  considerations  of  self  calibration  at  low  

supply  voltage.  Relationships  among  noises  of  comparators  and  

overall   ADC   performance   are   studied.   Moreover,   an  

ultra–low-leakage   switch   is   demonstrated   in   a   0.13μm   CMOS  

process   and   an   improved   process   of   measuring   mismatch   is  

proposed   to   alleviate   the   charge   injection   of   sampling   switch.  

Simulation   shows   the  ADC  achieves   an  ENOB   of   11.4b  and   a  

SFDR  of  90dB  near  Nyquist  rate  with  capacitor  mismatch  up  to  

3%.   At   12b   1MS/s,   the   ADC   exhibits   an   FOM   of   13.2fJ/step  

under  0.5V  supply  voltage.  

I.   INTRODUCTION  
NERGY-  constrained  applications  such  as  mobile  devices,  
wearable  medical   equipments,  wireless  sensor  networks,  

etc.,   require   power-efficient   analog-to-digital   converters  
(ADC)  for  long  life  span.  Meanwhile,  low  voltage  ADC  was  
demanded   by   the   continuous  down-scaling   of  digital   supply  
voltage  for  SoC  integration.  In  these  applications,  successive  
approximation   register   (SAR)  ADC   is   normally   a  dominant  
architecture  due  to   its   low  power  and  mostly-digital   charac-
teristics  [1]  [2].  
The  achievable  resolution  of  SAR  ADC  at  normal  voltage  is  

mainly   limited   by   capacitor   matching.   Benefiting   from   the  
down-scaling  of  CMOS  technology,  however,  SAR  ADC  can  
incorporate   additional   calibration   logic   naturally.   Several  
calibration   techniques   have   been   reported   [3]-[6],   whereas  
there   is   few   designs  discussing   the  design   considerations  of  
high  resolution  sub-1V  ADCs  with  the  calibration.  Improved  
results  of  the  calibrations  in  [3],  [4]  and  [5]  were  reported  with  
supply   voltages   above   1V.   The   ADC   in   [6]   works   at   0.5V  
supply  voltage  with  an  ENOB  around  10b  after  the  calibration.    
Ultra-low-supply   voltage   introduces   some   additional   seri-

ous  challenges  to  the  self-calibrated  SAR  ADC.  The  noises  of  
the   comparators   play   more   dominant   roles   in   limiting   the  
ADC’s   performance   at   low   voltage   compared   with   that   at  
normal   voltage.   And   the   improved   performance   due   to   the  
calibration   is   also  degenerated   significantly   as   the  measure-
ment  of  capacitor’s  mismatch  is  vulnerable  to  the  leakage  and  
the  charge  injection  of  sampling  switches  and  the  offset  of  the  
comparator.  

                                                                                                                          
This   work   was   supported   in   part   by   the   National   Natural   Science  

Foundation   of   China   (61006027)   and   the   New   Century   Excellent   Talents  
(NCET)  program  of  the  Ministry  of  Education  of  China  (NCET-10-0297).  

This   paper   elaborates   the   design   considerations   of   SAR  
ADC  with  self  calibration  at  low  voltage.  Relationships  among  
noises   of   comparators   and   overall   ADC   performance   are  
studied.  Meanwhile,  we  discuss  challenges  to   circuit  designs  
of   ultra-low-voltage   ADC  with   self   calibration   and   present  
several   solutions.   Simulated   in   0.13μm  CMOS  process,   the  
implemented   0.5V   ADC   achieves   11.4b   ENOB   and  
13.2fJ/step  FOM  with  capacitors’  mismatches  up  to  3%.  

II.  SELF  CALIBRATION  OF  SAR  ADC  
Fig.  1  shows  the  block  diagram  of  the  self-calibrated  SAR  

ADC.  The  ADC   consists   of   two  comparators,   a  main  DAC  
(splitting  to  MSB  DAC  and  LSB  DAC),  a   calibration  DAC,  
SAR   logic,   self-calibration   logic,   adders   and   SRAM.   The  
modules   in   the   bottom   of   Fig.  1   are   responsible   for  normal  
SAR  conversion  while  those  in  the  top  are  in  charge  of  the  self  
calibration.    
Once   the   ADC   is   powered   on,   the   measurement   of   the  

mismatch  is  started  under  the  control  of  self-calibration  logic.  
The  measurement  begins  from  the  MSB  capacitor  in  the  MSB  
DAC  and  ends   at   the  LSB  capacitor.  To  begin  with,   all   ca-
pacitors  except  the  capacitor  ready  for  the  measurement  in  the  
main  DAC  samples  reference  voltage  Vref  and  then  redistribute  
the  charge  with  the  capacitor  ready  for   the  measurement,  re-
sulting   in   the   residual   voltage   related   to   the   mismatch   [3].  
Then  the  calibration  DAC  digitizes   the   residual  voltage   in   a  
SAR  conversion  making  use  of  the  precise  comparator  Comp2.  
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Fig.  1.    The  architecture  of  self-calibrated  ADC.  
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The  digital  code  of  the  residual  voltage  is  processed  by  adders  
and  stored  in  the  on-chip  SRAM,  thus  the  measurement  of  one  
capacitor’s  mismatch  is  accomplished.  This  procedure  repeats  
subsequently  until   the  LSB   capacitor   in  MSB  DAC   is   com-
pleted.  
After   the  measurement   of   the  mismatch,   the   normal   con-

version  begins  and  the  mismatch-measurement  block  is  pow-
ered  off.  During  the  normal  conversion,  the  calibration  DAC  
adjusts  its  connection  according  to  the  output  of  Comp1  and  the  
accumulation  result  of   the  data  read   from  the  SRAM.  Effec-
tively,   the  error  voltage  caused  by  capacitors’  mismatches   is  
compensated   by   the   calibration   DAC   and   the   accurate   suc-
cessive  approximation  could  be  established.    

III.   NOISES  CONSIDERATIONS    
For  12bit  SAR  ADC  at  0.5V  voltage,  the  1LSB  voltage  is  

very  small  (244uV)  and  the  input-referred  noises  of  Comp1  and  
Comp2  would  degenerate  the  ADC’s  performance  drastically.  
As  a  result,  it  is  very  necessary  to  analyze  how  the  two  noises  
deteriorate  the  ADC’s  performance.  
Because  the  Comp1  is  connected  to  the  output  of  DAC  in  the  

normal  conversion,  its  noise  could  be  seen  as  one  part  of  the  
input   signal.  As   for   the   noise   of  Comp2,   it   introduces   some  
errors   to   the   measurement   of   the   capacitor’s   mismatch,   re-
sulting   in   the   incomplete   compensation   to   the   capacitor’s  
mismatch  in   the  normal  conversion.  Consequently,   the  noise  
of  Comp2  could  be  converted  to  the  mismatch-induced  error  of  
the  ADC  by  some  ratio.  Therefore,   the  relationship  between  
the  two  noises  and  the  ADC’s  SNR  would  be  demonstrated  as    
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Where  Vn,1  and  Vn,2    are  the  input-referred  noises  of  Comp1  and  
Comp2,  respectively.     is  the  value  of  1LSB  voltage  and  k  is  
the  conversion  factor  from  Vn,2  to  Ve  (the  mismatch-induced  
error).  
In  order   to  verify   the   analysis,   a  behavioral   simulation  of  

SAR  ADC  based   on   self   calibration   was   performed.   In   the  
simulation,   the  values  of  unit  capacitors   in  MSB  DAC  were  
taken  to  be  Gaussian  random  variables  with  standard  deviation  
of  3%.    
Fig.  2  shows  SNR  of  the  ADC  as  functions  of  two  compar-

ators’   noises.  As   expected,   the  noises  of  Comp1   and  Comp2  
both  degrade   the   SNR  nearly   exponentially   and   the   relation  
between   noises   and   SNR   approaches   the   relationship   dis-
played  by  equation  (1).  Besides,   the  noise  of  Comp2  deterio-
rates   the  SNR  more  drastically   than  that  of  Comp1,  which  is  
due  to  the  fact  that  the  digital  codes  of  mismatches  including  
noises  are  add  to  compensate  the  error  voltage  in   the  normal  
conversion.  However,  Comp2’s  noise  could  be  averaged  out  by  
multiple  measurements  of  the  same  mismatch.  In  this  design,  
we  set  the  noise  parameters  of  60μV  for  Comp1  and  40μV  for  
Comp2  to  ensure  more  than  11bit  ENOB.  

IV.   CIRCUIT  CONSIDERATIONS  AND  DESIGNS  
At   the   circuit   level,   the   challenges   for   the   self-calibrated  

ADC  under  ultra  low  voltage  lie  in  the  leakage  and  the  charge  
injection  caused  by  the  sampling  switch  and  the  input-referred  
offset  of  Comp2.  As  a  result,  some  techniques  are  presented  to  
mitigate  these  interferences.      

A.  Ultra-low-leakage  switch  
For  a  SAR  ADC  operating  at  low  voltage,  the  on  resistance  

of   sampling   switch  determines   the  bandwidth  of  SAR  ADC  
while   the   leakage   affects   its   linearity   significantly.   For  
self-calibrated  SAR  ADC,  the  off  leakage  would  also  distort  
the  residual  voltages  in  the  measurements  of  mismatches  and  
deteriorate  the  improved  performance  directly.    
A  ultra-low-leakage  switch  shown  in  Fig.  3  is  proposed  to  

mitigate   the   problem.   The   proposed   switch   is   consisted   of  
three  parts,  a  conventional  voltage  booster,  a  voltage  clamping  
circuit  and  a  sampling  switch.  By  producing  a  boosted  voltage  

Fig.  2.    SNR  of  12bit  self-calibrated  ADC  as  functions  of  the  compar-
ators’  noises.  

   Fig.  3.    Schematic  of  the  sampling  switch  in  SAR  ADC.  
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at  the  on  phase  and  a  negative  voltage  at  the  off  phase,  it  can  
decrease   the   off   leakage   and   increase   the   on   conductance  
simultaneously.  When  the  sampling  clock  Clk_Sa  is  “1”,  the  
voltage  at  node  N  is  a  small  positive  value  and  the  voltage  at  
node   P   is   approximately   2Vdd,   which   improves   the   on  
conductance.  If  Clk_Sa  turns  from  “1”  to  “0”,  the  voltages  at  
nodes  N  and  P  turn  to  a  same  negative  level.  This  would  result  
in   a   negative  off   voltage   at   the   gate   and   increase   threshold  
voltage  due  to  the  negative  voltage  at  the  bulk,  reducing  more  
off  current  than  conventional  voltage  boosting  [7].  

B.  The  charge  injection  of  sampling  switch  
Fig.  4  (a)  shows  the  conventional  process  of  measuring  the  

residual  voltage  on  the  bottom  array.  During  the  process,  S2  is  
turned  off   after  Vref  is  sampled  by  Cothers   in   the  bottom  array  
while  S1  is  turned  on  all  the  time.  Therefore,  charge  injections  
caused   by   the   switch   S2   would   introduce   an   offset   to   the  
measurement  of  the  residual  voltage.    
At  low  supply  voltage  (0.5V),  the  amplitude  of  the  residual  

voltage  due  to  the  mismatch  is  very  small.  For  example,  if  the  
MSB  capacitor  includes  3%  mismatch,  the  residual  voltage  will  
have   the   largest   value   of   3.75mV   [3].   Because   the   residual  
voltage  combined  with  the  offset  voltage   is  digitized  by  cali-
bration  DAC,   the   large  offset   voltage  compared  with   the   re-
sidual   voltage   would   saturate   measurement   results   and   thus  
bring  about  the  failed  self  calibration.  
To  mitigate   this   interference,   we   optimize   the   process   of  

digitizing  the  residual  voltage  as  shown  in  Fig.  4  (b).  Take  the  
measurement   of   residual   voltage   on   the   bottom   array   for  
example.  In  the  sampling  phase,  S1  and  S2  in  Fig.  4  (b)  turn  on  

at  the  same  time  and  both  the  top  and  bottom  array  samples  Vref.  
When  it  comes  to  the  redistribution  phase,  S1  and  S2  turn  off  
simultaneously.  Since  S1  and  S2  have   the   same  dimensions  
and  circuit  connections  of  the  top  and  the  bottom  arrays  are  the  
same,   the  charge   injections  caused  by  S1  and  S2  are  nearly  
equal.  Subsequently,  only   the  bottom  array   are   reversed  be-
tween  Vcm  and  Vref  and  generates  the  residual  voltage  whereas  
connections  of   the   top  array   remain  unchanged.  Finally,   the  
residual  voltage  is  digitized  in  a  SAR  conversion  with  the  help  
of  calibration  DAC.    
In   the   proposed   process,   the   residual   voltage   is   digitized  

through  successive  comparison  with  Vcm-Vinj  instead  of  Vcm,  so  
the  offset  caused  by  charge  injection  would  be  compensated  
effectively  and  the  impact  of  the  charge  injection  is  alleviated.    
Moreover,  the  improved  process  could  alleviate  the  impact  

of  the  sampling  switch’s  leakage.  Fig.  5  shows  the  simulated  
transient   voltage  waveforms   at  nodes  N  and   P   in   the  meas-
urement.  Because  S1  and  S2  are  both  turned  off  and  Vp  is  close  
to  Vn,  the  error  voltage  due  to  S1’s  leakage  approaches  that  of  
S2,   as   shown   in   Fig.   5.  Consequently,   the   leakage   induced  
error   voltage   of   S2   could   be   compensated   by   that   of   S1  
effectively.  

  
(a)  

  
(b)  

Fig.  4.  The  processes  of  digitizing  the  residual  voltage:  (a)  the  conventional  
and  (b)   the  proposed.  In   the  figure,  Vinj  is   the  voltage   caused  by  charge  in-
jection  and  Vres  is  the  residual  voltage  due  to  the  mismatch  between  Cmeas  and  
Cothers.  

  

  

Fig.  5.    The  waveforms  of  Vp  and  Vn  in  Fig.  4  (b).  

  

Fig.  6.    Layout  of  the  ADC.  
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C.  Comparator  with  offset  cancellation  
To  digitize  the  small  residual  voltage  with  enough  accuracy,  

Comp2’s  resolution  should  be  very  high.  In  this  work,  Comp2  
was  implemented  by  two  pre-amplifiers  and  a  latch  to  ensure  
enough   gain.   Meanwhile,   the   output   offset   cancelation   was  
exploited  in  Comp2  to  diminish  the  offset  voltage  and  avoid  the  
saturation  of  measurement  results.  

V.     SIMULATED  RESULTS  AND  DISCUSSIONS  
A  12b  1MS/s  SAR  ADC  at  0.5V  has  been  implemented  in  a  

0.13μm  CMOS  technology,  occupying  1.2mm  ×  0.7mm  active  
area.  Fig.  6  shows  the  layout  of  the  ADC.  In  the  simulation  at  
the   circuit   level,   random   capacitor  mismatch   up   to   3%  was  
adopted,  which  covers  99.7%  of  actual  mismatch  distribution  
with  1%  of  σ.  And  parasitic  capacitors  with  the  values  of  3%  
are  contained  in  the  simulation.    

A.  Dynamic  Performance  
The  dynamic  performance  of  the  ADC  without  calibration  

and   that   with   calibration   is   shown   in   Fig.   7.   The  ENOB   is  
improved  from  9bit  to  11.4bit  by  self  calibration.  What’s  more,  
SFDR   of   90dB   is   achieved   compared   with   64.3dB   before  
calibration.   It   could   be   clearly   shown   that   the   noises   and  
circuit   considerations   in   the   preceding   sections   ensure   the  
performance  of  self-calibrated  ADC  at  low  voltage.    

B.      Power  Consumption  and  FOM  
At  sampling  rate  of  1MS/s,  the  ADC  draws  35.7μW  from  a  

0.5V  supply  voltage.  The  percentage  of  power   consumption  
for  digital   logic,   comparators  and  capacitor  array  are  37.2%,  
56%  and  6.7%,  respectively.  The  less  power  consumption  of  
capacitor  array  results  from  the  small  unit  capacitance.  In  this  
design,  more  than  half  of  the  power  is  allocated  to  comparators  
due  to  the  noise  requirements.  
The  figure  of  merit  (FOM)  for  Nyquist  converters  refers  to  

the  energy  required  to  accomplish  an  effective  conversion  step.  
The  FOM  is  defined  as    
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The  FOM  of  the  proposed  ADC  is  13.2fJ/conversion-step  at  

12b   1MS/s,   which   is   a   competitive   value.   The   high   power  
efficiency   is  partially   a  result  of   the   low  supply  voltage   that  
decreases   the   power   of   digital   circuits   quadratically.  Mean-
while,  due  to  the  self  calibration,  the  unit  capacitance  is  able  to  
be  very  small,  decreasing  the  power  of  DAC  significantly.      

VI.   CONCLUSIONS  
This   paper   elaborates   the   analysis   and   design   of   a   12bit  

1MS/s  SAR  ADC  at  0.5V  with  self  calibration.  The  effects  of  
noises  on  the  performance  of  self-calibrated  ADC  are  demon-
strated.  Circuit  considerations   and  designs  on  ultra-low  volt-
age  self-calibrated  SAR  ADC  are  also  described.  Simulated  in  
a  0.13μm  CMOS,  the  proposed  ADC  exhibits  11.4bit  ENOB  
and   90dB   SFDR  with   capacitor   mismatch   up   to   3%.   A   re-

markable  power  efficiency  of  13.2fJ/step  FOM  has  also  been  
achieved.    
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Fig.  7.    Dynamic  performance  with  a  468.8kHz  input  at  1MS/s  sampling  
rate:  (a)  before  calibration  (b)  after  calibration.  
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