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Abstract—We introduce a mathematical framework that
bridges a substantial gap between compressed sensing theory and
its current use in applications. Although completely general, one
of the principal applications for our framework is the Magnetic
Resonance Imaging (MRI) problem. Our theory provides an ex-
planation for the abundance of numerical evidence demonstrating
the advantage of so-called variable density sampling strategies in
compressive MRI. Another important conclusion of our theory
is that the success of compressed sensing is resolution dependent.
At low resolutions, there is little advantage over classical linear
reconstruction. However, the situation changes dramatically once
the resolution is increased, in which case compressed sensing can
and will offer significant benefits.

I. INTRODUCTION

In this paper we present a new mathematical framework
for compressed sensing (CS). Our framework generalizes the
three traditional pillars of CS—namely, sparsity, incoherence
and uniform random subsampling—to three new concepts:
asymptotic sparsity, asymptotic incoherence and multilevel
random subsampling. As we explain, asymptotic sparsity
and asymptotic incoherence are more representative of real-
world problems—e.g. imaging—than the usual assumptions
of sparsity and incoherence.

Our second contribution is an analysis of an intriguing
effect that occurs in asymptotically sparse and asymptotically
incoherent problems. Namely, the success of CS is resolution
dependent. As suggested by their names, asymptotic inco-
herence and asymptotic sparsity are only truly witnessed for
reasonably large problem sizes. When the problem size is
small, there is consequently little to be gained from CS over
classical linear reconstruction techniques. However, once the
resolution of the problem is sufficiently large, CS can and will
offer a substantial advantage.

The phenomenon has two important consequences for prac-
titioners seeking to use CS in applications:

(i) Consider a CS experiment where the sampling device, the
object to be recovered, the sampling strategy and subsampling
percentage are all fixed, but the resolution is allowed to vary.
Resolution dependence means that a CS reconstruction done at
high resolutions will give much higher quality when compared
to full sampling than one done at a low resolution. Hence a
practitioner working at low resolution may well conclude that
CS imparts limited benefits. However, a markedly different
conclusion would be reached if the same experiment were to
be performed at higher resolution.

(ii) Suppose we conduct a similar experiment, but we now
use the same total number of samples (instead of the same
percentage) at low resolution as we take at high resolution.
Intriguingly, the above result still holds: namely, the higher
resolution reconstruction will give substantially better results.
This is true because the multilevel random sampling strategy
successfully exploits asymptotic sparsity and asymptotic inco-
herence. Thus, with the same total number of measurements,
CS with multilevel sampling works as a resolution enhancer:
it recovers fine details of an image in a way that is not possible
with the lower resolution reconstruction.

Such resolution dependence suggests the following advi-
sory. It is critical that simulations with CS be carried out
with a careful understanding of the influence of the problem
resolution. Naı̈ve simulations with standard, low-resolution
test images may very well lead to incorrect conclusions about
the efficacy of CS as a practical tool.

An important application of our work is the MRI problem.
This served as one of the original motivations for CS, and con-
tinues to be a topic of substantial research. Some of the earliest
work on this problem—in particular, the research of Lustig et
al. [1], [2]—demonstrated that the standard random sampling
strategies of CS theory lead to substandard reconstructions.
This is due to a phenomenon known as the coherence barrier.

On the other hand, random sampling according to some
nonuniform density was shown empirically to lead to sub-
stantially improved reconstruction quality. It is now standard
in MR applications to sample in this way [1]–[3]. However,
whilst MRI is now viewed as a successful application area
for CS, a mathematical theory addressing these sampling
strategies is largely lacking. Despite some recent work [4], a
substantial gap remains between the standard theorems of CS
and its implementation in such problems (see [5] for a detailed
discussion). Our framework bridges this gap. In particular, we
provide a mathematical foundation for CS for such problems,
and gives credence to the abundance of empirical studies
demonstrating the success of variable density sampling in
overcoming the coherence barrier.

Whilst the MRI problem will serve as our main application,
we stress that our theory is general in that it holds for almost
arbitrary sampling and sparsity systems. Moreover, standard
CS results, in particular those of Candès & Plan [6], are
specific instances of our main results.

For brevity, we shall provide only the most salient aspects
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of our framework. A substantially more detailed discussion
can be found in [5]. We shall also only consider the finite-
dimensional case. However, we remark that everything that
follows can be extended to infinite-dimensional signals in
separable Hilbert spaces [5]. This generalizes the theory of
infinite-dimensional CS introduced in [7].

II. BACKGROUND

A. Compressed sensing

A typical setup in CS is as follows. Let {ψj}Nj=1 and
{ϕj}Nj=1 be two orthonormal bases of CN , the sampling and
sparsity bases respectively, and let

U = (uij)
N
i,j=1 ∈ CN×N , uij = 〈ϕj , ψi〉.

Note that U is an isometry. The coherence of U is given by

µ(U) = max
i,j=1,...,N

|uij |2 ∈ [N−1, 1], (1)

and we say that U is perfectly incoherent if µ(U) = N−1.
Let f ∈ CN be s-sparse in the basis {ϕj}Nj=1. In other

words, f =
∑N
j=1 xjϕj , and the vector x = (xj)

N
j=1 ∈ CN

satisfies |supp(x)| ≤ s, where

supp(x) = {j : xj 6= 0}.

Suppose now we have access to the samples

f̂j = 〈f, ψj〉, j = 1, . . . , N,

and let Ω ⊆ {1, . . . , N} be of cardinality m and chosen
uniformly at random. According to a result of Candès & Plan
[6] and Adcock & Hansen [7], f can be recovered exactly with
probability exceeding 1− ε from the subset of measurements
{f̂j : j ∈ Ω}, provided

m & µ(U) ·N · s ·
(
1 + log(ε−1)

)
· logN. (2)

In practice, recovery is achieved by solving the convex opti-
mization problem:

min
η∈CN

‖η‖l1 subject to PΩUη = PΩf̂ , (3)

where f̂ = (f̂1, . . . , f̂N )>, and PΩ ∈ CN×N is the diagonal
projection matrix with jth entry 1 if j ∈ Ω and zero otherwise.

B. The coherence barrier

The estimate (2) shows that the number of measurements m
is, up to a log factor, on the order of the sparsity s, provided the
coherence µ(U) = O

(
N−1

)
. This is the case, for example,

when U is the DFT matrix; a problem which was studied in
some of the first papers on CS [8].

On the other hand, when µ(U) is large, one cannot expect
to reconstruct an s-sparse vector f from highly subsampled
measurements, regardless of the recovery algorithm employed
[6]. We refer to this as the coherence barrier.

The MRI problem gives an important instance of this barrier.
If {ϕj}Nj=1 is a discrete wavelet basis and {ψj}Nj=1 corre-
sponds to the rows of the N × N discrete Fourier transform
(DFT) matrix, then the matrix U = DFT · DWT−1 satisfies

µ(U) = O (1) for any N [4], [9]. Hence, although signals
and images are typically sparse in wavelet bases, they cannot
be recovered from highly subsampled measurements using the
standard CS algorithm.

III. NEW CONCEPTS

We now introduce our new framework that overcomes
the aforementioned coherence barrier. We first require the
following three new concepts.

A. Asymptotic incoherence

Consider the above example. It is known that, whilst the
global coherence µ(U) is O (1), the coherence decreases as
either the Fourier frequency or wavelet scale increases. We
refer to this property as asymptotic incoherence:

Definition 1. Let U ∈ CN×N be an isometry. Then U is
asymptotically incoherent if

lim
K,N→∞
K<N

µ(P⊥KU) = lim
K,N→∞
K<N

µ(UP⊥K ) = 0, (4)

where P⊥K : CN×N is the projection matrix corresponding to
the index set {K + 1, . . . , N}.

Note that, for the wavelet example discussed above, one has
µ(P⊥KU), µ(UP⊥K ) = O

(
K−1

)
[9] for all large N .

B. Multilevel sampling

When U is asymptotically incoherent a different subsam-
pling strategy should be used instead of standard random
sampling. High coherence in the first few rows of U means
that we cannot subsample in this region without risking losing
important information about the signal to be recovered. Hence
we fully sample these rows. However, once outside of this
region, where the coherence is less, we are free to subsample.
Therefore, instead of sampling uniformly at random, we now
consider the following multilevel random sampling scheme:

Definition 2. Let r ∈ N, N = (N1, . . . , Nr) ∈ Nr with 1 ≤
N1 < . . . < Nr, m = (m1, . . . ,mr) ∈ Nr, with mk ≤
Nk −Nk−1, k = 1, . . . , r, and suppose that

Ωk ⊆ {Nk−1 + 1, . . . , Nk}, |Ωk| = mk, k = 1, . . . , r,

are chosen uniformly at random, where N0 = 0. We refer to
the set Ω = ΩN,m := Ω1 ∪ . . . ∪ Ωr as an (N,m)-multilevel
sampling scheme.

Note that similar sampling strategies are found in most
empirical studies on compressive MRI [1]–[3].

C. Asymptotic sparsity in levels

Having introduced the new sampling strategy for asymp-
totically incoherent problems, we now consider the following
question: what is an appropriate signal model for such a sam-
pling strategy? In the case of incoherence and uniform random
subsampling, sparsity is an appropriate model. However, in
this new setting we require a somewhat different notion.

To explain this, let x = (xj)
N
j=1 be vector of coefficients of a

signal f in the basis {ϕj}Nj=1. Suppose that x was very sparse
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Fig. 1. The GPLU phantom.

in its entries j = 1, . . . ,M1. Since the matrix U is highly
coherent in its corresponding rows, there is no way we can
exploit this sparsity to achieve subsampling. High coherence
forces us to sample fully the first M1 rows of U , otherwise
we risk missing critical information about x.

This means that there is nothing to be gained from high
sparsity of x in its first few entries. However, we can expect
to achieve subsampling if the sparsity patten of x matches the
incoherence pattern of the matrix U . We therefore consider:

Definition 3. For r ∈ N let M = (M1, . . . ,Mr) ∈ Nr with
1 ≤ M1 < . . . < Mr and s = (s1, . . . , sr) ∈ Nr, with
sk ≤Mk −Mk−1, k = 1, . . . , r, where M0 = 0. We say that
x ∈ CN , where N = Mr, is (s,M)-sparse if, for each k =
1, . . . , r, the quantity ∆k := supp(x)∩ {Mk−1 + 1, . . . ,Mk}
satisfies |∆k| ≤ sk.

In other words, we allow x to be split up into r levels,
each with a different amount of sparsity. If the sparsity ratios
sk/(Mk−Mk−1) decrease with k, then we refer to x as being
asymptotically sparse in levels.

As we shall see, signals possessing this sparsity pattern
are ideally suited to multilevel sampling schemes. Roughly
speaking, the concomitance of asymptotic sparsity and asymp-
totic incoherence means that the number of measurements
mk required in each band Ωk is determined primarily by the
sparsity of f in the corresponding band ∆k times by a small
asymptotic coherence factor.

This leads to the question: is asymptotic sparsity in levels
a realistic signal model? The answer is emphatically yes.
Most images possess exactly this type of sparsity structure.
To illustrate, in Fig. 2 we plot the percentage of significant
wavelet coefficients at each scale for the image given in Fig.
1. Note that this image is the analytic phantom introduced by
Guerquin–Kern, Lejeune, Pruessmann and Unser in [10]. As
is evident, there is little sparsity at coarse scales, but sparsity
rapidly increases with refinement.

IV. MAIN RESULT

For brevity, we shall only address the two-level case (the
multilevel case is described in [5]). Thus, we consider signals
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Fig. 2. The percentage of Haar wavelet coefficients at each scale for the
image in Fig. 1 which are greater than 10−3 in magnitude.

with a two-level sparsity structure, with the first part being
nonsparse, and the second part sparse, and a two-level sam-
pling strategy that corresponds to full sampling in the first
rows, and uniform random subsampling in the remaining rows.

Write µK = µ(P⊥KU). We now have:

Theorem 4. Let U ∈ CN×N be an isometry and x ∈ CN be
(s,M)-sparse, where r = 2, s = (s1, s2) and M = (M1,M2)
with s1 = M1 and M2 = N . Suppose that

‖P⊥N1
UPM1

‖ ≤ γ/
√
M1, (5)

for some 1 ≤ N1 ≤ N and γ ∈ (0, 2/5], and that γ ≤
s2
√
µN1

. For ε > 0, let m ∈ N satisfy

m & (N −N1) · (log((s1 + s2)ε−1) + 1) · µN1 · s2 · log (N) .

Let Ω = ΩN,m be a two-level sampling scheme, where N =
(N1, N2) and m = (m1,m2) with N2 = N , m1 = N1 and
m2 = m, and suppose that ξ ∈ CN is a minimizer of (3),
where f̂ = Ux. Then, with probability exceeding 1 − ε, ξ is
unique and ξ = x.

Note that if f is not exactly (s,M)-sparse, and if the
measurements f̂ = Ux+z are corrupted by noise z satisfying
‖z‖ ≤ δ, then one can also prove that under essentially the
same conditions the minimization

inf
η∈H
‖η‖l1 subject to ‖PΩUη − y‖ ≤ δ. (6)

recovers f exactly, up to an error depending only on δ and the
error σs,M(f) of the best approximation of x by an (s,M)-
sparse vector. We refer to [5] for details.

A. Discussion

Theorem 4 shows that asymptotic incoherence and two-level
sampling overcomes the coherence barrier for two-level sparse
signals. To see this, we note:
(i) The condition ‖P⊥N1

UPM1
‖ ≤ 2/(5

√
M1) (which is

always satisfied for some N1, since U is an isometry)
implies that fully sampling the first N1 measurements
allows one to recover the first M1 coefficients of f .

(ii) To recover the remaining s2 coefficients we require, up
to log factors, an additional m2 & (N − N1) · µN1 · s2

measurements, taken randomly.
Let us explain how this relates to the MRI problem. With
Fourier samples and wavelets as the sparsity system, (i) gives
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Fig. 3. The minimum subsampling percentage p.

that we recover the nonsparse part of the signal with N1 ≈M1

measurements. The fact that N1 ≈M1 in this case was shown
in [11]. Since µN1

= O
(
N−1

1

)
, (ii) gives that an additional

m2 & s2 measurements are required to recover the sparse part
of the signal. Hence this result is nearly optimal for signals
with two-level asymptotic sparsity. Namely, the full and the
sparse parts of the signal are recovered using (up to constants
and log factors) optimal numbers of measurements.

We remark that it is not necessary to know the sparsity
structure, i.e. the values s and M, of the image f in order
to implement the multilevel sampling technique. Given a
multilevel scheme Ω = ΩN,m, the result of [5] governing
(s,M)-compressible signals shows that f will be recovered
exactly up to an error on the order of σs,M(f), where s and
M are determined implicitly by N, m and the conditions of
the theorem. Of course, some a priori knowledge of s and M
will greatly assist in selecting the parameters N and m so as
to get the best recovery results. However, this is not strictly
necessary for implementing the method.

V. RESOLUTION DEPENDENCE AND NUMERICAL RESULTS

As explained, natural images are not sparse at coarse
wavelet scales, nor is there substantial asymptotic incoherence.
Hence, regardless of how we choose to recover f , there is little
possibility for substantial subsampling when the problem res-
olution is low. On the other hand, asymptotic incoherence and
asymptotic sparsity both kick in when the resolution increases.
Multilevel sampling allows us to exploit these properties, and
by doing so we achieve far greater subsampling.

To illustrate this, consider the reconstruction of the 1D
function f(t) = e−tχ[0.2,0.8](t), t ∈ [0, 1], from its Fourier
samples using Haar wavelets. We use a two-level scheme with
p/2% fixed samples and p/2% random samples, where p is
the total subsampling percentage, and search for the smallest
value of p such that the two-level sampling scheme succeeds:
namely, it gives an error smaller than that obtained by taking
all possible samples of f .

In Fig. 3 we plot p against the resolution N . The difference
between low resolution (N = 128) and high resolution (N =
4096) is clear and dramatic. We conclude that the success of
the reconstruction is highly resolution dependent.

Now consider a different experiment, where the total num-
ber of measurements is fixed and equal to 5122 = 262144,

Fig. 4. The reconstruction of the 2048 × 2048 GPLU phantom (Fig. 1)
from 5122 Fourier samples. Top: linear reconstruction using the first 5122

Fourier samples and zero padding elsewhere. Bottom: multilevel random CS
reconstruction. Note that standard uniform random sampling CS would give an
extremely poor reconstruction in this case, due to the O (1) global coherence.

but the sampling pattern is allowed to vary. In Fig. 4 we
display a segment of the reconstruction. For the purposes of
comparison, artificial fine details were added to the image
to be recovered. As is clear, CS with multilevel sampling
acts a resolution enhancer. By sampling higher in the Fourier
spectrum, one recovers fine details of the image whilst taking
the same number of measurements.

For further numerical examples and discussion, see [5].
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