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Abstract—We propose and experimentally demonstrate a
method of performing single-shot sub-wavelength resolution Co-
herent Diffractive Imaging (CDI), i.e. algorithmic object recon-
struction from Fourier amplitude measurements. The method is
applicable to objects that are sparse in a known basis. The prior
knowledge of the object’s sparsity compensates for the loss of
phase information, and the loss of all information at the high-
spatial frequencies occurring in every microscope and imaging
system due to the physics of electromagnetic waves in free-space.

I. INTRODUCTION

Coherent Diffractive Imaging (CDI) is an imaging technique
where intricate features are algorithmically reconstructed from
measurements of the freely-diffracting intensity pattern ([1],
[2]). In CDI, an object is illuminated by a coherent plane
wave (LASER light), and the far-field diffraction intensity
is measured. That is, the measurements correspond to the
absolute value squared of the Fourier components. Recent
advances in making lasers in the x-ray regime and in the
extreme ultraviolet have made this technique very important
for a variety of applications, among them structural biology:
mapping out the structure of proteins that cannot be crys-
talized. However, the physics underlying the propagation of
electromagnetic waves acts as a low-pass filter, effectively
truncating high Fourier components, and thereby setting a
fundamental limit on imaging systems: the finest feature that
can be recovered in imaging microscopes is larger than one
half of the optical wavelength (the so-called diffraction limit).
This stringent limit naturally also limits CDI: the resolution
in all current work on CDI is limited by the diffraction limit
[3]. Over the past decades, several techniques were developed
for sub-wavelength imaging, but none of them works as
actual imaging: they all involve scanning or integration over
very many acquired images generated by sub-wavelength light
sources. These methods include Scanning Near-Field Micro-
scope ([4], [5]), scanning a sub-wavelength “hot spot” ([6], [7],
[8]), or ensemble-averaging over multiple experiments with
fluorescent particles ([9], [10], [11], [12]). Due to the nature of
theses technique – which rely on scanning or averaging - they
cannot be used for real-time imaging of dynamics processes

(say, a chemical reaction that evolves with time). On the other
hand, CDI, being a ‘single shot’ imaging technique, is suitable
for ultra-fast imaging, but it lacks sub-wavelength resolution.
Here, we present and demonstrate experimentally a method to
enhance CDI resolution beyond the diffraction limit, based on
prior knowledge that the object is sparse in a known basis.

II. PROBLEM FORMULATION

In a typical, plane-wave CDI setting, an object is illuminated
by a coherent plane wave, and the far field diffraction pattern
intensity is measured. The measured diffraction intensity, in
the paraxial approximation, is proportional to the magnitude
of the object’s Fourier transform, up to the cut-off frequency
1/λ, where λ is the wavelength of the light [3]. Therefore,
mathematically, the sub-wavelength CDI problem becomes the
problem of recovering a 2D signal from only the magnitude
of its truncated Fourier transform. Up to spatial coordinate
scaling and normalization, the above relation can be written
as:

I(j, k) = |LFb|2(j, k), (1)

where I is the measured far-field intensity, F is the 2D
Fourier transform operator, L is a low-pass filter with a cutoff
frequency of 1/λ, and b is the sought 2D object. The operator
| · | here stands for element-wise absolute value.

Inverting Eq.1, i.e. finding b from I, L, F is an ill-posed
problem, both because the high frequency information is lost
due to the coupling of high spatial frequencies to evanescent
waves, and due to the loss of phase information - since only
the far-field (Fourier) magnitude is measured. The problem at
hand, therefore, is phase-retrieval of a 2D object, combined
with bandwidth-extrapolation. In order to invert this ill-posed
problem, some additional information is needed, e.g. prior
knowledge on the sought signal.

In this work, we focus on objects that can be represented
compactly in a known basis, i.e. b = Ax where A is a
known basis and x is a sparse vector, namely, containing a
small number of nonzero elements. In this case, Eq. 1 can
be rewritten as (For simplicity, the indices (j, k) are dropped
from now on):

I = |LFAx|2, (2)
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and the prior knowledge of the sparsity of x adds information
that helps the inversion of Eq. 2. The sparsity prior has been
used for sub-wavelength imaging [13], but only when the
Fourier phase was also known, yielding a linear problem. Since
the measurements in our setting are not linear in the unknown
(but quadratic), standard linear sparse inversion algorithms
cannot be used, and a method to find a sparse solution to
a set of quadratic equations is required.

III. SOLUTION METHOD

The problem of sub-wavelength CDI can be viewed as con-
sisting of two sub-problems: Phase retrieval, and bandwidth
extrapolation. The problem of phase retrieval, i.e. recovering
a signal from the magnitude of its Fourier transform arises
in applications such as holography and crystallography, and
there has been a vast amount of work dealing with it ([14],
[15]). Usually, some prior knowledge about the object is used
(e.g. known support or known real-space megnitude), and the
different constaints are imposed iteratively. These techniques
have been used in the context of CDI [2], but their application
has always been limited to the information contained within
numerical aperture of the system.

Here, we devise a phase-retrieval method that can also deal
with the loss of high-requencies, by using the prior knowledge
that the sought object is sparse in a known basis. The two
problems are not handled separately, but rather solved as a
combined optimization problem. The logic of the technique is
as follows: An iterative thresholding method is used in order to
solve Eq. 2 while using the sparsity information. The method
attempts to find a solution to the following problem:

min ||x||0
subject to

∣∣∣∣I − |LFAx|2
∣∣∣∣2
2

≤ ε (3)
x ≥ 0

The non-negativity constraint on corresponds to the assump-
tion that the real-space object contains no phase information,
which is the case we consider in this work. The thresholding
method is described in detail in [16], and briefly below. First,
an initial support of the vector is approximated from the
blurred real-space image. Then, the following two steps are
repeated iteratively:

1. Solve the minimization problem:

min
∣∣∣∣I − |LFAx|2

∣∣∣∣2
2

(4)
subject to x ≥ 0

This is a non-convex problem, and in practice we use the
L-BFGS method [17] to find a local minimum.

2. Remove the weakest element of x from the support, i.e.
set it to zero. This element is constrained to remain zero in
the following iterations. Go-to step 1.

The iterations continue as long as the constraint∣∣∣∣I − |LFAx|2
∣∣∣∣2
2

≤ ε can be satisfied. Note that this re-
quires knowledge of the noise level ε in the measurements,
which might be approximated from knowledge or calibration

Fig. 1. Experimental setup

measurements in the optical system. In addition, a stopping
criterion may be defined by analyzing the reconstruction error∣∣∣∣I − |LFAx|2

∣∣∣∣2
2
.

IV. EXPERIMENTAL RESULTS

We demonstrate sparsity based sub-wavelength CDI ex-
perimentally, using the setup shown in Fig. 1. A coherently
illuminated microscope (532nm LASER) is used to image
arrangements of sub-wavelength holes, 100nm in diameter, in a
100nm thick Chrome layer covering a transparent substrate of
fused silica. The imaging setup consists of a water-immersed
objective (NA=1) and a lens imaging onto a 1002 × 1002
pixel CCD camera. The camera can be moved so that either
the real-space (blurred) magnitude of the object is measured,
or its truncated Fourier magnitude (Fig. 1). Two different
patterns are imaged and recovered experimentally. The first,
a star of David, is shown in Fig. 2. Figure 2a shows the
Scanning-electron-microscope image of the sample. Figure 2b
shows the measured real-space image using our microscope,
featuring the blur caused by the diffraction limit. The measured
truncated Fourier magnitude is shown in Fig. 2c. The basis
for reconstruction is taken as 100nm circles on a grid, and
the reconstructed image is shown in Fig. 2d. The circles
are recovered with the correct locations, and their recovered
amplitude is close to constant - which is consistent with the
illumination used for the imaging, which had approximately
constant intensity across the sample.

In order to demonstrate our ideas on a non-symmetric sam-
ple, exhibiting a truly complex Fourier transform, a second pat-
tern, comprising of a ‘random’ distribution of twelve 100nm
circles, is also recovered. Figure 3a shows the measured
blurred real-space image, and Fig. 3b shows the measured
truncated Fourier spectrum. The sparse sub-wavelength object
is recovered (Fig. 3c) from its truncated Fourier spectrum,
using our method, and the SEM image of the true object is
shown in Fig. 3d. The reconstruction basis used here is the
same as in Fig. 2, namely, 100nm circles on a grid.
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Fig. 2. a) Scanning Electron Microscope (SEM) image of the sample. b)
Real-space imaging, blurred due to diffraction limit. c) Measured Fourier
magnitude. d) Sparse reconstruction

Fig. 3. a) Real-space imaging, blurred due to diffraction limit. b) Measured
Fourier magnitude c) Sparse reconstruction d) Scanning Electron Microscope
(SEM) image of the sample.

V. CONCLUSION

In this work, we have presented a technique facilitating the
reconstruction of sub-wavelength features, along with phase
retrieval, at an unprecedented resolution for single-shot exper-
iments. This work opens the way for ultrafast sub-wavelength
coherent diffractive imaging: ultrafast phase retrieval at the
sub-wavelength scale. Fundamentally, sparsity-based concepts
can be implemented in all imaging systems and achieve sub-
wavelength resolution without additional hardware, given only
that the image is sparse in a known basis. For example,
sparsity-based methods could considerably improve the CDI
resolution with x-ray free electron laser [18], without hardware
modification.
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