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Abstract—In an effort to extend the classical Lagrangian
interpolation tools, new interpolating methods that use general
interpolating functions are explored. The Generalized Empirical
Interpolation Method (GEIM) belongs to this class. It generalizes
the plain Empirical Interpolation Method [1] by replacing the
evaluation at interpolating points by application of a class
of interpolating linear functions. Since its efficiency depends
critically on the choice of the interpolating functions (that are
chosen by a Greedy selection procedure), the purpose of this
paper is therefore to provide a priori convergence rates for the
Greedy algorithm that is used to build the GEIM interpolating
spaces.

I. INTRODUCTION

The extension of the Lagrangian interpolation process is an

old problem that is still currently subject to active research

(see, e.g. [1] and also the activity concerning the kriging [2],

[3] in the stochastic community). While this classical method

approximates general functions by finite sums of well chosen,

linearly independent interpolating functions (e.g. polynomial

functions) and the optimal location of the interpolating points

is well documented (and completely solved in one dimension),

the question remains on how to approximate general functions

by finite expansions involving general interpolating functions

and how to optimally select the interpolation points in this

case.

One step in this direction is the Empirical Interpolation

Method (EIM, [4], [5], [1]) that has been developed in the

broad framework where the functions f to approximate belong
to a compact set F of a Banach space X . The set F is

supposed to be such that any f ∈ F is approximable by

linear combinations of small size. In particular, this is the

case when the Kolmogorov n−width of F in X is small.

Indeed, the Kolmogorov n−width of F in X is defined by

dn(F,X ) := inf
Xn⊂X

dim(Xn)=n

sup
x∈F

inf
y∈Xn

‖x − y‖X (see [6]) and

measures the extent to which F can be approximated by

finite dimensional spaces Xn ⊂ X of dimension n. The
Empirical Interpolation Method builds simultaneously the set

of interpolating functions and the associated interpolating

points by a greedy selection procedure (see [4]).

A recent generalization of this interpolation process consists

in replacing the evaluation at interpolating points by appli-

cation of a class of interpolating continuous linear functions

chosen in a given dictionary Σ ⊂ L(F ) and this gives rise

to the so-called Generalized Empirical Interpolation Method

(GEIM, [7]). In this newly developed method, the particular

case where the space X = L2(Ω) is considered, with Ω being

a bounded spatial domain of Rd and F being a compact set

of L2(Ω).
In the present work, we analyze the quality of the finite

dimensional subspaces Xn contained in the span of F built

by the greedy selection procedure of GEIM together with the

properties of the associated interpolation operator. For this pur-

pose, the accuracy of the approximation in Xn of the elements

of F will be compared to the best possible performance which

is the Kolmogorov n− width dn(F,L
2(Ω)).

The methodology developed in this paper is in the spirit of

the greedy reduced basis method. Alternative approaches exist

like POD and gappy POD or even Adaptive Cross Approxi-

mation. We refer to the review paper [8] for a comparative

presentation of all these sampling approaches.

The proceeding is organized as follows: after a brief recall

of GEIM’s Greedy algorithm (section II), we will analyze

in sections III and IV some convergence decay rates of the

generalized empirical interpolation error as the dimension n
of Xn increases and when dn(F,L

2(Ω)) has a polynomial or
an exponential decreasing behavior.

II. THE GENERALIZED EMPIRICAL INTERPOLATION

METHOD

In the following, we assume that the dimension of the

vectorial space spanned by F is of dimension ≥ N .

In a similar procedure as in the Empirical Interpolation

Method (EIM) [4], [5], [1], the Generalized EIM allows

to define simultaneously the set of interpolating functions

recursively chosen in F together with the associated linear
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functions selected from a dictionary of continuous linear forms

Σ ⊂ L(F ), with norm 1 in L2(Ω). The dictionary has the

additional property that if ϕ ∈ F is such that σ(ϕ) = 0 for any
σ ∈ Σ, then ϕ = 0. The selection of the interpolating functions
and linear forms is based on a greedy selection procedure as

outlined in [7].

The first interpolating function is, e.g.: ϕ0 =
arg supϕ∈F ‖ϕ‖L2(Ω). The first interpolating linear form

is σ0 = arg supσ∈Σ |σ(ϕ0)|. We then define the first basis

function as q0 =
ϕ0

σ0(ϕ0)
. The second interpolating function is

ϕ1 = arg supϕ∈F ‖ϕ−σ0(ϕ)q0‖L2(Ω). The second interpolat-

ing linear form is σ1 = arg supσ∈Σ |σ(ϕ1−σ0(ϕ1)q0)| and the
second basis function is defined as q1 =

ϕ1 − σ0(ϕ1)q0
σ1(ϕ1 − σ0(ϕ1)q0)

.

We then proceed by induction : assume that we have

built the set of interpolating functions {q0, q1, . . . , qN−1}
and the set of associated interpolating linear forms

{σ0, σ1, . . . , σN−1}, for 1 ≤ N ≤ Nmax, with Nmax ≤ N
being an upper bound fixed a priori. For N ≤ 1, we first solve
the interpolation problem: find {αNj (ϕ)}j such that: ∀i =

0, . . . , N −1, σi(ϕ) =
N−1
∑

j=0

αNj (ϕ)σi(qj). We then compute

JN [ϕ] =
N−1
∑

j=0

αNj (ϕ)qj and evaluate εN(ϕ) = ‖ϕ −
JN [ϕ]‖L2(Ω), ∀ϕ ∈ F . We define ϕN = arg supϕ∈F εN(ϕ)
and σN = arg supσ∈Σ |σ(ϕN − JN [ϕN ])|. The next basis

function is then qN =
ϕN − JN [ϕN ]

σN (ϕN − JN [ϕN ])
We finally set XN+1 ≡ span {qj , j ∈ [0, N ]} =

span {ϕj, j ∈ [0, N ]}. It has been proven in [7]:

Lemma 1: For any N ≤ N , the set {qj, j ∈ [0, N −
1]} is linearly independent and XN is of dimension N . The

generalized empirical interpolation procedure is well-posed in

L2(Ω) and ∀ϕ ∈ F , the interpolation error satisfies:

‖ϕ− JN [ϕ]‖L2(Ω) ≤ (1 + ΛN ) inf
ψN∈XN

‖ϕ− ψN‖L2(Ω)

where ΛN is the Lebesgue constant in the L2 norm: ΛN :=

sup
ϕ∈F

‖JN [ϕ]‖L2(Ω)

‖ϕ‖L2(Ω)
.

Remark 1: In a similar way as in the classical Lagrangian

interpolation, the Lebesgue constant ΛN defined in our gener-

alized interpolation procedure depends both on set F and on

the choice of the dictionary of continuous linear forms Σ but

no detailed analysis of the behavior of ΛN as a function of F
or Σ has been carried out so far.

Remark 2: In practice the selection of the interpolation

functions in F and the interpolating elements in the dictionary

can be done by discretizing both F and Σ as is the case for

standard greedy approximations like in [5], [6]; an alternative

approach is [9] where the selection is done through a contin-

uous algorithm based on an iterative sequence of optimization

problems (solved by Newton methods) that seek to maximize

the error between the RB approximation and the underlying

true solution. The interpolants can be efficiently computed

recursively as outlined in [10].

III. PRELIMINARY NOTATIONS AND BASIC PROPERTIES

In what follows, we denote by (ϕ∗
n)n≥0 the orthonormal

system obtained from (ϕn)n≥0 by Gram-Schmidt orthogonal-

ization.

For any n ≥ 1, we define the orthogonal projector Pn from

X onto Xn which is given by Pn(f) =
n−1
∑

j=0

< f, ϕ∗
j > ϕ∗

j ,

∀f ∈ F , where < ., . > is the L2(Ω) scalar product. In

particular: ϕn = Pn+1(ϕn) =
n
∑

j=0

an,jϕ
∗
j , with an,j :=<

ϕn, ϕ
∗
j >, 0 ≤ j ≤ n.

Finally, let us denote τ0(F )L2(Ω) := d0(F,L
2(Ω)) and, for

any n ≥ 1: τn := τn(F )L2(Ω) := maxf∈F ‖f − Pn(f)‖L2(Ω)

and by γn the constant γn = 1/(1 + Λn).
We begin by proving the two following lemmas:

Lemma 2: For any n ≥ 1, ‖ϕn − Pn(ϕn)‖L2(Ω) ≥
γnτn(F ).

Proof: From lemma 1 applied to ϕ = ϕn we have

‖ϕn − Pn(ϕn)‖L2(Ω) ≥ γn‖ϕn − Jn(ϕn)‖L2(Ω). But ‖ϕn −
Jn(ϕn)‖L2(Ω) ≥ ‖ϕ−Jn(ϕ)‖L2(Ω) for any ϕ ∈ F according

to the definition of ϕn. Thus ‖ϕn−Pn(ϕn)‖L2(Ω) ≥ γn‖ϕ−
Jn(ϕ)‖L2(Ω) ≥ γn‖ϕ− Pn(ϕ)‖L2(Ω).

Lemma 3: Let A be the lower triangular matrix defined by

A := (ai,j)
∞
i,j=0 (ai,j := 0, j > i). A has two important

properties:

• P1: γnτn ≤ |an,n| ≤ τn.

• P2: For every m ≥ n,
m
∑

j=n

a2m,j ≤ τ2n.

Proof:

• P1: ∀f ∈ F : Pn(f) =
n−1
∑

j=0

< f, ϕ∗
j > ϕ∗

j . In particular:

ϕn−Pn(ϕn) = an,nϕ
∗
n ⇒ ‖ϕn−Pn(ϕn)‖2L2(Ω) = a2n,n.

The upper bound is thus obvious and Lemma 2 gives the

lower bound.

• P2: For every m ≥ n:
m
∑

j=n

|am,j |2 = ‖ϕm −

Pn(ϕm)‖2L2(Ω) ≤ maxf∈F ‖f − Pn(f)‖2 = τ2n.

IV. A PRIORI CONVERGENCE RATES OF THE GEIM

GREEDY METHOD

In order to get convergence decay rates in the generalized

interpolation error of our method, we first note that lemma 2

shows that the GEIM’s Greedy algorithm is what is called in

[11] a ”weak Greedy algorithm” of parameter γn = 1/(1+Λn)
that depends on the dimension of Xn.

Thanks to this observation, we shall derive convergence

decay rates in the sequence (τn)n≥0. This task consists in

extending the proofs of [11] where the constant case γn = γ
was addressed and where the following two results were

proven in Corollary 3.3:

i) If dn(F ) ≤ C0n
−α for n ≥ 1, then τn ≤

C02
5α+1γ−2n−α for n ≥ 1.

ii) If dn(F ) ≤ C0e
−c0n

α

for n ≥ 1, then τn ≤√
2C0γ

−1e−c1n
α

for n ≥ 1, where c1 := 2−1−2αc0.
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In order to extend i) and ii) to the more general case where
γ depends on the dimension n, the following preliminary

theorem is required:

Theorem 4: For any N ≥ 0, consider the weak Greedy

algorithm with constant γN in L2(Ω) associated with the

compact set F . We have the following inequalities between

τN and dN := dN (F,L2(Ω)) : for any K ≥ 1, 1 ≤ m < K

K
∏

i=1

τ2N+i ≤
1

K
∏

i=1

γ2N+i

(

K

m

)m(

K

K −m

)K−m

τ2mN+1d
2(K−m)
m .

Proof: This result is an extension of Theorem 3.2 of [11]

to the case where the parameter of the weak Greedy algorithm

(γN ) depends on the dimension of the reduced space XN . Its

proof is a slight modification to the one provided in [11] using

γN and the properties P1 and P2 stated in Lemma 3.

Using theorem 4, convergence rates in the sequence (τn)n≥0

when (dn)n≥0 has a polynomial or an exponential decay can

be inferred and lead to lemmas 5 and 6:

Lemma 5 (Polynomial decay of (dn)n≥0): For any n ≥ 1,
let n = 4ℓ + k (where ℓ ∈ {0, 1, . . .} and k ∈ {0, 1, 2, 3}).
Assume that there exists a constant C0 > 0 such that ∀n ≥ 1,
dn(F,L

2(Ω)) ≤ C0n
−α, then τn ≤ C0βnn

−α, where β1 = 2

and for n ≥ 2: βn = β4ℓ+k :=
√

2βℓ1
1

ℓ2
∏

i=1

γ
1
ℓ2

ℓ1−⌈ k

4 ⌉+i

(2
√
2)α

and ℓ1 = 2ℓ+ ⌊ 2k
3 ⌋, ℓ2 = 2

(

ℓ+ ⌈k4 ⌉
)

.

Proof: The proof is done by recurrence over n. We

initialize the reasoning by proving that τ1 ≤ 2C0 and then

prove the general statement for n ≥ 2.

Case n = 1: We recall that ϕ0 = arg supϕ∈F ‖ϕ‖L2(Ω)

and that P1 is the projector operator onto span {ϕ0}. We

set: f1 = arg τ1 = argmaxf∈F ‖f − P1(f)‖L2(Ω) and let

µ ∈ F span the one dimensional subspace of F for which

d1 ≥ ‖f − Pµ(f)‖L2(Ω) for any f ∈ F (Pµ being the

projector operator onto span {µ}). We have: τ1 = ‖f1 −
P1(f1)‖L2(Ω) = ‖f1 − Pµ(f1) + Pµ(f1) − P1(f1)‖L2(Ω) =
‖f1−Pµ(f1)−P1 (f1 − Pµ(f1))+Pµ(f1)−P1Pµ(f1)‖L2(Ω) ≤
d1 + ‖Pµ(f1)− P1Pµ(f1)‖L2(Ω).

We have: ‖Pµ(f1) − P1Pµ(f1)‖L2(Ω) = ‖< f1, µ > µ

‖µ‖2
L2(Ω)

−

〈< f1, µ > µ, ϕ0〉ϕ0

‖µ‖2
L2(Ω)‖ϕ0‖2L2(Ω)

‖L2(Ω) =
| < f1, µ > |
‖µ‖L2(Ω)

‖ µ

‖µ‖L2(Ω)
−

< ϕ0, µ > ϕ0

‖µ‖L2(Ω)‖ϕ0‖2L2(Ω)

‖L2(Ω).

Since for any x, y ∈ F with norm 1 we have

‖x− < x, y > y‖L2(Ω) = ‖y− < x, y > x‖L2(Ω),

we deduce that : ‖Pµ(f1) − P1Pµ(f1)‖L2(Ω) =
| < f1, µ > |
‖µ‖L2(Ω)

‖ ϕ0

‖ϕ0‖L2(Ω)
− < ϕ0, µ > µ

‖µ‖2
L2(Ω)‖ϕ0‖L2(Ω)

‖L2(Ω).

Hence: τ1 ≤ d1 +
| < f1, µ > |

‖µ‖L2(Ω)‖ϕ0‖L2(Ω)
‖ϕ0 −

< ϕ0, µ > µ

‖µ‖2
L2(Ω)

‖L2(Ω) ≤ d1

(

1 +
| < f1, µ > |

‖µ‖L2(Ω)‖ϕ0‖L2(Ω)

)

≤ 2d1.

Remark 3: In the case where ‖ϕ0‖L2(Ω) ≥ γ0‖f‖L2(Ω) for

any f ∈ F (0 < γ0 ≤ 1), we would have obtained τ1 ≤
d1

(

1 + 1
γ0

)

.

Case n ≥ 2 : Let n = N + K for any N ≥ 0,
K ≥ 2. If i ≤ K , we have τn = τN+K ≤ τN+i

from the monotonicity of (τn)n≥0. By combining this in-

equality with theorem 4, if 1 ≤ m < K , we derive

that τn ≤ 1
K
∏

i=1

γ
1
K

N+i

√

(

K

m

)
m

K

(

K

K −m

)1−m

K

τ
m

K

N+1d
1−m

K

m ≤

1
K
∏

i=1

γ
1
K

N+i

√
2τ

m

K

N+1d
1−m

K

m , since x−x(1− x)x−1 ≤ 2 for any x,

0 < x < 1. We now use that dm ≤ C0m
−α and the recurrence

hypothesis in N +1 < n : τN+1 ≤ C0βN+1(N +1)−α which

yields: τN+K ≤ C0

√
2

1
K
∏

i=1

γ
1
K

N+i

β
m

K

N+1ξ(n)
α(N+K)−α where

ξ(n) =
n

m

(

m

N + 1

)
m

K

.

Any n ≥ 2 can be written as n = 4ℓ+ k with ℓ ∈ {0, 1, . . .}
and k ∈ {0, 1, 2, 3}. If k = 1, 2 or 3, it can easily be proven

that ξ(n) ≤ 2
√
2 by setting N = 2ℓ− 1, K = 2ℓ + 2, m =

ℓ + 1 if k = 1 and ℓ ≥ 1, N = 2ℓ, K = 2ℓ+ 2, m = ℓ + 1
if k = 2 and ℓ ≥ 0 and N = 2ℓ+1, K = 2ℓ+2, m = ℓ+1
if k = 3 and ℓ ≥ 0. These choices of N, K and m combined

with the upper bound of ξ yield the result τn ≤ C0βnn
−α in

the case k = 1, 2 or 3.
In the case n = 4ℓ (ℓ ≥ 1), using the fact that τN+1 ≤ τN ,

we can derive that τn ≤ 1
K
∏

i=1

γ
1
K

N+i

√
2τ

m

K

N d
1−m

K

m . If we choose

N = K = 2ℓ and m = ℓ, the previous inequality directly

yields τ4ℓ ≤ C0

√
2β2ℓ

1
2ℓ
∏

i=1

γ
1
2ℓ

2ℓ+i

(2
√
2)α(4ℓ)−α.

Lemma 6 (Exponential decay in (dn)n≥0): Assume

that there exists a constant C0 > 0 such that ∀n ≥ 1,
dn(F,L

2(Ω)) ≤ C0e
−c1n

α

, then τn ≤ C0βne
−c2n

α

,

where βn :=
1

⌈n

2 ⌉
∏

i=1

γ
1

⌈n

2
⌉

⌊n

2 ⌋+i

√

2β⌊n

2 ⌋ for n ≥ 2, β1 = 2 and

c2 := 2−1−3αc1.

Proof: The proof is done by recurrence over n.
The case n = 1 is addressed by following the same lines as

in lemma 5.

In the case n = 2, we have: τ2 ≤ τ1 ≤ 2C0.

For n ≥ 3, we start from τN+K ≤ 1
K
∏

i=1

γ
1
K

N+i

√
2τ

m

K

N+1d
1−m

K

m

and treat the cases n = N+K = 2ℓ and n = N+K = 2ℓ+1
separately (ℓ ≥ 1).
If n = N +K = 2ℓ, we choose N = K = ℓ and m = ⌊K2 ⌋.
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The inequality yields τ2ℓ ≤
1

ℓ
∏

i=1

γ
1
ℓ

ℓ+i

√
2τℓe

−c2(2ℓ)
α

.

In a similar procedure, the desired result can be inferred for

n = N +K = 2ℓ + 1 if we choose N = ℓ, K = ℓ + 1 and

m = ⌊K2 ⌋.
Remark 4: 1) In the case where γn is constant γn = γ,

lemmas 5 and 6 yield results that are similar to the ones

obtained in [11] (see results i) and ii) above).
2) In the case where (γn)n≥1 is a monotonically decreasing

sequence, the following bounds can be derived for τn:

• If dn(F,L
2(Ω)) ≤ C0n

−α for any n ≥ 1,
then τn ≤ C0βn

−α for n ≥ 1, with β :=
23α+1 (min1≤j≤n γj)

−2
= 23α+1γ−2

n .

• If dn(F,L
2(Ω)) ≤ C0e

−c1n
α

for any n ∈
{1, 2, . . .}, then τn ≤ C0βe

−c2n
−α

for n ≥ 1, with
β := 2 (min1≤j≤n γj)

−2
= 2γ−2

n .

Lemmas 5 and 6 are the keys to derive the decay rates of

the interpolation error of the GEIM Greedy algorithm. This is

the purpose of the following theorem:

Theorem 7: 1) Assume that dn(F,L
2(Ω)) ≤ C0n

−α

for any n ≥ 1, then the interpolation error of the GEIM
Greedy selection process satisfies for any ϕ ∈ F the

inequality ‖ϕ − Jn[ϕ]‖L2(Ω) ≤ C0(1 + Λn)βnn
−α,

where the parameter βn is defined as in lemma 5.

2) Assume that dn(F,L
2(Ω)) ≤ C0e

−c1n
α

for any n ≥ 1,
then the interpolation error of the GEIM Greedy se-

lection process satisfies for any ϕ ∈ F the inequality

‖ϕ − Jn[ϕ]‖L2(Ω) ≤ C0(1 + Λn)βne
−c2n

α

, where βn
and c2 are defined as in lemma 6.

Proof: It can be inferred from lemma 1 that, ∀ϕ ∈
F, ‖ϕ − Jn[ϕ]‖L2(Ω) ≤ (1 + Λn)‖ϕ − Pn(ϕ)‖L2(Ω) ≤
(1 + Λn)τn according to the definition of τn. We conclude

the proof by bounding τn thanks to lemmas 5 and 6.

Remark 5: If (Λn)n≥1 is a monotonically increasing se-

quence, then the sequence (γn)n≥1 in the GEIM procedure

is monotonically decreasing. Using remark 4, the following

decay rates in the generalized interpolation error can be

derived:

• For any ϕ ∈ F , if dn(F,L
2(Ω)) ≤ C0n

−α for any

n ≥ 1, then the interpolation error of the GEIM Greedy

selection process can be bounded as ‖ϕ−Jn[ϕ]‖L2(Ω) ≤
C02

3α+1(1 + Λn)
3n−α.

• For any ϕ ∈ F , if dn(F,L
2(Ω)) ≤ C0e

−c1n
α

for any

n ≥ 1, then the interpolation error of the GEIM Greedy

selection process can be bounded as ‖ϕ−Jn[ϕ]‖L2(Ω) ≤
C02(1 + Λn)

3e−c2n
α

.

Remark 6: The evolution of the Lebesgue constant ΛN
as a function of N is a subject of great interest. From the

theoretical point of view, crude estimates exist and provide

an exponential upper bound that is far from being what we

get in the applications. As is shown in ( [4], [5], [1]), the

growth is lower than linear in N in the EIM situations. Our

first numerical experiments with the GEIM reveal cases where

it is uniformly bounded when evaluated in the L(L2) norm

(see [7], [10] for an illustration of this topic as well as for an

application of the method to data assimilation coupled with

simulation). We do not pretend that this is universal, but it

only shows that the theoretical exponentially increasing upper

bound is far from being optimal in a class of sets F that have

a small Kolmogorov n-width.

V. CONCLUSION

In this work, it has been proven that the approximation

properties of the generalized interpolating spaces Xn lead

to an error that has the same qualitative decay as the best

possible choice and that is distant by a (multiplicative) factor

(1 + Λn)βn from it. This has been proven in the case of a

polynomial or exponential convergence in the n−width and is
a first step towards the explanation of efficiency of this method

in practice (as outlined in [7]).
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