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Abstract—Consider a large database of questions that test
the knowledge of learners (e.g., students) about a range of
different concepts. While the main goal of personalized learning
is to obtain accurate estimates of each learner’s concept under-
standing, it is additionally desirable to reduce the number of
questions to minimize each learner’s workload. In this paper, we
propose a novel method to extract a small subset of questions
(from a large question database) that still enables the accurate
estimation of a learner’s concept understanding. Our method
builds upon the SPARse Factor Analysis (SPARFA) framework
and chooses a subset of questions that minimizes the entropy of
the error in estimating the level of concept understanding. We
approximate the underlying combinatorial optimization problem
using a mixture of convex and greedy methods and demonstrate
the efficacy of our approach on real educational data.

I. INTRODUCTION

There has been a recent surge in providing free and high-
quality online education through ventures, such as Coursera,
Udacity, and edX.1 Among the key challenges of such systems
is in the estimation of each learner’s concept understanding.
Such information is essential in order to automatically rec-
ommend remediation about concepts each learner has weak
knowledge of (see, e.g., [6] for the details). In practice,
accurate estimates for each learner’s concept understanding
can be extracted automatically by analyzing responses to large
sets of questions about the concepts underlying the given
class. To minimize each learner’s workload, however, it is of
paramount importance to reduce the test-size (compared to
the size of the entire question database), while still enabling
accurate estimates of each learner’s concept understanding. We
refer to this problem as test-size reduction (TeSR).

In this paper, we propose a novel algorithm for test-size
reduction (TeSR), i.e., the problem of selecting a small number
of questions from a large dataset, while enabling the accurate
estimation of conceptual understanding of each learner. Our
approach builds upon the SPARse Factor Analysis (SPARFA)
framework proposed in [6] to automatically estimate the latent
concepts associated with each question. Then, using theory
of maximum likelihood (ML) estimators, we formulate the
TeSR problem as a combinatorial optimization problem that
minimizes the entropy of the asymptotic error in estimating
the concept understanding of each learner. We show how the
optimization problem can be solved approximately using a
combination of convex and greedy methods. We then highlight
the advantages of the proposed method by carrying out an
experiment with real educational data.

∗Also affiliated with the Institute for Mathematics and its Applications,
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1https://www.coursera.org ; https://www.udacity.com ; https://www.edx.org

Prior work on selecting a subset of questions mainly use
statistical models that rely on a single parameter that captures
the concept understanding of a learner [3]. In contrast, the
SPARFA model used in this work assumes that there are
multiple concepts involved in a database of questions. This
scenario is more realistic in practice, since it is often the
case that questions test knowledge from multiple concepts
simultaneously. Several authors have considered the problem
of selecting questions in an adaptive manner, see, e.g., [2],
[7]. All these adaptive algorithms require a set of starting
questions to gauge the adaptive process. Our proposed method
can be used for this purpose and is designed to minimize
the error of the initial concept understanding estimates, which
eventually improves the performance of adaptive methods. We
finally note that the problem of selecting questions is related
to the problem of sensor selection [5]. The main difference
is that the data in sensor network problems is typically real
valued, whereas the SPARFA model focuses on binary-valued
measurements (i.e., right and wrong answers to questions).

II. PROBLEM FORMULATION

We begin by reviewing the SPARFA model [6] for extracting
relationships between questions and concepts from graded
question responses. We then detail the TeSR problem to select
“good” subsets of questions for concept estimation.

A. The SPARFA Framework in a Nutshell

Suppose we have a total of Q questions that test knowledge
from K concepts. For example, in a signal processing course,
questions can test knowledge on concepts like convolution,
the sampling theorem, or the Fourier transform. For each
question i = 1, . . . , Q, let wi ∈ R

K×1 be a column vector that
represents the association of question i to all concepts. Note
that a question can test knowledge from multiple concepts.
For example, a question on the convolution theorem (i.e.,
the Fourier transform of a convolution is the product of
Fourier transforms of the two signals to be convoluted) in
signal processing may test the learner’s knowledge on both
convolution and the Fourier transform.

The j th entry in wi, which we denote by wij , measures
the association of question i to concept j. In other words, if
question i does not test any knowledge from concept j, then
wij = 0. Let W = [w1, . . . ,wQ]

T be a sparse Q×K matrix
with non-negative entries so that each question only tests a
subset of all concepts. Let µi ∈ R be a scalar that represents
the intrinsic difficulty of a question. A larger (smaller) µi cor-
responds to an easier (harder) question. Let µ = [µ1, . . . , µQ]

T

be a Q × 1 column vector that represents the difficulty of
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Notation Description

W A sparse non-negative matrix that
characterizes the relationship between
questions and knowledge concepts

µ A vector that specifies the intrinsic
difficulty of each question

c∗ A vector that represents a learner’s
concept knowledge

TABLE I
MAIN PARAMETERS OF THE SPARFA MODEL.

each question. Finally, let c∗ ∈ R
K be a column vector that

represents the concept understanding of a particular learner. It
is this parameter vector that personalized learning systems are
naturally interested in estimating accurately.

To model the interaction between W, µ, and c∗, we use
the SPARFA framework proposed in [6]. Let Yi be a binary
random variable that indicates whether question i has been
answered correctly or not, indicated by 1 and 0, respectively.
More specifically, we assume that Yi ∈ {0, 1} admits the
following distribution:

Pr(Yi = 1 |wi, µi, c
∗) = Φ(wT

i c
∗ + µi) , (1)

where Φ(·) is an appropriate link function. In this paper, we
consider the logistic link function, i.e., Φ(x) = 1/(1 + e−x).
Assuming that all the random variables Y1, . . . , YQ are inde-
pendent of each other, the joint probability distribution of the
random vector Y = [Y1, . . . , YQ]

T can be written as

Pr(Y = y |W,µ, c∗) =
Q∏
i=1

exp(yi(w
T
i c

∗ + µi))

1 + exp(wT
i c

∗ + µi)
, (2)

where y = [y1, . . . , yQ]
T ∈ {0, 1}Q is the response of a

learner to all the questions. Given graded question responses
from multiple learners, the problem of computing the factors
W, µ, and the concept understanding vector for each learner
can be solved using either the SPARFA-M or SPARFA-B
algorithm proposed in [6].

B. Problem Statement: Test-size Reduction (TeSR)

The problem we consider here is to select an appropriate
subset of q < Q questions so that c∗, the unknown concept
understanding vector of a learner, can be estimated accurately.
We assume that prior data, a binary-valued matrix Ỹ, is
known such that an entry Ỹi,j refers to whether a learner
j answered question i correct or incorrect. This data matrix
can be easily obtained in real educational settings by looking
at past offerings of a course, for example. As mentioned in
Section II-A, we can compute W for all the Q questions in
the database using Ỹ.

Suppose, hypothetically, that we choose a subset I of q < Q
questions and we are given a response vector yI . Using the
model in (2), the maximum likelihood (ML) estimate ĉ can

be computed as follows:

ĉ = arg max
c∈RK

log Pr(YI = yI |W,µ, c)

= arg max
c∈RK

∑
i∈I

[
yi(w

T
i c+ µi)−log(1 + ew

T
i c+µi)

]
. (3)

Given yI , the result of (3) can be solved via standard convex
optimization algorithms [1]. Our main objective is to find
a subset I so that |I| = q and the ML estimate ĉ is as
close to the ground truth c∗ as possible. To do this, we make
use of the following asymptotic normality property of ML
estimators (see, e.g., [4] for the details). First, define the Fisher
information matrix as follows:

F(WI ,µI , c∗)) =
∑
i∈I

exp(wT
i c

∗ + µi)

(1 + exp(wT c∗ + µi))2
wiw

T
i , (4)

where the notation WI refers to the rows of W indexed by I
and µI refers to the entries in µ indexed by I.

Theorem II.1. Let Ir for r = 1, . . . , q be a fixed se-
quence of q subsets of size r. Assume that there exists a
q0 < q such that F(WIq ,µIq , c

∗)) is invertible for all
r > q0. Then, the random vector

√
q(ĉ − c∗) converges in

distribution to a multivariate normal vector with mean zero
and covariance F(WIq ,µIq , c

∗))−1, i.e.,
√
q(ĉ − c∗) d→

N (0,F(WIq ,µIq , c
∗))−1).

Theorem II.1 states that as the number of questions q
gets large, the covariance of the error

√
q(ĉ − c∗) can be

approximated by the inverse of the Fisher information ma-
trix. This motivates a natural strategy to choose a subset
of questions I that minimizes the differential entropy2 of
a multivariate normal random vector with mean zero and
covariance F(WI ,µI , c∗))−1, which intuitively minimizes
the uncertainty in the error

√
q(ĉ − c∗). Consequently, the

optimization problem considered in the remainder of the
paper, referred to as the test-size reduction (TeSR) problem,
corresponds to

(TeSR) Î = arg max
I⊂{1,...,Q},|I|=q

log det(F(WI ,µI , c∗)) .

The main challenges in solving (TeSR) are (i) the TeSR
problem is a combinatorial optimization problem and (ii) the
concept knowledge vector c∗ is unknown, so the objective
function cannot be evaluated exactly. In the next section,
we outline a data-driven approach for approximating the
(TeSR) objective function. We then develop a computationally
efficient algorithm that delivers good approximations to the
combinatorial TeSR problem.

III. TEST-SIZE REDUCTION ALGORITHM

We start by noting that the scalar term in the summation
in (4) is equivalent to the variance of the random variable Yi

2Note that the differential entropy of X = (X1, . . . ,Xq) ∼ N (0,Σ) is
given by log

(
(2πe)q det(Σ)

)
.
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Algorithm 1: Nonadaptive test-size reduction (NA-TeSR)
Step 1) First choose K questions by solving

Î[K] = arg max
I⊂{1,...,Q},|I|=K

log det
(
WT

I V̂WI
)

(5)

using the convex optimization method in (8). The entries
of the diagonal matrix V̂ are defined as V̂kk = v̂k,
where v̄k specified in (6).
Step 2) Select questions K+1, . . . , q in a greedy manner:

Îj+1 = arg max
i∈{1....,Q}\Î[j]

v̂iw
T
i

(
WT

I[j]
V̂I[j]

WI[j]

)−1

wi .

conditioned on c∗, i.e.,

Var[Yi|c∗] = exp(wT
i c

∗ + µi)

(1 + exp(wT c∗ + µi))2
. (6)

The variance Var[Yi|c∗] captures the variability of a learner in
answering the ith question. By defining V as a Q×Q diagonal
matrix with entries Vii = Var[Yi|c∗], the TeSR problem can
be rewritten in matrix form as

(TeSR) Î = arg max
I⊂{1,...,Q},|I|=q

log det(WT
IVIWI) .

We first address the problem of approximating the objective
function using a graded question response matrix Ỹ acquired
in, e.g., a previous offering of a course. Since the vector c∗

is not known, we need to make some assumptions on Ỹ so
that the objective function can be estimated. As it turns out,
a natural, and convenient, assumption is for the prior data to
be chosen in such a way that the concept understanding of
the learners in the response matrix Ŷ is roughly equal to c∗.
Using this assumption, we can easily estimate Var[Yi|c∗] to
be the sample variance of the data Ỹ:

v̂i = Var[Yi|c∗] = 1

N

N∑
j=1


Ỹij − 1

N

N∑
j=1

Ỹij


 , (7)

where Ỹij is the (i, j)th entry of Ỹ. Using the sample variance,
(TeSR) can be rewritten as

(TeSR) Î = arg max
I⊂{1,...,Q},|I|=q

log det(WT
I V̂IWI) ,

where V̂ is a diagonal matrix with entries V̂kk = v̂k. In the
above formulation, there is no longer any dependence on c∗.

Algorithm 1 summarizes a nonadaptive method for solving
the TeSR problem. The first step is to find the “best” K ques-
tions, where K is the number of concepts in the Q questions.
Next, we select the remaining questions K + 1, . . . , q in an
iterative manner. Note that selecting less than K questions
would inhibit estimating the K-dimensional concept knowl-
edge vector.

For any subset I, let I[K] denote the first K elements. To
select the initial K questions Î[K], we use methods in [5] to

formulate the combinatorial optimization problem in (5) as a
convex optimization problem. More specifically, we can obtain
an approximate solution to (5) by solving the following convex
optimization problem:

maximize log det
(
WT

I V̂ZWI
)

subject to diagonal matrix Z with Zkk = zk∑
zk = K and 0 ≤ zk ≤ 1

(8)

Once (8) has been computed, Î[K] can be approximated as
the indices corresponding to the top K largest values of the
diagonal elements Zkk = zk of the matrix Z.

The second step in Algorithm 1 chooses the remaining q−K
questions in a greedy manner. Using the identity

det(X+ bbT ) = det(X)(1 + bTX−1b),

where X is a square matrix and b is a column vector, the
quantity log det(WT

I[j+1]
V̂I[j+1]

WI[j+1]
) can be rewritten as

log det(WT
I[j]

V̂I[j]
WI[j]

) + log(1 + F ) (9)

with the definition

F = V̂Ij+1,Ij+1w
T
Ij+1

(WT
I[j]

V̂I[j]
WI[j]

)−1wIj+1 . (10)

Thus, once j questions Î[j] have been selected, the next ques-
tion, Îj+1, can be selected so that the quantity F defined above
is maximized.

Remark 1: The computational complexity of Step 1 of Al-
gorithm 1 is rather low when using the convex optimiza-
tion relaxation approach outlined in (TeSR). We refer to [5]
for iterative methods that solve (8). We note that although
Step 2 requires computing an inverse of a K × K matrix
multiple times, this inverse can be computed recursively once
(WT

I[K]
V̂WI[K]

)−1 has been computed. Finally, we can di-
rectly solve (TeSR) using the convex relaxation in (8). How-
ever, the computational complexity of this approach can be
large, especially when q is large.

Remark 2: Note that when W is a Q × 1 vector of all
ones, the SPARFA model reduces to the Rasch model [9].
In this case, (TeSR) reduces to a problem of maximizing the
sum of the variance terms over the selected questions. Thus,
all the questions can be selected independently of the others
when using the Rasch model. On the other hand, when using
SPARFA, since we account for the statistical dependencies
amongst questions, the questions can no longer be chosen
independently as it is evident from Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, we assess the performance of our algorithms
for test-size reduction (TeSR) using synthetic and real educa-
tional datasets.

Baseline algorithms: We compare NA-TeSR to three baseline
algorithms. The first, referred to as NA-Rasch, uses the Rasch
model [9] and selects questions in a non-adaptive manner
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Fig. 1. TeSR and baseline methods for synthetic data and real data.

(see Remark 2). The second, referred to as Greedy, iteratively
selects a question from each concept until the required number
of q questions has been selected. If all questions from a given
concept have been exhausted, then Greedy skips to the next
concept to select a question. Note that this approach com-
pletely ignores the variability of a learner in answering various
questions. Finally, we also compare to an oracle algorithm,
referred to as Oracle, that uses the true underlying (but in
practice unknown) vector c∗ to solve the TeSR problem. Note
that the oracle algorithm is not practical and is only used to
characterize the performance limits of TeSR.

Performance measure: We assess the performance of the
algorithms using the root mean-square error (RMSE), defined
as RMSE = ‖ĉ − c∗‖2, where ĉ is the estimate delivered
by each method and c∗ is the ground truth. Although c∗ is
known for synthetic experiments, for real data, we assume that
the ground truth is the concept vector estimated when asking
all Q available questions.

Methods: In the experiments shown next, we assume that
a matrix Y is given that contains graded responses of Q
questions from M students. As mentioned in Section 2, for real
data, we use SPARFA-M [6] to estimate W and the ground
truth concept values of each learner. For each learner, we apply
the baseline and our proposed TeSR algorithms using W and
a training data Ỹ obtained after removing the responses of the
learner from the matrix Y. To show the performance of our
TeSR algorithms, we report the mean and standard deviation
of the RMSE evaluated over all M learners.

MLE convergence: It turns out that the maximum likelihood
estimate (MLE) may not converge for certain patterns of the
response vectors. In the case of inexistent ML estimates, we
make use of the sign of the ML estimates to compute the
RMSE. We then assign each entry in ĉ to the worst (for −∞)
or best (for +∞) value obtained from a prior set of learners
who have taken the course. In our simulations, these worst and
best concept values are computed using the training data Ỹ.

Results: We generated a sparse 50 × 5 matrix W that maps
50 questions to 5 concepts. There were roughly 30% non-
zero entries in W with the non-zero entries chosen from an
exponential random variable with parameter λ = 2/3. Each
entry in the intrinsic difficulty vector µ was generated from a
standard normal distribution. We assumed 25 learners whose

concept understanding vectors were again generated from a
standard normal distribution. For each Y, we computed the
reduced test-size with q = 5, 6, . . . , 44. Fig. 1 shows the mean
value of the RMSE over 100 randomly generated response
vectors Y. Note that the mean RMSE is taken over all 25
learners. We observe that NA-TeSR is superior to all practical
baseline algorithms. This observation suggests that the Rasch
model is not an appropriate model for selecting questions for
the purpose of test-size reduction in courses having more than
one underlying concept.

Fig. 1(b) shows results on real educational dataset corre-
sponding to graded response data obtained from the ASSIST-
ment system [8]. The original data contained responses from
4354 learners on 240 questions. There is a large number of
missing responses in this dataset, i.e., not every learner an-
swered all problems. In order to get a dataset with a sufficient
number of observed entries, we focused on a subset of 219
questions answered by 403 learners. The resulting trimmed
Y matrix has roughly 75% missing values. Fig. ??(b) shows
the associated results and we observe similar trends as for
synthetic data set. The main difference is that the performance
of the Greedy algorithm is almost as good as the NA-TeSR
algorithm in certain domains. This may be a result of the
several missing values present in the dataset that does not
allow for accurate computations of the variability in answering
each question. We note that we have extended the NA-TeSR
algorithm in [10] to an adaptive algorithm where each question
selected by the greedy step in NA-TeSR uses prior responses
to form an estimate of ĉ. This method leads to results that
are closer to the Oracle algorithm. We refer to [10] for more
details.
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