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Abstract— In this paper, two methods are proposed which address
the random sampling and compressed sensing recovery problems.
The proposed random sampling recovery method is the Iterative
Method with Adaptive Thresholding and Interpolation (IMATI).
Simulation results indicate that the proposed method outperforms
existing random sampling recovery methods such as Iterative Method
with Adaptive Thresholding (IMAT). Moreover, the suggested method
surpasses compressed sensing recovery methods such as Orthogonal
Matching Pursuit (OMP) in terms of recovery performance. We
propose a compressed sensing recovery method, named Iterative
Method with Adaptive Thresholding for Compressed Sensing recov-
ery (IMATCS). Unlike its counterpart, Iterative Hard Thresholding
(IHT), the thresholding function of the proposed method is adaptive
i.e. the threshold value changes with the iteration number, which
enables IMATCS to reconstruct the sparse signal without having any
knowledge of the sparsity number. The simulation results indicate
that IMATCS outperforms IHT and OMP in both computational
complexity and quality of the recovered signal.

I. INTRODUCTION

Sparse recovery methods have found broad applications in various
areas such as imaging systems, multipath channel estimation, spectral
estimation, and coding. Depending on various kinds of sparsity
(low pass, high pass, or random) and various sampling techniques
(uniform or random), different methods have been suggested in the
literature for reconstruction of sparse signals [1]. When the location
of sparsity is known, the number of samples required for exact
reconstruction equals the sparsity number. Some of the recovery
methods in this case are suggested in [1]. When the location of
the sparsity is unknown, the number of samples must be at least
twice the sparsity number to identify both the locations and the
values of the coefficients[2]. More sophisticated recovery methods
are required in this case which can be grouped based on the sampling
strategy. One sampling strategy is to take linear combinations of
the signal entries which is the focus of the Compressed Sensing
(CS) techniques. The second sampling scheme is to take random
samples of the signal entries. In CS [3, 4], linear combinations of the
signal coefficients are taken instead of directly sampling the signal.
Many compressed sensing recovery algorithms have been proposed,
ranging from convex relaxation techniques to greedy approaches such
as Orthogonal Matching Pursuit (OMP) [5] to iterative thresholding
schemes such as Iterative Hard Thresholding (IHT) [6, 7]. IHT is
proposed for compressed sensing recovery of sparse signals when
the sparsity number of the signal is known. In [8], normalized
IHT algorithm is proposed which is a stabilized version of IHT. In
[2, 9], the Iterative Method with Adaptive Thresholding (IMAT) is
proposed to recover the signal from its random samples. The random
samples in this case are random selection of the signal entries. The
IMAT recovers the underlying sparse signal by alternating projections
between the information domain and the sparsity domain (the domain

in which the signal is sparse). In order to take advantage of the
sparsity of the embedded signal, IMAT thresholds adaptively the
signal (by decreasing or increasing the threshold levels) in such a
way that the coefficients are picked up gradually after some iterations.
In this paper, two methods are proposed which address the random
sampling and CS recovery problems. The proposed random sampling
recovery method is the Iterative Method with Adaptive Thresholding
and Interpolation (IMATI) which is a modified version of the IMAT.
At each iteration, a crude reconstruction of the signal based on
linear interpolation is obtained. The adaptive thresholding scheme
is exploited to promote sparsity. The proposed compressed sensing
recovery method is Iterative Method with Adaptive Thresholding for
Compressed Sensing recovery (IMATCS). We note that IMATCS is
closely related to IHT method [6, 7], except that the thresholding
function is adaptive, i.e., the threshold value changes with the
iteration number, which enables IMATCS to reconstruct the sparse
signal without having any knowledge of the sparsity number. The
simulation results indicate that the IMATI method outperforms the
IMAT method. Also, we conclude that random sampling recovery
(using IMAT or IMATI) is a good choice for signal compression com-
pared to CS recovery techniques such as Orthogonal Matching Pursuit
(OMP), and there is no need to add more complexity to take linear
combination of the signal coefficients. However, in some applications
the linear combinations of the signal coefficients are imposed by the
problem. In such cases, the compressed sensing recovery techniques
are the only solution. The simulation results indicate that IMATCS
provides better and faster reconstruction compared to normalized IHT,
although IHT has an extra information of the sparsity number. Also,
the recovery performance of IMATCS is better than that of OMP
with less computational complexity.

The rest of the paper is organized as follows: The IMATCS method
is proposed in Section II. The proposed IMATI method is presented
in section III. The simulation results are given in Section IV. Finally,
Section V concludes this work.

II. ITERATIVE METHOD FOR COMPRESSED SENSING RECOVERY

(IMATCS)
In this section, the proposed Iterative Method for Compressed

Sensing recovery (IMATCS) is illustrated. Let S be M×1 signal and
Φ be L×M (L〈M) measurement matrix. The problem is to recover
S from its measurement vector Y=Φ × S with the constraint that S
is sparse in the Ψ domain, S=Ψ×X . In other words, the coefficient
vector X has a small number of non-zero entries. The transformation
matrix, can be DCT, DWT or DFT. The IMATCS method can be
considered as a variant of IHT based on adaptive thresholding. The
mathematical formulation of the method is as follows:

xk+1 = T (xk + ×AH(Y −A× xk)) (1)
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A = Φ×Ψ (2)

Srecovered = Ψ× xitermax (3)

λ is the relaxation parameter which controls the convergence of
the algorithm. T is the thresholding function decreased iteration by
iteration in an exponential manner as follows:

T = T0 × exp(−α×K) (4)

where K is the iteration number and λ indicates the threshold step
and is determined empirically. The algorithm starts from zero initial
value, x0 = 0. After a number of iterations, indicated by itermax,
the coefficient vector is recovered as xitermax. The adaptivity of the
threshold enables us to recover the embedding signal from its linear
measurements without any knowledge of the sparsity number of the
signal.

III. ITERATIVE METHOD WITH ADAPTIVE THRESHOLDING AND

INTERPOLATION (IMATI)

Another problem which is addressed here is the recovery of the
sparse signal from a random selection of its entries, i.e. random
sampling. The proposed method in this case is IMATI which rely
on some modifications to the well-known iterative method [10]. The
conventional iterative method has originally been proposed in the field
of non-uniform sampling recovery for low pass or high pass signals
(a special kind of sparse signals). In order to promote sparsity, a
thresholding operator is used at the end of each iteration. In random
sampling, the measurements are a subset of signal entries. Hence,
the random sampling measurement matrix, ΦR, consists of a random
selection of the rows of the identity matrix. The formulation of the
IMATI method is given as:

xk+1 = T (xk + × Interpl(Y −AR × xk)) (5)

AR = ΦR ×Ψ (6)

Srecovered = Ψ× xitermax (7)

The above formulation of IMATI shows the analogy of the two
proposed methods, IMATCS and IMATI. A crude reconstruction
scheme is used successively and the recovered signal at each iteration
is sparsified using an adaptive threshold. In IMATCS method, the
measurements are linear combinations of the signal entries and the
iterated recovery is based on the transpose of the matrix, i.e. AH.
In IMATI, a random selection of the signal entries is available as
measurements and the crude reconstruction scheme is based on linear
interpolation. Furthermore, in order to promote sparsity, exponential
adaptive thresholding is used in the proposed methods. The IMATI
method can be implemented in a more efficient way according to the
block diagram depicted in Figure 1.

The G operator applies the sampling and interpolation. The ran-
dom sampling scheme can be implemented by an inner product
of the image with a binary sampling mask. Moreover, the linear
interpolation can be applied to the sampled image using a sliding
interpolating window. Therefore, the above implementation enables
IMATI to process the whole image at once.

IV. SIMULATION RESULTS

In this part, the simulation results are reported. The parameters
of IMATI method are set as: T0 = 66363, α = 0.6, λ = 1.8
,itermax=35. The parameters of IMATCS are set as follows: T0 =
900,α = 0.2 , λ = 0.3 , itermax=100.

Two kinds of interpolators have been exploited in IMATI method:
• Linear interpolation using sliding window 3× 3

Fig. 1. Block diagram of IMATI method.

The missing pixel is replaced by a weighted average of the
3× 3 neighbors. The IMATI method in this case is named
IMATLI.

• Sample and hold interpolation
the missing pixels are replaced by their neighboring samples
in the top or left. The IMATI method in this case is called
IMATSH.

In the case of random sampling recovery methods such as IMAT,
IMATSH and IMATLI, the whole of the image is processed at once
without dividing it into small blocks, while 8×8 blocks of the image
are processed separately for compressed sensing recovery methods
such as OMP, normalized IHT and IMATCS. The performances of
IMATLI, IMATSH, IMAT and OMP methods are compared in Figure
2.

Fig. 2. comparison of IMATI method with IMAT and OMP

According to Figure 2, the IMATLI method has better recovery
performance than the IMATSH and both of them outperform IMAT.
The OMP method has the worst recovery performance among the all.
The simulation time of the methods are compared in Figure 3 as a
trustable complexity measure.

Comparing the simulation times of the methods, we observe that
IMAT is much more complex than IMATLI and IMATSH especially
for lower sampling rates. Furthermore, the IMATSH is faster than
IMATLI. The simulation time of OMP goes up as the sampling
rate increases and its complexity is more than those of IMAT and
IMATSH especially for higher sampling rates. The IMATCS method
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Fig. 3. simulation time of IMATLI, IMATSH, IMAT and OMP

is compared to some well known compressed sensing recovery
methods such as OMP [5] and normalized IHT [8] in the case of
natural image recovery. As the IHT method requires the signal to be
k-sparse for efficient performance, we sparsify the image in the DCT
domain up to 20 %. However, for the other two simulated methods
(OMP and proposed IMATCS), the original (non-sparse) image is
used. The efficiency of the recovery methods for various sampling
rates are compared at Figure 4.

Having a look at Figure 4, we understand that the performance

Fig. 4. recovery performance of IMATCS, OMP and normalized IHT

of IMATCS is similar to that of OMP and much better than that
of normalized IHT for various sampling rates. To compare the
complexities of the methods, the simulation time is shown in Figure
5.

According to Figure 5, the simulation time of normalized IHT is
more than 50 times those of OMP and IMATCS. Furthermore, simu-
lation time of OMP increases with the sampling rate while IMATCS
has an approximately steady low simulation time. Consequently, the
complexity of IMATCS is low and does not change for various
sampling rates which can be an excellent characteristic from practical
point of view, since a fixed and flexible implementation test bed can
be used for various sampling rates.

Fig. 5. simulation time of IMATCS, OMP and normalized IHT

V. CONCLUSION

In the case of IMATI method, the linear interpolation performs
slightly better than sample and hold interpolation at the cost of
more complexity. The IMATSH and IMATLI methods reconstruct
the signal better than what IMAT does at the cost of more simu-
lation time. Furthermore, the random sampling recovery techniques
including IMAT and IMATI methods, outperform OMP (CS recovery
technique) in both simplicity and recovery performance. Also, they
exploit the spatial correlations in the 2-D image by taking 2-D DCT
transform of the image and it is unnecessary to divide the whole
image into small blocks as required in OMP. As a result, for the
purpose of signal compression, one does not need a compressive
matrix to take linear measurements of the signal coefficients and
it is shown in this work that direct random sampling recovery
(using IMAT and IMATI) performs better than compressive sampling
recovery using OMP. However, when we are faced with an ill-posed
system of equations (which inherently has the linear combinations
of signal coefficients for example, in MRI imaging), compressed
sensing recovery techniques are the only solutions. The simulation
results indicate that the proposed CS recovery technique, IMATCS,
outperforms IHT in both recovery performance and computational
complexity without any need to have knowledge of the sparsity
number. Moreover, IMATCS surpasses OMP in terms of recovery
performance and convergence speed.
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