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Abstract—In this paper, we develop a method to construct
non-redundant directional wavelet filter banks. Our method
uses a special class of filters called Neville filters and can
construct non-redundant wavelet filter banks in any dimension
for any dilation matrix. The resulting filter banks have directional
analysis highpass filters, thus can be used in extracting directional
contents in multi-D signals such as images. Furthermore, one can
custom-design the directions of highpass filters in the filter banks.

I. INTRODUCTION

In the last couple of decades, wavelets have been a popular
and useful tool in many applications such as signal and image
processing. One of important remaining challenges in wavelets
is to construct multi-D directional wavelet systems or wavelet
filter banks.

There has been a lot of attempts to develop such wavelet
systems or their variants for 2-D or 3-D signals, such as
curvelets, contourlets, shearlets, etc. Despite many benefits
of these existing systems, most of them are redundant with
possibly huge redundancy factors, and they do not have a
trivial generalization to higher dimensions. Although a re-
cent study by the authors provides the construction of non-
redundant wavelet filter banks with directional highpass filters
for any dimension [1], it only deals with the dyadic dilation
matrices. Other approaches based on anisotropic wavelet bases
have also been proposed (see, for example, [2], [3], [4] and the
references therein). However, these wavelets are designed in
continuous domain and implementing them in discrete setting
is not trivial.

In this paper, we develop a new method to construct non-
redundant wavelet filter banks that can capture the directional
information in multi-D signals. Our method is a general
designing recipe in the sense that it can work in any dimension
for any dilation matrix. In the design, one can even specify
the number of directions and which directions to consider.

II. PRELIMINARIES

In this section, we review some basic concepts and notations
about wavelet filter bank construction. In particular, we review
the concept of Neville filters and how to use Neville filters to
build multi-D wavelet filter banks.

This work was supported in part by the National Science Foundation under
Grant DMS-1115870.

A. Notation
In this paper, we use boldface to indicate vectors and

matrices. A filter f is a a linear time-invariant operator
characterized by its impulse response {f(k) 2 R|k 2 Zd}.
The z-transform of a filter is a Laurent polynomial

F (z) =
P

k f(k)z
�k

where z = (z1, z2, . . . , zd) and zk :=
Qd

i=1 z
ki
i . In this

paper, we refer to both the z-transform F (z) and the impulse
response f(k) as the filter, and sometimes we omit z and k in
the parentheses for convenience. Define the adjoint of a filter
as [F (z)]⇤ := F (1/z). Throughout this paper, we assume all
filters have finite impulse response.

A dilation matrix D is a d⇥d integer matrix with | detD| :=
m > 1. Given a dilation matrix D, the set Zd of integer grids
can be split into m disjoint subsets

Zd =
Sm�1

i=0 (DZd + ti), ti 2 Zd

where t0 = 0. We call {t1, t2, . . . , tm�1} as a set of (nonzero)
distinct coset representatives of the dilation matrix D.

A filter bank (FB) consisting of an analysis bank and a
synthesis bank is a set of filters. For a given dilation matrix
D, a filter in the analysis bank {Ai, i = 0, . . . , l � 1} and
a filter in the synthesis bank {Si, i = 0, . . . , l � 1} can be
written as the sum of m polyphase components

Ai(z) =
Pm�1

j=0 ztjAi,j(zD), ai,j(k) := ai(Dk� tj) (1)

Si(z) =
Pm�1

j=0 z�tj
Si,j(zD), si,j(k) := si(Dk+ tj) (2)

where zD := (zD1
, zD2

, . . . , zDd), Di is the ith column vector
of D. Then the pair of matrices

A(z) := [Ai,j(z)]i=0,...,l�1;j=0,...,m�1

S(z) := [Sj,i(z)]j=0,...,m�1;i=0,...,l�1

is called the polyphase matrix representation [5] of the FB.
A FB satisfies the perfect reconstruction condition if the

polyphase matrices satisfy S(z)A(z) = Im, which can happen
only when l � m. A FB is called non-redundant if l = m.

In this paper, we are only interested in non-redundant FBs
satisfying the perfect reconstruction condition, and we assume
there are exactly one lowpass filter A0 in the analysis bank
and one lowpass filter S0 in the synthesis bank. The rest,
A1, . . . , Am�1, S1, . . . , Sm�1, are all highpass filters.
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We use ⇧N to denote the set of all polynomials of total
degree less than N . We say a FB has N 2 N vanish-
ing moments [6] if, for any highpass filter f in the FB,
(f ⇤0 ⇡)(Zd) = 0, 8⇡ 2 ⇧N , or equivalently,

P
k f(�k)kn = 0, 8n 2 Nd

0, |n| < N

where n := (n1, n2, . . . , nd), N0 := N[ {0} and |n| := n1 +
n2+. . .+nd. Here we used (f⇤0⇡)(·) :=

P
k2Zd f(k)⇡(·�k).

B. Neville Filters and Their Use in Wavelet FB Construction
In [7], Kovačević and Sweldens introduce a class of filters

called Neville filters (Definition 1) and their characterization
(Result 1). When applied to a sampled polynomial, they result
in the same polynomial but shifted by a shift parameter ⌧ 2
Rd.

Definition 1. A filter f is a Neville filter of order N with shift
⌧ if (f ⇤0 ⇡)(Zd) = ⇡(Zd + ⌧ ), for any ⇡ 2 ⇧N .

Result 1 (Proposition 4 in [7]). A filter f is a Neville filter
of order N with shift ⌧ if and only if f satisfies

P
k f(�k)kn = ⌧n

, 8n 2 Nd
0, |n| < N. (3)

In 1-D case, the construction of Neville filters of order
N is straightforward. Once we fix the positions of N filter
taps, we obtain a linear system with an N ⇥ N coefficient
matrix from (3). Since the coefficient matrix in this case is a
Vandermonde matrix, it is always solvable. In multi-D case,
the solvability of the linear system not only depends on the
number of filter taps but also on the geometric shape of the
filter. Hence it is more challenging to construct a multi-D
Neville filter with a prescribed order and shift. An approach
based on an algorithm in [8] to solve this problem is proposed
in [7], but it is highly non-trivial to control the shape of the
filters using that approach.

Using the property of Neville filters, Kovačević and
Sweldens propose a method for constructing wavelet FBs
based on lifting scheme [9]. They use two lifting steps: predict
(cf. Ri) and update (cf. Ui), as shown in (4) and (5) to build
the wavelet FB with desirable vanishing moments:

A =

2

664

1 U1 · · · Um�1

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

3

775

2

664

1 0 · · · 0
�R1 1 · · · 0

...
...

. . .
...

�Rm�1 0 · · · 1

3

775

=

2

6666664

1�
m�1X

i=1

UiRi U1 · · · Um�1

�R1 1 · · · 0
...

...
. . .

...
�Rm�1 0 · · · 1

3

7777775
(4)

S =

2

664

1 0 · · · 0
R1 1 · · · 0
...

...
. . .

...
Rm�1 0 · · · 1

3

775

2

664

1 �U1 · · · �Um�1

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

3

775

=

2

664

1 �U1 · · · �Um�1

R1 1�R1U1 · · · �R1Um�1

...
...

. . .
...

Rm�1 �Rm�1U1 · · · 1�Rm�1Um�1

3

775 , (5)

where Ri are called predict filters, Ui are called update filters,
and m = | detD|. More precisely, the following is a variant of
the result they prove in [7], written in terms of our terminology.

Result 2. Let {t1, t2, . . . , tm�1} be a set of distinct coset
representatives of the d ⇥ d dilation matrix D. For i =
1, · · · ,m � 1, let Ri be a d-D Neville filter of order N with
shift ⌧ i = D�1ti, and Ui be the filter obtained by multiplying
1/m to the adjoint of a d-D Neville filter of order N with
shifts ⌧ i. Then the analysis polyphase matrix constructed as
(4) and the synthesis polyphase matrix constructed as (5) form
a wavelet FB with N vanishing moments.

This construction works for any dilation matrix D in any
dimension. It uses d-D Neville filters with prescribed orders
and shifts to construct d-D wavelet FBs.

III. DIRECTIONAL WAVELET FB DESIGN USING 1-D
NEVILLE FILTERS

In this section, we introduce a method to design directional
wavelet FBs using 1-D Neville filters and the lifting based
wavelet construction method reviewed in Section II-B. Let us
first define an operator that maps 1-D filters to d-D filters.

Definition 2. Define the operator that maps a 1-D filter F to
a d-D filter Mt(F ) along direction t 2 Zd as

Mt(F )(z) := F (zt).

The following simple lemma, which says that the operator
Mt preserves the order of Neville filters is a key ingredient
of our directional wavelet FB construction.

Lemma 1. If F is a 1-D Neville filter of order N with shift
⌧ 2 R, then the d-D filter Mt(F ) is a Neville filter of order
N with shift ⌧t, t 2 Zd.

Proof: Let G := Mt(F ), and let g be the impulse
response of G. Then, we have

g(k) =

⇢
f(k), if k = kt for some k 2 Z ,
0, for all other k 2 Zd.

where f is the impulse response of F . Therefore
P

k g(�k)kn =
P

k f(�k)(kt)n =
P

k f(�k)k|n|tn

= ⌧

|n|tn = (⌧t)n,

for any n 2 Nd
0, |n| < N , where the second last equation

holds because F is a 1-D Neville filter of order N with shift
⌧ . Thus G is a d-D Neville filter of order N with shift ⌧t.

Example 1: Mapping 1-D Neville Filter to 2-D. F (z) =
1/3z+2/3 is a 1-D Neville filter of order 2 with shift ⌧ = 1/3.
Then mapping it to 2-D along direction t = (1, 1) results in
Mt(F )(z) = 1/3z1z2 + 2/3. It can be easily checked that
Mt(F ) is a Neville filter of order 2 with shift ⌧t = (1/3, 1/3).
Figure 1 shows the impulse response of F and Mt(F ).

From Example 1, we see that the multi-D Neville filter
constructed by the operator Mt is directional along direction
t. We now discuss how to use these directional multi-D Neville
filters to construct directional wavelet FB.
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Fig. 1. Mapping 1-D Neville filter to 2-D. The impulse response of F and
Mt(F ) in Example 1. Underlined position is the origin.

Let us first look at a simple case when the dilation matrix
D = cId where c 2 Z, c > 1 and Id is the identity matrix. In
this case, D�1 = (1/c)Id. The multi-D Neville filters used
to construct predict and update filters in Result 2 need to
have shift parameters ⌧ i = D�1ti = (1/c)ti. Therefore, it
is possible to construct all these multi-D Neville filters by
mapping a single 1-D Neville filter with shift ⌧ = 1/c but with
different directions ti. In this way, we can avoid constructing
multi-D Neville filters directly, which is often difficult to do.
Moreover, it can be shown that the highpass filters built on
these multi-D Neville filters are also directional.

To generalize this idea to a general dilation matrix D, let us
consider the shift parameters ⌧ i = D�1ti again. In this case,
if we factor out ⌧ = 1/m as the shift parameter for 1-D Neville
filters, then ⌧ i = ⌧ t̃i, where t̃i = mD�1ti 2 Zd, hence we
can map a single 1-D Neville filter with shift ⌧ = 1/m along
different directions t̃i. For example, for dilation matrix

D =


2 �1
1 2

�
(6)

a set of distinct coset representatives of D are t1 =
(0, 1), t2 = (1, 1), t3 = (0, 2), t4 = (1, 2). The shift param-
eters of Neville filters needed to construct wavelet FB are
⌧ 1 = (1/5, 2/5), ⌧ 2 = (3/5, 1/5), ⌧ 3 = (2/5, 4/5), ⌧ 4 =
(4/5, 3/5). Therefore, we can construct all these multi-D
Neville filters by mapping one 1-D Neville filter with shift
1/5 along directions t̃1 = (1, 2), t̃2 = (3, 1), t̃3 = (2, 4), t̃4 =
(4, 3).

In fact, we can factor out any ⌧ = 1/s, where s 2 Z, as
the shift parameter for 1-D Neville filters, as long as ⌧ i = ⌧ t̃i
and t̃i = sD�1ti 2 Zd. In the simple case when D = cId,
s := c can be chosen, while in other cases such as (6), s :=
m can be chosen. Therefore, we have the following theorem.
For a general d-D dilation matrix D with | detD| = m, we
can construct a directional wavelet FB with analysis highpass
filters presenting at most m�1 different directions as follows.

Theorem 1. Let {t1, t2, . . . , tm�1} be a set of distinct coset
representatives of D. Let s be an integer such that sD�1ti 2
Zd. For i = 1, · · · ,m � 1, let Pi and Qi be the 1-D Neville
filters of order N with shift 1/s. Set t̃i = sD�1ti. Let d-
D filter Ri := Mt̃i(Pi) and Ui := (1/m)[Mt̃i(Qi)]⇤. Then
the analysis polyphase matrix given by (4) and the synthesis
polyphase matrix given by (5) form a directional FB with N

vanishing moments and the analysis highpass filters are placed
along directions ti.

Proof: Since Pi (resp. Qi) is a 1-D Neville filter of
order N with shift 1/s, by Lemma 1, Ri = Mt̃i(Pi)
(resp. Mt̃i(Qi)) is a d-D Neville filter of order N with
shift (1/s)t̃i = (1/s)sD�1ti = D�1ti. Thus Ui =
(1/m)[Mt̃i(Qi)]⇤ is 1/m times the adjoint of Neville filter

of order N with shift D�1ti. By Result 2, we see that (4) and
(5) form a wavelet FB with N vanishing moments.

To prove the directionality of analysis highpass filters,
consider the ith analysis highpass filter denoted by Ai. Since

Ri(z) = Mt̃i(Pi)(z) = P (zt̃i) = P (zsD
�1ti),

from (1) and (4), we see that Ai(z) is equal to

�Ri(z
D) + zti = �Pi(z

DsD�1ti) + zti = �Pi(z
sti) + zti .

If we replace zti with z in the last equation on the right
hand side, we get a 1-D filter �Pi(zs) + z. Thus Ai can be
understood as the result of taking the 1-D filter �Pi(zs) + z

and placing it in d-D space along direction ti.

Remark 1. In Theorem 1, a single 1-D Neville filter of order
N and shift 1/m can be used for all of Pi and Qi, or different
1-D Neville filters can be used. In fact Pi and Qi can have
different orders if we invoke more generalized version of
Result 2 from [7]. In this case, if Pi’s order is Ñi and Qi’s
order is Ni, then the vanishing moments of the FB is given
as min{Ñ1, . . . , Ñm�1, N1, . . . , Nm�1}.

Remark 2. The analysis highpass filters Ai of the FB in The-
orem 1 are placed along directions ti 2 Zd

, i = 1, . . . ,m� 1
(not t̃i = mD�1ti). Therefore, by carefully choosing the
distinct coset representatives of D, one can custom-design the
directions of the filters (cf. Example 2). There are at most
m�1 different directions that can be presented by the analysis
highpass filters.

In the next example, we illustrate how to use Theorem 1 to
construct directional wavelet FB.
Example 2: 2-D Directional Wavelet FB with 2 Van-
ishing Moments. For dilation matrix D = 3I2, since
| detD| = 9, there are 9 � 1 = 8 distinct coset representa-
tives {t1, t2, . . . , t8} that we can choose. We know that the
directions of coset representatives are exactly the directions
of resulting analysis highpass filters. Here we want to choose
directions that divide the 2-D plane as equally as possible.
Thus we choose t1 = (1, 0), t2 = (�1, 0), t3 = (0, 1), t4 =
(0,�1), t5 = (2, 1), t6 = (1, 2), t7 = (�2, 1), t8 = (�1, 2).
Then the resulting analysis highpass filters will present 6
different directions in the 2-D plane: approximately, 0� (t1,
t2), 30� (t5), 60� (t6), 90� (t3, t4), 120� (t8) and 150� (t7)
from the positive x-axis.

Next we pick a single 1-D Neville filter of order 2 with
shift 1/3 for all Pi and Qi: Pi(z) = Qi(z) = 1/3z+2/3, for
i = 1, . . . , 8. Theorem 1 says that if we choose, for each i,

Ri(z) = Pi(z
ti) = 1/3zti + 2/3

Ui(z) = (1/m)[Qi(z
ti)]⇤ = (1/9)(1/3z�ti + 2/3)

then we get the wavelet FB with 2 vanishing moments, whose
polyphase matrices are A and S in (4) and (5). Using formula
(1) and (2), we can read off the corresponding filters. For
example, the resulting synthesis lowpass filter S0 is

S0(z) = 1 +
P8

i=1 z
�ti

Ri(zD)
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(a) Synthesis lowpass filter S0
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Fig. 2. 2-D directional wavelet FB with 2 vanishing moments in Example
2: (a) synthesis lowpass filter, (b)-(i) directional analysis highpass filters with
each direction along the coset representatives: ti, i = 1, . . . , 8 .

and the resulting analysis highpass filter associated with coset
representative t5 = (2, 1) is

A5(z) = �R5(z
D) + zt5 = �(1/3z61z

3
2 + 2/3) + z

2
1z2.

Figure 2 shows the synthesis lowpass filter S0 and the analysis
highpass filters Ai, i = 1, . . . , 8.

IV. EXPERIMENTAL RESULT

We did an experiment using the 2-D directional wavelet
FB constructed in Example 2. For an original image “circle”
(Figure 3(a)), we did a 1-level-down decomposition using the
analysis highpass filters obtained in Example 2 (as shown
in Figure 2(b)-(i)). The images after passing through each
highpass filter (wavelet coefficients) are shown in Figure 3(b)-
(i). The result shows that different directional components
of the circle are captured by different directional highpass

(a) original

(b) A1 (1, 0) (c) A2 (�1, 0) (d) A3 (0, 1) (e) A4 (0,�1)

(f) A5 (2, 1) (g) A6 (1, 2) (h) A7 (�2, 1) (i) A8 (�1, 2)

Fig. 3. (a) The original image “circle”, (b)-(i) the images after passing
highpass filters A1, . . . , A8.

filters. A highpass filter with direction t can mainly capture
the directional content that is orthogonal to the direction t.

V. CONCLUSION

In this paper, we developed a method to use 1-D Neville
filters to build multi-D directional wavelet FBs. The resulting
FB is a non-redundant FB which can capture the directional
information in multi-D signals.
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