
Sparse 2D Fast Fourier Transform
André Rauh and Gonzalo R. Arce

Department of Electrical and Computer Engineering
University of Delaware

Newark, DE 19716
Email: rauh@udel.edu, arce@udel.edu

Abstract—This paper extends the concepts of the Sparse Fast
Fourier Transform (sFFT) Algorithm introduced in [1] to work
with two dimensional (2D) data. The 2D algorithm requires
several generalizations to multiple key concepts of the 1D sparse
Fourier transform algorithm. Furthermore, several parameters
needed in the algorithm are optimized for the reconstruction of
sparse image spectra. This paper addresses the case of the exact
k-sparse Fourier transform but the underlying concepts can be
applied to the general case of finding a k-sparse approximation
of the Fourier transform of an arbitrary signal. The proposed
algorithm can further be extended to even higher dimensions.
Simulations illustrate the efficiency and accuracy of the proposed
algorithm when applied to real images.

I. INTRODUCTION

The Fast Fourier Transform (FFT) has become ubiquitous
in signal processing applications. While the FFT does not
make any assumptions about the structure of the signal, very
often the signal of interest is obtained from a structured source
resulting in a nearly sparse Fourier spectrum. Assuming that a
signal of length N is k-sparse (k < N ) in the Fourier domain,
we can describe the signal with only these k coefficients. This
fact is the basis for signal compression and is used among
others in the popular MP3 codec. Due to the fact that the signal
is accurately described with just k coefficients it seems natural
that there should be a better performing algorithm that exploits
this property of the signal. Several algorithms have been
proposed with this goal [2], [3], [4], [5], [6]. One particular
approach is the so called sparse FFT (sFFT) which lowered
the computational complexity significantly was introduced
recently in [1]. The authors focused on the one dimensional
case and the extension to two or multi-dimensions is not
straight forward. Since the Fourier transform is separable,
it is tempting to sequentially apply the 1D sFFT algorithm
separately on all rows and columns. This approach, however,
would not be efficient as the algorithm would be of complexity
at least O(N) for a signal of NxN samples which is not nearly
as good as the proposed sub-linear algorithm. In addition, this
strategy does not exploit the intrinsic two dimensionality of
the signal and leads to a sub-optimal algorithm. This paper
aims to fill this gap and introduces the extensions that are
necessary to the algorithm.

The paper is organised as follows: Section II introduces
the main ideas and workings of the sparse Fourier transform.
Section III describes the new concepts and necessary modifica-
tions of the algorithm to extend it to 2D. Due to the sensitivity
of the parameter of the algorithm, Section IV lays out guid-

ance as to how the parameters should be selected under the
assumption of a natural image as the input. Simulations and
the conclusion are provided in the last two sections.

II. SPARSE FOURIER TRANSFORM ALGORITHM

It would be infeasible for this paper to describe in detail the
sFFT algorithm in its entirety. Instead we refer the reader to [1]
(up to page 9) and only describe the principal components of
the algorithm which are necessary to understand the proposed
extension. First, the notation is introduced. Note however that
the notation will be re-used for the 2D case in the next Section.
Given a signal x of length N we denote its discrete Fourier
transform as x̂. A signal is considered to be k-sparse if there
are only k non-zero components in x̂. Furthermore we define
ω = e−2πı/N .

The key idea of the sFFT algorithm is to hash the k
coefficients into few buckets in sublinear time. This is achieved
by using a carefully designed filter that is concentrated in time
as well as in the frequency domain. Due to the sparsity of
the signal and the careful selection of the number of bins,
each bin is likely to only contain one coefficient. After the
coefficients of each bin are obtained the actual positions in the
frequency domain are recovered by locating and estimating.
The algorithm does this hashing twice and “encodes” the fre-
quency of the coefficient into the phase difference between the
two hashed coefficients. This technique achieves the locating
part of the algorithm by decoding the phase and obtaining
the frequency. Before the coefficients are hashed into buckets,
the procedure (HASHTOBINS) permutes the signal x in the
time domain by applying the permutation operator P which
is defined as

(Pσ,a,bx)i = xσ(i−a)ω
σbi, (1)

where the parameter b is uniformly random between 1 and N ,
σ is uniformly random odd between 1 and N , and a is 0 for
one hashing operation and 1 for the other. With the use of
some basic properties of the Fourier transform the following
can be proved (page 5 of [1]):÷Pσ,a,bxσ(i−b) = x̂iω

aσi. (2)

Informally, this equation states the following: A permutation,
defined by equidistant subsampling in the time domain in
addition to a linear phase, results in a permutation in the fre-
quency domain with a linear phase. By carefully choosing the
parameters of (2) it is possible to design the permutation such

Proceedings of the 10th International Conference on Sampling Theory and Applications

248



that the phase difference between the two hashed coefficients
is linear in frequency which can then be recovered.

The previous paragraph describes the key ideas of one
iteration of the algorithm. A high level overview which was
taken from [1] is the following:
• HASHTOBINS permutes the spectrum of ’x− z, then

hashes to B bins. Where z is the already recovered signal
which is initially all zero.

• NOISELESSSPARSEFFTINNER runs HASHTOBINS
twice and estimates and locates “most” of ’x− z’s
coefficients.

• NOISELESSSPARSEFFT iterates NOISELESSSPARSE-
FFTINNER until it finds x̂ exactly.

NOISELESSSPARSEFFTINNER generates the random param-
eters for the permutation (among others) and passes it to
HASHTOBINS. The permutations are Pσ,0,b for the first call of
HASHTOBINS and Pσ,1,b for the second call respectively. The
number of bins is denoted by B and gradually reduced with
each call of NOISELESSSPARSEFFTINNER. HASHTOBINS
performs an FFT on B samples and thus has a complexity
of O(B logB). By carefully reducing B per iteration the 1D
sFFT algorithm runs in time O(k logN). Again, see [1] for a
detailed descriptions of the 1D sFFT algorithm.

III. EXTENSION TO 2D

For simplicity we will reuse the symbols and redefine the
notation for the two dimensional case. Let x be an NxN signal
with sparsity k, and the number of bins be BxB. It is intuitive
to extend the filtering and permutation to two dimensions.
However, the fact that the phase difference between the two
hashes is always a one dimensional entity even in a 2D sample
poses a problem. To be able to recover the frequencies in both
dimensions it is necessary to hash a total of three times and
encode one dimension in the second and the other dimension
in the third call of HASHTOBINS. This allows to locate the
coefficient in two dimensions. Additionally it is necessary to
extend the permutation to 2D which is done with the following
definition:

(Pσx,σy,τx,τy,ax,ay,bx,byx)ix,iy

= xσxix+ax+τxiy,σyiy+ay+τyixω
−(bxσxix+byσyiy). (3)

Note that, in addition to extending the permutation to two
dimensions a new parameter τ was introduced to allow more
powerful permutations. A similar equation as (2), which pro-
vides a relationship between the time and frequency domain,
can be obtained for the 2D case:⁄�(Pσ,τ,a,bx)σx(ix−bx)+τxiy,σy(iy−by)+τyix

= x̂ix,iyω
axσxixωayσyiy . (4)

For the proposed algorithm the high level overview is sim-
ilar to that previously introduced in Section II. The main dif-
ference is within the function NOISELESSSPARSEFFTINNER
which needs to properly select the parameters σx, σy , τx, τy ,
bx, by and ax, ay . For the three calls of HASHTOBINS, ax, ay
are selected as follows:

Fig. 1. Graphical depiction of the steps performed in HASHTOBINS. The
original spectrum (1) has only three non-zero coefficients (k = 3) which
are then permuted (2) and convolved with the low pass filter (3). Note that
only two coefficients are hashed (4) and the third (a) is missed. There is
no collisions in this particular example which could occur if the spectrum
overlaps with neighboring coefficients and the area is hashed.

1) ax = 0, ay = 0
2) ax = 1, ay = 0
3) ax = 0, ay = 1.

This approach encodes the frequency of the first dimension in
the phase difference of the first and second hashed coefficients
and the frequency of the second dimension in the phase
difference between the first and third hashed coefficient, re-
spectively. In order to allow the reconstruction of the frequency
by inverting the applied permutation, the parameter σ needs to
be carefully chosen. In the one dimensional case the constraint
for the parameter σ was for it to be odd. For the two
dimensional case the following conditions are to be met:

σx odd, σy odd, τx even, τy even

or
σx even, σy even, τx odd, τy odd.

These constraints ensure that the permutation applied in
HASHTOBINS is reversible which is necessary to decode the
frequencies in NOISELESSSPARSEFFTINNER.

The newly proposed algorithm has similar parameters as
the 1D algorithm. Though, at certain locations the parameters
need to be changed two accommodate for two dimensions
or extended to two dimensions. An example is the number
of bins B which changes to B2. Since the total number of
non-zero efficient is still k, the parameter k occurring in
NOISELESSSPARSEFFT is changed to

√
k.

The new procedure NOISELESSSPARSEFFTINNER gener-
ates the random parameters according to the constraints laid
out above and calls HASHTOBINS three times after which
the frequency locations can be recovered and wix,iy = v is
performed for “most” of ’x− z where ix and iy are extracted
from a combination of the three hashed coefficient and v
is taken from the first hash as in the one dimensional case.

Proceedings of the 10th International Conference on Sampling Theory and Applications

249



Fig. 1 depicts the concept of hashing the coefficients in two
dimension.

The proposed algorithm uses the same filter as that intro-
duced in [1] and extends it to two dimensions which is straight
forward and is not discussed here.

IV. OPTIMAL PARAMETER SELECTION

In [1], the authors only considered signals with random
spectra. That is, spectra where the k non-zero coefficients
have no structure. Often, however, signals encountered in real
world applications are structured. For instance, audio signals
often carry their majority of energy in harmonic frequencies.
Additionally, an image often contains most of its energy in
low frequency coefficients around the origin. This structure of
Fourier coefficients is the foundation of signal compression
where only the major coefficients are kept and low energy
coefficients are discarded [7]. In many signal processing
applications a randomized algorithm works extremely well
[8]. Often, however, it is beneficial to exploit the inherent
structure to obtain a better performing algorithm. In the
proposed algorithm, if the parameters are chosen randomly,
the performance can possibly be very poor which can be seen
in Fig. 3.

In particular, in the 1D algorithm of [1] the parameters σ and
b are chosen randomly as described after (1). In our proposed
algorithm the parameters that need special attention are σx, σy
and τx, τy . For the remaining of this paper we will assume
that we deal with two dimensional data whose spectrum is
concentrated around the origin.

The 2D permutation defined in (3) essentially performs a
linear mapping of the following form:Ç

i′x
i′y

å
7→
Ç
σxix + τxiy
σyiy + τyix

å
(5)

In this form it is easy to see that σ and τ can be interpreted
as scaling and shearing parameters. In particular the scaling
is linear in σx and σy and the shear is linear in Sx = τx/σx
and Sy = τy/σy .

In order to optimize the parameters it is important to know
that the low pass filter that is used in the algorithm has
an approximately rectangular shape. It is also necessary to
understand the inner workings of HASHTOBINS:

First, the spectrum is permuted using the permutation in
(3). Note that, if the permutation maps coefficients outside of
the valid range of 1 to N , the number is automatically taken
modulo N as the discrete Fourier transform is periodic with
N . Next the permuted spectrum is convolved with the nearly
rectangular two dimensional filter. Eventually the hashes are
obtained by evenly subsampling the spectrum. It is important
to note, that if the permuted samples are too close together
the hashed coefficients can be errornous due to colliding filter
windows after the convolution was applied.

Taking the above into consideration it is straight forward to
see how the parameters σ and τ can be optimized such that
the number of collisions are minimized:

Fig. 2. A 3% sparse spectrum of a 2D Wafer. Note the coefficients are
concentrated around the center and principal axes

10 11 12 13 14 15 16 17
0

100

200

300

400

500

600

700
PSNR Histogram of 7920 simulations

Fig. 3. Histogram of 7920 simulation of a 16384x16384 pixel Wafer with
scale parameter S range from 3 to 4201

The first step is to minimize the number of parameters and
to set the scale C = σx = σy due to the fact that most
natural occurring images have similar spectral characteristics
along each dimension. An example spectrum is depicted in
Fig. 2. Note that the coefficients are concentrated around the
center and the principal axes. Secondly, the shear Sx and
Sy are set such that Sx ≈ 1 and Sy ≈ −1 which can
be achieved by setting τx = σx − 1 and τy = −τx. This
results in an approximately 45 ◦ rotation around the origin.
This shear is crucial in achieving a low collision rate, as the
coefficients along the principal axes would collide with each
other without the shear. Furthermore, it is important to choose
the scale parameter C carefully. Figure 3 depicts a histogram
of a series of simulations where the scale S was swept from
3 to N/2. Note that, the PSNR can possibly be very poor
if the scale parameter were to be chosen randomly. Instead,
our proposed algorithm chooses the scale as S∗ = N/B − 1
which more consistently results in a good performance in
regards to PSNR. The scale S∗ is chosen because each bin
contains N/B samples and so that it is likely that only one
coefficient falls into one bucket since the original coefficients
are concentrated prior to the application of the permutation
which in turn minimized collisions after the permutation.

Proceedings of the 10th International Conference on Sampling Theory and Applications

250



Fig. 4. A cropped 800x800px segment of a “reconstructed” 16384x16384px
image of a Wafer. Input was 2% sparse.

Fig. 5. Top: A 512x512 crop of a 2048x2048 image with a sparsity of
2%. Bottom: Image after running the proposed sFFT algorithm. The PSNR
is 23.3dB when compared to the original sparse image.

V. SIMULATION RESULTS

We implemented the proposed algorithm in MATLAB and
therefore only simulated the algorithm itself rather than im-
plementing it in C/C++ and measuring real world speedup.

Hence, no actual performance comparisons to a C/C++-
implementation (such as FFTW) were carried out and the
input signal size was limited to 327682 due to memory
constraints. In order to compare the performance of different
parameters, simulations terminated after one outer iteration of
the algorithm. An example “reconstructed” image of a Wafer is
depicted in Fig. 4. In this case, the Wafer image was sparsified
to 3% of the coefficients and then the proposed algorithm was
run on the sparse signal.

Figure 5 depicts a 512x512 crop of a 2048x2048 black
and white image. The resulting bottom image shows that the
proposed 2D sFFT algorithm successfully computed the sparse
FFT. First, the original image was loaded, sparsified and then
transformed to the spatial domain. This is the top image of
Fig. 5. Then the 2D sFFT algorithm was applied to that image
followed by an inverse FFT. This is the bottom image which
has a PSNR of 23.3dB.

VI. CONCLUSION

In this paper a new sparse 2D Fourier transform algorithm
was introduced. The proposed algorithm is based on the very
efficient sFFT algorithm of [1]. The extension to 2D was done
by hashing the coefficients into two dimensional buckets and
decoding both frequencies from only three hashes. We showed
that it is crucial to pay special attention to the parameters σ
and τ of the newly introduced permutation, especially when
dealing with natural images which usually have the main
coefficients around the origin. The result is an algorithm with
a time complexity of O(k log(N/k) log2N) which is similar
to the one dimensional algorithm of [1]. Even though, we
only considered the optimization of the parameters of the
2D algorithm, the findings can be also be applied to the 1D
algorithm when dealing with structured signals such as natural
speech.

REFERENCES

[1] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly optimal sparse
fourier transform,” CoRR, vol. abs/1201.2501, 2012.

[2] A. Akavia, S. Goldwasser, and S. Safra, “Proving hard-core predicates
using list decoding,” in Annual Symposium on Foundations of Computer
Science, vol. 44. IEEE COMPUTER SOCIETY PRESS, 2003, pp. 146–
159.

[3] A. Akavia, “Deterministic sparse fourier approximation via fooling arith-
metic progressions,” in Proceedings of the 2010 Conference on Learning
Theory, AT Kalai and M. Mohri, eds., Omnipress, 2010, pp. 381–393.

[4] A. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss, “Near-
optimal sparse fourier representations via sampling,” in Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing. ACM,
2002, pp. 152–161.

[5] M. Iwen, “Combinatorial sublinear-time fourier algorithms,” Foundations
of Computational Mathematics, vol. 10, no. 3, pp. 303–338, 2010.

[6] Y. Mansour, “Randomized interpolation and approximation of sparse
polynomials,” in Automata, languages, and programming: 19th interna-
tional colloquium, Wien, Austria, July 13-17, 1992: proceedings, vol. 623.
Springer, 1992, p. 261.

[7] A. Gersho and R. Gray, Vector quantization and signal compression.
Springer, 1992, vol. 159.

[8] J. Tropp and A. Gilbert, “Signal recovery from random measurements via
orthogonal matching pursuit,” Information Theory, IEEE Transactions on,
vol. 53, no. 12, pp. 4655–4666, 2007.

Proceedings of the 10th International Conference on Sampling Theory and Applications

251


