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Abstract—We review traditions and trends in optics and imag-
ing recently arising by applying programmable optical devices
or by sophisticated approaches for data evaluation and image
reconstruction. Furthermore, a short overview is given about
modeling of well-known classical optical elements, and vice versa,
about optical realizations of classical mathematical transforms,
as in particular Fourier, Hilbert, and Riesz transforms.

I. INTRODUCTION

In the 18th/19th century the work of physicists and mathe-
maticians was often closely connected. Scientists in that age
were often acting concurrently in both fields: if we think
about e.g. Augustin Fresnel explaining experimentally and
theoretically the phenomena of light propagation and diffrac-
tion, or about Joseph Fourier, experimentally discovering mode
decomposition of (mechanical) wave fields and delivering the
basis for later theory about transforming signals and fields into
the (temporal or spatial) frequency domain. In the nearer past
both disciplines were developing rather independently in their
own directions. In the field of optics important discoveries as
the laser, wave-guides, novel microscopic or holographic tech-
niques should be named as examples among others. In the field
of mathematics the huge field of harmonic analysis, bringing
up wavelets, frames etc., the several numerical approaches for
solving differential equations and also the development of the
functional theoretic background in analysis should be quoted
as representatives here.

II. OPTICAL DEVICES AND MATHEMATICAL
DESCRIPTIONS; MATHEMATICAL APPROACHES AND

OPTICAL REALIZATIONS

A. Analogies between optical and mathematical approaches

Due to the contemporary possibilities given on one hand by
advanced digital optical devices, as spatial light modulators
(SLM) or micro mirror arrays (MMA), deformable mirrors
or phased arrays in combination with traditional optical ele-
ments, and on the other hand by the computational power of
modern hard- and software architecture allowing sophisticated

mathematical reconstruction algorithms, new fields of research
and perspectives are opened. Computational or programmable
optics are examples for this modern development and interdis-
ciplinary entanglement of the different disciplines. They open
a new branch of methods as for digital holography, lensless mi-
croscopy, or adaptive optics [1]–[3]; they comprehend several
phase retrieval and reconstruction techniques [4], [5], adaptive
wave front correction methods up to compressive sensing
for optical applications [6], [7]. Whereas in the past optical
imaging performance has often been hampered by scattering
within materials, by turbulences within fluids, or speckles
at rough surfaces, nowadays computational techniques and
programmable optics deliver novel approaches as focusing
through or within scattering materials, turbulence corrections
or contrast enhancement by SLM-based techniques, [8]–[10].

Bringing now together optics and mathematics in such a
way, touching points are noticed and furthermore, awareness
is arising that in both fields similar approaches exist, only
realization techniques or names may differ. This concerns for
instance classical optical devices (as lenses, prism, cones,...) or
classical imaging techniques (bright field, dark field, Schlieren
or knife edge imaging technique, spiral phase quadrature
imaging, or differential interference contrast (DIC) imaging),
[11]–[14]. Primarily, these techniques are modifying contrast
of the visualized specimen, but to a certain amount they are
also quantitative with respect to phase or optical path length,
which can be expressed and reconstructed mathematically un-
der knowledge of their (complex-valued) point spread function
(PSF) in the spatial domain or of their optical transfer function
in the Fourier domain.

Beyond the well-known Fourier transform (FT) other clas-
sical mathematical transforms as the two-dimensional (2D)
Hilbert transform (HT), also denoted as directional HT [15],
with a kernel function HHT defined in the Fourier do-
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Fig. 1. Different contrast modifications emulated by means of the SLM
device being addressed with different filter functions in a Fourier plane
filtering unit (a). The emulated imaging type shows as representative contrast:
(b) bright field (original scan), (c) dark field, (d) and (e) horizontal and
vertical Schlieren/knife edge imaging contrast. (Striped regions encode a zero
magnitude, continuous regions encode a constant unit magnitude, and a phase
between [0, 2 π] according to the gray level. The white scale bar yields
100 µm.)

main (u, v) by

HHT1(u, v) = −sgn(u) exp(ilπ/2), (1)
HHT2(u, v) = −sgn(v) exp(ilπ/2), (2)

where l = 1 is chosen for the conventional HT, or as the
2D Riesz transform (RT), also denoted as complexified-valued
Riesz transform [15] or radial Hilbert transform [16], with a
kernel function HRT defined in the Fourier domain by

HRT (r̂, ϕ̂) = exp(ilϕ̂), (3)

with (r̂, ϕ̂) denoting polar coordinates in the Fourier domain,
and l = 1 is chosen for the conventional RT, find entrance
in optical modeling, emulation, and settings. Optically these
transforms can be realized by classical elements (lenses,
apertures, spiral phase plates) or nowadays more and more
by programmable SLM devices allowing flexible realizations.
Vice versa, in the mathematical modeling of optical imag-
ing techniques these transforms build the base for an (ap-
proximated) description of the PSF e.g. for Schlieren and
DIC imaging, for pyramid and roof sensors (all with a PSF
model based on the directional HT), [17], [18]. Also spiral
phase/vortex filtering (with a PSF model based on the RT),
and their fractional expressions as fractional half-plane and
spiral phase filters (corresponding to a fractional HT resp. RT
with 0 < l < 1 in eq. (2) and (3)) can be modeled in such a
way, as shown in Fig.1 and Fig.2, [19]–[23].

Here we can connect now optics with classical functional
analysis. The PSF of a pyramid sensor [17] given in the spatial

Fig. 2. Contrast modifications emulated by means of the SLM device
being addressed with fractional spiral phase filter functions (fractional Riesz
transform) of fractional coefficient (a) l=0, (b) l=0.4, (c) l=0.8, (d) l=1.0,
(e) l=2.

domain (x, y) by
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with p.v. denoting a principal value and (n,m) are enumera-
tors (0, 1), resembles in its structure the 2D analytic signal, as
introduced by Hahn [24]. Whereas the PSF of a spiral phase
filter or so called vortex filter [22] can be described by the
(2D) Riesz kernel

hSP (r, ϕ) =
i

2πr2
exp(ilϕ), (5)

with (r, ϕ) denoting polar coordinates in spatial domain, and
l = 1 is chosen in the conventional case. Furthermore, it
should be noted that Riesz transform has been introduced
by [25] in the field of optics under the name spiral phase
quadrature transform. This filter tends rather to a monogenic
signal approach, as introduced by Felsberg, [26]. Knowing
now in principle the PSF of these imaging modalities, we can
emulate the special imaging types by addressing SLMs in a
corresponding way with amplitude or phase transfer functions
in optical Fourier domain. So we can flexibly change the
contrast corresponding to the envisaged imaging technique
[27] and can go towards a quantitative reconstruction based
on the emulated PSF in future.

B. Optical Fourier plane filtering and wavelet-like filters

In applied mathematics and signal analysis orthogonal,
isotropic or anisotropic wavelet-based decomposition ap-
proaches play an important role for image processing, nam-
ing applications as image denoising, edge enhancement, or
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Fig. 3. The original image has been filtered optically in Fourier domain by
different monogenic wavelet-like filters, the applied filter kernels are sketched
in the inset. (Striped regions encode a zero magnitude, continuous regions
encode a constant unit magnitude and a phase between [0, 2 π] according to
the gray level.)

compression methods among other. In particular, analytic or
monogenic wavelet approaches have found entrance in image
processing delivering additional phase and orientation infor-
mation or may be used for scale-based demodulation [28]–
[32].

On the other hand we can also ask whether and to which
extent a wavelet-like filtering can be performed analogously
in an optical way. Here the classical principle for optical
Fourier plane filtering finds its modern application anew. In
combination with programmable optics as SLMs or MMAs
we also can emulate to a certain amount the (compact and
positive) support and transfer function of suitable wavelets
(curvelets, shearlets) in Fourier domain. And for their analytic
and monogenic wavelet complements, also in this case, optical
realizations of Hilbert and Riesz transform build up the basis
for the filtering approaches. Here, the methods are usable for
isotropic or anisotropic contrast improvement in imaging [33],
as shown in Fig.3, for orientation emphasizing, or for salient
point detection.

C. Restrictions and differences between optical and mathe-
matical approaches

However, we also should keep in mind the restrictions
and differences between optical realizations and mathematical
approaches. For instance SLMs or MMAs as pixelated and
discrete arrays exhibit only a finite resolution; therefore, the
available spatial frequency range is restricted for filtering.
Furthermore, in optics without introducing additional sensors
or working with interferometric imaging setups, we can only
measure intensities at a conventional camera applied as detec-
tor. So the separated information given in the amplitude and

phase spectrum - as easily obtained by Fourier transform in
mathematics - is lost in their optical counterparts. At least for
phase reconstruction an additional phase retrieval step using a
multiple recording of the modified image would be required.

Coherence aspects in optical Fourier plane filtering provides
an additional discussion point. Coherence may be regarded as
an imaging feature closely related to the considered scale. Fur-
thermore, it must be distinguished between temporal coherence
and spatial coherence. Operating with broadband light sources
for illumination, these sources exhibit a smaller temporal
coherence length than conventional narrow band laser sources
used in coherent imaging. Therefore, the phase filter applied
on the SLM mask is exactly matching only for the central
wavelength. This mismatch may result in a slight blurring of
the image features such as edges. Spatial coherence can be
maintained by coupling the illumination beam into a single
mode fiber.

However, scattering within turbid materials severly restricts
the fixed phase relationship within the electro-magnetic wave
field required e.g. for the Fourier plane (phase-only) filtering
(or correspondingly within a convolution kernel of a defined
support). This demands again methods for wavefront correc-
tion to cope with scattering materials for future successful
implementations.

III. CONCLUSION

In summary, the close connection between the modeling of
well-known optical devices or elements and classical math-
ematical approaches or transforms has been demonstrated.
Furthermore, by linear filtering in optics we can realize
similar effects as with classical filtering in signal or image
processing. The explanation of the obtained effects in optics
and in mathematics is partly similar, but due to the complex-
valued nature of the light also different mechanism, as e.g.
interference or diffraction has to be considered.
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