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Abstract—Interpolation is a fundamental issue in image pro-
cessing. In this short paper, we communicate ongoing results
concerning the accuracy of two landmark approaches: the
Shannon expansion and the Discrete Fourier Transform (DFT)
interpolation. Among all sources of error, we focus on the impact
of spatial truncation. Our estimations are expressed in the form
of upper bounds on the Root Mean Squared Error as a function
of the distance to the image border. The quality of these bounds
is appraised through experiments driven on natural images.

I. INTRODUCTION

Regardless of their very digital nature, images must often be
considered continuous. To some extent that we shall discuss,
this conceptual ”equivalence” is justified by the Shannon-
Whittaker theorem. By any means, it is paramount for any
application of image processing where sub-pixel operations
are performed (such as in optical flow or stereopsis).

However fundamental, the Shannon-Whittaker theorem is
by nature deceptive when considering practical circumstances
for digital signals are noisy, possibly aliased and more impor-
tantly finite. As a result, any practical continuous reconstruc-
tion of such signals will be flawed. Among other error sources,
one can list photon counting, quantization, aliasing and spatial
truncation ([1]). The first three can be harnessed by different
means. Photon counting noise can be lowered by increasing
the exposure time, while quantization and aliasing are well
controlled in recent High Dynamic Range (HDR) cameras.

On the contrary, the last source of error will prove to be
much more troublesome. It is indeed the main goal of these
notes to alert the readers on this issue. We will also give
evidence that this is especially true for images, due to their
relatively narrow spatial extension and to their slow spectral
decay (mainly when textures are present).

It is rather awkward that the truncation error is often entirely
ignored in image processing. It was nonetheless studied in
other communities of signal processing. This is for example
the case of [2], [3], [4] and [5]. These articles are all dedicated
to the truncation error. They include upper bounds valid
under diverse circumstances. Unfortunately, because they were
developed in different contexts, these results are not so well
adapted to images.

In [2] for instance, the signal is assumed bounded. This is
certainly true for images since they are encoded on the range
between 0 and 255. However in practice their bound yields a
large overestimation because its tightness is proportional to the
signal dynamic which often exceeds greatly the signal local
variability. In [3], [5] the signal is assumed over-sampled,

a case often referred to as the guard band assumption in
the literature. Such an assumption may be realistic for audio
signals but not for images. Note that in the limit where the
guard band vanishes, the upper bounds explode inescapably.

While standing no exception to the previous limitations,
the study presented in [6] has yet been very inspirational. It
considers signals as stationary random processes and proposes
two upper-bounds depending upon whether the signal is over-
sampled or not. If not, the upper-bound is proportional to
the maximum value of the spectrum. This maximum value is
generally large and does not lead to a practical upper-bound.

Let us mention also [7], where the problem of Shannon-
Whittaker interpolation is directly posed for duration-limited
signals. Instead of considering convergence upon an infinite
number of samples, the authors let the sampling rate tend to
infinity. As a result, no band-limited assumption is required on
the signal. The counterpart is that upper bounds are derived
and expressed in term of the modulus of continuity of the sig-
nal. Such a property can only be known in certain application
domains, and certainly not in classical image processing.

All the articles we have mentioned so far concentrate on the
Shannon expansion, while in practice, the DFT interpolation is
preferred due to a lesser time complexity. To our knowledge,
upper-bounds in that case have only been studied in [8].
Their approach is similar to [3] and hence suffers the same
limitations. Since the DFT interpolation is equivalent to the
exact Shannon expansion under periodic conditions, a periodic
plus smooth decomposition [9] may improve its performance.

It is worth noting that the general study of interpolation error
can be considered a sub-field of approximation theory. One
fundamental and quite powerful result, known as the Strang-
Fix conditions [10], relates the capability of a linear shift in-
variant approximation system to its order of approximation. It
was for instance used by Blu et al. (see [11]) to estimate spline
based approximation errors. One should note however that
these developments concern shift-invariant (and thus infinite)
sampling grids. As a result they do not apply to the truncation
error. Moreover, it was shown in [12] that in this context
at least, the most accurate approximation methods are not
interpolating. In a nut shell, imposing a perfect reconstruction
of the signal at the sampling position has a negative effect on
the overall reconstruction.

For what concerns us, we shall concentrate our efforts on the
truncation error and endeavour to obtain realistic estimations
of the actual error. Due to lack of space, results shall be
presented in a summarized way (e.g. without proof and using
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the Landau notation). Further details (proofs and tightness
analysis) will be included in a forthcoming publication.

II. NOTATIONS AND ASSUMPTIONS

In what follows, Xt stands for a random process (RP),
where t ∈ R might be either a time or space variable. The
Fourier transform of a deterministic signal xt will be denoted
by F(x) and defined as F(x)(ω) := 1

2π

∫
eiωtxtdt.

All RPs are assumed weakly stationary, in other terms with
time-invariant first and second order statistics. For such a pro-
cess Xt, we will generically denote by µ := E [Xt] its average,
by RX(t) := E [(Xτ − µ)(Xτ+t − µ)] its auto-correlation
function and by dΨX(ω) := F(RX)(ω) its power spectral
distribution. All RPs are further assumed strictly Nyquist band-
limited, which is to say that dΨX({|ω| ≥ π}) = 0.

Given a RP Xt, we will denote by X.∆K :=
∑
|k|≤K Xkδk

the sampled version on the finite grid {k ∈ Z, |k| ≤ K}. For a
fixed K > 0, the number of samples will always be denoted by
N = 2K+1. We consider linear shift-invariant reconstructions
from such a sampled version in the form

[(X.∆K) ∗ hK ](t) =
∑
|k|≤K

XkhK(t− k),

where hK(t) is any function referred to as a reconstruction
kernel. In this article, we will mainly consider two examples,
• the Shannon kernel sinc(t) := sin(πt)

πt and
• the DFT (or Dirichlet) kernel sincd[K](t) := sin(πt)

N sin(πtN )
.

A. Goal

We will appraise the quality of a given reconstruction based
on the Root Mean Squared Error (RMSE),

RMSE[X,hK ](t)
2 := E

[
(Xt − [(X.∆K) ∗ hK ](t))

2
]
.

Resting upon intuitive observations, we shall highlight two
predictable features of the RMSE. First, since any interpolation
is supposed to perform perfectly at the sampling locations,
the RMSE is likely to oscillate, being null at any sample and
maximal approximately midway between successive samples.
Besides, a RP can be theoretically recovered through the
Shannon expansion, if sampled on an infinite grid. Therefore,
we expect the error to be tied to the lack of knowledge
outside the finite sampling domain, and as such to diminish
as we move farther away from the borders. Accordingly, our
goal consists in evaluating the decay (up to an oscillating
modulation) of the RMSE as the distance varies. We set

δ(t) := min(K +
1

2
− t,K +

1

2
+ t). (1)

III. THEORETICAL RMSE BOUNDS

Theorem 1 (Spectral representation of the RMSE): Let Xt

be a RP of average µ and power spectrum dΨX , K <∞ and
hK a reconstruction system. Then,

RMSE[X,hK ](t)
2 = MSEµ,hK (t) +MSEdΨX ,hK (t),

0

ω
απ

σ2
α

π

σ2
α1|ω|≤πdω

dΨ′α(ω)

ψα(ω)dω

dΨX(ω)

Fig. 1. The spectrum decomposition of Proposition 2.

where

MSEµ,hK (t) :=µ2 |1−∆K ∗ hK(t)|2 ,

MSEdΨ,hK (t) :=
1

2π

∫ ∣∣eiωt − [(eiω.∆K) ∗ hK ](t)
∣∣2 dΨ(ω).

This theorem merely states that the mean squared error is the
sum of the squared errors with respect to the average value
of X and with respect to every pure harmonic eiωt (weighted
by the spectrum of X). The conclusion holds true even if Xt

is not band-limited and under mild assumptions (applying to
a sequence of hK’s) when K →∞.

We shall need to evaluate the behavior of each component
of the previous decomposition. We refer to them respectively
as the average MSE component and the power spectral MSE
component. Unlike the previous theorem, the next proposition
is specific to strictly Nyquist band-limited RPs.

Proposition 1:

MSEµ,hK (t) =µ2 |[∆∞ ∗ sinc](t)− [∆K ∗ hK ](t)|2 ,

MSEdΨX ,hK (t) =
1

2π

∫
|ω|≤π

dΨX(ω)×∣∣∣[(eiω.∆∞) ∗ sinc](t)− [(eiω.∆K) ∗ hK ](t)
∣∣∣2 .

Building upon existing works and the analysis of their flaws
with respect to specific spectrum characteristics of images, we
propose an essential step to obtain realistic bounds. The trick
resides in decoupling the low frequencies of the spectrum from
a residual component equivalent to band-limited white noise.
This process, illustrated in Figure 1, results in

Proposition 2 (Spectrum decomposition): Let 0 ≤ α < 1
and assume that 1|ω|≥απdΨX(ω) = ψα(ω)dω, with ψα(ω) ≤
σ2
α. And let dΨ′α the positive component of dΨX − σ2

αdω.
Then,

MSEdΨX ,hK (t) ≤MSEdΨ′α,hK (t) + σ2
αMSE1|ω|≤πdω,hK (t).

In the previous statement, the first term in the right-hand-side
corresponds to an over-sampled signal and the second one
to the aforementioned residual band-limited white-noise. In
addition, α can be set freely; a freedom we shall exploit to
tighten the RMSE bounds which follow.
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Fig. 2. Construction of the RMSE and spectrum estimators. Interpolation is
conducted along the x-axis and averaging along the y-axis.

Theorem 2: Under the same assumptions and notations as
in Proposition 2, and with the kernel hK associated with either
the Shannon expansion or the DFT interpolation, we have

RMSE[X.∆K∗hK ](t)
2 =

sin2(πt)

π2
×



µ2
XO

(
1

δ(t)2

)
+

σ′2αO
(

1
δ(t)2

)
+

σ2
αO
(

1
δ(t)

)


,

where

σ′
2
α :=

1

2π

∫
|ω|≤απ

2

1 + cos(ω)
dΨ′α(ω).

This provides a decomposition of the mean squared error
into a modulation times an envelope. Following the previous
developments, the latter has been decomposed into three terms
referred as the average envelope, the low-frequency envelope
and the white-noise envelope. This decomposition is valid for
the two aforementioned interpolation methods. However the
domination constants are different. Precisely, in the DFT, the
average envelop is null while the remaining two constants are
twice as large as those of the Shannon case.

IV. EXPERIMENTAL SETTINGS

In order to scrutinize the correctness of our upper bounds
and determine how insightful the information they provide,
we have designed an experimental framework1. Aspiring to
provide practical conclusions on natural images, we could not
resort to synthetic signals for which we could have obtained
closed-form expressions of the quantities of interest. Instead,
given an image exemplar and an interpolation method, our
goal would be to estimate the RMSE bound as well as an
accurate approximation of the RMSE at varying distances. As
illustrated in Figure 2, we will perform interpolation along
the horizontal dimension and take advantage of the remaining
dimension to perform empirical averages when needed.

The upper bound calculation relies on the image average
and two spectral statistics: σα and σ′α. Assuming the spectrum

1Available at http://dev.ipol.im/∼simonl/ipol demo/loic truncate.

5050 100100 150150

1010

2020

rmse=10.6rmse=10.6

rmse=0.1rmse=0.1

upper boundupper bound
empirical estimateempirical estimate

(a) Shannon

5050 100100 150150

1010

2020

rmse=2.2rmse=2.2

rmse=0.1rmse=0.1

upper boundupper bound
empirical estimateempirical estimate

(b) DFT

5050 100100 150150

1010

2020

rmse=0.6rmse=0.6
rmse=0.2rmse=0.2

empirical estimateempirical estimate

(c) B-spline 9

Fig. 3. RMSE estimator and upper bound for the dice image.

to be absolutely continuous, its density verifies ψX(ω) =
E [|F(X)(ω)]|2. It can thus be estimated at discrete frequen-
cies as an average ψX(ωk) ' 1

M

∑M
i=1 |DFT (Xi)|2(ωk).

Assuming that we knew the signal at a given location t, the
RMSE could be approached by

RMSE2
X,hk

(t) ' 1

M

M∑
i=1

(Xi,t − X̃hK
i,t )2,

where to shorten notations X̃hK
i,t := [(Xi,..∆K) ∗ hK ](t). The

only challenge here relates to the estimation of the ground-
truth interpolated signal. A simple idea would be to subsample
an input image, and re-interpolate it with the method under
consideration at the missing samples. Obtaining the ground-
truth could not be more straightforward. However this scheme
does not fulfil other requirements, especially since it violates
the Nyquist band-limited assumption.

Instead, as illustrated in Figure 2, starting from an image of
half-width K ′, we restrict the evaluation to a central sub-image
of half-width K. That is to say, we apply the interpolation
method under test based on this subset of the samples and
obtain interpolated samples X̃hK

i,t in a super-grid of the central
region t ∈ {−K,−K + dt, . . . ,K}. We then use the whole
image to compute (pseudo-)ground-truth samples X̃gt

i,t at the
same locations thanks to the Shannon expansion.

We must point out that the previous strategy has one major
drawback. Indeed, since we wish the ground-truth to be much
more accurate than the considered interpolation, the margin
between the whole image borders and the central region must
be large compared to the central extent, i.e. K ′ � K. Besides,
the errors made in X̃gt

i,t and X̃hK
i,t are due to missing samples,

a majority of which are shared. Therefore these errors are
correlated and result in a negative bias of the RMSE estimator.

V. EXPERIMENTAL RESULTS

Here we present the results on two images. For each image,
we plot the RMSE estimator for the Shannon expansion, the
DFT and the 9th-order b-spline interpolation, as well as the
theoretical upper bound when available.

The two images were chosen to illustrate opposite be-
haviours associated with different spectral contents. Indeed,
the first image (Figure 3) is very smooth whereas the second
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Fig. 4. RMSE estimator and upper bound for the garden image.

one (Figure 4) presents various textured regions. We should
then expect the white-noise component to be more important
in the second case. To confirm this, a visual comparison of the
estimated spectra is depicted in Figure 5. In both cases, the
upper bound is consistent with the estimator. One cannot fail
to observe that the gap between the two curves is greater in the
smooth case. This might be explain either by a stronger bias
in the estimator or by a lesser sharpness of the upper bound.
In any case, consistently with our prediction, the worst-case
scenario occurs with highly textured images. It is therefore
a great achievement to ensure as tight an estimation in this
case. In fact, we have obtained closed-form expressions of the
tightness (for white-noise) that confirm our doing so.

Studying closely the values in Figure 4 reveals that for a
150 pixels wide and highly textured image, the interpolation
error might very well exceed the quantization (whose RMSE
amounts to 0.29) everywhere. The decay of the RMSE as
the square root of the inverse distance is then extremely
problematic, since it means that to achieve a 2fold decrease
of the RMSE the distances must be multiplied by 4. This
point brings out dramatic conclusions when considering 16-
bits HDR images. Practically, it means that for the same level
of accuracy (relatively to the quantization RMSE) the distances
must be multiplied by 2562.

Considering the comparison between the Shannon/DFT
methods and B-splines, the most noticeable difference con-
cerns the shape of the RMSE curve. The B-splines error
decreases much more quickly and flattens. Unfortunately, the
attained value is much larger than in the other methods.

VI. CONCLUSION

We have presented ongoing results concerning a systematic
error which occurs in interpolation. Although similar studies
have been published in the past, their knowledge does not seem
widely spread among the image processing scientists. More
importantly, their applicability to natural images is limited.
On the contrary, our study is motivated by practical needs in
image processing and is therefore directed toward this specific
context. In particular, from the start we took into consideration
the possible presence of smooth regions as well as textures.
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Fig. 5. Comparison of the spectra in dB for the dice and the garden image.

After presenting the main steps to the theoretical upper
bound, we have described an experimental framework and
some selected results. A consensus emerged among theoretical
and experimental conclusions wherein textured images proved
to be a worst-case scenario. The relatively slow decay of the
RMSE in that case appears as a major obstacle to highly
accurate image processing.

We hope that this paper sheds new light on the legitimacy of
the conceptual equivalence of digital and continuous images.
It should as well provide a sound starting point to consider ac-
curacy estimations in sub-pixel image processing applications.
We do plan to explore such path in the near future.
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