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Abstract—We study the design of sampling trajectories for
stable sampling and reconstruction of bandlimited spatial fields
using mobile sensors. As a performance metric we use the path
density of a set of sampling trajectories, defined as the total
distance traveled by the moving sensors per unit spatial volume of
the spatial region being monitored. We obtain new results for the
problem of designing stable sampling trajectories with minimal
path density, that admit perfect reconstruction of bandlimited
fields. In particular, we identify the set of parallel lines with
minimal path density that contains a set of stable sampling for
isotropic fields.

I. INTRODUCTION

Let the square-integrable mapping f : Rd 7→ C denote a d-

dimensional time-invariant spatial field, with f(r) representing

the field value at a location r in d-dimensional space. The

Fourier transform of f is defined as

F (ω) =

∫
Rd

f(r) exp(−i〈ω, r〉)dr, ω ∈ R
d (1)

where i denotes the imaginary unit, and 〈u, v〉 denotes the

scalar product between vectors u and v in Rd. We say that f
is bandlimited to some set Ω ⊂ R

d, if the Fourier transform

F of f is supported on Ω. In this case we write f ∈ BΩ

where BΩ denotes the collection of fields with finite energy

bandlimited to Ω, i.e.,

BΩ := {f ∈ L2(Rd) : F (ω) = 0 for ω /∈ Ω}. (2)

The classical theory of sampling and reconstructing such high-

dimensional bandlimited fields dates back to Petersen and

Middleton [1] who identified conditions for reconstructing

such fields from their measurements on a lattice of points in

space. Further research on non-uniform sampling generated

more results on conditions for perfect reconstruction from

samples taken at non-uniformly distributed spatial locations

[2], [3], [4], [5], [6], [7]. Such works primarily deal with

the problem of reconstructing the field from measurements

taken by a collection of static sensors distributed in space, like

that shown in Figure 1(a), and hence the performance metric

usually used to quantify the efficiency of a sampling scheme

is the spatial density of samples which is exactly equal to the

number of sensors required for sampling per unit volume of

the spatial region being monitored.

In this paper we consider the problem of reconstructing a

bandlimited spatial field (where d = 2 or 3) using its samples

taken by a mobile sensor that moves along a continuous path

(a) Static sampling on points (b) Mobile sampling on a curve

Fig. 1. Two approaches for sampling a field in R2

through space taking measurements along its path, as shown

in Figure 1(b). In such cases it is often relatively inexpensive

to increase the spatial sampling rate along the sensor’s path

while the main cost of the sampling scheme comes from the

total distance that needs to be traveled by the moving sensor.

Hence it is reasonable to assume that the sensor can record

the field values at an arbitrarily high but finite resolution

on its path. Furthermore, for such a sampling application,

the density of the sampling points in R
d used in classical

sampling theory is not a relevant performance metric. Instead,

as we argued in our previous work [8] [9], a more relevant

metric is the average distance that needs to be traveled by

the sensor per unit spatial volume (or area, for d = 2). We

call this metric the path density. Such a metric is relevant

in applications like environmental monitoring using moving

sensors [10], [11], where the path density directly measures

the distance moved by the sensor per unit area. This metric

is also useful in designing k-space trajectories for Magnetic

Resonance Imaging (MRI) [5], where the path density captures

the total length of the trajectories per unit area in k-space

which can be used as a proxy for the total scanning time per

unit area in k-space.

In [8] and [9] we introduced the problem of designing

sampling trajectories for bandlimited fields that are minimal in

path density. We obtained conditions on unions of uniformly

spaced straight line trajectories that admit perfect reconstruc-

tion of bandlimited fields. From this class of trajectories, we

identified those with minimal path density. In this paper we

extend our past work to arbitrary configurations of parallel line

trajectories. We introduce the notion of trajectories that admit
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stable sampling. We identify new designs of trajectories for

fields in Rd, d ≥ 3 that are strictly better in path density than

those identified in [9].

The paper is organised as follows. In Section II we describe

the formal problem statement, in Section III we present our

new results and we conclude with some discussion in Section

IV. Below we introduce notations we use frequently in the

paper.

Notation: We use 〈, 〉 to denote the canonical inner product,

and ek to denote the unit vector along the k-th coordinate axis.

For u ∈ Rd we denote the hyperplane orthogonal to u through

the origin by u⊥ = {x ∈ Rd : 〈x, u〉 = 0}. For a set S ⊂ Rd

we use |S| to denote the volume of S relative to its affine hull,

relint(S) to denote the relative interior of S, S(x) to denote its

shifted version S(x) = {y + x : y ∈ S}, and Pu⊥S to denote

the orthogonal projection of S onto the hyperplane u⊥. We

use Bd
a and Bd

a(x) for denoting spherical balls of radius a
centered at the origin and x ∈ Rd respectively. For a discrete

set Λ we use #(Λ) to denote its cardinality.

II. PROBLEM STATEMENT

A trajectory pi in Rd refers to a curve in Rd. We represent

a trajectory by a continuous function p(.) of a real variable

taking values on Rd:

p : R 7→ R
d.

A trajectory set P is defined as a countable collection of

trajectories:

P = {pi : i ∈ I} (3)

where I is a countable set of indices and for each i ∈ I, pi is

a trajectory in the trajectory set P . For any given trajectory

set P we denote its path density by ℓ(P ) defined as follows:

ℓ(P ) := lim sup
a→∞

supx∈Rd DP (a, x)

Vold(a)
(4)

where DP (a, x) represents the total arc-length of trajectories

from P located within the ball Bd
a(x) and Vold(a) represents

the volume of the d-dimensional ball. A simple example of a

trajectory set in R2 is a doubly infinite sequence of equispaced

parallel lines through R2 (e.g., see Figure 2(a)). We call such

a trajectory set a uniform set in R2. Such a uniform set has

a path density equal to 1
∆ (see [9, Lem 2.2]) where ∆ is the

spacing between the lines. Similarly a uniform set in Rd is

defined as a collection of parallel lines in Rd such that the

cross-section forms a (d− 1)-dimensional lattice, as shown in

Figure 2(b).

We say that a set of points Λ ⊂ Rd is uniformly discrete if

we have inf{‖x− y‖ : x, y ∈ Λ, x 6= y} > 0, i.e., there exists

r > 0 such that for any two distinct points x, y ∈ Λ we have

‖x − y‖ > r.1 We say that Λ forms a set of stable sampling

1For example lattices in Rd are uniformly discrete, but a sequence in Rd

converging to a point in Rd is not.

(a) Uniform set in R2 (b) Uniform set in R3

Fig. 2. Examples of uniform sets in R2 and R3.

[4][3] for a set Ω ⊂ Rd if there exists positive scalars A and

B such that

A‖f‖2 ≤
∑
x∈Λ

|f(x)|2 ≤ B‖f‖2, for all f ∈ BΩ. (5)

Further, let AΩ denote the collection of all uniformly discrete

sets Λ ⊂ Rd that form sets of stable sampling for Ω. Classical

sampling theory is primarily concerned with the elements of

AΩ, e.g., Nyquist sampling lattices [1].

The following are some desirable properties of sampling

trajectory sets.

Definition 2.1: A trajectory set P of the form (3) is called

a stable Nyquist trajectory set for Ω ⊂ Rd if it satisfies the

following conditions:

(C1) [Nyquist] There exists a uniformly discrete set

Λ of points on the trajectories in P such that

Λ forms a stable sampling set for BΩ, i.e.,

Λ ⊂ {pi(t) : i ∈ I, t ∈ R} and Λ ∈ AΩ.

(C2) [Non-degeneracy] For any x ∈ Rd, there is

a continuous curve of length no more than

DP (a, x) + o(ad) that contains the portion

of the trajectory set P that is located within

Bd
a(x).

Here condition (C2) is a regularity condition to ensure that

the path density metric does indeed capture the total distance

traveled per unit area by a single moving sensor using the

trajectories in P . We also introduce a special notation for the

collection of all stable Nyquist trajectory sets:

Definition 2.2: We use NΩ to denote the collection of all

stable Nyquist trajectory sets for Ω, i.e., NΩ is the collection of

all trajectory sets P of the form (3) that satisfy conditions (C1)

and (C2).

Sampling theory for mobile sensing is primarily concerned

with identifying trajectory sets in NΩ. The key optimization

problem that we seek to solve is to identify trajectory sets in

NΩ with minimal path density:

min
P∈NΩ

ℓ(P ). (6)

In [9] and [12] we identified various examples of trajectory sets

in NΩ, and obtained partial solutions to (6) optimizing over
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specific restricted classes of trajectories, such as uniform sets

and unions of uniform sets. In this paper we present optimality

results from broader classes of trajectory sets.

III. NEW OPTIMALITY RESULTS FOR PARALLEL LINES

Let P denote a trajectory set composed of parallel lines in

Rd. For any x ∈ Rd let Nx
a (P ) denote the number of lines

in P that intersect the d-dimensional ball Bd
a(x) of radius a

centered at x. We restrict our attention to trajectory sets that

are homogenous in the sense defined below.

Definition 3.1: We say that P is a homogenous parallel set

if

lim
a→∞

Nx
a (P )

|Bd−1
a |

exists and is equal for all x ∈ R
d.

Most practically useful parallel trajectory sets such as uniform

sets, approximately uniform sets (e.g., with bounded offsets)

and their finite unions are homogenous. For Ω ⊂ Rd we use

HΩ to denote homogenous parallel sets in NΩ. Below, we

characterize the path density of homogenous parallel sets.

Lemma 3.1: Any homogenous parallel set P in Rd satisfies

ℓ(P ) = lim
a→∞

N0
a (P )

|Bd−1
a |

. ⊓⊔ (7)

We provide a proof in the appendix. We now tackle (6) for

trajectory sets in HΩ and compact convex symmetric sets Ω.

We first establish a lower bound on the path density.

Proposition 3.2: Let Ω ⊂ Rd be a compact convex set

with non-empty interior. Assume further that Ω has a point

of symmetry at the origin. Let Q ∈ HΩ be a trajectory set

composed of lines parallel to q ∈ R
d. Then ℓ(Q) ≥ |Ω∩q⊥|

(2π)d−1 .

Proof: Assume without loss of generality that q = e1,

the unit vector along the first coordinate axis. Consider a

field of the form f(x) = sinc(ǫx1)g(x2, x3, . . . , xd) and g
is bandlimited to a closed set Ωg where Ωg ⊂ relint(Ω∩ q⊥).
For ǫ small enough, f ∈ BΩ. For stably recovering f from

samples on Q, the non-uniform collection of points at which

the lines in Q intersect the hyperplane e⊥1 must form a set

of stable sampling for Ωg . We know from Landau’s result

[2] (see also [4, Cor. 1]) that the sampling density of such

a set must necessarily be greater than or equal to
|Ωg|

(2π)d−1 .

Thus, by Lemma 3.1 it follows that ℓ(Q) ≥ |Ωg|
(2π)d−1 for all

Ωg ⊂ relint(Ω ∩ q⊥). Hence ℓ(Q) ≥ |Ω∩q⊥|
(2π)d−1 .

Although the result of Proposition 3.2 only provides a

lower-bound on the path density, we believe that the techniques

used in [13] can be used to construct trajectory sets in HΩ

that achieve arbitrarily close to this bound for convex and

symmetric Ω. However, in this paper, we only establish the

following achievability result, which is tight for some specific

choices of Ω as we discuss below.

Proposition 3.3: Let Ω ⊂ R
d be a compact convex set with

non-empty interior and a point of symmetry at the origin. Let

S(Ω) denote the volume of the smallest projection of Ω onto

a hyperplane defined as

S(Ω) := min
u∈Rd:‖u‖=1

|Pu⊥Ω|. (8)

Let u∗ be the minimizer in (8). Then for any ǫ > 0 there exists

P ∈ HΩ such that the lines in P are parallel to u∗ and

ℓ(P ) ≤
S(Ω)

(2π)d−1
+ ǫ.

Sketch of proof: We do not provide a complete proof

due to lack of space. The optimal trajectory set is obtained

by choosing the lines in P parallel to u∗ such that their

points of intersection with (u∗)⊥ approximates an optimal set

of stable sampling for P(u∗)⊥Ω. Such an optimal set can be

designed using the results of [13, Cor 4.5]. In this case, the

path density of this trajectory set matches the sampling density

of the optimal set of sampling which is equal to |P(u∗)⊥Ω|+ǫ.

The following corollary is immediate from the above two

results.

Corollary 3.3.1: Let Ω ⊂ Rd be a compact convex set with

non-empty interior and a point of symmetry at the origin.

Suppose that Ω satisfies the condition

min
u∈Rd:‖u‖=1

|Ω ∩ u⊥| = S(Ω). (9)

Then

inf
Q∈HΩ

ℓ(Q) =
S(Ω)

(2π)d−1
. ⊓⊔ (10)

In words, condition (9) is the requirement that the volume

of the smallest section of Ω through the origin is equal to the

volume of the smallest projection of Ω onto a hyperplane. This

condition holds in the following practically relevant cases:

• Ω ⊂ R
2 such that Ω is convex and compact [14, Thm

12.18].

• Ω ⊂ Rd such that Ω is a spherical ball (obvious), or an

n-cube [15], or an ellipsoid (can be shown).

However, this condition does not hold in general, a simple

counter-example being the regular octahedron in R3: Ω =
{ω ∈ R3 : ‖ω‖1 ≤ 1}. Nevertheless for Ω’s that satisfy

condition (9), the trajectory set of Proposition 3.3 gives the

optimal configuration of parallel lines for sampling fields in

BΩ. In particular, when Ω is a spherical ball in Rd, the

trajectory set of Proposition 3.3 gives the optimal configuration

of parallel lines for sampling isotropic fields in Rd. Similarly,

for convex and compact sets Ω ⊂ R2, we showed in [9] that the

optimum configuration of parallel lines given by Proposition

3.3 is a uniform set in HΩ. For general Rd, the result of

Proposition 3.3 gives the best known solution to the minimum

path density problem of (6). In Section IV we discuss the

possibility of extending this result to all of NΩ.

IV. DISCUSSION

This work opens up several possible research directions.

An obvious question is to check if under the conditions of

Proposition 3.3 it is possible to design a trajectory set in

HΩ that achieves a path density arbitrarily close to the lower

bound. Another direction of interest is to extend the results

on parallel lines obtained in this paper to parallel sampling

manifolds of higher dimensions, like those considered in [9].
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Although we have obtained various optimality results on

parallel line trajectories in this paper, our original task of

identifying minimal length trajectories for sampling spatial

bandlimited fields still remains open. A first case to analyze is

the necessary condition on a trajectory set in NΩ composed of

arbitrary (not necessarily parallel) straight lines. A generaliza-

tion of the notion of Fourier frames [4] [5] may be a possible

approach towards such a result.

A different question of interest is to examine the definition

of NΩ. In the current version of this work, while defining

the set NΩ we have placed the restriction that a sampling

trajectory set in NΩ must contain a uniformly discrete set of

points that form a set of stable sampling for Ω. In addition we

have the requirement of Condition (C2). Nevertheless, it has

recently come to our knowledge that under this definition of

NΩ it is possible to design sampling trajectories in NΩ that

have arbitrarily small path density. However, this leads to the

stability ratio B
A

of parameters A and B in the definition of

(5) to be arbitrarily high. It is of interest to examine whether a

constraint on the ratio B
A

can be incorporated in the definition

of NΩ to obtain a non-trivial lower bound on the path density

of all trajectory sets in NΩ. However, it is to be noted that if

we restrict ourselves to trajectory sets in HΩ, then the problem

is still well-posed as evidenced by Proposition 3.2. It would be

of interest to examine whether such a non-trivial lower bound

on the path density continues to hold if we expand HΩ to all

trajectory sets composed of straight lines.
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APPENDIX

A. Proof of Lemma 3.1

For simplicity, we prove the result only for d = 2, since the

same proof idea works for higher dimensions. Without loss of

generality assume that the lines in P are parallel to e2. Since

the lines are homogenous we just need to evaluate (4) when

x is the origin. We number the lines in P such that for each

i ∈ Z+(Z−), ℓa,i denotes the length of the portion of the i-th
line to the right (left) of the origin that is contained within a

disc of radius a centered at the origin. Without affecting the

value of the computation we assume that the line indexed by

0 passes through the origin. Let di =
∑i

j=0 ∆j where ∆j

denotes the spacing between lines indexed by j and j + 1.

Now let Ia,f = {i ∈ Z : fǫa ≤ di < (f + 1)ǫa} for − 1
ǫ
≤

f ≤ 1
ǫ
. Let La,f =

∑
i∈Ia,f

ℓa,i and Na,f = #(Ia,f ). Clearly

lima→∞
Na,f

aǫ
= ρ where ρ is the right hand side expression

in (7). Further, for f ∈ [0, 1
ǫ
],

2a(1 − (f + 1)2ǫ2)
1
2 Na,f ≤ La,f ≤ 2a(1 − f2ǫ2)

1
2 Na,f .

Hence

2ǫρ

π
(1 − (f + 1)2ǫ2)

1
2 ≤ lim

a→∞

La,f

πa2
≤

2ǫρ

π
(1 − f2ǫ2)

1
2 .

For f < 0 the above relation holds with the signs reversed.

Thus we see that
∑ 1

ǫ

f=0 lima→∞
La,f

πa2 is bounded between the

right hand and left hand Riemann sums that approximate the

Riemann integral
∫ 1

0
2ρ
π

(1−x2)
1
2 dx. Since this holds for all ǫ

it follows that as we let ǫ → 0, we get lima→∞

P

i∈Z+ ℓa,i

πa2 =∫ 1

0
2ρ
π

(1 − x2)
1
2 dx. Following the same steps for negative

indices and combining, we get

lim
a→∞

∑
i∈Z

ℓa,i

πa2
=

∫ 1

−1

2ρ

π
(1 − x2)

1
2 dx = ρ.

⊓⊔
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